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Abstract. The skill of the state-of-the-art climate field reconstruction technique BARCAST ("Bayesian Algorithm for Recon-

structing Climate Anomalies in Space and Time") to reconstruct temperature with pronounced long-range memory (LRM)

characteristics is tested. A novel technique for generating fields of target data has been developed and is used to provide

ensembles of LRM stochastic processes with a prescribed spatial covariance structure. Based on different parameter setups,

hypothesis testing in the spectral domain is used to investigate if the field and spatial mean reconstructions are consistent with5

either the fractional Gaussian noise (fGn) null hypothesis used for generating the target data, or the autoregressive model of

order one (AR1) null hypothesis which is the assumed temporal evolution model for the reconstruction technique. The study

reveals that the resulting field and spatial mean reconstructions are consistent with the fGn hypothesis for some of the tested

parameter configurations, while others are in better agreement with the AR(1) model. There are local differences in recon-

struction skill and reconstructed scaling characteristics between individual grid cells, and the agreement with the fGn model is10

generally better for the spatial mean reconstruction than at individual locations. Our results demonstrate that the use of target

data with a different spatiotemporal covariance structure than the BARCAST model assumption can lead to a potentially biased

CFR reconstruction and associated confidence intervals.

1 Introduction

Proxy-based climate reconstructions are major tools in understanding past and predicting future variability of the climate sys-15

tem. Target regions, spatial density and temporal coverage of the proxy network vary between the studies, with a general trend

towards more comprehensive networks and sophisticated reconstruction techniques used. For example, Jones et al. (1998);

Moberg et al. (2005); Mann et al. (1998, 2008); PAGES 2k Consortium (2013); Luterbacher et al. (2016); Werner et al. (2018)

present reconstructions of surface air temperatures (SAT) for different spatial and temporal domains. On the most detailed

level, the available reconstructions tend to disagree on aspects such as specific timing, duration and amplitude of warm/cold20

periods, due to different methods, types and number of proxies, and regional delimitation used in the different studies, (Wang

et al., 2015). There are also alternative viewpoints on a more fundamental basis considering how the level of high frequency

versus low frequency variability is best represented, see e.g. Christiansen (2011); Tingley and Li (2012). In this context, dif-

ferences between reconstructions can occur due to shortcomings of the reconstruction techniques, such as regression causing
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variance losses back in time and bias of the target variable mean. These artifacts can appear as a consequence of noisy mea-

surements used as predictors in regression techniques based on ordinary least squares (Christiansen, 2011; Wang et al., 2014),

though Ordinary Least Squares still provides optimal parameter estimation when the predictor variable has error (Wonnacott

and Wonnacott, 1979). The level of high/low frequency variability in reconstructions also depends on the type and quality of

the proxy data used as input (Christiansen and Ljungqvist, 2017).5

The concept of pseudoproxy experiments was introduced after millennium-long paleoclimate simulations from GCMs first

became available, and has been developed and applied over the last two decades, (Mann et al., 2005, 2007; Lee et al., 2008).

Pseudoproxy experiments are used to test the skill of reconstruction methods and the sensitivity to the proxy network used, see

Smerdon (2012) for a review. The idea behind idealized pseudoproxy experiments is to extract target data of an environmental

variable of interest from long paleoclimate model simulations. The target data is then sampled in a spatiotemporal pattern10

that simulates real proxy networks and instrumental data. The target data representing the proxy period is further perturbed

with noise to simulate real proxy data in a systematic manner, while the pseudo-instrumental data are left unchanged or only

weakly perturbed with noise of magnitude typical for the real-world instrumental data. The surrogate pseudoproxy and pseudo-

instrumental data are used as input to one or more reconstruction techniques, and the resulting reconstruction is then compared

with the true target from the simulation. The reconstruction skill is quantified through statistical metrics, both for a calibration-15

and a much longer validation interval.

Available pseudoproxy studies have to a large extent used target data from the same GCM model simulations, subsets of

the same spatially distributed proxy network and a temporally invariant pseudoproxy network (Smerdon, 2012). In the present

paper we extend the domain of pseudoproxy experiments to allow more flexible target data, with a range of explicitly controlled

spatiotemporal characteristics. Instead of employing surrogate data from paleoclimate GCM simulations, ensembles of target20

fields are drawn from a field of stochastic processes with prescribed dependencies in space and time. In the framework of such

an experiment design, the idealized temperature field can be thought of as an (unforced) control simulation of the Earth’s surface

temperature field with a simplified spatiotemporal covariance structure. The primary goal of using these target fields is to test

the ability of the reconstruction method to preserve the spatiotemporal covariance structure of the surrogates in the climate

field reconstruction. Earlier, Werner and Tingley (2015) generated stochastic target fields using the AR(1) model equations of25

BARCAST introduced in Sect. 2.1. We present for the first time a data generation technique for fields of long-range memory

(LRM) target data.

Additionally, we test the reconstruction skill on an ensemble member basis using standard metrics including the correlation

coefficient and the root-mean-squared error (RMSE). The continuous ranked probability score (CRPS) is also employed, this is

a skill metric composed of two subcomponents recently introduced for ensemble based reconstructions (Gneiting and Raftery,30

2007).

Temporal dependence in a stochastic process over time t is described as persistence or memory. An LRM stochastic process

exhibits an autocorrelation function (ACF) and a power spectral density (PSD) of a power-law form: C(t)∼ tβ−1, and S(f)∼
f−β respectively. The power-law behavior of the ACF and the PSD indicates the absence of a characteristic time scale in the

time series; the record is scale invariant (or just scaling). The spectral exponent β determines the strength of the persistence.35
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The special case β = 0 is the white noise process, which has a uniform PSD over the range of frequencies. For comparison,

another model often used to describe the background variability of the Earth’s SAT is the autoregressive process of order 1

(AR1) (Hasselmann, 1976). This process has a Lorentzian power spectrum (steep slope at high frequencies, constant at low

frequencies) and thereby does not exhibit long-range correlations.

For the instrumental time period, studies have shown that detrended local and spatially averaged surface temperature data5

exhibit long-range memory properties on time scales from months up to decades, (Koscielny-Bunde et al., 1996; Rybski

et al., 2006; Fredriksen and Rypdal, 2016). For proxy/multiproxy SAT reconstructions, studies indicate persistence up to a few

centuries or millennia, (Rybski et al., 2006; Huybers and Curry, 2006; Nilsen et al., 2016). The exact strength of persistence

varies between data sets and depends on the degree of spatial averaging, but in general 0< β < 1.3 is adequate. The value

of β > 1 is usually associated with sea surface temperature, which features stronger persistence due to effects of oceanic heat10

capacity (Fraedrich and Blender, 2003; Fredriksen and Rypdal, 2016).

Our basic assumption is that the background temporal evolution of Earth’s surface air temperature can be modelled by

the persistent Gaussian stochastic model known as the fractional Gaussian noise (fGn) (Beran et al., 2013)[Chapter 1 and 2],

(Rypdal et al., 2013). This process is stationary, and the persistence is defined by the spectral exponent 0< β < 1. The synthetic

target data are designed as ensembles of fGn-processes in time, with an exponentially decaying spatial covariance structure.15

In contrast to using target data from GCM simulations, this gives us the opportunity to vary the strength of persistence in

the target data, retaining a simplistic and temporally persistent model for the signal covariance structure. The persistence is

varied systematically to mimic the range observed in actual observations over land, typically 0< β < 1 (Franke et al., 2013;

Fredriksen and Rypdal, 2016; Nilsen et al., 2016). The pseudoproxy data quality is also varied by adding levels of white noise

corresponding to signal-to-noise ratios by standard deviation (SNR)=∞,3,1,0.3. For comparison, the signal to noise ratio of20

observed proxy data is normally between 0.5-0.25 (Smerdon, 2012). However, in Werner et al. (2018), most tree-ring series

were found to have SNR > 1.

The fGn model is appropriate for many observations of SAT data, but we acknowledge that there are also some devia-

tions. The theoretical fGn follow a Gaussian distribution, but for instrumental SAT data the deviation from Gaussianity varies

with latitude (Franzke et al., 2012). Some temperature-sensitive proxy types are also characterized by nonlinearities and non-25

gaussianity (Emile-Geay and Tingley, 2016).

Since the target data are represented as an ensemble of independent members generated from the same stochastic process,

there is little value in estimating and analyzing ensemble means from the target and reconstructed time series themselves.

Anomalies across the ensemble members will average out, and the ensemble mean will simply be a time series with non-

representative variability across scales. Instead we will focus on averages in the spectral sense. The median of the ensemble30

member-based metrics are used to quantify the reconstruction skill.

The reconstruction method to be tested is the "Bayesian Algorithm for Reconstructing Climate Anomalies in Space and

Time" (BARCAST), based on a Bayesian Hierarchical Model (Tingley and Huybers, 2010a). This is a state-of-the-art paleocli-

mate reconstruction technique, described in further detail in Sect. 2.1. The motivation for using this particular reconstruction

technique in the present study is the contrasting background assumptions for the temporal covariance structure. BARCAST35
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assumes that the temperature evolution follows an AR(1) process in time, while the target data are generated according to the

fGn model. The consequences of using an incorrect null hypothesis for the temporal data structure are illustrated in Fig. 1.

Here, the original time series in Fig. 1a follows an fGn structure. The corresponding 95% confidence range of power spectra is

plotted in blue in Fig. 1c. Using the incorrect null hypothesis that the data are generated from an AR(1) model, we estimate the

AR(1) parameters from the time series in Fig. 1a using Maximum Likelihood estimation. A realization of an AR(1) process5

with these parameters is plotted in Fig. 1b, with the 95% confidence range of power spectra shown in red in Fig. 1c. The

characteristic timescale indicating the memory limit of the system is evident as a break in the red AR(1) spectrum. This is an

artifact that does not stem from the original data, but simply occurs because an incorrect assumption was used for the temporal

covariance structure.

A particular advantage of BARCAST as a probabilistic reconstruction technique lies in its capability to provide an objective10

error estimate as the result of generating a distribution of solutions for each set of initial conditions. The reconstruction skill of

the method has been tested earlier and compared against a few other CFR techniques using pseudoproxy experiments. Tingley

and Huybers (2010b) use instrumental temperature data for North America, and construct pseudoproxy data from some of the

longest time series. BARCAST is then compared to the RegEM method used by Mann et al. (2008, 2009). The findings are that

BARCAST is more skillful than RegEM if the assumptions for the method are not strongly violated. The uncertainty bands15

are also narrower. Another pseudoproxy study is described in Werner et al. (2013), where BARCAST is compared against the

canonical correlation analysis (CCA) CFR method. The pseudo proxies in that paper were constructed from a millennium-long

forced run of the NCAR CCSM4 model. The results showed that BARCAST outperformed the CCA method over the entire

reconstruction domain, being similar in areas with good data coverage. There is an additional pseudoproxy study by Gómez-

Navarro et al. (2015), targeting precipitation which has a more complex spatial covariance structure than SAT anomalies. In20

that study, BARCAST was not found to outperform the other methods.

In the following, we describe the methodology of BARCAST and the target data generation in Sect. 2. The spectral estimator

used for persistence analyses is also introduced here. Sect. 3 is comprised of an overview of the experiment setup and explains

the hypothesis testing procedure. Results are presented in Sect. 4 after performing hypothesis testing in the spectral domain of

persistence properties in the local and spatial mean reconstructions. The skill metric results are also summarized. Finally, Sect.25

5 discusses the implications of our results and provides concluding remarks.

2 Data and methods

2.1 BARCAST methodology

BARCAST is a climate field reconstruction method, described in detail in Tingley and Huybers (2010a). It is based on a

Bayesian hierarchical model with three levels. The true temperature field in BARCAST, Tt is modelled as a multivariate30

first-order autoregressive model (AR(1)) in time. Model equations are defined at the process level:

Tt−µ1 = α(Tt−1−µ1) + εt (1)

4



Where the scalar parameter µ is the mean of the process, α is the AR(1) coefficient, and 1 is a vector of ones. The subscript t

indexes time in years, and the innovations (increments) εt are assumed to be IID normal draws εt ∼N(0,Σ), where

Σij = σ2 exp(−φ|xi−xj |) (2)

is the spatial covariance matrix depicting the covariance between locations xi and xj .

5

The spatial e-folding distance is 1/φ and is chosen to be ∼ 1000 km for the target data. This is a conservative estimate

resulting in weak spatial correlations for the variability across a continental landmass. (North et al., 2011) estimate that the

decorrelation length for a 1-year average of Siberian temperature station data is 3000 km. On the other hand, Tingley and

Huybers (2010a) estimate a decorrelation length of 1800 km for annually mean global land data. They further use annual mean

instrumental and proxy data from the North American continent to reconstruct SAT back to 1850, and find a spatial correlation10

length scale of approximately 3300 km for this BARCAST reconstruction. Werner et al. (2013) use 1/φ∼1000 km as the

mean for the lognormal prior in the BARCAST pseudoproxy reconstruction for Europe, but the reconstruction has correlation

lengths between 6000-7000 km. The reconstruction of Werner et al. (2018) has spatial correlation length slightly longer than

1000 km.

15

On the data level, the observation equations for the instrumental and proxy data are:

Wt =

 HI,t

β1 ·HP,t

Tt +

 eI,t

eP,t +β01

 (3)

Where eI,t and eP,t are multivariate normal draws ∼N(0, τ2
I I) and ∼N(0, τ2

P I). HI,t and HP,t are selection matrices of

ones and zeros which at each year select the locations where there are instrumental/proxy data. β0 and β1 are parameters rep-20

resenting the bias and scaling factor of the proxy records relative to the temperatures. Note that these two parameters have no

relation to the spectral parameter β. The BARCAST parameters are distinguished by their indices, the notation is kept as it is

to comply with existing literature.

The remaining level is the prior. Weakly informative but proper prior distributions are specified for the scalar parameters25

and the temperature field for the first year in the analysis. The priors for all parameters except φ are conditionally conjugate,

meaning the prior and the posterior distribution has the same parametric form. The Markov-Chain Monte Carlo (MCMC)

algorithm known as the Gibbs sampler (with one Metropolis step) is used for the posterior simulation (Gelman et al., 2003).

Table C1 sums up the prior distributions and the choice of hyperparameters for the scalar parameters in BARCAST. The CFR

version applied here has been updated as described in Werner and Tingley (2015). The updated version allows inclusion of30

proxy records with age uncertainties. This property will not be used here directly, but it implies that proxies of different types
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may be included. Instead of estimating one single parameter value of τ2
P , β0 and β1, the updated version estimates individual

values of the parameters for each proxy record (Werner et al., 2018).

The Metropolis-coupled MCMC algorithm is run for 5000 iterations, running three chains in parallel. Each chain is assumed

equally representative for the temperature reconstruction if the parameters converge. There are a number of ways to investigate

convergence, for instance one can study the variability in the plots of draws of the model parameters as a function of step num-5

ber of the sampler, as in Werner et al. (2013). However, a more robust convergence measure can be achieved when generating

more than one chain in parallel. By comparing the within-chain variance to the between-chain variance we get the convergence

measure R̂, (Gelman et al., 2003, Chapter 11). R̂ close to one indicates convergence for the scalar parameters.

There are numerous reasons why the parameters may fail to converge, including inadequate choice of prior distribution10

and/or hyperparameters or using an insufficient number of iterations in the MCMC algorithm. It may also be problematic if

the spatiotemporal covariance structure of the observations or surrogate data deviate strongly from the model assumption of

BARCAST.

BARCAST was used to generate an ensemble of reconstructions, in order to achieve a mean reconstruction as well as

uncertainties. In our case, the draws for each temperature field and parameter are thinned so that only every 10 of the 500015

iterations are saved; this secures independence of the draws.

The output temperature field is reconstructed also in grid cells without observations, this is a unique property compared to

other well-known field reconstruction methods such as the regularized expectation maximum technique (RegEM) applied in

Mann et al. (2009). Note that the assumptions for BARCAST should generally be different for land and oceanic regions, due

to the differences in characteristic timescales and spatiotemporal processes. BARCAST is so far only configured to handle20

continental land data, (Tingley and Huybers, 2010a).

2.2 Target data generation

While generating ensembles of synthetic LRM processes in time is straightforward using statistical software packages, it is

more complicated to generate a field of persistent processes with prescribed spatial covariance. Below we describe a novel

technique that fulfills this goal, which can be extended to include more complicated spatial covariance structures. Such a25

spatiotemporal field of stochastic processes has many potential applications, both theoretical and practical.

Generation of target data begins with reformulating Eq. 1 so that the temperature evolution is defined from a power-law

function instead of an AR(1). The continuous-time version of Eq. 1 (with µ= 0) is the stochastic (ordinary) differential equa-

tion:

dTt =−λTdt+ dWt, (4)30

where Tt = (Tt,1, . . . ,Tt,n), and Tt,i is the temperature at time t and spatial position xi. The noise term dWt = (dWt,1, . . . ,dWt,n)
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is a vector of (dependent) white-noise measures. Spatial dependence is given by Eq. 2 when εt = Wt+∆t−Wt and ∆t= 1 yr.

If I denotes the identity matrix, the stationary solution of Eq. 4 is

Tt =

t∫
−∞

exp
(
−λI(t− s)

)
dWs, (5)

which defines a set of dependent Ornstein-Uhlenbeck processes (the continuous-time versions of AR(1) processes with α=

e−λ, α= 1−λ). Eq. 4 assumes that the system is characterized by a single eigenvalue λ, and consequently that there is only5

one characteristic time scale 1/λ. It is well-known that surface temperature exhibits variability on a range of characteristic

time scales, and more realistic models can be obtained by generalizing the response kernel as a weighted sum of exponential

functions (Fredriksen and Rypdal, 2017):

Tt =

t∫
−∞

[∑
k

ck exp
(
−λkI(t− s)

)]
dWs. (6)

An emergent property of the climate system is that the temporal variability is approximately scale invariant (Rypdal and Rypdal,10

2014, 2016) and the multi-scale response kernel in Eq. 6 can be approximated by a power-law function to yield:

Tt =

t∫
−∞

(t− s)β/2−1dWs. (7)

This expression describes the long-memory response to the noise forcing. We note that this should be considered as a formal

expression since the stochastic integral is divergent due to the singularity at t= s. Also note that Tt in Eq. 7 in contrast to

Eq. 5 is no longer a solution to an ordinary differential equation, but to a fractional differential equation. By neglecting the15

contribution from the noisy forcing prior to t= 0 we obtain

Tt =

t∫
0

(t− s)β/2−1dWs, (8)

which in discrete form can be approximated by

Tt =

t∑
s=0

(t− s+ τ0)β/2−1εs. (9)

The stabilizing term τ0 is added to avoid the singularity at s= t. The optimal choice would be to choose τ0 such that the

term in the sum arising from s= t represents the integral over the interval s ∈ (t− 1, t), i.e.,

τ0 =

τ0∫
0

τβ/2−1dτ,

which has the solution τ0 = β/2.20
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Summations over time steps s= 1,2, ....N of (9) results in the matrix product:

Tt,i =

N∑
s=1

Gtsεs,i,

where G = (Gts) is the N ×N matrix

Gt,s = (t− s+β/2)(β/2−1)Θ(t− s), (10)

and Θ(t) is the unit step function.5

If we for convenience omit the spatial index i from Eq. 10, the model for the target temperature field T at time t can be

written in the compressed form

Tt = Gtεt. (11)

2.3 Scaling analysis in the spectral domain

The temporal dependencies in the reconstructions are investigated to obtain detailed information about how the reconstruction10

technique may alter the level of variability on different scales, and how sensitive it is to the proxy data quality. Persistence

properties of target data, pseudoproxies and the reconstructions are compared and analyzed in the spectral domain using the

periodogram as the estimator. See appendix A for details on how the periodogram is estimated.

Power spectra are visualized in log-log plots since the spectral exponent then can be estimated by a simple linear fit to the

spectrum. The raw and log-binned periodograms are plotted, and β is estimated from the latter. Log-binning of the periodogram15

is used here for analytical purposes, since it is useful with a representation where all frequencies are weighted equally with

respect to their contributions to the total variance.

It is also possible to use other estimators for scaling analysis, such as the detrended fluctuation analysis (DFA, Peng et al.

(1994)), or wavelet variance analysis (Malamud and Turcotte, 1999). One can argue for the superiority of methods other than

PSD or the use of a multi-method approach. However, we consider the spectral analysis to be adequate for our purpose and20

refer to Rypdal et al. (2013); Nilsen et al. (2016) for discussions on selected estimators for scaling analysis.

3 Experiment setup

The experiment domain configuration is selected to resemble that of the continental landmass of Europe, withN = 56 grid cells

of size 5◦ x 5◦. The reconstruction period is 1000 years. reflecting the last millennium. The reconstruction region and period

are inspired by the BARCAST reconstructions in Werner et al. (2013); Luterbacher et al. (2016) and approximate the density25

of instrumental and proxy data in reconstructions of the European climate of the last millennium. The temporal resolution for

all types of data is annual. By construction the target fGn data are meant to be an analogue of the unforced SAT field. We will

study both the field and spatial mean reconstruction.

Pseudoinstrumental data cover the entire reconstruction region for the time period 850-1000 and are identical to the noise-

free values of the true target variables. The spatial distribution of the pseudoproxy network is highly idealized as illustrated in30
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Fig. 2, the data covers every fourth grid cell for the time period 1-1000. The pseudoproxies are constructed by perturbing the

target data with white noise according to Eq. 3. The variance of the proxy observations is τ2
P , and the SNR is calculated as:

SNR =
β2

1Var(Tt)

τ2
P

(12)

Our set of experiments is summarized in Table 1 and comprises target data with three different strengths of persistence,5

β = 0.55,0.75,0.95 and pseudoproxies with SNR: SNR =∞,3,1, and 0.3. In total, 20 realizations of target pseudoproxy and

pseudoinstrumental data are generated for each combination of β and SNR and used as input to BARCAST. The reconstruction

method is probabilistic and generates ensembles of reconstructions for each input data realization. In total, 30 000 ensemble

members are constructed for every parameter setup.

3.1 Hypothesis testing10

Hypothesis testing in the spectral domain is used to determine which pseudoproxy/reconstructed data sets can be classified as

fGn with the prescribed scaling parameter, or as AR(1) with parameter α estimated from BARCAST. The power spectrum for

each ensemble member of the local/spatial mean reconstructions is estimated, and the mean power spectrum is then used for

further analyses. The first null hypothesis is that the data sets under study can be described using an fGn with the prescribed

scaling parameter for the target data at all frequencies, βtarget = 0.55,0.75 and 0.95 respectively. For testing we generate a15

Monte Carlo ensemble of fGn series with a value of the scaling parameter identical to the target data. The power spectrum of

each ensemble member is estimated, and the confidence range for the theoretical spectrum is then calculated using the 2.5 and

97.5 quantiles of the log-binned periodograms of the Monte Carlo ensemble. The null hypothesis is rejected if the log-binned

mean spectrum of the data is outside of the confidence range for the fGn model at any point.

The second null hypothesis tested is that the data can be described as an AR(1) process at all frequencies, with the parameter20

α estimated from BARCAST. Distributions for all scalar parameters including the AR(1) parameter α are provided through the

reconstruction algorithm. The mean of this parameter was used to generate a Monte Carlo ensemble of AR(1) processes. The

Monte Carlo ensemble and the confidence range is then based on log-binned periodograms for this theoretical AR(1) process.

Figure 3 presents an example of the hypothesis testing procedure. The fGn 95% confidence range is plotted as a shaded gray

area in the log-log plot together with the mean raw and mean log-binned periodograms for the data to be tested. Blue curve25

and dots represent mean raw and log-binned PSD for pseudoproxy data, red curve and dots represent mean raw and log-binned

PSD for reconstructed data. The gray, dotted line is the ensemble mean.

The two null hypotheses give no restriction about the normalization of the fGn and AR(1) data used to generate the Monte

Carlo ensembles. Particularly, they do not have to be standardized in the same manner as the pseudoproxy/reconstructed data.

This makes the experiments more flexible, as the confidence range of the Monte Carlo ensemble can be shifted vertically to30

better accommodate the data under study. A standard normalization of data includes subtracting the mean and normalizing by

the standard deviation. This was sufficient to support the null hypotheses in many of our experiments. A different normalization

had to be used in other experiments.
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4 Results

BARCAST successfully estimates posterior distributions for all reconstructed temperature fields and scalar parameters. Con-

vergence is reached for the scalar parameters despite the inconsistency of the input data temporal covariance structure with

the default assumption of BARCAST. Table C2 lists the true parameter values used for the target data generation, and Table

C3 summarizes the mean of the posterior distributions estimated from BARCAST. Studying the parameter dependencies, it is5

clear that the posterior distributions of α and σ2 depend on the prescribed β and to a lesser extent, SNR for the target data.

Instead of listing the posterior distributions of τ2
P and β1 we have estimated the local reconstructed SNR at each proxy location

using Eq. 12.

Further results concern the spectral analyses and skill metrics. All references to spectra in the following correspond to mean

spectra. Analyses of the reconstruction skill presented below are performed on a grid point basis, and for the correlation and10

RMSE also for the spatial mean reconstruction. While the latter provides an aggregate summary of the method’s ability to

reproduce specified properties of the climate process on a global scale, the former evaluates BARCAST’s spatial performance.

4.1 Isolated effects of added proxy noise on scaling properties in the input data

The scaling properties of the input data are modified already when the target data are perturbed with white noise to generate

pseudoproxies. The power spectra shown in blue in Fig. 3 are used to illustrate these effects for one arbitrary proxy location15

and β = 0.75. Figure 3a shows the spectrum for SNR=∞, which is the unperturbed fGn signal corresponding to ideal proxies.

Panels 3b-d show spectra for SNR=3, 1 and 0.3 respectively. The effect of added white noise in the spectral domain is man-

ifested as flattening of the-high frequency part of the spectrum equal to β = 0, and a gradual transition to higher β for lower

frequencies. The results for βtarget = 0.55 and 0.95 are similar (figures not shown).

4.2 Memory properties in the field reconstruction20

Hypothesis testing was performed in the spectral domain for the field reconstructions, with the two null hypotheses formulated

as follows:

1: The reconstruction is consistent with the fGn structure in the target data for all frequencies.

2: The reconstruction is consistent with the AR(1) model used in BARCAST for all frequencies.25

Table 2 summarizes the results for all experiment configurations at local grid cells, both directly at and between proxy lo-

cations. Figure 3 shows the mean power spectra generated for one arbitrary proxy grid cell of the reconstruction in red. The

fGn model is adequate for SNR=∞, 3 and 1, shown in panel 3a-c. For the lowest SNR presented in panel d, the reconstruction

spectrum falls outside the confidence range of the theoretical spectrum for one single log-binned point. Not unexpectedly, the30

difference in shape of the PSD between the pseudoproxy and reconstructed spectra increases with decreasing SNR. The dif-
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ference is largest for the noisiest proxies with SNR=0.3. This figure does not show the hypothesis testing for the reconstructed

spectrum using the AR(1) null hypothesis. Results show that this null hypothesis is rejected for all cases except SNR=0.3.

The hypothesis testing results vary moderately between the individual grid cells. PSD analyses of the local reconstructions

using the same β but in an arbitrary non-proxy location are displayed in Fig. 4. Here, the reconstructed mean spectrum is plotted

in gray together with both the fGn 95% confidence range (blue) and the AR(1) confidence range (red). Hypothesis testing using5

null hypothesis 1 and 2 is performed systematically. Wherever the reconstructed log-binned spectrum is consistent with the

fGn/AR(1) model, the edges of the associated confidence range are plotted with solid lines. We find that all reconstructed

log-binned spectra are consistent with the AR(1) model, and for SNR=∞ and 3 the reconstructions are also consistent with the

fGn model.

4.3 Memory properties in the spatial mean reconstruction10

The spatial mean reconstruction is calculated as the mean of the local reconstructions for all grid cells considered, weighted by

the areas of the grid cells. The reconstruction region considered is 37.5◦− 67.5◦N, 12.5◦− 47.5◦E, as shown in Fig. 2. Figure

5 shows the raw and log-binned periodogram of the spatial mean reconstruction for βtarget = 0.75 in gray, together with the

95% confidence range of fGn generated with β = 0.75 (blue) and AR(1) confidence range (red). All hypothesis testing results

for the spatial mean reconstruction are summarized in Table 3. Results show that the fGn null hypothesis is suitable for all15

values of β and SNR, while the AR(1) null hypothesis is also supported for the case β = 0.55,0.75, SNR=0.3.

4.4 Effects from BARCAST on the reconstructed signal variance

The power spectra can also be used to gain information about the fraction of variance lost/gained in the reconstruction com-

pared with the target. This fraction is in some sense the bias of the variance, and was found by integrating the spectra of

the input and output data over frequency. The spatial mean target/reconstructions were used, and the mean log-binned spec-20

tra. The total power in the spatial mean reconstruction and the target were estimated, and the ratio of the two provides the

under/overestimation of the variance: RVar =
Var(Tt(rec))

Var(Tt(target)
. A ratio less than unity implies that the reconstructed variance is un-

derestimated compared with the target. Our analyses for the total variance reveal that the ratio varies between 0.83-1.05 for

the different experiments and typically decreases for increasing noise levels. How much the ratio decreases with SNR depends

on β, with higher ratios for higher β values. For example, R∼ 1 for all β, SNR=∞ and progressively decreases to R=0.83,25

0.89 and 0.94 for SNR=0.3, β = 0.55,0.75,0.95 respectively. In other terms, there are larger variance losses in the reconstruc-

tion for smaller values of β than for higher β. We also divided the spectra into three different frequency ranges as shown in

Fig. 6 to test if the fraction of variance lost/gained is frequency-dependent. The sections separate low frequencies correspond-

ing approximately to centennial timescales, mid frequencies corresponding to timescales between decades and centuries, and

high frequencies corresponding to timescales shorter than decadal. The results show no systematic differences between the30

frequency ranges associated with the parameter configuration.
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4.5 Assessment of reconstruction skill

It is common practice in paleoclimatology to evaluate reconstruction skill using metrics such as the Pearson’s correlation

coefficient r, the root-mean squared error (RMSE), the coefficient of efficiency (CE) and reduction of error (RE) (Smerdon

et al., 2011; Wang et al., 2014). The two former skill metrics will be used in this study, but the CE and RE metrics are not proper

scoring rules and are therefore unsuitable for ensemble-based reconstructions in general (Gneiting and Raftery, 2007; Tipton5

et al., 2015), see also Appendix B. Instead, the continuous ranked probability score (CRPS) will be used (Gneiting and Raftery,

2007). The metric was used specifically for probabilistic climate reconstructions in Tipton et al. (2015); Werner and Tingley

(2015); Werner et al. (2018). Since the CRPS, its average and subcomponents are less well-known than the two former skill

metrics, we define these terms in Appendix B and refer to Gneiting and Raftery (2007); Hersbach (2000) for further details.

CRPS results below are shown for the CRPS represented via the sum of the subcomponents CRPSpot and Reli score.10

4.5.1 Skill measure results

Figures 7-9 display the spatial distribution of the ensemble mean skill metrics for the experiment β=0.75 and all noise levels.

All figures show a spatial pattern of dependence on the proxy availability, with the best skill attained at proxy sites. This is

the most important result for all the spatially distributed skill metrics. For the BARCAST CFR method, the signal at locations

distant from proxy information by design cannot be skillfully reconstructed, as the amount of shared information on the target15

climate field between the two locations decreases exponentially with distance (Werner et al., 2013). See Sect.5 for further

details on the relation between skill and co-localization of proxy data.

Figure 7 shows the local correlation coefficient r between the target and the localized reconstruction for the verification

period 2-1849. The correlation is highest for the ideal-proxy experiment in Fig. 7a, and gradually decreases at all locations as

the noise level rises in panels b-d. Fig. 8 shows the local RMSE. Note that Fig. 8-9 use the same color bar as in Fig. 7, but20

best skill is achieved where the RMSE/CRPSpot is low. Fig. 9 shows the distribution of CRPSpot. The contribution from Reli

is generally < 1 ∗ 10−2, indicating excellent correspondence between the predicted and the reconstructed confidence intervals.

The CRPSpot therefore dominates the average CRPS metric. The minimum estimate for the CRPSpot at proxy locations in

Fig. 9a is 2 ∗ 10−2, indicating a low error between the temporally averaged reconstruction and the target. For the remaining

locations in Fig. 9a-d, the estimates are between 0.24-0.55 given in the same unit as the target variable. The temperature unit25

has not been given for our reconstructions, but for real-world reconstructions the unit will typically be degrees Celsius (◦C) or

Kelvin (K).

Table 4 summarizes the median local skill for all experiments and skill metrics. BARCAST is in general able to reconstruct

major features of the target field. A general conclusion that can be drawn is that the skill metrics vary with SNR, but are less

sensitive to the value of β. For the highest noise-level SNR=0.3, the values obtained for r and the RMSE are in line with those30

listed in Table 1 of Werner et al. (2013).

Table 5 sums up the ensemble median skill values of r and RMSE for the spatial mean reconstructions. The skill is consid-

erably better than for the local field reconstructions.
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5 Discussion

In this study we have tested the capability of BARCAST to preserve temporal LRM properties of reconstructed data. Pseudo-

proxy and pseudo-instrumental data were generated with a prescribed spatial covariance structure and LRM temporal persis-

tence using a new method. The data were then used as input to the BARCAST reconstruction algorithm, which by construction

use an AR(1) model for temporal dependencies in the input/output data. The spatiotemporal availability of observational data5

was kept the same for all experiments in order to isolate the effect of the added noise level and the strength of persistence in

the target data. The mean spectra of the reconstructions were tested against the null hypotheses that the reconstructed data can

be represented as LRM processes using the parameters specified for the target data, or as AR(1) processes using the parameter

estimated from BARCAST.

We found that despite the default assumptions in BARCAST, not all local and spatial mean reconstructions were consistent10

with the AR(1) model. Figures 3-5 and Tables 2-3 summarize the hypothesis testing results; the local reconstructions at grid

cells between proxy locations follow to large extent the AR(1) model, while the local reconstructions directly at proxy locations

are more similar to the original fGn data. However, the simulated proxy quality is crucial for the spectral shape of the local

reconstructions, with higher noise levels indicating better agreement with the AR(1) model than fGn.

All spatial mean reconstructions are consistent with the fGn null hypothesis according to Table 3. For the two cases β =15

0.55,0.75, SNR=0.3, the spatial mean reconstructions are also consistent with the AR(1) null hypothesis. This is clear from

the spatial mean reconstruction spectra (gray curves in Fig. 5) and from comparing the hypothesis testing results in Table

2 and 3. The improvement in scaling behavior with spatial averaging is expected, as the small-scale variability denoted by

εt in Eq. 11 is averaged out. Eliminating local disturbances naturally results in a more coherent signal. However, the spatial

mean of the target data set does not have a significantly higher β than local target values. This is due to the relatively short20

spatial correlation length chosen: 1/φ= 1000 km. In observed temperature data, spatial averaging tends to increase the scaling

parameter β (Fredriksen and Rypdal, 2016).

The power spectra in Fig. 3-5 b-d show that the temporal covariance structure of the reconstructions is altered compared with

the target data for all experiments where noisy input data were used. Furthermore, the spectra of the pseudoproxies in 3b-d all

deviate from the target in the high frequency range, but for a different reason. The pseudoproxy data deviate from the target25

due to the white proxy noise component, while the reconstruction deviate because BARCAST quantifies the proxy noise from

an AR(1) assumption. Real-world proxy data are generally noisy, and the noise level is normally at the high end of the range

studied here. We demonstrate that the variability-level of the reconstructions does not exclusively reflect the characteristics of

the target data, but is also influenced by the fitting of noisy data to a model that is not necessarily correct. At present, there

exists no reconstruction technique assuming explicitly that the climate variable follows an LRM process.30

In addition to BARCAST, other reconstruction techniques that may experience similar deficiencies for LRM target data

are the regularized expectation-maximization algorithm (RegEM), (Schneider, 2001; Mann et al., 2007), and all related mod-

els (CCA, PCA, GraphEM). These models assume observations at subsequent years are independent (Tingley and Huybers,

2010b). The assumption of temporal independence corresponds to yet another incorrect statistical model for our target data;
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a white noise process in time. Note that for target variables/data sets consistent with a white noise process, these types of

reconstruction methods are appropriate, as demonstrated using the truncated EOF-principal components spatial regression

methodology on precipitation data in Wahl et al. (2017).

When an incorrect statistical model is used to reconstruct a climate signal, the temporal correlation structure is likely to be

deteriorated in the process. For the range of different reconstructions available, such effects may contribute to discussions on5

a number of questions under study, including the possible existence of different scaling regimes in paleoclimate, see Huybers

and Curry (2006); Lovejoy and Schertzer (2012); Rypdal and Rypdal (2016); Nilsen et al. (2016).

The criteria for the hypothesis testing used in this study are strict, and may be modified if reasonable arguments are provided.

For example, if the first null hypothesis used here was modified so that only the low-frequency components of the spectra were

required to fall within the confidence ranges, more of the reconstructions would be consistent with the fGn model. However,10

from studying the spectra in Fig. 3-5, it is generally unclear where one should set a threshold, since the spectra show a gradual

change with a lack of any abrupt breaks. Considering real-world proxy records, the noise color and level is generally unknown

or not quantified. We know there are certain sources of noise influencing different frequency ranges that are unrelated to

climate, but it is difficult to decide when the noise becomes negligible compared with the effects of climate driven processes.

The decision to use all frequencies for the hypothesis testing in this idealized study is therefore a conservative and objective15

choice.

The skill metrics used to validate the reconstruction skill are the Pearson’s correlation coefficient r, the RMSE, and CRPS,

the latter divided into the CRPSpot and the Reli. Skill metric results are illustrated in Fig. 7-9 and summarized in Table 4-5.

The reconstruction skill is sensitive to the proxy quality, and highest at sites with co-localized proxy information. This is an

expected result, due to the BARCAST model formulation and our choice of a relatively short decorrelation length 1/φ∼ 100020

km. Contrasting results of high skill away from proxy sites and poor skill close to proxy sites have been documented in

Wahl et al. (2017), although care must be taken for the comparison as that paper used a different reconstruction methodology

(truncated EOF-principal component spatial regression) and the target variable was precipitation/hydroclimate instead of SAT.

Without performing dedicated pseudoproxy experiments it is difficult to resolve the main cause of these contrasting results for

spatial skill.25

5.1 Implications for real proxy data

The spectral shape of the input pseudoproxy data plotted in blue in Fig. 3 are similar to spectra of observed proxy data as

observed in e.g. some types of tree-ring records, (Franke et al., 2013; Zhang et al., 2015; Werner et al., 2018). In particular,

Franke et al. (2013); Zhang et al. (2015) found that the scaling parameters β were higher for tree-ring based reconstructions than

for the corresponding instrumental data for the same region. Werner et al. (2018) present a new spatial SAT reconstruction for30

the Arctic, using the BARCAST methodology. The analyses shown in Fig. A4 demonstrate that several of the tree-ring records

could not be categorized as neither AR(1) or scaling processes, but featured spectra similar to the pseudoproxy spectrum in

our Fig. 3c-d. We hypothesize that the possible mechanism(s) altering the variability can be due to effects of the tree-ring

processing techniques, specifically the methods applied to eliminate the biological tree aging effect on the growth of the trees
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(Cook et al., 1995). The actual tree-ring width is a superposition of the age-dependent curve, which is individual for a tree,

and a signal that can often be associated with climatic effects on the tree growth process. To correct for the biological age-

effect, the raw tree-ring growth values are often transformed into proxy indices using the Regional Curve Standardization

technique (RCS, Briffa et al. (1992); Cook et al. (1995)), Age Band Decomposition (ABD, Briffa et al. (2001)), the signal-

free processing (Melvin and Briffa, 2008) or other techniques. These techniques attempt to eliminate biological age effects on5

tree-growth while preserving low frequency variability. As an example, consider the RCS processing of tree-ring width as a

function of age (Helama et al., 2017). For a number of individual tree-ring records, each record is aligned according to their

biological years. The mean of all the series is then modelled as a negative exponential function (the RCS curve). To construct

the RCS chronology, the raw, individual tree-ring width curves are divided by the mean RCS curve for the full region. The RCS

chronology is then the average of the index individual records. It is likely that the shape of a particular tree-ring width spectrum10

reflects the uncertainty in the standardization curve, which is expected to be largest at the timescales corresponding to the initial

stage of a tree growth, where the slope of the growth curve is generally steeper (i.e. of the order of a few decades). In particular,

there may be slightly different climate processes affecting the growth of different trees, causing localized nonlinearities that

limit the representativeness of the derived chronology. We therefore suggest that the observed excess of LRM properties in

some of the tree ring-based proxy records could be an artifact of the fitting procedure.15

Our study further suggests that for a proxy network of high quality and density, exhibiting LRM properties, the BARCAST

methodology is without modification capable of constructing skillful reconstructions with LRM preserved across the region.

This is because the data information overwhelms the vague priors. The availability of well-documented proxy records there-

fore helps the analyst select an appropriate reconstruction method based on the input data. For quantification and assessment of

real-world proxy quality, forward proxy modelling is a powerful tool that models proxy growth/deposition instead of the target20

variable evolution, also taking known proxy uncertainties and biases into consideration. See for example Dee et al. (2017)

for a comprehensive study on terrestrial proxy system modeling, and Dolman and Laepple (2018) on forward modelling of

sediment-based proxies.

5.2 Concluding remarks25

Several extensions to the presented work appears relevant for future studies, including (a) implementing external forcing and

responses to these forcings in the target data to make the numerical experiments more realistic, (b) generate target data using a

more complex model than described in Sect.2.2, and (c) reformulate BARCAST model Eq. 1-2. to account for LRM properties

in the target data. In addition, there is a possibility of repeating the experiments from this study using a different reconstruction

technique, and experiments with more complicated spatiotemporal design of the multiproxy network can also be considered30

(Smerdon, 2012; Wang et al., 2014).

The alternatives (a) and (b) can be implemented together. Relevant advancements for target data generation can be obtained

using the class of stochastic-diffusive models, such as the models described in North et al. (2011); Rypdal et al. (2015). The

alternative method for generating spatial covariance stands in contrast to what is done in the present study. The data generation
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technique used in this paper and also in Werner and Tingley (2015) generates a signal without spatial dynamics, where the

spatial covariance is defined through the noise term. On the other hand, the stochastic-diffusive models generate the spatial

covariance through the diffusion, without spatial structure in the noise term. The latter model type may be considered more

physically correct and intuitive than the simplistic model used here. North et al. (2011) use an exponential model for the

temporal covariance structure, while Rypdal et al. (2015) use an LRM model.5

For the BARCAST CFR methodology, reformulation of model Eq. 1-2 would drastically improve the performance in our

experiments. However, at present we cannot guarantee that modifications favoring LRM are practically feasible in the context

of a Bayesian hierarchical model, due to higher computational demands. Changing the AR(1) model assumption to instead

account for LRM would in the best scenario slow the algorithm down substantially, and in the worst scenario it would not

converge at all. Some cut-off time scale would have to be chosen to ensure convergence. Regarding the spatial covariance10

structure, accounting for teleconnections introduce similar computational challenges. The more general Matérn covariance

family form (Tingley and Huybers, 2010a) has already been implemented for BARCAST, but was not used in this study.

Another problem is the potential temporal instability of teleconnections; it is possible that major climate modes might have

changed their configuration through time. Therefore, setting additional a priori constraints on the model may not be considered

justified. The use of exponential covariance structure appears to be a conservative choice in such a situation.15

The pseudoproxy study presented here sets a powerful example for how to construct and utilize an experimental structure

to isolate specific properties of paleoclimate reconstruction techniques. The generation of the input data requires far less

computation power and time than for GCM paleoclimatic simulations, but also results in less realistic target temperature fields.

We demonstrate that there are many areas of use for these types of data, including statistical modelling and hypothesis testing.
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Appendix A: Estimation of the periodogram

The periodogram is defined here in terms of the discrete Fourier transform Hm as (Malamud and Turcotte, 1999):

S(fm) =

(
2

N

)
|Hm|2, m= 1,2, . . . ,N/2

For evenly sampled time series x1,x2, ....xN . The sampling time is an arbitrary time unit, and the frequency is measured in

cycles per time unit: fm = m
N . ∆f = 1

N is the frequency resolution and the smallest frequency which can be represented in the

spectrum.

5
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Appendix B: Continuous ranked probability score (CRPS) for a reconstruction ensemble

For probabilistic forecasts, scoring rules are used to measure the forecast accuracy, and proper scoring rules secure that the

maximum reward is given when the true probability distribution is reported. In contrast, the reduction of error (RE) and coef-

ficient of efficiency (CE) are improper scoring rules, meaning they measure the accuracy of a forecast, but the maximum score

is not necessarily given if the true probability distribution is reported. For climate reconstructions, RE=1 and CE=1 implies a5

deterministic forecast, the maximum score is obtained when the mean (a point measure) within the probability distribution P

is used instead of the predictive distribution P itself.

The concept behind the CRPS is to provide a metric of the distance between the predicted (forecasted) and occurred (ob-

served) cumulative distribution functions of the variable of interest. The lowest possible value for the metric corresponding to10

a perfect forecast is therefore CRPS=0. Following Sect. 4.b of Hersbach (2000), (elaborated for clarity) the definition of the

CRPS and its subcomponents can be defined as follows:

CRPS(P,xtarget) =

∞∫
−∞

[P (x)−Θ(x−xtarget)]
2dx (B1)

Where x is the variable of interest, xtarget denotes target (validation) data, Θ is the unit step function and P (x) is the

cumulative distribution function of the forecast ensemble with a probability density function (PDF) of ρ(y):15

P (x) =

x∫
−∞

ρ(y)dy (B2)

In the case of a reconstruction ensemble at each spatial location j and time step t (omitted for convenience), the CPRS can

be evaluated as:

CPRS =

N∑
i=0

xi+1∫
xi

[
i

N
−Θ(x−xtarget)

]2

dx (B3)

Where xi < x < xi+1 refer to members of the locally ordered reconstruction ensemble of length N . For this study, x corre-20

sponds to the ensemble of local reconstructed values of T .

For the average overK time- and/or grid points, the average CRPS (CPRS) is defined as a weighted sum with equal weights,

yielding:

CPRS =

N∑
i=0

gi

[
(1− oi)(

i

N
)2 + oi(1−

i

N
)2

]
(B4)25
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Here, gi and oi define two quantities characterizing the reconstruction ensemble and its link with the verifying target data.

The quantity gi = xi+1−xi, i ∈ (0,N) represents the average over K distances between the neighboring members i and i+1

of the locally ordered reconstruction ensemble, and essentially quantifies the ensemble spread. The quantity oi in turn is related

with the average over K the frequency of the verifying target analysis xtarget to be below 1
2 (xi +xi+1), and should ideally

match the forecasted probability of i/N .5

It can be demonstrated that the spatially and/or temporally averaged CRPS can further be broken into two parts: the average

reliability score metric (Reli) and the average potential CRPS (CRPSpot):

CPRS = Reli + CRPSpot

where

Reli =

N∑
i=0

gi

(
oi−

i

N

)2

(B5)10

CRPSpot =

N∑
i=0

gioi(1− oi) (B6)

Eq. B5 suggests that Reli summarizes second order statistics on the consistency between the average frequency of oi of

the verifying analysis to be found below the middle of interval number i and i/N , estimating thereby how well the nominal

coverage rates of the ensemble reconstructions correspond to the empirical (target-based) ones. Hence Reli represents the

metric for assessing the validity of the uncertainty bands. Reli can also be interpreted as the MSE of the confidence intervals,15

which in a perfectly reliable system has Reli=0.

CRPSpot in turn measures the accuracy of the reconstruction itself, quantifying the spread of the ensemble and the mismatch

between the best estimate and the target variable. Eq. B6 demonstrates that the smaller gi; indicative of a more narrow recon-

struction ensemble, the lower the resulting CRPSpot is. At the same time CRPSpot takes into account the effect of outliers,

i.e. the cases with xtarget /∈ [x1,xN ]. Although the reconstruction ensemble can be compact around its local mean, too frequent20

outliers will have a clear negative impact on the resulting CRPSpot. Note that this metric is akin to the Mean Absolute Error

of a deterministic forecast which achieves its minimal value of zero only in the case of a perfect forecast.

Both scores are given in the same unit as the variable under study, here surface temperature.
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Appendix C: Information on true parameters, prior and posterior distributions of BARCAST parameters

The forms of the prior PDF’s for the scalar parameters in BARCAST are identical to those used in (Werner et al., 2013).

The values of the hyperparameters were chosen after analyzing the target data. The forms of the priors and the values of the

hyperparameters are listed in Table C1.

5

The parameter values prescribed for the target data are listed in Table C2. The instrumental observations are identical to the

true target values, and the instrumental error variance τ2
I is therefore zero. The proxy noise variance τ2

P is varied systematically

for the different SNR through the relation in Eq. 12

The mean of the posterior distributions of the BARCAST parameters α,µ,σ2,1/φ, τ2
I and β0 are listed in Table C3, together10

with the reconstructed SNR.
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Figure 1. (a) Arbitrary fGn time series with β = 0.75. (b) Arbitrary time series of an AR(1) process with parameters estimated from the time

series in (a) using Maximum Likelihood. (c) Log-log spectra showing 95% confidence ranges based on Monte Carlo ensembles of fGn with

β = 0.75 (blue shaded area), and AR(1) processes with parameters estimated from the time series in (a) (red, shaded area). Dashed (dotted)

lines mark the ensemble means of the fGn (AR1) spectra respectively.
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Figure 2. The spatial domain of the reconstruction experiments. Dots mark locations of instrumental sites, proxy sites are highlighted by red

circles. The superimposed map of Europe provides a spatial scale.
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Figure 3. Mean raw and log-binned PSD for pseudoproxy data (blue curve and asterisks, respectively) and reconstruction at the same site

(red curve and dots, respectively) generated from βtarget =0.75 and different SNR indicated in the panels. Colored gray shadings and dashed,

gray lines indicate 95% confidence range and the ensemble mean, respectively, for a Monte Carlo ensemble of fGn with β =0.75.
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Figure 4. Mean raw and log-binned PSD for local reconstructed data at a site between proxies (gray curve and dots, respectively) generated

from βtarget =0.75 and different SNR. Colored shadings and dashed/dotted lines indicate 95% confidence range and the ensemble mean,

respectively, for a Monte Carlo ensemble of fGn with β =0.75 (blue) and of AR(1) processes with α estimated from BARCAST (red). The

confidence ranges found consistent with the data are drawn with solid lines.
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Figure 5. Mean raw and log-binned PSD for the spatial mean reconstruction (gray curve and dots, respectively), generated from βtarget =0.75

and different SNR. Colored shadings and dashed/dotted lines indicate 95% confidence range and the ensemble mean, respectively, for a Monte

Carlo ensemble of fGn with β =0.75 (blue) and of AR(1) processes with α estimated from BARCAST (red). The confidence ranges found

consistent with the data are drawn with solid lines.
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Figure 6. Log-log plot showing log-binned power spectra of spatial mean target (blue) and reconstruction (red) for one experiment. Vertical,

gray lines mark the frequency ranges used to estimate bias of variance as referred to in Sect. 4.4.
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Figure 7. Local correlation coefficient between reconstructed temperature field and target field for the verification period (ensemble mean).

The boxplots left of the color bars indicate the distribution of grid point correlation coefficients. β =0.75
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Figure 8. Local root-mean square error (RMSE) between reconstructed temperature field and target field for the verification period. The

boxplots left of the color bars indicate the distribution of grid point correlation coefficients. β =0.75.
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Figure 9. Local CRPSpot between reconstructed temperature field and target field for the verification period. The boxplots left of the color

bars indicate the distribution of grid point correlation coefficients. β =0.75.
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Table 1. Summary of the experiment setup.

Spatiotemporal resolution: 5x5 degrees /annual

Strength of persistence: β=0.55, 0.75, 0.95

Noise level: SNR=∞, 3, 1, 0.3

Iterations before/after thinning: 5000/500

Input data Reconstruction

Ensemble members per experiment 20 30 000
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Table 2. Hypothesis testing results for local reconstructed data compared to Monte Carlo ensembles of fGn and AR(1) processes. The mark

"x" in the table indicates that the null hypothesis cannot be rejected. The null hypotheses 1 and 2 are:

1: The reconstruction is consistent with the fGn structure in the target data for all frequencies.

2: The reconstruction is consistent with the AR(1) assumption from BARCAST for all frequencies.

Local field values

SNR ∞ 3 1 0.3

β = 0.55 Proxy site

1 x x x x

2: x x x

β = 0.55 Between proxy sites

1: x x x x

2: x x x x

β = 0.75 Proxy site

1: x x x

2: x

β = 0.75 Between proxy sites

1: x x

2: x x x x

β = 0.95 Proxy site

1: x x x

2: x

β = 0.95 Between proxy sites

1: x

2: x x x x

35



Table 3. Hypothesis testing results for spatial mean reconstructed data compared to Monte Carlo ensembles of fGn and AR(1) processes.

The null hypotheses 1 and 2 are the same as in Table 2, and the "x" has the same meaning.

Spatial mean values

SNR ∞ 3 1 0.3

β = 0.55

1: x x x x

2: x

β = 0.75

1: x x x x

2: x

β = 0.95

1: x x x x

2:
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Table 4. Median local skill measures

SNR r RMSE CRPSpot

β = 0.55

∞ 0.60 0.89 0.36

3 0.52 0.97 0.39

1 0.42 1.05 0.43

0.3 0.29 1.16 0.48

β = 0.75

∞ 0.60 0.89 0.36

3 0.52 0.96 0.39

1 0.45 1.03 0.42

0.3 0.33 1.14 0.47

β = 0.95

∞ 0.61 0.88 0.35

3 0.53 0.95 0.39

1 0.48 1.01 0.41

0.3 0.38 1.10 0.45
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Table 5. Median skill measures for spatial mean

SNR r RMSE

β = 0.55

∞ 0.95 0.18

3 0.87 0.28

1 0.76 0.38

0.3 0.564 0.51

β = 0.75

∞ 0.95 0.18

3 0.87 0.28

1 0.78 0.37

0.3 0.60 0.50

β = 0.95

∞ 0.94 0.18

3 0.88 0.28

1 0.79 0.36

0.3 0.66 0.46
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Table C1. List of parameters defined in BARCAST, form of prior and hyperparameters

Parameter Form Hyperparameters

α Truncated normal N[0,1](αµ, ασ), αµ = 0.5, ασ = 0.1

µ Normal N(µµ, µσ), µµ =−0.4, µσ = 0.12

σ2 Inv-gamma shape=0.5, scale=0.5

φ Lognormal logφ∼N(φµ, φσ), φµ =−7, φσ = 0.2

τ2I Inv-gamma shape=0.5, scale=0.5

τ2P Inv-gamma shape=0.5, scale=0.5

β0 Normal N(β0,µ, β0,σ), β0,µ = 0, β0,σ = 0.04

β1 Normal N(β1,µ, β1,σ), β1,µ = 1.14, β1,σ = 0.04
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Table C2. List of parameter values defined for the target data set. The four values of τ2P listed are related to the four different signal-to-noise

ratios: SNR = 1
τ2
P

. εmach is machine epsilon, the smallest number represented by the computer which is greater than zero.

Parameter Target value

µ 0

φ 1/1000

τ2I 0

τ2P εmach, 0.333, 1, 3.33

β0 0

β1 1

β 0.5, 0.75, 0.95
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Table C3. Mean of posterior distribution for each parameters

Persistence SNRtarget SNRrec α µ σ2 1/φ τ2I β0

β = 0.55

∞ 117.6 0.40 −2.2 ∗ 10−2 0.83 1020 2.3 ∗ 10−3 6.7 ∗ 10−4

3 3.05 0.43 −2.6 ∗ 10−2 0.78 1053 2.4 ∗ 10−2 -2.7 ∗ 10−3

1 1.01 0.44 −3.3 ∗ 10−2 0.75 1064 3.0 ∗ 10−2 3.8 ∗ 10−3

0.3 0.38 0.44 −2.7 ∗ 10−2 0.75 1053 3.3 ∗ 10−2 3.2 ∗ 10−3

β = 0.75

∞ 115.8 0.57 −3.5 ∗ 10−2 0.68 1020 2.3 ∗ 10−3 −8.2 ∗ 10−4

3 2.81 0.62 −4.5 ∗ 10−2 0.61 1111 2.8 ∗ 10−2 5.1 ∗ 10−3

1 0.99 0.64 −5.6 ∗ 10−2 0.59 1136 3.3 ∗ 10−2 8.3 ∗ 10−3

0.3 0.36 0.64 −5.1 ∗ 10−2 0.59 1136 3.4 ∗ 10−2 3.8 ∗ 10−3

β = 0.95

∞ 112.9 0.71 −4.8 ∗ 10−2 0.5 1020 2.4 ∗ 10−3 −5.3 ∗ 10−4

3 2.69 0.77 −8.5 ∗ 10−2 0.44 1205 2.8 ∗ 10−2 3.0 ∗ 10−3

1 0.97 0.79 −9.7 ∗ 10−2 0.41 1235 3.1 ∗ 10−2 1.1 ∗ 10−2

0.3 0.36 0.77 −1.0 ∗ 10−1 0.42 1190 2.9 ∗ 10−2 1.6 ∗ 10−2
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