
Author response on manuscript cp-2018-17

This document contains a list of relevant changes in the manuscript, followed by point-
to-point responses to review reports 1-3 and a markup file tracking changes in the
manuscript. Note that our replies 1-3 refer to a general response that is not included
in this document, instead we refer to our list of relevant changes. The general response
can be found in the online discussion.

List of significant changes

In the revised manuscript, Martin Rypdal will be added as an author as he has con-
tributed significantly to Sect. 2.2 on target data generation. Rypdal’s contribution has
grown since the original submission so that co-authorship is appropriate.

In addition to the changes listed below, references have been added in a number of places.

1. The new title of the manuscript is:

How wrong is the BARCAST climate field rconstruction technique in
reconstructing a climate with long-range memory?

2. The abstract has been rewritten.

3. Sect. 2.2 on target data generation has been rewritten to avoid confusion and
misconceptions.

4. The title of Sect. 2.3 has been changed, and the definition of the periodogram has
been moved to appendix A.

5. A paragraph from the discussion has become a separate subsection (4.4).

6. The CRPS skill metric has been elaborated in Sect. 4.4 and Appendix B.

7. We have discovered an error in the calculation of the average CRPS scores that
influences our skill metric results. Sect 4.5 and 4.6 are rewritten, and Fig. 9 is
removed.

Major changes to the discussion involve:

8. References to which figures/tables we refer are inserted as the discussion proceeds.
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9. Text editing to avoid confusion in several paragraphs, ref comments from reviewer
1 and 3 in particular.

10. More precise conclusions regarding the skill metric results using the CRPS and the
subcomponents Reli and CRPSpot.

11. Mentioning other tree-ring processing techniques in Sect. 5.1, including the age-
band decomposition and the signal free processing method.

12. Relating our results to to the topic of proxy system modelling, ref. Dee et al.
(2017); Dolman and Laepple (2018) in Sect. 5.1.

13. Discuss prospective recommendations to improvements of BARCAST in Sect. 5.2

14. Final conclusions follow the suggestion from reviewer 1 and summarize how the
present study sets a useful precedent for utilizing a carefully-designed, experimental
structure to isolate specific reconstruction technique properties.

References

S.G. Dee, L.A. Parsons, G.R. Loope, J.T. Overpeck, T.R. Ault, and J. Emile-Geay.
Improved spectral comparisons of paleoclimate models and observations via proxy
system modeling: Implications for multi-decadal variability. Earth and Planetary
Science Letters, 476:34 – 46, 2017. doi: https://doi.org/10.1016/j.epsl.2017.07.036.

A. M. Dolman and T. Laepple. Sedproxy: a forward model for sediment archived climate
proxies. Climate of the Past Discussions, 2018:1–31, 2018. doi: 10.5194/cp-2018-13.
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Response to reviewer 1

Specific comments

Reviewer page 1, title: The title needs to be adjusted to reflect that this study is specific
to BARCAST, and does not address CFRs generally.
Response: The title of the revised manuscript will be changed, see general response.

Reviewer page 1, line 14: Does ”Selected” here mean that some of the experiments were
found to give reconstructions consistent with the AR(1) model, but others did not? If
that is the case it needs to be described as such.
Response: The abstract will be moderately rewritten, see general response.

Reviewer page 2, line 11: This is not necessarily the case, which is why the word ”can”
needs to be added in line 10.
Ordinary Least Squares still provides optimal parameter estimation when the predictor
variable has error, but the predictor variable is not correlated with the predictand error.
(Econometrics, Wonnocott and Wonnocott, 2nd ed., 1979, John Wiley and Sons)
In multiple regression, the combined effect across the several predictors can be both
reduction or enhancement of the estimated coefficients. (Applied Regression Including
Computing and Graphics, Cook and Weinberg, 1999, John Wiley and Sons)
Response: Thank you for this additional information, the sentences will be moderately
rewritten.

Reviewer page 3, line 10: Add a brief parenthetical expression here to denote to the
readers what a Lorentzian power spectrum is.
Response: A Lorentzian power spectrum has a steep slope at high frequencies, and is
flat at low frequencies.

Reviewer page 3, line 17: Add a reference here for this statement.
Response: References to Fraedrich and Blender (2003); Fredriksen and Rypdal (2016)
are inserted.

Reviewer page 3, line 17: Note here why Gaussianity is important in this context. It
does not seem to follow from the long-range memory properties theme of the rest of the
paragraph.
Response: The fractional Gaussian noise follows a Gaussian distribution by definition.
In order to model the Earth’s surface temperature using the fractional Gaussian noise
stochastic process, the temperature data cannot deviate too strongly from a Gaussian
distribution. This will be made more clear in the revision.
There exists another, more general class of stochastic processes exhibiting LRM but not
following a Gaussian distribution, but it is outside the scope of our paper to consider
such processes.
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Reviewer page 3, line 25: Add a reference here for this statement.
Response: References to Franke et al. (2013); Fredriksen and Rypdal (2016); Nilsen et al.
(2016) are inserted.

Reviewer page 5, line 29: A brief explanation of what conjugate means in this context
should be added here.
Response: conditionally conjugate priors means that the prior and the posterior distri-
bution has the same parametric form. Added in the revision.

Reviewer page 3, line 31: Give a reference here for MCMC, the Gibbs sampler, and the
Metropolis step. Would Gelman et al., 2003, be appropriate?
Response: Yes, reference to Gelman et al. (2003) has been inserted.

Reviewer page 7, Eq. 5: The nature of how eq. 6 is derived from eq. 5 may not be
obvious/clear to some readers, and perhaps can be explained in a very brief appendix,
or possibly by some additional text here.
Response: Eq. 6 is not derived from Eq. 5 per se. The exponential kernel function
exp−(1−α)I(t−s) is replaced with the power-law kernel (t− s)β/2−1. This is the necessary
operation to obtain the desired LRM properties of the target data, the idea stems from
Rypdal (2012); Rypdal and Rypdal (2014).

Reviewer page 7, line 7: This statement, that there is no contribution from T(0), seems
at odds with what is said in the next sentence, where the solution for t > 0 depends not
ONLY on the initial condition, but the entire time history of T(t).
[Emphasis of ONLY added.]
This apparent contradiction should be resolved, so the reader is not confused.
Response: Sect.2.2 will be modified for clarity. The nature of the long-memory model is
that the temperature at time t depends on all past values [−∞, t]. The original form of
Eq. 6 is therefore:

T(t) =

∫ t

−∞
(t− s)β/2−1εsds (1)

The contribution before time t = 0 is then neglected, this means T (0)=0 and we get the
equation in the same form as Eq. 6 in the manuscript. We apologize for the confusion.
Neglecting the contribution prior to t = 0 is a choice that is justified in this case.

Reviewer page 7, below line 13: Explain why epsilon(sub s) goes away here.
Response: εs is a function of s only and not of t. For the kernel, on the other hand, we
have:

lim
s→t

(t− s)β/2−1 =∞
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Hence, this is the term that needs to be adjusted to avoid the singularity.

Reviewer page 7, line 14: It can be unclear here to some readers why G is a function of
tau, rather than t.
Please explain how this comes to be, and how tau here relates to the tau variance terms
in the Normal distributions defined for the e values in Eq 3.
Response: A detail was missing in the text, namely that τ = t− s. This τ is not related
to the BARCAST parameters τ2I and τ2P . In the revision we will use t− s instead of τ .
G must be a function of the time step t− s, with the unit step function

Θ(t− s) =

{
0, t− s < 0

1, t− s ≥ 0

Reviewer page 8, line 6: Explain this mathematical description more for the readers for
whom this expression will not be meaningful as written.
Again, a brief appendix might be useful.
Response: The formulas for estimating the periodogram have been slightly rewritten
and moved to an appendix. The alternative formulation is less compact and hopefully
more readible:
The periodogram is defined here in terms of the discrete Fourier transform Hm as

S(fm) =

(
2

N

)
|Hm|2, m = 1, 2, . . . , N/2

For evenly sampled time series x1, x2, ....xN . The sampling time is an arbitrary time
unit, and the frequency is measured in cycles per time unit: fm = m

N . ∆f = 1
N is the

frequency resolution and the smallest frequency which can be represented in the spec-
trum.

Reviewer page 9, line 14: Wouldn’t it be more appropriate here if the confidence range for
the theoretical spectrum is generated from the distribution of analogous MEAN spectra
generated by the MC process?
Response: The approach we are using is meaningful and appropriate. The simulated fGn
Monte Carlo ensemble has, on average, the desired statistical properties of theoretical
fGn processes. The hypothesis testing involves finding out if the reconstruction ensem-
ble on average has the same statistical properties. The spectral shape is the prominent
feature we investigate. The spectral shape of the full fGn Monte Carlo ensemble is
practically identical to that of the mean spectrum of the same ensemble. However, the
width of the confidence range would be drastically narrowed if the latter type was used,
since the mean fGn spectrum is less noisy than the spectrum of an individual ensemble
member. Such a narrow confidence range is impractical for our experiment and most
other real-world applications, where the data at hand may follow the general power-law

3



spectral shape, but are not expected to be strictly identical at every single point.

Reviewer page 11, line 26: Explain why it is improper in this context.
Response: The reduction of error (RE) and coefficient of efficiency (CE) are not suitable
for ensemble-based reconstruction in general (Gneiting and Raftery, 2007). For proba-
bilistic forecasts, scoring rules are used to measure the forecast accuracy, and preferably
proper scoring rules. Proper scoring rules are built around the concept of reward sys-
tems, encouraging the forecaster to be honest, use the state of knowledge or personal
beliefs. Proper in this sense means that the maximum reward (CRPS score=0) is given
when the true probability distribution is reported. The RE and CE are improper scoring
rules, meaning they measure the accuracy of a forecast, but the maximum score is not
necessarily given if the true probability distribution is reported. For climate reconstruc-
tions, RE=1 and CE=1 implies a deterministic forecast, the maximum score is obtained
when the mean (a point measure) within a probability distribution P is used instead of
the predictive distribution P itself.

Reviewer page 11, line 30: It would be good to add distribution graphics of the skill
metrics across their relevant ensembles.
Response: This is a good idea, we suggest to include a boxplot in every panel of Figs.
6-9, similar to Figs. 2-5 in Werner et al. (2013).

Reviewer page 12, Eq. 11: Explain what the E(sub F) notation means here.
This is done – to an extent – in context in the third sentence following (starting in line
4), but the nomenclature E(sub F) itself should be fully described.
It is not clear what the E operator does.
Response: E is the expectation value. EF denotes the expectation value of the cumula-
tive distribution function. Another form of this equation will be used in the revision.

Reviewer page 12, line 12: The explanations for average potential CRPS and Reliability
need to be augmented with how these are identified in the terms of eq. 11 itself.
This is not clear, and since these are relatively new metrics vis-a-vis paleoclimate recon-
struction, it will be highly useful for them to be more concretely explained in terms of
the formal mathematical terms of eq. 11.
Response: Given the reviewer’s interest in these concepts we have decided to rewrite
section 4.4 in the revision and include additional explanatory text in the appendix so
that it is clear why the RE and CE are improper, and elaborating on the CRPS. See
suggested revision in the general reply.

Reviewer page 12, line 29: Help explain for the reader what this combination of good
agreement with the target, but not with the confidence confidence range, means.
Response: We have discovered an error in the calculation of the CRPS, see our general
reply. The above statement is no longer correct and will be removed. The recalculated
Reliability is consistently low and very close to zero, the average CRPS is therefore to
a large extent dominated by the CRPSpot. Sect. 4.4.1 will be rewritten, and Figure 9
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removed from the revision.
For visualization of the average CRPS reconstruction skill, see Fig. 1 and 2 below.
Figure 1 shows two examples of local target fGn times series with β = 0.75, SNR = ∞
(black) and the 95% confidence range of the reconstruction ensemble in red, based on
1500 ensemble members. The plot (a) is for a proxy location, while (b) is for a location
between proxies. For (a) the confidence range is extremely narrow, as the reconstructions
are nearly identical to the target. For (b), the ensemble has a larger spread, a few target
values fall outside of the confidence range and are therefore considered outliers.

Figure 1: Example of local target (black curve) and 95% confidence range of reconstruc-
tion ensemble (red). Parameter β = 0.75, SNR=∞. (a) is for a proxy location,
while (b) is between proxy locations.

Figure 2: CRPSpot for the parameters β = 0.75, SNR=∞.
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Figure 2 shows the CRPSpot for the same parameter setup and all locations. This skill
score reflects the average accuracy of the reconstructed forecast, best at proxy locations
and decreasing away from proxy sites. The low Reliability is not visualized, but in
general this indicates that the predicted confidence ranges are in line with the actual re-
constructed ensemble. This means that the target value is generally located in the centre
of the confidence range, in contrast to high Reliability occurring if the target to large
extent is biased towards the upper/lower end of the confidence range. The combination
of a low CRPSpot and high Reliability is still a possible outcome for real reconstructions,
as observed for a few locations of Fig. A1 of Werner et al. (2018).

Reviewer page 12, line 33: The most general conclusion is that BARCAST performs
much better, except re: reliability, where there are co-localized proxy data. This needs
to be clearly mentioned here.
This stands in contrast to some other CFR results, where good skill is obtained in regions
not co-localized with the predictor data.
E.g., cf. reconstruction of precipitation in California (Wahl et al., 2017, J Clim, DOI:
10.1175/JCLI-D-16-0423.1.)
Response: We thoroughly inspected Wahl et al. (2017) which the reviewer is referring
to and two more publications (together with supplementary materials) that could be
relevant in the context of this comment, namely Wahl and Smerdon (2012) and Diaz and
Wahl (2015). Unfortunately, we found no indication that the issue raised by the reviewer
has been discussed directly in any of the aforementioned studies. One can assume the
reviewer refers to Fig S2 and S4 from Wahl et al. (2017), and the corresponding tree ring
proxy network for the region depicted in Fig S2 in Wahl and Smerdon (2012) From these
figures, we may infer a somewhat lower, yet mostly non-negative, reconstruction skill for
the area centered at ca. 36N 117.5W, featuring a relatively high proxy data density. At
the same time, higher skill is obtained in regions without proxy data coverage. However,
there is no discussion on the source of these spatial discrepancies (at least we could
not find one) other than that in the spatial mean sense, the method demonstrated
good performance, which indeed is the case. We take the liberty to speculate that the
discrepancies in the reconstruction spatial skill can be caused by a number of factors other
than the apparent effect of the choice made on the climate field reconstruction technique.
First, target data processing may cause spatial variability in the reconstruction skill. The
choice of regridding/interpolation/extrapolation method will have an effect on the target
data variance across timescales, especially in the data-poor regions. The second point is
that the area with lower RE/CE is associated with proxies from mountainous regions,
where regridding might have an effect on the target data sets since climate divides are
present.
Should the reviewer find the question critical to be elaborated further, we kindly ask
to clarify where this problem is discussed. However, in our opinion this would be fairly
difficult to resolve without dedicated experiments with truncated EOF-principal compo-
nents spatial regression (TEOF-PCSR) on the equivalent target/pseudoproxy datasets.

Reviewer page 13, line 4: Indicate which figures and/or tables provide the information
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being described as the Discussion section proceeds.
Response: This will be done in the revision.

Reviewer page 13, line 24: This statement needs to be further illuminated for the reader.
Aren’t the same equations used for the reconstruction at all sites?
Response: These sentences will be rewritten, sorry for the confusion. Yes, the same
equations are used for all grid cells, what was meant is that there is already information
from the data at proxy sites, overwhelming the priors.

Reviewer page 13, line 26: Explain this statement further, in terms of how the resulting
reconstruction is influenced.
Response: The three levels of BARCAST connects the model equations with the proxy
and instrumental data, and with the priors for all parameters and the temperature field.
The parameters are therefore interdependent, so adjustment of one parameter must be
compensated by the other parameters. The effect of interdependence between the AR(1)
coefficient and σ2 is demonstrated in Fig. 9 in Tingley and Huybers (2010), where the
posterior draws of φ and σ2 are negatively correlated. Tingley and Huybers (2010) claim
that for their version of barcast the pdfs of the final draws are not ill-defined, they rather
converge to some specific values with relatively narrow pdfs.

For the reconstructions, increasing the AR(1) parameter α means changing the temporal
correlation structure of the reconstruction at all frequencies, where the high-frequency
component is forced to have stronger temporal correlations and the low-frequency com-
ponent is forced to have weak or no temporal correlations. Increasing β0 means the
proxy bias is increased, so the relationship between the proxy and the true temperature
is influenced. At last, decreasing σ2 means that the white-noise innovations are given
less weight, hence the coherent signal is less influenced by local, stochastic perturbation.

Reviewer page 13, line 28: This result is not very apparent in Fig. 5 a-c.
Response: The sentence mentions specifically ”noisy input data”, so b-d in all figures.
But the effect is indeed minimal in Fig. 5b-c, this will be changed in the revision.

Reviewer page 14, line 4: Explain why the characteristic of subsequent years being
independent is involved in the discussion here.
That is, relate this characteristic to an incorrect statistical model.
Response: The end of this paragraph will be rewritten in the revision:
The assumption of temporal independence corresponds to yet another incorrect statis-
tical model for our target data; a white noise process in time. Note that for target
variables/data sets consistent with a white noise process, these types of reconstruction
methods are appropriate, as demonstrated using the truncated EOF-principal compo-
nents spatial regression (TEOF-PCSR) methodology on precipitation data in Wahl et al.
(2017).
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Reviewer page 14, line 23: Explain here the nature of the incorrectness in the confidence
intervals.
Response: see reply above to comment on page 12, line 29.

Reviewer page 15, line 15: Are there thoughts that come from these experiments for
how BARCAST itself might be improved?
Are there more realistic characterizations of the fundamental mathematical temporal
and spatial specifications that could be recommended?
And if so, what would the numerical estimation ramifications also be?
These kinds of discussion components would be good to add, especially since this study
is by construction an evaluation of BARCAST’s performance.
Response: There are two aspects that will be addressed and elaborated in the revised
discussion regarding this comment. It is not only BARCAST that could be improved,
the availability of well-documented high-quality proxy records also helps the analyst se-
lect an appropriate reconstruction method based on the input data. Investigating the
temporal correlation structure is an exercise that can be done at different stages of data
manipulation, and we stress that the spatiotemporal covariance structure of reconstruc-
tions depends on model/method selection. Hopefully this article can draw the attention
of scientists working with proxy data sampling and processing, reconstruction method-
ology as well as those using such reconstructions for statistical modeling. Our study is
meant to improve understanding in these communities, create awareness and enhance
communication between them. Modellers need to know as much as possible about what
artifacts their data are subject to and which reconstructed time scales are considered
most reliable. On the other hand, the producers of proxy data need to know which
information is needed in order to provide this information if it exists.

Point 1 - Improvements regarding proxies
if the proxy network is of high quality and density, and exhibit LRM properties, the
BARCAST methodology without modification should be capable of constructing skillful
reconstructions with LRM preserved across the region. This is because the data infor-
mation overwhelms the vague priors. For assessment of real-world proxy quality it is
useful to quantify/model the uncertainties and noise affecting the different proxy types
and/or specific reconstructions. Forward modelling of proxies are important tools for
this task that we endorse, see for example Dee et al. (2017) for a comprehensive study on
terrestrial proxy system modeling and the recent paper by Dolman and Laepple (2018)
on forward modelling of sediment-based proxies.

Point 2 - Improvements of BARCAST
For the BARCAST CFR methodology, what would drastically improve the performance
in our experiments would be reformulation of model Eq. 1-2. However, we cannot
guarantee that modifications favoring LRM are practically feasible in the context of
a Bayesian hierarchical model, due to higher computational demands. Changing the
AR(1) model assumption to instead account for LRM would in the best scenario slow
the algorithm down substantially, and in the worst scenario it would not converge at all.
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Some cut-off time scale would have to be chosen to ensure convergence. Regarding the
spatial covariance structure, accounting for teleconnections introduce similar computa-
tional challenges. The more general Matérn covariance family form has already been
implemented for BARCAST, but was not used in this study. Another problem is the
potential temporal instability of teleconnections. The fact that major climate modes
might have changed their configuration through time is now considered realistic. There-
fore, setting additional a priori constraints on the model may not be considered justified.
The use of exponential covariance structure appears to be a conservative choice in such
a situation.
The discussion will be rewritten in the revision to address requests also from reviewers
2 and 3.

Reviewer page 15, line 28: In Fig. 3c-d the increased power of the simulated proxy data
is at sub-decadal frequencies, not at higher-to-bidecadal frequencies.
If the characteristics mentioned are for real proxy data, that needs to be clarified.
Response: The characteristics referred to are the spectra in fig 3c-d, not the real proxy
data. To be more precise and general, we will rewrite this sentence:
The characteristic flat spectrum at high frequencies, and the increased power on (sub)-
decadal frequencies and lower for (Fig 3c) and Fig. 3d respectively can give the impres-
sion that the low-frequency power is inflated.

Reviewer page 16, line 1: RCS is only one among a set of tree-ring processing techniques,
and this should be made clearer here.
Response: You are absolutely right. The focus on the RCS is due to the fact that it
is a commonly used method which may cause artifacts as those we discuss. For better
balance we will also mention other methods in the revision, such as the age band de-
composition (ABD) and signal-free processing mentioned in your next comment.

Reviewer page 16, line 11: The ”signal free processing” method of tree ring standard-
ization should also be discussed here.
To the extent that the tree ring records involved are also sensitive to moisture, then
persistence from one year to the next that is related to biological growth responses
to soil moisture persistence can also affect these records. This is different from the
standardization issue, pre se.
Cf. Bunde et al., 2013, Nature Clim. Change, doi:10.1038/nclimate1830.
Response: This is a good point, which we can state this in the revision for clarity. We
are aware of the paper by Bunde et al. 2013, and we will consider citation.

Reviewer page 17, line 7: It would be good at this closure point to note how the present
study sets a useful precedent for utilizing a carefully-designed, experimental structure
to isolate specific reconstruction technique properties – akin to controlled laboratory
experiments.
This is noted briefly in line 20 of page 16, but it would be good to highlight this point
more broadly, since it is the real power and value-added of this paper.
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Response: The discussion will be rewritten, and this particular comment will be ad-
dressed.

Reviewer page 22, Figure 1: Make the lines for the ensemble means significantly wider,
so they can be seen better by the reader.
Response: Thank you for noting this, it will be fixed for the revision.
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Response to reviewer 2

Thank you for providing general comments on the manuscript. The title and abstract
of the revised manuscript will be changed, see the general response posted.
Reviewer : p.1 l.2 Citation needed for unsuitability of the CE and RE metrics.

Response: see our reply to reviewer one, who has similar concerns.

Reviewer : Figure 3 caption doesn’t explain what each of the (a)-(b) panels are uniquely
showing.

Response: The figure caption will be revised to make this clear.

Reviewer : I would recommend highlighting in both the abstract and the conclusions how
the authors very nicely were able to test the issue of long-range memory in isolation by
constructing the spatial fields statistically rather than through climate models. I think
this is important to highlight because it’s not usually (or ever yet?) done.

Response: Thank you for this feedback, we will bring the novelty of the data generation
into focus as requested. The equations in Sect.2.2 will be moderately rewritten to avoid
confusion and misconceptions. The methodology for data generation is unconventional
but not unique, Werner and Tingley (2015) generate pseudo proxy data in a similar
way, except the target data are formulated directly according to the BARCAST model
equations.

References
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Response to reviewer 3

Reviewer : Namely, I tend to agree with one of the other reviewers that there is not
enough direct comparison between the strength of the BARCAST methodology and the
other CFR techniques so as to further test the fallout of the assumptions regarding AR1
vs. fGn data. While the authors do review the other techniques in detail which is infor-
mative, a direct comparison on the data they’ve generated in this manuscript using the
other available tools would make this much stronger.
Response: We agree that this type of comparison would be interesting, but we think
that the results of our study are important enough to stand alone. The paper brings in
a number of relevant aspects that justifies the anticipated length/extent. These will be
elaborated and brought better into focus in the revision, and include the novel method
of generating target data and the discussion of proper scoring rules/elaboration on the
CRPS.

Though we realize undoubtedly that evaluation of skill for other CFR techniques with a
similar set of experiments would be highly relevant, this is unfortunately not an option
at this point. The title of the manuscript will be revised to reflect that only BARCAST
is considered, see also our answers and consideration in the general reply letter.

Reviewer :
The authors also have not included any discussion of the GraphEM CFR technique de-
spite it’s inclusion in Wang et al., 2015 (which they cite) ? should this CFR method not
also be discussed in terms of relative performance? There are also a number of other
citations that I believe should be added to the Discussion which I have listed below.
Response: the GraphEM method will be mentioned explicitly in the revision together
with the other EM methods as follows:
Other reconstruction techniques that may experience similar deficiencies is the regu-
larized expectation-maximization algorithm (RegEM), (Schneider, 2001; Mann et al.,
2007), and all related models (CCA, PCA, GraphEM);

The discussion will be rewritten, and the references mentioned (Laepple and Huybers,
2014b,a) are familiar to us. We will consider citing these papers if appropriate. Fur-
thermore, Ault et al. (2013, 2014) consider precipitation/hydroclimate which do not
necessarily exhibit similar persistence properties as surface temperature. As an exam-
ple, from reviewer 1 we were informed about Wahl et al. (2017), where it is demonstrated
that reconstructed precipitation and instrumental data follow a white-noise process in
time. For these types of data the multivariate regression-based reconstruction methods
may be considered appropriate.

Reviewer : Finally, for the final paragraph of the Concluding Remarks, I was really left
hoping for a more forward - looking statement about the future of this field and what
your work contributes towards a broader knowledge of our estimates of past climate vari-
ability from proxies using these techniques. I think an effort could be made to solidify
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your findings and put them in a broader scope at the very end of the paper and put your
work in context. How does your work enhance our ability as a field to interpret CFRs
of past climate variability? What are the truly broad impacts or your work?
Response: The discussion and conclusions will be revised, these points will be addressed
as they are similar to some comments of reviewer 1.

Reviewer : Overall, a very nice manuscript. As a general comment, as a person who is
not a true expert in CFR, it would be nice if the authors could make an attempt to
help readers who may not be as familiar with these topics with real-world examples or
layman?s terms where appropriate.
Response: Thank you! Reviewer 1 had many specific comments on subjects that will
be described in more detail in the revision. In particular we have tried to extend the
text in a number of places to make it more easy to comprehend for potential readers
not directly involved in specific studies on CFR methods. If there are other particular
segments that are unclear we kindly ask the reviewer to point these out.

Specific comments

The grammar has been formatted to comply with the detailed comments, below we re-
spond to the questions the reviewer asks.

Reviewer : 12.16 Figure 9 doesn’t get much description or introduction but you partition
it away for some reason. Can you please give more information about why you say, for
example, except Fig. 9? what is different about Figure 9 exactly? This comes up again
on line 12.23.
Response: We have discovered an error in the calculation of the CRPS, see the general
reply for details. Figure 9 will therefore be removed in the revision.

Reviewer : Page 15 Lines 1-15 I think you need to beef up your discussion here about
millennium- long paleoclimate reconstructions, because there are quite a few more cita-
tions whose work should be added to the discussion here, especially those which include
model- data comparisons, including: (refs)
Response: The focus of this paragraph is very limited, we do not discuss millennium-long
paleoclimate reconstructions or model-data comparison in general. It deals with a very
specific topic of scale breaks in the power spectrum of Earth’s surface temperature over
a range of time scales (Lovejoy and Schertzer, 2012; Nilsen et al., 2016). Our results in
the present paper demonstrate that such spectral scale-breaks may occur due to proxy
noise and/or incorrect model selection, hence the breaks are unrelated to the true cli-
mate variability. This means the correlation structure of paleoclimate reconstructions
may differ from that of instrumental observations of climate, and it is why the concept
of universal scaling laws across a wide range of time scales is perhaps less meaningful.
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Regarding the references you mention, some of these are familiar to us and others con-
cern precipitation/hydroclimate which is not our climate variable in focus. In the revised
discussion we will try to have better balance and express the above point in a more clear
way.

Reviewer : In Section 5.1, you go into the issues with TRW and your estimates of the
PSD. The issues with TRW and de-trending methods, especially how this alters the
power spectrum, is discussed in Section 3.2.5. of Dee et al., 2017 as listed above and you
should compare your analysis to that paper as needed.
Response: Thank you for making us aware of the Dee et al. (2017) paper which is highly
relevant, we will make sure to cite it in the revision. See also the reply to reviewer 1.
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Abstract. The Bayesian hierarchical model
:::
skill

:::
of

:::
the

:::::::::::::
state-of-the-art

:::::::
climate

::::
field

::::::::::::
reconstruction

:::::::::
technique

:
BARCAST

("Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time") climate field reconstruction (CFR) technique,

and idealized input data are used in the pseudoproxy experiments of this study. Ensembles of targets are generated from fields

of
::
to

:::::::::
reconstruct

::::::::::
temperature

::::
with

::::::::::
pronounced

:
long-range memory stochastic processes using a novel approach. The range of

experiment setups include input data with different levels of persistence and levels of proxy noise, but without any form of5

external forcing. The input data are thereby a simplistic alternative to standard target data extracted from general circulation

model (GCM) simulations. Ensemble-based temperature reconstructions are generated, representing the European landmass

for a millennial time period. Hypothesis
:::::::
memory

::::::
(LRM)

::::::::::::
characteristics

::
is
::::::

tested.
:::

A
:::::
novel

::::::::
technique

:::
for

::::::::::
generating

:::::
fields

::
of

:::::
target

::::
data

:::
has

:::::
been

:::::::::
developed

:::
and

::
is
:::::
used

::
to

:::::::
provide

:::::::::
ensembles

::
of

:::::
LRM

:::::::::
stochastic

::::::::
processes

::::
with

::
a
:::::::::
prescribed

::::::
spatial

:::::::::
covariance

::::::::
structure.

:::::
Based

:::
on

:::::::
different

::::::::
parameter

::::::
setups,

:::::::::
hypothesis

:
testing in the spectral domain is then used to investigate10

if the field and spatial mean reconstructions are consistent with either the fractional Gaussian noise (fGn) null hypothesis used

for generating the target data, or the autoregressive model of order one (AR(1) )
::::
AR1)

:
null hypothesis which is the assumed

temperature model for this
:::::::
temporal

::::::::
evolution

::::::
model

:::
for

:::
the

:
reconstruction technique. The study reveals that the resulting

field and spatial mean reconstructions are consistent with the fGn hypothesis for most of the parameter configurations
:::::
some

::
of

::
the

::::::
tested

::::::::
parameter

:::::::::::::
configurations,

:::::
while

:::::
others

:::
are

::
in

:::::
better

:::::::::
agreement

::::
with

:::
the

::::::
AR(1)

:::::
model. There are local differences in15

:::::::::::
reconstruction

::::
skill

::::
and reconstructed scaling characteristics between individual grid cells, and a generally better

::
the agreement

with the fGn model
::
is

::::::::
generally

:::::
better for the spatial mean reconstruction than at individual locations. The discrepancy from

an fGn is most evident for the high-frequency part of the reconstructed signal, while the long-range memory is better preserved

at frequencies corresponding to decadal time scales and longer. Selected experiment setups were found to give reconstructions

consistent with the AR(1) model. Reconstruction skill is measured on an ensemble member basis using selected validation20

metrics. Despite the mismatch between the BARCAST temporal covariance model and the model of the target, the ensemble

mean was in general found to be consistent with the target data, while the estimated confidence intervals are more affected by

this discrepancy. Our results show
::::
Our

:::::
results

::::::::::
demonstrate

:
that the use of target data with a different spatiotemporal covariance
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structure than the BARCAST model assumption can lead to a potentially biased CFR reconstruction and associated confidence

intervals, because of the wrong model assumptions.

1 Introduction

Proxy-based climate reconstructions are major tools in understanding past and predicting future variability of the climate sys-

temover a range of timescales. Over the last few decades a considerable progress has been made, and a number of proxy/multiproxy5

reconstructions of different climate variables have been created. .
:
Target regions, spatial density and temporal coverage of the

proxy network varied
:::
vary

:
between the studies, with a general trend towards more comprehensive networks and sophisticated

reconstruction techniques used. For example, Jones et al. (1998); Moberg et al. (2005); Mann et al. (1998, 2008); PAGES 2k Consortium (2013); Luterbacher et al. (2016); ?
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Jones et al. (1998); Moberg et al. (2005); Mann et al. (1998, 2008); PAGES 2k Consortium (2013); Luterbacher et al. (2016); Werner et al. (2018) present

reconstructions of surface air temperatures (SAT) for different spatial and temporal domains. The available reconstructions

often
::
On

:::
the

:::::
most

:::::::
detailed

:::::
level,

:::
the

::::::::
available

:::::::::::::
reconstructions tend to disagree on aspects such as

::::::
specific

:
timing, duration10

and amplitude of warm/cold periods, due to different methods, types and number of proxies, and regional delimitation used

in the different studies, (Wang et al., 2015). There are also alternative viewpoints on a more fundamental basis consider-

ing
::::
how the level of high frequency versus low frequency variability

:
is
::::

best
::::::::::
represented, see e.g. Christiansen (2011); Tin-

gley and Li (2012). Discrepancies in the Fourier domain can occur among other things
:
In

::::
this

:::::::
context,

:::::::::
differences

::::::::
between

::::::::::::
reconstructions

::::
can

:::::
occur due to shortcomings of the reconstruction techniques, such as regression dilution. This describes15

::::::
causing

:
variance losses back in time and bias of the target variable mean. These artifacts

::
can

:
appear as a consequence of

noisy measurements used as predictors in regression techniques based on ordinary least squares (Christiansen, 2011; Wang

et al., 2014),
::::::
though

::::::::
Ordinary

:::::
Least

:::::::
Squares

:::
still

::::::::
provides

::::::
optimal

:::::::::
parameter

:::::::::
estimation

::::
when

:::
the

::::::::
predictor

:::::::
variable

:::
has

:::::
error

:::::::::::::::::::::::::::
(Wonnacott and Wonnacott, 1979). The level of high/low frequency variability in reconstructions also depends on the type and

quality of the proxy data used as input (Christiansen and Ljungqvist, 2017).20

The concept of pseudoproxy experiments was introduced after millennium-long paleoclimate simulations from GCMs first

became available, and has been developed and applied over the last decade
:::
two

::::::
decades, (Mann et al., 2005, 2007; Lee et al.,

2008). Pseudoproxy experiments are used to test the skill of reconstruction methods and the sensitivity to the proxy network

used, see Smerdon (2012) for a review. The idea behind idealized pseudoproxy experiments is to extract target data of an

environmental variable of interest from long paleoclimate model simulationsfor an arbitrary reconstruction region. The target25

data is then sampled in a spatiotemporal pattern that simulates real proxy networks and instrumental data. The target data

representing the proxy period is further perturbed with noise to simulate real proxy data in a systematic manner, while the

pseudo instrumental
::::::::::::::::
pseudo-instrumental data are left unchanged or only weakly perturbed with noise of magnitude typical for

the real world
::::::::
real-world

:
instrumental data. The surrogate pseudoproxy and pseudoinstrumental

::::::::::::::::
pseudo-instrumental data are

used as input to one or more reconstruction techniques, and the resulting reconstruction is then compared with the true target30

from the simulation. The reconstruction skill is quantified through statistical metrics, both for a calibration- and a much longer

validation interval.
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The available
::::::::
Available

:
pseudoproxy studies have to a great

::::
large

:
extent used target data from the same GCM model sim-

ulations, subsets of the same spatially distributed proxy network and a temporally invariant pseudoproxy network (Smerdon,

2012). The concept of extracting target data from simpler model simulations has not been widely explored. In the present paper

we extend the domain of pseudoproxy experiments
:
to

:::::
allow

:::::
more

:::::::
flexible

:::::
target

::::
data,

:::::
with

:
a
:::::
range

:::
of

::::::::
explicitly

:::::::::
controlled

::::::::::::
spatiotemporal

::::::::::::
characteristics. Instead of employing surrogate data from paleoclimate GCM simulations, ensembles of target

fields are drawn from a field of stochastic processes with prescribed dependencies in space and time. In the framework of5

such an experiment design, the idealized temperature field can be thought of as an (unforced) control simulation of the Earth’s

surface temperature field with a simplified spatial
::::::::::::
spatiotemporal

:
covariance structure. The primary goal of using these target

fields is to test the ability of the reconstruction method to preserve the spatiotemporal covariance structure of the surrogates in

the climate field reconstruction. An example of such a study is Werner and Tingley (2015), where idealized target data were

generated based on the BARCAST model equations introduced here
::::::
Earlier,

::::::::::::::::::::::::::::::
Werner and Tingley (2015) generated

:::::::::
stochastic10

:::::
target

:::::
fields

:::::
using

:::
the

::::::
AR(1)

::::::
model

::::::::
equations

::
of

::::::::::
BARCAST

::::::::::
introduced in Sect. 2.1.

:::
We

::::::
present

::::
for

:::
the

::::
first

::::
time

::
a

::::
data

::::::::
generation

:::::::::
technique

:::
for

::::
fields

:::
of

:::::::::
long-range

:::::::
memory

::::::
(LRM)

:::::
target

::::
data.

:

In addition
::::::::::
Additionally, we test the reconstruction skill on an ensemble member basis using standard metrics including

the correlation coefficient and the root-mean-squared error (RMSE). We also employ the
:::
The

:
continuous ranked probability

score (CRPS) , which is a suitable skill metric for ensemble-based reconstructions , in contrast to the often-used coefficient of15

efficiency (CE) and reduction of error (RE)
::
is

:::
also

:::::::::
employed,

::::
this

::
is

:
a
::::
skill

::::::
metric

:::::::::
composed

::
of

::::
two

:::::::::::::
subcomponents

:::::::
recently

:::::::::
introduced

::
for

::::::::
ensemble

:::::
based

:::::::::::::
reconstructions

::::::::::::::::::::::::
(Gneiting and Raftery, 2007).

Temporal dependence in a stochastic process over time t is described as persistence or memory, given that the process has

a Gaussian probability distribution. A long-range memory (LRM ) .
:::
An

:::::
LRM

:
stochastic process exhibits an autocorrelation

function (ACF) and a power spectral density (PSD) of a power-law form: C(t)∼ tβ−1, and S(f)∼ f−β respectively. The20

power-law behavior of the ACF and the PSD indicates the absence of a characteristic time scale in the time series; the record

is scale invariant (or just scaling). The spectral exponent β determines the strength of the persistence. The special case β = 0

is the white noise process, which has a uniform PSD over the range of frequencies. For comparison, another model often used

to describe the background variability of the Earth’s SAT is the autoregressive process of order 1 (AR(1) )
::::
AR1)

:
(Hasselmann,

1976). This process has a Lorentzian power spectrum
:::::
(steep

::::
slope

::
at

::::
high

::::::::::
frequencies,

:::::::
constant

::
at

::::
low

::::::::::
frequencies) and thereby25

does not exhibit long-range correlations.

For the instrumental time period, studies have shown that detrended local and spatially averaged surface temperature data

exhibit long-range memory properties on time scales from months up to decades, (Koscielny-Bunde et al., 1996; Rybski et al.,

2006; Fredriksen and Rypdal, 2016). For proxy/multiproxy SAT reconstructions, studies indicate persistence up to a few cen-

turies or millennia, (Rybski et al., 2006; Lovejoy and Schertzer, 2012; Nilsen et al., 2016)
::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rybski et al., 2006; Huybers and Curry, 2006; Nilsen et al., 2016).30

The exact strength of persistence varies between data sets and depends on the degree of spatial averaging, but in general

0< β < 1.3 is adequate. The value of β > 1 is usually associated with sea surface temperature, which features stronger persis-

tence due to effects of oceanic heat capacity . The deviation from Gaussianity of instrumental temperatures varies with latitude
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(Franzke et al., 2012), and the nonlinearity in some types of proxy records also result in nongaussianity (Emile-Geay and Tingley, 2016).

:::::::::::::::::::::::::::::::::::::::::::::::::
(Fraedrich and Blender, 2003; Fredriksen and Rypdal, 2016).35

Our basic assumption is that the background temporal evolution of Earth’s surface air temperature can be modelled by the

persistent Gaussian stochastic model known as the fractional Gaussian noise (fGn) (Beran et al., 2013)[Chapter 1 and 2],

(Rypdal et al., 2013). This process is stationary, and the persistence is defined by the spectral exponent 0<β<1.
:::::::::
0< β < 1.

The synthetic target data are designed as ensembles of LRM-processes
::::::::::::
fGn-processes in time, with an exponentially decaying

spatial covariance structure. In contrast to using target data from GCM simulations, this gives us the opportunity to vary5

the strength of persistence in the target data, retaining a simplistic and temporally persistent model for the signal covariance

structure. The persistence is varied systematically to mimic the range observed in actual reconstructions
::::::::::
observations

:
over land,

typically 0< β < 1
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Franke et al., 2013; Fredriksen and Rypdal, 2016; Nilsen et al., 2016). The pseudoproxy data quality is

also varied by adding levels of white noise corresponding to signal-to-noise ratios by standard deviation (SNR)=∞,3,1,0.3.

For comparison, the signal to noise ratio of observed proxy data is normally between 0.5-0.25 (Smerdon, 2012). However, in10

?
::::::::::::::::
Werner et al. (2018), most tree-ring series were found to have SNR > 1.

:::
The

::::
fGn

:::::
model

::
is
::::::::::
appropriate

:::
for

:::::
many

::::::::::
observations

::
of
:::::

SAT
::::
data,

:::
but

:::
we

:::::::::::
acknowledge

:::
that

:::::
there

:::
are

::::
also

:::::
some

:::::::::
deviations.

:::
The

:::::::::
theoretical

::::
fGn

::::::
follow

:
a
::::::::
Gaussian

::::::::::
distribution,

:::
but

:::
for

:::::::::::
instrumental

::::
SAT

::::
data

:::
the

::::::::
deviation

::::
from

::::::::::
Gaussianity

::::::
varies

::::
with

::::::
latitude

::::::::::::::::::
(Franzke et al., 2012).

:::::
Some

:::::::::::::::::
temperature-sensitive

::::::
proxy

::::
types

:::
are

::::
also

:::::::::::
characterized

::
by

:::::::::::
nonlinearities

::::
and

:::::::::::::
non-gaussianity

:::::::::::::::::::::::::::
(Emile-Geay and Tingley, 2016).15

Since the target data are represented as an ensemble of independent members generated from the same stochastic process,

there is little value in estimating and analyzing ensemble means from the target and reconstructed time series themselves.

Anomalies across the ensemble members will average out, and the ensemble mean will simply be a time series with non-

representative variability across scales. Instead we will focus on averages in the spectral sense. The means
::::::
median

:
of the

ensemble member-based metrics are used to quantify the reconstruction skill.20

The reconstruction method to be tested is the "Bayesian Algorithm for Reconstructing Climate Anomalies in Space and

Time" (BARCAST), based on a Bayesian Hierarchical Model (Tingley and Huybers, 2010a). This is a state-of-the-art paleocli-

mate reconstruction technique, described in further detail in Sect. 2.1. The motivation for using this particular reconstruction

technique in the present pseudoproxy study is the contrasting background assumptions for the temporal covariance structure.

BARCAST assumes that the temperature evolution follows an AR(1) process in time, while the target data are generated ac-25

cording to the fGn model. The consequences of using an incorrect null hypothesis for the temporal data structure are illustrated

in Fig. 1. Here, the original time series in Fig. 1a follows an fGn structure. The corresponding power spectrum
::::
95%

:::::::::
confidence

::::
range

:::
of

:::::
power

:::::::
spectra is plotted in blue in Fig. 1c. Using the incorrect null hypothesis that the data are generated from an

AR(1) model, we estimate the AR(1) parameters from the time series in Fig. 1a using Maximum Likelihood estimation. A

realization of an AR(1) process with these parameters is plotted in Fig. 1b, with the power spectrum
:::
95%

::::::::::
confidence

:::::
range

::
of30

:::::
power

::::::
spectra

:
shown in red in Fig. 1c. The characteristic timescale indicating the memory limit of the system is evident as a

break in the red AR(1) spectrum. This is an artifact that does not stem from the original data, but simply occurs because an

incorrect assumption was used for the temporal covariance structure.
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A particular advantage of BARCAST as a probabilistic reconstruction technique lies in its capability to provide an objective

error estimate as the result of generating a distribution of solutions for each set of initial conditions. The reconstruction skill of35

the method has been tested
:::::
earlier

:
and compared against a few other CFR techniques using pseudoproxy experiments. Tingley

and Huybers (2010b) use instrumental temperature data for North America, and construct pseudoproxy data from some of

the longest time series. BARCAST is then compared to the RegEM method used by Mann et al. (2008, 2009). The findings

are that BARCAST is more skillful than RegEM if the assumptions for the method are not strongly violated. The uncertainty

bands are also narrower. The other
::::::
Another

:
pseudoproxy study is described in Werner et al. (2013), where BARCAST is5

compared against a CFR method based on
::
the

:
canonical correlation analysis (CCA)

::::
CFR

::::::
method. The pseudo proxies in that

paper were constructed from a millennium-long forced run of the NCAR CCSM4 model. The results showed that BARCAST

outperformed the CCA method over the entire reconstruction domain, being similar in areas with good data coverage. There

is an additional pseudoproxy study by Gómez-Navarro et al. (2015), targeting precipitation which has a more complex spatial

covariance structure than SAT anomalies. In that study, BARCAST was not found to outperform the other methods.10

In the following, we describe the methodology of BARCAST and the target data generation in Sect. 2. The spectral estimator

used for persistence analyses is also introduced here. Sect. 3 comprises
::
is

::::::::
comprised

::
of

:
an overview of the experiment setup and

explains the hypothesis testing procedure. Results are presented in Sect. 4 after performing hypothesis testing in the spectral

domain of persistence properties in the local and spatial mean reconstructions. The skill metric results are also summarized.

Finally, Sect. 5 discuss
:::::::
discusses

:
the implications of our results and provides concluding remarks.15

2 Data and methods

2.1 BARCAST methodology

BARCAST is a climate field reconstruction method, described in detail in Tingley and Huybers (2010a). It is based on a

Bayesian hierarchical model with three levels. The true temperature field in BARCAST, Tt is modelled as a multivariate

first-order autoregressive model (AR(1)) in time. Model equations are defined at the process level:20

Tt−µ1 = α(Tt−1−µ1) + εt (1)

Where the scalar parameter µ is the mean of the process, α is the AR(1) coefficient, and 1 is a vector of ones. The subscript t

indexes time in years, and the innovations (increments) εt are assumed to be IID normal draws εt ∼N(0,Σ), where

Σij = σ2 exp(−φ|xi−xj |) (2)

is the spatial covariance matrix depicting the covariance between locations xi and xj .25

The spatial e-folding distance is 1/φ and is chosen to be ∼ 1000 km for the target data. This is a conservative estimate

resulting in weak spatial correlations for the variability across a continental landmass. (North et al., 2011) estimate that the

decorrelation length for a 1-year average of Siberian temperature station data is 3000 km. On the other hand, Tingley and
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Huybers (2010a) estimate a decorrelation length of 1800 km for annually mean global land data. They further use annual mean

instrumental and proxy data from the North American continent to reconstruct SAT back to 1850, and find a spatial correlation

length scale of approximately 3300 km for this BARCAST reconstruction. Werner et al. (2013) use 1/φ∼1000 km as the

mean for the lognormal prior in the BARCAST pseudoproxy reconstruction for Europe, but the reconstruction has correlation5

lengths between 6000-7000 km. The reconstruction of ?
:::::::::::::::::
Werner et al. (2018) has spatial correlation length slightly longer than

1000 km.

On the data level, the observation equations for the instrumental and proxy data are:

Wt =


 HI,t

β1 ·HP,t


Tt +


 eI,t

eP,t +β01


 (3)10

Where eI,t and eP,t are multivariate normal draws ∼N(0, τ2
I I) and ∼N(0, τ2

P I). HI,t and HP,t are selection matrices of

ones and zeros which at each year select the locations where there are instrumental/proxy data. β0 and β1 are parameters rep-

resenting the scaling factor and bias
:::
bias

:::
and

:::::::
scaling

:::::
factor of the proxy records relative to the temperatures. Note that these

two parameters have no relation to the spectral parameter β. The BARCAST parameters are distinguished by their indices, the15

notation is kept as it is to comply with existing literature.

The remaining level is the prior. Weakly informative but proper prior distributions are specified for the scalar parameters

and the temperature field for the first year in the analysis. The priors for all parameters except φ are conditionally conjugate
:
,

:::::::
meaning

:::
the

:::::
prior

:::
and

:::
the

::::::::
posterior

::::::::::
distribution

::::
has

:::
the

:::::
same

:::::::::
parametric

:::::
form. The Markov-Chain Monte Carlo (MCMC)20

algorithm known as the Gibbs sampler (with one Metropolis step) is used for the posterior simulation
:::::::::::::::::
(Gelman et al., 2003).

Table C1 sums up the prior distributions and the choice of hyperparameters for the scalar parameters in BARCAST. The CFR

version applied here has been updated as described in Werner and Tingley (2015). The updated version allows inclusion of

proxy records with age uncertainties. This property will not be used here directly, but it implies that proxies of different types

may be included. Instead of estimating one single parameter value of τ2
P , β0 and β1, the updated version estimates individual25

values of the parameters for each proxy record (?)
:::::::::::::::::
(Werner et al., 2018).

In the present study, the
:::
The

:
Metropolis-coupled MCMC algorithm is run for 5000 iterations, running three chains in par-

allel. Each chain is assumed equally representative for the temperature reconstruction if the parameters converge. There are a

number of ways to investigate convergence, for instance one can study the variability in the plots of draws of the model param-

eters as a function of step number of the sampler, as in Werner et al. (2013). However, a more robust convergence measure can30

be achieved when generating more than one chain in parallel. By comparing the within-chain variance to the between-chain

variance we get the convergence measure R̂, (Gelman et al., 2003, Chapter 11). R̂ close to one indicates convergence for the

scalar parameters.
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There are numerous reasons why the parameters may fail to converge, including inadequate choice of prior distribution

and/or hyperparameters or using an insufficient number of iterations in the MCMC algorithm. It may also be problematic if

the spatiotemporal covariance structure of the observations or surrogate data deviate strongly from the model assumption of5

BARCAST.

Since BARCAST is a probabilistic reconstruction technique it
:::::::::
BARCAST

:
was used to generate an ensemble of reconstruc-

tions, in order to achieve a mean reconstruction as well as uncertainties. In our case, the draws for each temperature field and

parameter are thinned so that only every 10 of the 5000 iterations are saved; this secures independence of the draws.

The output temperature field is reconstructed also in grid cells without observations, which
::
this

:
is a unique property compared10

to other well-known field reconstruction methods such as the regularized expectation maximum technique (RegEM) applied in

Mann et al. (2009). Note that the assumptions for BARCAST should generally be different for land and oceanic regions, due

to the differences in characteristic timescales and spatiotemporal processes. BARCAST is so far only configured to deal with

:::::
handle

:
continental land data, (Tingley and Huybers, 2010a).

2.2 Target data generation15

While generating ensembles of synthetic LRM processes in time is straightforward using statistical software packages, it is

more complicated to generate a field of persistent processes with prescribed spatial covariance. Below we describe a novel

technique that fulfills this goal, which can be extended to include more complicated spatial covariance structures. Such a

spatiotemporal field of stochastic processes may potentially have many
:::
has

:::::
many

:::::::
potential

:::::::::::
applications,

::::
both

:
theoretical and

practicalapplications.20

Generation of target data begins with reformulating eq. (1)
::
Eq.

::
1 so that the temperature evolution is defined from a power-

law function instead of an AR(1). The continuous-time version of Eq. (1) (
:
1
:
(with µ= 0) is the ordinary

::::::::
stochastic

:::::::::
(ordinary)

differential equation:

dT

dt
=−(1−α)d

:
ITt =−λTdt

:::::::::
+ d

:
εW
::

t
, Where I Is the identity matrix. (4)

25

with the solution:

T(t) =

t∫

0

exp−(1−α)I(t−s)εsds

The exponential kernel is then replaced
:::::
where

:::::::::::::::::
Tt = (Tt,1, . . . ,Tt,n),

::::
and

:::
Tt,i::

is
:::
the

::::::::::
temperature

::
at

::::
time

:
t
:::
and

::::::
spatial

:::::::
position

::
xi.::::

The
:::::
noise

::::
term

:::::::::::::::::::::::
dWt = (dWt,1, . . . ,dWt,n)

::
is

:
a
::::::
vector

::
of

::::::::::
(dependent)

::::::::::
white-noise

:::::::::
measures.

::::::
Spatial

::::::::::
dependence

::
is

:::::
given

7



::
by

:::
Eq.

::
2

:::::
when

::::::::::::::::
εt = Wt+∆t−Wt :::

and
::::::
∆t= 1

:::
yr.

::
If

:
I
:::::::
denotes

:::
the

::::::
identity

:::::::
matrix,

:::
the

::::::::
stationary

:::::::
solution

::
of

:::
Eq.

::
4

::
is

T
: t =

t∫

−∞

exp
(
−λI(t− s)

)
d

:::::::::::::::::::::

W
::s,:

(5)5

:::::
which

::::::
defines

:
a
:::
set

::
of

::::::::
dependent

:::::::::::::::::
Ornstein-Uhlenbeck

::::::::
processes

::::
(the

:::::::::::::
continuous-time

:::::::
versions

::
of

::::::
AR(1)

::::::::
processes

:::
with

::::::::
α= e−λ,

:::::::::
α= 1−λ).

::::
Eq.

:
4
:::::::
assumes

::::
that

:::
the

::::::
system

::
is
:::::::::::
characterized

:::
by

::
a

:::::
single

:::::::::
eigenvalue

::
λ,

::::
and

:::::::::::
consequently

::::
that

::::
there

::
is

::::
only

::::
one

:::::::::::
characteristic

::::
time

::::
scale

:::::
1/λ.

::
It

::
is

::::::::::
well-known

:::
that

:::::::
surface

::::::::::
temperature

:::::::
exhibits

:::::::::
variability

::
on

::
a
:::::
range

::
of

::::::::::::
characteristic

::::
time

:::::
scales,

::::
and

:::::
more

:::::::
realistic

:::::::
models

:::
can

:::
be

:::::::
obtained

:::
by

:::::::::::
generalizing

:::
the

::::::::
response

::::::
kernel

::
as

::
a
::::::::
weighted

::::
sum

:::
of

::::::::::
exponential

:::::::
functions

::::::::::::::::::::::::::
(Fredriksen and Rypdal, 2017):

:
10

T
: t =

t∫

−∞

[∑

k

ck exp
(
−λkI(t− s)

)]
d

::::::::::::::::::::::::::::::

W
::s.: (6)

::
An

::::::::
emergent

:::::::
property

::
of

:::
the

:::::::
climate

:::::
system

::
is
::::
that

::
the

::::::::
temporal

::::::::
variability

::
is

::::::::::::
approximately

::::
scale

::::::::
invariant

::::::::::::::::::::::::::::::
(Rypdal and Rypdal, 2014, 2016) and

::
the

::::::::::
multi-scale

:::::::
response

::::::
kernel

::
in

:::
Eq.

::
6

:::
can

::
be

::::::::::::
approximated by a power-law function to yield:

T(t)t =

∫
0−∞

::

t(t− s)β/2−1d
:
εW
:: sdss.

:
(7)

This expression describes the long-memory response to the noise forcingafter time t= 0. Note that there is no contribution15

from the initial condition T(0). This is because T(t)
:
.
:::
We

::::
note

::::
that

:::
this

::::::
should

:::
be

:::::::::
considered

::
as

::
a
::::::
formal

:::::::::
expression

:::::
since

::
the

:::::::::
stochastic

:::::::
integral

:
is
::::::::
divergent

::::
due

::
to

:::
the

:::::::::
singularity

::
at

:::::
t= s.

:::::
Also

::::
note

:::
that

:::
Tt:

in Eq. (8)
:
7 in contrast to Eq. (5 )

:
5
:
is no

longer a solution to an ordinary differential equation, but rather
:
to

:
a fractional differential equation, whose solution for t > 0

depends not only on the initial condition but the entire time history of T(t), t ∈ (−∞,0). Eq. 8 effectively corresponds to
:
.
:::
By

neglecting the contribution from the noisy forcing prior to t= 0 .

In discrete form , the convolution integral in Eq. 8 is approximated over an index s:
::
we

::::::
obtain

Tt =

t∫

0

(t− s)β/2−1d

:::::::::::::::::

W
::s,:

(8)

:::::
which

::
in

:::::::
discrete

::::
form

:::
can

:::
be

:::::::::::
approximated

:::
by

T
: t =

::

t∑

s=0

(t− s+ τ0)β/2−1εsεs.
:

(9)5

Note that here the
:::
The

:
stabilizing term τ0 is added to avoid the singularity at s= t. The optimal choice would be to choose

τ0 such that the term in the sum arising from s= t represents the integral in
:::
over

:
the interval s ∈ (t− 1, t), i.e.,

τ0 =

τ0∫

0

τβ/2−1dτ,
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which has the solution τ0 = β/2.

Summation for time steps s, t= 1,2, ....N and τ = t− s
::::::::::
Summations

::::
over

::::
time

:::::
steps

::::::::::::
s= 1,2, ....N

:
of (9) results in the

matrix G with terms:

G(τ) = (τ +β/2)(β/2−1)Θ(τ)

Where Θ(τ ) is the
:::::::
product:10

Tt,i =

N∑

s=1

Gtsεs,i,

::::::::::::::

:::::
where

:::::::::
G = (Gts)::

is
:::
the

::::::
N ×N

::::::
matrix

:

Gt,s = (t− s+β/2)(β/2−1)Θ(t− s),
::::::::::::::::::::::::::::::

(10)

:::
and

::::
Θ(t)

::
is

:::
the unit step function. εt is kept identical as in eq. (1) and (2). The

:
If
:::
we

:::
for

:::::::::::
convenience

::::
omit

:::
the

::::::
spatial

:::::
index

::
i
::::
from

:::
Eq.

::::
10,

:::
the

:::::
model

:::
for

:::
the

:
target temperature field T at time t can be15

calculated as:
::::::
written

::
in

:::
the

::::::::::
compressed

::::
form

:

Tt = Gt
:::::::

εt.
:

(11)

Tt = Gtεt

2.3 Estimation of power-spectral density
::::::
Scaling

:::::::
analysis

::
in

::::
the

:::::::
spectral

:::::::
domain

The temporal dependencies in the reconstructions are investigated to obtain detailed information about how the reconstruction20

technique may alter the level of variability on different scales, and how sensitive it is to the proxy data quality. Persistence

properties of target data, pseudoproxies and the reconstruction
::::::::::::
reconstructions

:
are compared and analyzed in the spectral

domain using the periodogram as the estimator.
:::
See

::::::::
appendix

::
A

:::
for

::::::
details

::
on

::::
how

:::
the

:::::::::::
periodogram

::
is

::::::::
estimated.

:

The periodogram is defined here in terms of the discrete Fourier transformHm as S(fm) = (2/N)|Hm|2,m= 1, 2, . . .,N/2.

The sampling time is an arbitrary time unit, and the frequency is measured in cycles per time unit: fm =m/N . ∆f = 1/N is25

the frequency resolution and the smallest frequency which can be represented in the spectrum.

Power spectra are visualized in log-log plots since the spectral exponent
:::
then

:
can be estimated by a simple linear fit to the

spectrum. The raw and log-binned periodograms are plotted, and β is estimated from the latter. Log-binning of the periodogram

is used here for analytical purposes, since it is useful with a representation where all frequencies are weighted equally with

respect to their contributions to the total variance.

It is also possible to use other estimators for scaling analysis, such as the detrended fluctuation analysis (DFA, Peng et al.

(1994)), or wavelet variance analysis (Malamud and Turcotte, 1999). Each estimation technique has benefits and deficiencies,
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and one
:::
One can argue for the superiority of methods other than PSD or the use of a multi-method approach. However, we con-5

sider the spectral analysis to be adequate for our purpose and refer to Nilsen et al. (2016) for a discussion
:::::::::::::::::::::::::::::::::::
Rypdal et al. (2013); Nilsen et al. (2016) for

:::::::::
discussions

:
on selected estimators for scaling analysis.

3 Experiment setup

The experiment domain configuration is selected to resemble that of the continental landmass of Europe, with N = 56 grid

cells of size 5◦x5◦
::
5◦

:
x
:::
5◦. The reconstruction period is 1000 years, .

:
reflecting the last millennium. The reconstruction region10

and period are inspired by the BARCAST reconstructions in Werner et al. (2013); Luterbacher et al. (2016) and approximate

the density of instrumental and proxy data in reconstructions of the European climate of the last millennium. The temporal

resolution for all types of data is annual. By construction the target fGn data are meant to be an analogue of the unforced

SAT fieldand hence can be considered as representing GCM control simulations. We will study both the field and spatial mean

reconstruction.15

Pseudoinstrumental data cover the entire reconstruction region for the time period 850-1000 and are identical to the noise-

free values of the true target variables. The spatial distribution of the pseudoproxy network is highly idealized as illustrated in

Fig. 2, the data covers every fourth grid cell for the time period 1-1000. The pseudoproxies are constructed by perturbing the

target data with white noise according to Eq. 3. The variance of the proxy observations is τ2
P , and the SNR is calculated as:

20

SNR =
β2

1Var(Tt)

τ2
P

(12)

Our set of experiments is summarized in Table 1 and comprises target data with three different strengths of persistence,

β = 0.55,0.75,0.95 and pseudoproxies with four different signal to noise ratios by standard deviation (SNR): SNR=∞,3,1
:
:

::::::::::::
SNR =∞,3,1, and 0.3. In total, 20 realizations of target pseudoproxy and pseudoinstrumental data are generated for each

combination of β and SNR and used as input to BARCAST. The reconstruction method is probabilistic and generates ensembles25

of reconstructions for each input data realization. In total, 30 000 ensemble members are constructed for every parameter setup.

3.1 Hypothesis testing

Hypothesis testing in the spectral domain is used to determine which pseudoproxy/reconstructed data sets can be classified as

fGn with the prescribed scaling parameter, or as AR(1) with parameter α estimated from BARCAST. The power spectrum for

each ensemble member of the local/spatial mean reconstructions is estimated, and the mean power spectrum is then used for30

further analyses. The first null hypothesis is that the data sets under study can be described using an fGn with the prescribed

scaling parameter for the target data at all frequencies, βtarget = 0.55,0.75 and 0.95 respectively. For testing we generate a

Monte Carlo (MC) ensemble of fGn series with a value of the scaling parameter identical to the target data. The power spectrum

of each ensemble member is estimated, and the confidence range for the theoretical spectrum is then calculated using the 2.5

10



and 97.5 quantiles of the log-binned periodograms of the MC
:::::
Monte

:::::
Carlo

:
ensemble. The null hypothesis is rejected if the

log-binned mean spectrum of the data is outside of the confidence range for the fGn model at any point.

The second null hypothesis tested is that the data can be described as an AR(1) process at all frequencies, with the parameter5

α estimated from BARCAST. Distributions for all scalar parameters including the AR(1) parameter α are provided through

the reconstruction algorithm. The mean of this parameter was used to generate a Monte Carlo ensemble of AR(1) processes.

The MC
:::::
Monte

:::::
Carlo

:
ensemble and the confidence range is then based on log-binned periodograms for this theoretical AR(1)

process.

Figure 3 presents an example of the hypothesis testing procedure. The fGn 95% confidence range is plotted as a shaded gray10

area in the log-log plot together with the mean raw and mean log-binned periodograms for the data to be tested. Blue curve

and dots represent mean raw and log-binned PSD for pseudoproxy data, red curve and dots represent mean raw and log-binned

PSD for reconstructed data. The gray, dotted line is the ensemble mean.

Note that the formulation of the
::::
The two null hypotheses gives

:::
give

:
no restriction about the normalization of the fGn and

AR(1) data used to generate the MC ensemble
::::::
Monte

:::::
Carlo

:::::::::
ensembles. Particularly, they do not have to be standardized in15

the same manner as the pseudoproxy/reconstructed data. This makes the experiment
:::::::::
experiments

:
more flexible, as the spectral

confidence range of the MC
::::::
Monte

:::::
Carlo ensemble can be shifted vertically to better accommodate the data under study. A

standard normalization of data includes subtracting the mean and normalizing by the standard deviation. This was sufficient

to support the null hypotheses in many of our experiments. A different normalization could also be used, for instance if one

considers only the high- or only the low frequency variability to be representative of the true variability in the time series.20

This is often the case with proxy-based reconstructions. In this case, it would be useful to calculate the variance in the high-

or low frequency range by filtering the data, and then normalize the unfiltered data by this variance.
:::
had

::
to

:::
be

::::
used

::
in

:::::
other

::::::::::
experiments.

:

4 Results

BARCAST successfully estimates posterior distributions for all reconstructed temperature fields and scalar parameters. Con-25

vergence is reached for the scalar parameters despite the inconsistency of the input data temporal covariance structure with the

default assumption of BARCAST. Table C2 lists the true parameter values used for the target data generation, and Tab.
:::::
Table

C3 summarizes the mean of the posterior distributions estimated from BARCAST. Studying the parameter dependencies, it is

clear that the posterior distributions of α and σ2 depend on the prescribed β and to a lesser extent, SNR for the target data. The

mean values of the α distributions were used to generate Monte Carlo ensembles of AR(1) processes for hypothesis testing.30

For the parameters τ2
P , β0 and β1, there are individual posterior distributions for each of the local proxy records. Instead of

listing the posterior distributions of τ2
P and β1 we have estimated the local reconstructed SNR at each proxy location using Eq.

12.

Further results concern the spectral analyses and skill metrics. For each ensemble member of the input dataset and temperature

reconstruction, the PSD is estimated and the mean spectrum is used in further analyses. All references to spectra in the fol-
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lowing correspond to mean spectra. Analyses of the reconstruction skills
::::
skill presented below are performed on a grid point

basisas well as for the
:
,
:::
and

:::
for

:::
the

::::::::::
correlation

:::
and

::::::
RMSE

::::
also

:::
for

:::
the spatial mean reconstruction. While the latter provides5

an aggregate summary of the method’s ability to reproduce specified properties of the climate process on a global scale, the

former evaluates the BARCAST
::::::::::
BARCAST’s

:
spatial performance.

4.1 Isolated effects of added proxy noise on scaling properties in the input data

The scaling properties of the input data are modified already when the target data are perturbed with white noise to generate

pseudoproxies. The power spectra shown in blue in Fig. 3 are used to illustrate these effects for one arbitrary proxy location and10

β
:::::::
β = 0.75. Figure 3a shows the spectrum for SNR=∞, which is the unperturbed fGn signal corresponding to ideal proxies.

Panels 3b, c and d
::
b-d

:
show spectra for SNR=3, 1 and 0.3 respectively. The effect of added white noise in the spectral domain is

manifested as flattening of the-high frequency part of the spectrum equal to β = 0, and a gradual transition to higher β for lower

frequencies. The pseudoproxies in panels 3b, c and d all deviate from the confidence range on the highest frequencies, while

the log-binned spectrum in Fig. 3(d) is outside on lower frequencies as well. The hypothesis testing results for βtarget = 0.5515

and 0.95 are the same
::::::
similar

:::::::
(figures

:::
not

::::::
shown).

4.2 Memory properties in the field reconstruction

Hypothesis testing was performed in the spectral domain for the field reconstructions, with the two null hypotheses formulated

as follows:

20

1: The reconstruction is consistent with the fGn structure in the target data for all frequencies.

2: The reconstruction is consistent with the AR(1) model used in BARCAST for all frequencies.

Table 2 summarizes the results for all experiment configurations at local grid cells, both directly at and between proxy

grid cells. Figures are provided only for one β, all SNR.
::::::::
locations. Figure 3 shows the mean power spectra generated for the25

experiment β = 0.75 at one arbitrary proxy grid cell of the reconstruction in red. The fGn model is adequate for SNR=∞, 3 and

1, shown in panel 3a-c. For the lowest SNR presented in panel d, the reconstruction spectrum falls outside the confidence range

of the theoretical spectrum for one single log-binned point. Not unexpectedly, the difference in shape of the PSD between the

pseudoproxy and reconstructed spectra increases with decreasing SNR. The difference is largest for the noisiest proxies with

SNR=0.3. This figure does not show the hypothesis testing for the reconstructed spectrum using the AR(1) null hypothesis.30

Results show that this null hypothesis is rejected for all cases except SNR=0.3.

The hypothesis testing results vary moderately between the individual grid cells. PSD analyses of the local reconstructions

using the same β but in an arbitrary non-proxy location are displayed in Fig. 4. Here, the reconstructed mean spectrum is plotted

in gray together with both the fGn 95% confidence range (blue) and the AR(1) confidence range (red). Hypothesis testing using

null hypothesis 1 and 2 is performed systematically. Wherever the reconstructed
:::::::::
log-binned spectrum is consistent with the

fGn/AR(1) model, the edges of the associated confidence range are plotted with solid lines. We find that all reconstructed
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:::::::::
log-binned spectra are consistent with the AR(1) model, while only the cases

:::
and

:::
for

:
SNR=∞ and 3 are

:::
the

:::::::::::::
reconstructions

::
are

::::
also

:
consistent with the fGn model.5

4.3 Memory properties in the spatial mean reconstruction

The spatial mean reconstruction is calculated as the mean of the local reconstructions for all grid cells considered, weighted

by the areas of the grid cells. The reconstruction region considered is 37.5◦− 67.5◦N, 12.5◦− 47.5◦E.
:
,
::
as

::::::
shown

::
in

::::
Fig.

::
2.

Figure 5 shows the raw and log-binned periodogram of the spatial mean reconstruction for βtarget = 0.75
::::::::::::
βtarget = 0.75 in

gray, together with the 95% confidence range of fGn generated with β = 0.75 (blue) and AR(1) confidence range (pink
:::
red).10

All hypothesis testing results for the spatial mean reconstruction are summarized in Table 3. Results show that the fGn null

hypothesis is suitable for all values of β and SNR, while the AR(1) null hypothesis is also supported for the case β = 0.55,0.75,

SNR=0.3.

4.4
:::::

Effects
:::::
from

::::::::::
BARCAST

:::
on

:::
the

::::::::::::
reconstructed

::::::
signal

:::::::
variance

:::
The

::::::
power

::::::
spectra

::::
can

::::
also

:::
be

::::
used

:::
to

::::
gain

::::::::::
information

::::::
about

:::
the

:::::::
fraction

:::
of

:::::::
variance

::::::::::
lost/gained

::
in

:::
the

:::::::::::::
reconstruction15

::::::::
compared

::::
with

:::
the

::::::
target.

::::
This

:::::::
fraction

::
is

::
in

:::::
some

:::::
sense

:::
the

::::
bias

:::
of

:::
the

::::::::
variance,

:::
and

::::
was

:::::
found

:::
by

:::::::::
integrating

:::
the

:::::::
spectra

::
of

:::
the

:::::
input

:::
and

::::::
output

::::
data

:::::
over

:::::::::
frequency.

::::
The

::::::
spatial

:::::
mean

::::::::::::::::::
target/reconstructions

::::
were

:::::
used,

::::
and

:::
the

:::::
mean

::::::::::
log-binned

::::::
spectra.

::::
The

::::
total

::::::
power

::
in

:::
the

::::::
spatial

:::::
mean

::::::::::::
reconstruction

::::
and

:::
the

:::::
target

::::
were

:::::::::
estimated,

::::
and

:::
the

::::
ratio

::
of
::::

the
:::
two

::::::::
provides

::
the

::::::::::::::::::
under/overestimation

::
of

:::
the

::::::::
variance:

:::::::::::::::
RVar =

Var(Tt(rec))

Var(Tt(target)
.
::
A

::::
ratio

::::
less

::::
than

:::::
unity

::::::
implies

::::
that

:::
the

:::::::::::
reconstructed

::::::::
variance

::
is

::::::::::::
underestimated

:::::::::
compared

::::
with

:::
the

:::::
target.

::::
Our

:::::::
analyses

:::
for

:::
the

::::
total

:::::::
variance

::::::
reveal

:::
that

:::
the

::::
ratio

::::::
varies

:::::::
between

::::::::
0.83-1.05

:::
for20

::
the

::::::::
different

::::::::::
experiments

:::
and

::::::::
typically

::::::::
decreases

:::
for

:::::::::
increasing

::::
noise

::::::
levels.

::::
How

:::::
much

:::
the

::::
ratio

::::::::
decreases

::::
with

:::::
SNR

:::::::
depends

::
on

::
β,

::::
with

::::::
higher

::::
ratios

:::
for

::::::
higher

:
β
::::::
values.

::::
For

:::::::
example,

:::::
R∼ 1

:::
for

::
all

::
β,

:::::::::
SNR=∞

:::
and

:::::::::::
progressively

::::::::
decreases

::
to

:::::::
R=0.83,

::::
0.89

:::
and

::::
0.94

:::
for

::::::::
SNR=0.3,

:::::::::::::::::
β = 0.55,0.75,0.95

:::::::::::
respectively.

::
In

::::
other

::::::
terms,

:::::
there

:::
are

:::::
larger

:::::::
variance

::::::
losses

::
in

:::
the

::::::::::::
reconstruction

::
for

:::::::
smaller

:::::
values

:::
of

::
β

::::
than

:::
for

:::::
higher

:::
β.

:::
We

::::
also

::::::
divided

:::
the

:::::::
spectra

:::
into

:::::
three

:::::::
different

:::::::::
frequency

::::::
ranges

::
as

::::::
shown

::
in

::::
Fig.

:
6
::
to

::::
test

:
if
:::

the
:::::::

fraction
:::
of

:::::::
variance

:::::::::
lost/gained

::
is
::::::::::::::::::
frequency-dependent.

::::
The

:::::::
sections

:::::::
separate

::::
low

::::::::::
frequencies

::::::::::::
corresponding25

::::::::::::
approximately

::
to

::::::::
centennial

::::::::::
timescales,

:::
mid

::::::::::
frequencies

::::::::::::
corresponding

::
to

:::::::::
timescales

:::::::
between

:::::::
decades

:::
and

::::::::
centuries,

::::
and

::::
high

:::::::::
frequencies

::::::::::::
corresponding

::
to

:::::::::
timescales

::::::
shorter

:::
than

:::::::
decadal.

::::
The

::::::
results

::::
show

::
no

:::::::::
systematic

::::::::::
differences

:::::::
between

::
the

:::::::::
frequency

:::::
ranges

:::::::::
associated

::::
with

:::
the

::::::::
parameter

::::::::::::
configuration.

:

4.5 Assessment of reconstruction skill

It is common practice in paleoclimatology to evaluate reconstruction skill using metrics such as the Pearson’s correlation coef-30

ficient
:
r, the root-mean squared error (RMSE), and the coefficient of efficiency (CE) (Smerdon et al., 2011; Wang et al., 2014).

However,
:::
and

::::::::
reduction

::
of

:::::
error

::::
(RE)

::::::::::::::::::::::::::::::::::
(Smerdon et al., 2011; Wang et al., 2014).

::::
The

::::
two

::::::
former

::::
skill

::::::
metrics

::::
will

::
be

:::::
used

::
in

:::
this

:::::
study,

:::
but

:::
the

:::
CE

:::
and

:::
RE

::::::
metrics

:::
are

:::
not

:::::
proper

:::::::
scoring

::::
rules

:::
and

:::
are

::::::::
therefore

::::::::
unsuitable

:::
for

:::::::::::::
ensemble-based

:::::::::::::
reconstructions

::
in

::::::
general

:::::::::::::::::::::::::::::::::::::::::
(Gneiting and Raftery, 2007; Tipton et al., 2015),

:::
see

::::
also

:::::::::
Appendix

::
B.

::::::::
Instead, the CE metric is improper for
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reconstructions based on the Bayesian framework (?), and will not be used. Insteadwe will use the continuous ranked proba-

bility score (CRPS) , (Gneiting and Raftery, 2007), which was earlier used in (Werner and Tingley, 2015; ?). Skill values are

estimated on an ensemble member basis, but results given below are mean values for the entire ensemble.5

The skill of the reconstruction method is measured using the RMSE, the Pearson’s correlation coefficient (r) and the

CRPS.
:::
will

:::
be

::::
used

::::::::::::::::::::::::
(Gneiting and Raftery, 2007).

::::
The

::::::
metric

::::
was

::::
used

::::::::::
specifically

:::
for

::::::::::
probabilistic

:::::::
climate

:::::::::::::
reconstructions

::
in

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Tipton et al. (2015); Werner and Tingley (2015); Werner et al. (2018).

:
Since the CRPSis

:
,
::
its

:::::::
average

::::
and

:::::::::::::
subcomponents

::
are

:
less well-known than the two former methods

:::
skill

:::::::
metrics, we define it briefly

::::
these

::::::
terms

::
in

::::::::
Appendix

::
B
:

and refer to

Gneiting and Raftery (2007)
::::::::::::::::::::::::::::::::::::::
Gneiting and Raftery (2007); Hersbach (2000) for further details.10

CRPS =
1

2
EF |X −X ′|−EF |X −x|

Where F refer to the cumulative distribution function. X and X’ are ensemble members of the reconstruction, and x is the target

variable. The first term represents the mismatch between the cumulative distribution functions of all pairs of ensemble member

reconstructions, while the second term measures the mismatch between all ensemble members and the target cumulative

distribution function. The CRPS score is given for each individual time step. The estimates are given in the same unit as15

the variable under study, here surface temperature. In the following we are handling the two subcomponents of the CRPS:

the temporally averaged score metric, called the average potential CRPS, (
:::::
CRPS

::::::
results

::::::
below

:::
are

::::::
shown

:::
for

::::
the

::::::
CRPS

:::::::::
represented

:::
via

::::
the

::::
sum

::
of

:::
the

:::::::::::::
subcomponents

:
CRPSpot ) and the Reliability, representing the validity of the uncertainty

bands (Hersbach, 2000). The CRPSpot metric is akin to the Mean Absolute Error of a deterministic forecast. The Reliability

metric tests whether for all cases in which a certain probability p was forecast, on average, the event occurred with that fraction20

p. Or, using other words, it is tested whether the ensemble is capable of generating cumulative distributions that have, on

average, the desired statistical property. Note that a perfectly reliable system has Reliability=0.
:::
and

::::
Reli

:::::
score.

:

4.5.1 Skill measure results

The figures 7, 8, 9 and ??
::::::
Figures

:::
7-9

:
display the spatial distribution of the ensemble mean skill metrics for the experiment

β=0.75 and all noise levels. All figures show a spatial pattern of dependence on the proxy availability, with the best skill25

::::::
attained

:
at proxy sitesexcept in Fig. ??. .

:::::
This

:
is
:::
the

:::::
most

::::::::
important

:::::
result

:::
for

::
all

:::
the

::::::::
spatially

:::::::::
distributed

::::
skill

:::::::
metrics.

:::
For

:::
the

:::::::::
BARCAST

:::::
CFR

:::::::
method,

:::
the

:::::
signal

::
at

::::::::
locations

::::::
distant

::::
from

:::::
proxy

::::::::::
information

:::
by

::::::
design

::::::
cannot

::
be

::::::::
skillfully

::::::::::::
reconstructed,

::
as

:::
the

::::::
amount

::
of

::::::
shared

::::::::::
information

::
on

:::
the

:::::
target

::::::
climate

::::
field

:::::::
between

:::
the

::::
two

:::::::
locations

::::::::
decreases

::::::::::::
exponentially

::::
with

:::::::
distance

:::::::::::::::::
(Werner et al., 2013).

:::
See

::::::
Sect.5

:::
for

::::::
further

:::::
details

:::
on

:::
the

::::::
relation

::::::::
between

::::
skill

:::
and

::::::::::::
co-localization

::
of
::::::
proxy

::::
data.

Figure 7 shows the local correlation coefficient r between the target and the localized reconstruction for the verification30

period 1-1849
:::::
2-1849. The correlation is highest for the ideal-proxy experiment in Fig. 7a, and gradually decreases at all

locations as the noise level rises in panels b-d. Fig. 8 shows the local RMSE. Note that Fig. 8
::
-9 use the same color bar as in

Fig. 7, but best skill is achieved where the RMSE
::::::::
/CRPSpot:is low. Fig. 9 shows the distribution of CRPSpot. The

::::::::::
contribution

::::
from

::::
Reli

::
is

::::::::
generally

:
<
::::::::
1 ∗ 10−2,

::::::::
indicating

::::::::
excellent

:::::::::::::
correspondence

:::::::
between

:::
the

::::::::
predicted

:::
and

:::
the

::::::::::::
reconstructed

:::::::::
confidence

:::::::
intervals.

::::
The

:::::::::
CRPSpot ::::::::

therefore
:::::::::
dominates

:::
the

:::::::
average

:::::
CRPS

:::::::
metric.

:::
The

:
minimum estimate for the CRPSpot at proxy
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locations in Fig. 9a is 0.15, which indicates
:::::::
2 ∗ 10−2,

:::::::::
indicating a low error between the temporally averaged reconstruction

and the target. For the remaining locations in Fig. 9a-d, the estimates are between 0.61-0.67
::::::::
0.24-0.55

:::::
given

:::
in

:::
the

:::::
same

:::
unit

::
as

::::
the

:::::
target

:::::::
variable. The temperature unit has not been given for our pseudoproxy reconstructions, but for real-world5

reconstructions the unit will typically be degrees Celsius (◦C) or Kelvin (K). The Reliability shown in Fig. ?? is generally

low if the proxy locations in ??a are neglected. Except for these grid cells, the local Reliability score ranges between 1 ∗ 10−3

to 0.32, with lowest (best skill) estimate for the lowest SNR (strongest noise). The improved Reliability for higher noise

scenarios is apparently due to a better consistency between the BARCAST model assumption and the LRM signal which is

deteriorated with a high additive noise level. The maximum Reliability score at the proxy locations in ??a is 0.93, which10

indicates poor reconstruction skill when the validity bands are considered. For these locations, the contrasting skill scores

obtained for the CRPSpot and the Reliability indicate that the reconstructions are on average in good agreement with the

target, but the confidence range is not.

Table 4 summarizes the mean
::::::
median

:
local skill for all experiments and skill metrics. BARCAST is in general able to

reconstruct major features of the target field. A general conclusion that can be drawn is that the skill metrics vary with SNR,15

but are less sensitive to the value of β. For the highest noise-level SNR=0.3, the values obtained for r and the RMSE are in line

with those listed in Table 1 of Werner et al. (2013).

Table 5 sums up the ensemble mean
::::::
median skill values of r and RMSE for the spatial mean reconstructions. The skill

values are considerably higher
:
is
:::::::::::

considerably
:::::
better

:
than for the local field reconstructions. The CRPS scores have not been

evaluated for the spatial mean reconstruction.20

5 Discussion

In this study we have tested the capability of BARCAST to preserve temporal long-range memory
:::::
LRM properties of re-

constructed data. Pseudoproxy and pseudoinstrumental
::::::::::::::::
pseudo-instrumental

:
data were generated with a prescribed spatial

covariance structure and LRM temporal persistence using a new method. The data were then used as input to the BARCAST

reconstruction algorithm, which by construction uses
:::
use an AR(1) model for temporal dependencies in the input/output data.25

The spatiotemporal availability of observational data was kept the same for all experiments in order to isolate the effect of the

added noise level and the strength of persistence in the target data. The mean spectra of the reconstructions are
:::
were

:
tested

against the null hypotheses that the reconstructed data can be represented as LRM processes using the parameters specified for

the target data, or as AR(1) processes using the parameter estimated from BARCAST.

We found that despite the default assumptions in BARCAST, not all local and spatial mean reconstructions were consistent30

with the AR(1) model. Typically, the
::::::
Figures

:::
3-5

::::
and

::::::
Tables

:::
2-3

:::::::::
summarize

::::
the

:::::::::
hypothesis

::::::
testing

::::::
results;

:::
the

:
local recon-

structions at grid cells between proxy locations are shown to follow
:::::
follow

::
to

:::::
large

:::::
extent

:
the AR(1) model, while the local

reconstructions directly at proxy locations are more similar to the original fGn data. However, the parameter setup
::::::::
simulated

:::::
proxy

::::::
quality

:
is crucial for the spectral shape of these

::
the

:
local reconstructions, with higher noise levels indicating better

agreement with the AR(1) model than the fGn.
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Moreover, the hypothesis testing results show that all
:::
All spatial mean reconstructions are consistent with the fGn null

hypothesis
::::::::
according

::
to

:::::
Table

:
3. For the two cases β = 0.55,0.75, SNR=0.3, the

::::::
spatial

::::
mean

:
reconstructions are also consistent

with the AR(1) null hypothesis.
:::
This

::
is

:::::
clear

::::
from

:::
the

::::::
spatial

:::::
mean

::::::::::::
reconstruction

:::::::
spectra

::::
(gray

::::::
curves

::
in
::::

Fig.
:::
5)

:::
and

:::::
from5

:::::::::
comparing

:::
the

:::::::::
hypothesis

::::::
testing

::::::
results

::
in
::::::

Table
:
2
::::

and
::
3.

::::
The

:::::::::::
improvement

:::
in

::::::
scaling

::::::::
behavior

::::
with

::::::
spatial

:::::::::
averaging

::
is

::::::::
expected,

::
as

:::
the

:::::::::
small-scale

:::::::::
variability

:::::::
denoted

::
by

::
εt::

in
:::
Eq.

:::
11

::
is

:::::::
averaged

::::
out.

::::::::::
Eliminating

::::
local

::::::::::
disturbances

::::::::
naturally

::::::
results

::
in

:
a
:::::
more

:::::::
coherent

::::::
signal.

::::::::
However,

::::
the

:::::
spatial

:::::
mean

:::
of

:::
the

:::::
target

::::
data

:::
set

::::
does

:::
not

::::
have

::
a
:::::::::::
significantly

:::::
higher

::
β
::::
than

:::::
local

:::::
target

::::::
values.

::::
This

::
is

::::
due

::
to

:::
the

::::::::
relatively

:::::
short

::::::
spatial

:::::::::
correlation

::::::
length

::::::
chosen:

:::::::::::
1/φ= 1000

:::
km.

:::
In

::::::::
observed

::::::::::
temperature

::::
data,

::::::
spatial

::::::::
averaging

:::::
tends

::
to

:::::::
increase

:::
the

::::::
scaling

::::::::
parameter

::
β
::::::::::::::::::::::::::
(Fredriksen and Rypdal, 2016).10

The fact that the reconstructed LRM properties are better preserved directly at proxy locations than between proxies is an

expected result. By construction, BARCAST estimates the posterior distributions of τ2
P and β1, which are related to the signal

to noise ratio through Eq. 12. Tab. C3 shows that the estimated reconstructed SNR is close to the true SNR. The reconstruction

is designed to follow the model equations 1 and 2 of the true temperature field. The temperatures between proxies therefore

have to be generated through stochastic infilling using all the estimated parameters, while directly at proxy sites the only15

necessary operation is to remove the assumed proxy noise.

Due to the interdependence of the BARCAST parameters, the increase in the estimated AR(1) parameter α and β0 is

accompanied by a decrease of σ2 for noisy input data. These erroneous estimates influence the resulting reconstruction.

The power spectra in Fig. 3, 4 and 5
::
-5

:::
b-d

:
show that the temporal covariance structure of the reconstructions is altered

compared with the target data for all experiments where noisy input data were used. Furthermore, the spectra of the pseu-20

doproxies and the reconstructions in 3b-d all deviate from the target in the high frequency range, but for different reasons
:
a

:::::::
different

::::::
reason. The pseudoproxy data deviate from the target due to the white proxy noise component, while the reconstruc-

tion deviate because BARCAST quantifies the proxy noise from an AR(1) assumption. This has important implications for how

paleoclimate reconstructions should be interpreted. Real-world proxy data are generally noisy, and the noise level is normally

at the high end of the range studied here. We demonstrate that the variability-level of the reconstructions does not exclusively25

reflect the characteristics of the target data, but is also influenced by the fitting of
::::
noisy data to a model that is not necessarily

correct. Other reconstruction
::
At

::::::
present,

:::::
there

:::::
exists

:::
no

:::::::::::
reconstruction

:::::::::
technique

::::::::
assuming

::::::::
explicitly

:::
that

:::
the

:::::::
climate

:::::::
variable

::::::
follows

::
an

:::::
LRM

:::::::
process.

:

::
In

:::::::
addition

::
to

::::::::::
BARCAST,

:::::
other

::::::::::::
reconstruction techniques that may experience similar deficiencies is

:::
for

:::::
LRM

:::::
target

::::
data

::
are

:
the regularized expectation-maximization algorithm (RegEM), (Schneider, 2001; Mann et al., 2007), and all related models30

(CCA, PCA), that assumes
:
,
:::::::::
GraphEM).

:::::
These

:::::::
models

::::::
assume

:
observations at subsequent years are independent (Tingley and

Huybers, 2010b).
:::
The

::::::::::
assumption

::
of

:::::::
temporal

::::::::::::
independence

::::::::::
corresponds

::
to

:::
yet

::::::
another

::::::::
incorrect

::::::::
statistical

:::::
model

:::
for

:::
our

:::::
target

::::
data;

:
a
:::::
white

:::::
noise

:::::::
process

::
in

:::::
time.

::::
Note

::::
that

:::
for

:::::
target

:::::::::::
variables/data

::::
sets

:::::::::
consistent

::::
with

:
a
:::::
white

:::::
noise

:::::::
process,

:::::
these

:::::
types

::
of

::::::::::::
reconstruction

:::::::
methods

:::
are

::::::::::
appropriate,

::
as
::::::::::::

demonstrated
:::::
using

:::
the

::::::::
truncated

::::::::::::
EOF-principal

::::::::::
components

::::::
spatial

:::::::::
regression

:::::::::::
methodology

::
on

:::::::::::
precipitation

:::
data

:::
in

:::::::::::::::
Wahl et al. (2017).35

Our results further suggest that the spatial mean reconstructions are to a small extent more consistent with the LRM null

hypothesis than local values. This is clear from the spatial mean reconstruction spectra (gray curves in Fig. 5) and from
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comparing the hypothesis testing results in Table 2 and 3. The improvement in scaling behavior is expected, as
:::::
When

:::
an

:::::::
incorrect

:::::::::
statistical

:::::
model

:::
is

::::
used

:::
to

:::::::::
reconstruct

::
a
:::::::
climate

::::::
signal,

:
the small-scale variability denoted by εt in Eq. 11 is

averaged out. Eliminating local disturbances naturally results in a more coherent signal. However, the spatial mean of the5

target data set does not have a significant higher β than local target values. This is due to the relatively short spatial correlation

length chosen: 1/φ= 1000 km. In observed temperature data, spatial averaging tends to increase the scaling parameter β

(Fredriksen and Rypdal, 2016)
:::::::
temporal

:::::::::
correlation

:::::::
structure

::
is

:::::
likely

::
to

::
be

::::::::::
deteriorated

::
in

:::
the

:::::::
process.

:::
For

:::
the

::::
range

::
of
::::::::
different

::::::::::::
reconstructions

:::::::::
available,

::::
such

::::::
effects

::::
may

:::::::::
contribute

::
to
::::::::::

discussions
:::

on
::
a
:::::::
number

::
of

::::::::
questions

::::::
under

:::::
study,

:::::::::
including

:::
the

:::::::
possible

:::::::
existence

::
of

::::::::
different

::::::
scaling

::::::
regimes

::
in

:::::::::::
paleoclimate,

:::
see

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Huybers and Curry (2006); Lovejoy and Schertzer (2012); Rypdal and Rypdal (2016); Nilsen et al. (2016).10

If the
:::
The

::::::
criteria

:::
for

:::
the

:::::::::
hypothesis

::::::
testing

:::::
used

::
in

:::
this

:::::
study

:::
are

:::::
strict,

::::
and

::::
may

::
be

::::::::
modified

::
if

:::::::::
reasonable

:::::::::
arguments

:::
are

::::::::
provided.

:::
For

::::::::
example,

::
if

:::
the first null hypothesis used here was modified so that only the low-frequency components of the

spectra were required to fall within the confidence ranges, more of the reconstructions would be consistent with the fGn model.

After all, we have the information that the high-frequency component is affected by noise, and we know the color and level

of this noise. However, from studying the spectra in Fig. 3, 4 and
:
-5, it is generally unclear where one should set a threshold,15

since the spectra show a gradual change with a lack of any abrupt breaks. Considering real-world proxy records, the noise

color and level is generally unknown
::
or

:::
not

:::::::::
quantified. We know there are certain sources of noise that are not related to

climate influencing different frequency ranges . However,
:::
that

::::
are

::::::::
unrelated

::
to

:::::::
climate,

:::
but

:
it is difficult to decide when the

noise becomes negligible compared with the effects of climate driven processes. The decision to use all frequencies for the

hypothesis testing in this idealized study is therefore a conservative and objective choice.20

The skill metrics used to validate the reconstruction skill are the RMSE
::::::::
Pearson’s

:::::::::
correlation

:::::::::
coefficient

::
r,

:::
the

::::::
RMSE,

::::
and

:::::
CRPS, r and CRPS, the latter divided into the CRPSpot and the Reliability. We stress that even though the estimates of RMSE,

correlation and CRPSpot indicate skillful mean reconstructions, this does not necessarily imply a reliable reconstruction in

terms of correct confidence intervals. The Reliability reflects this uncertainty, which is an important measure for probabilistic

reconstruction techniques.25

The power spectra can also be used to gain information about the fraction of variance lost
::::
Reli.

:::::
Skill

::::::
metric

::::::
results

:::
are

::::::::
illustrated

::
in

::::
Fig.

:::
7-9

::::
and

::::::::::
summarized

::
in
:::::

Table
::::

4-5.
::::
The

::::::::::::
reconstruction

::::
skill

::
is

::::::::
sensitive

::
to

:::
the

:::::
proxy

:::::::
quality,

:::
and

:::::::
highest

::
at

::::
sites

::::
with

::::::::::
co-localized

:::::
proxy

:::::::::::
information.

::::
This

:
is
:::
an

:::::::
expected

::::::
result,

:::
due

::
to

:::
the

::::::::::
BARCAST

:::::
model

::::::::::
formulation

::::
and

:::
our

::::::
choice

::
of

:
a
::::::::
relatively

::::
short

:::::::::::
decorrelation

::::::
length

::::::::::
1/φ∼ 1000

::::
km.

:::::::::
Contrasting

::::::
results

::
of

::::
high

::::
skill

:::::
away

::::
from

:::::
proxy

::::
sites

::::
and

::::
poor

::::
skill

::::
close

::
to

:::::
proxy

::::
sites

:::::
have

::::
been

::::::::::
documented

::
in

::::::::::::::::
Wahl et al. (2017),

:::::::
although

::::
care

::::
must

:::
be

:::::
taken

::
for

:::
the

::::::::::
comparison

::
as

::::
that

:::::
paper30

::::
used

:
a
::::::::
different

::::::::::::
reconstruction

:::::::::::
methodology

:::::::::
(truncated

::::::::::::
EOF-principal

:::::::::
component

::::::
spatial

::::::::::
regression)

:::
and

::::
the

:::::
target

:::::::
variable

:::
was

:::::::::::
precipitation/gained in the reconstruction compared with the target. This fraction is in some sense the bias of the variance,

and was found by integrating the spectra of the input and output data over frequency. The spatial mean target/reconstructions

were used, and the mean log-binned spectra. The total power in the spatial mean reconstruction and the target were estimated,

and the ratio of the two provides the under/overestimation of the variance: RVar =
Var(Tt(rec))

Var(Tt(target)
. A ratio less than unity implies35

that the reconstructed variance is underestimated compared with the target. Our analyses for the total variance reveal that the

ratio varies between 0.83-1.05 for the different experiments and typically decreases for increasing noise levels. How much
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the ratio decreases with SNR depends on β, with higher ratios for higher β values. For example, R∼ 1 for all β, SNR=∞
and progressively decreases to R=0.83, 0.89 and 0.94 for SNR=0.3, β = 0.55,0.75,0.95 respectively. In other terms, there are

larger variance losses in the reconstruction for smaller values of β than for higher β. We also divided the spectra into three5

different frequency ranges as shown in Fig. 6 to test if the fraction of variance lost/gained is frequency-dependent. The sections

separate low frequencies corresponding approximately to centennial timescales, mid frequencies corresponding to timescales

between decades and centuries, and high frequencies corresponding to timescales shorter than decadal. The results show no

systematic differences between the frequency ranges associated with the parameter configuration.
::::::::::
hydroclimate

::::::
instead

::
of

:::::
SAT.

::::::
Without

::::::::::
performing

::::::::
dedicated

:::::::::::
pseudoproxy

::::::::::
experiments

::
it

::
is

::::::
difficult

::
to
:::::::
resolve

:::
the

::::
main

:::::
cause

::
of

:::::
these

:::::::::
contrasting

::::::
results

:::
for10

:::::
spatial

:::::
skill.

Previously, the scaling properties of millennium-long paleoclimate reconstructions have been studied in e.g. Lovejoy and Schertzer (2012); Nilsen et al. (2016).

These papers present different viewpoints on scaling models used to represent Earth’s surface temperature variability on a range

of timescales. Lovejoy and Schertzer (2012) suggests that climate variability on timescales from months to centuries can be

denoted "Macroweather" and described using a scaling parameter β ∼ 0.2, while variability on centennial timescales and longer15

is "Climate" with β ∼ 1.4. This concept involving a separation of scaling regimes around centennial timescales was challenged

by Nilsen et al. (2016). It was demonstrated that a spread in scaling parameters follows naturally from analyzing a range

of proxy-based reconstructions for the Holocene covering different spatial regions and dynamical regimes. The occurrence

of a second scaling regime was exclusively observed when analyzing timeseries including the last glacial period, which are

nonstationary and involves nonlinearities that are not present for the Holocene climate. In the present paper it has been shown20

that both proxy noise and the BARCAST reconstruction technique contribute to alteration of the memory properties of the

reconstructed data, introducing artifacts that may be interpreted as scale-breaks. None of these effects are intrinsic to the target

data signal, but are introduced through non-climatic effects. Observing only the reconstruction may not give the complete

answer on the temporal structure of the true temperature signal.

5.1 Implications for real proxy data25

The spectral shape of the input pseudo proxy
::::::::::
pseudoproxy

:
data plotted in blue in Fig. 3 are similar to spectra of observed proxy

data as observed in e.g. some types of tree-ring records, (Franke et al., 2013; Zhang et al., 2015; ?).
::::::::::::::::::::::::::::::::::::::::::::::::
(Franke et al., 2013; Zhang et al., 2015; Werner et al., 2018).

::
In

::::::::
particular,

:
Franke et al. (2013); Zhang et al. (2015) found that the scaling parameters β were higher for tree-ring based re-

constructions than for the corresponding instrumental data for the same region. ?
:::::::::::::::::
Werner et al. (2018) present a new spatial

SAT reconstruction for the Arctic, using the BARCAST methodology. The reconstruction is based on annually layered records30

and layer counted archives with age uncertainties. The persistence properties of the input proxy records and the reconstructed

temperatures were investigated using the same spectral techniques as here.
:::::::
analyses

:::::
shown

::
in

:
Fig. A4 in ? presents a map over

the Arctic and an overview of the spatial distribution and type of proxy record. It also indicates if the proxy record is consistent

with an AR(1) process null hypothesis or an fGn based on hypothesis testing. The analyses demonstrated
::::::::::
demonstrate

:
that

several of the tree-ring records could not be categorized as neither AR(1) or scaling processes, but featured spectra similar to

the pseudoproxy spectrum in
:::
our Fig. 3c-d. The characteristic flat spectrum at high frequencies, and the increased power on
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bidecadal frequencies and lower can give the impression that the low-frequency power is inflated. However, from the presented

experiments we know it is rather the high frequency power that is affected by the added white noise. We hypothesize that

the possible mechanism(s) altering the variability can be due to effects of the tree-ring processing techniques, specifically the5

methods applied to eliminate the biological tree aging effect on the growth of the trees (Briffa et al., 1992)
:::::::::::::::
(Cook et al., 1995).

The actual tree ring
:::::::
tree-ring width is a superposition of the age-dependent curve, which is individual for a tree, and a sig-

nal that can often be associated with climatic effects on the tree growth process. To correct for the biological age-effect,

the raw tree-ring growth values are often transformed into proxy indices using the Regional Curve Standardization tech-

nique (RCS, Briffa et al. (1992)). This technique attempts
::::::::::::::::::::::::::::::::
Briffa et al. (1992); Cook et al. (1995)),

::::
Age

:::::
Band

:::::::::::::
Decomposition10

:::::
(ABD,

:::::::::::::::::
Briffa et al. (2001)),

:::
the

:::::::::
signal-free

:::::::::
processing

:::::::::::::::::::::::
(Melvin and Briffa, 2008) or

:::::
other

:::::::::
techniques.

:::::
These

:::::::::
techniques

:::::::
attempt

to eliminate biological age effects on tree-growth while preserving low frequency variability. As an example, consider
::
the

:::::
RCS

:::::::::
processing

::
of

:
tree-ring width as a function of age (Helama et al., 2017). For a number of individual tree-ring records, each

record is aligned according to their biological years. The mean of all the series is then modelled as a negative exponential

function (the RCS curve). To construct the RCS chronology, the raw, individual tree-ring width curves are divided by the mean15

RCS curve for the full region. The RCS chronology is then the average of the index individual records. It is likely that the

shape of a particular tree-ring width spectrum reflects the uncertainty in the RCS
::::::::::::
standardization

:
curve, which is expected to

be largest at the timescales corresponding to the initial stage of a tree growth, where the slope of the growth curve is generally

steeper (i.e. of the order of a few decades). In particular, there may be slightly different climate processes affecting the growth

of different trees, causing localized nonlinearities that limit the representativeness of the derived exponential RCS
:::::::::
chronology.20

We therefore suggest that the observed excess of LRM properties in some of the tree ring-based proxy records could be an

artifact of the fitting procedure.

:::
Our

:::::
study

::::::
further

:::::::
suggests

::::
that

:::
for

:
a
:::::
proxy

:::::::
network

::
of

::::
high

:::::::
quality

:::
and

:::::::
density,

::::::::
exhibiting

:::::
LRM

:::::::::
properties,

:::
the

::::::::::
BARCAST

:::::::::::
methodology

:
is
:::::::

without
:::::::::::
modification

:::::::
capable

::
of

::::::::::
constructing

:::::::
skillful

::::::::::::
reconstructions

:::::
with

:::::
LRM

::::::::
preserved

:::::
across

::::
the

::::::
region.

::::
This

:
is
:::::::
because

:::
the

::::
data

::::::::::
information

::::::::::
overwhelms

:::
the

:::::
vague

:::::
priors.

::::
The

:::::::::
availability

::
of

:::::::::::::::
well-documented

:::::
proxy

::::::
records

::::::::
therefore25

::::
helps

:::
the

:::::::
analyst

:::::
select

::
an

::::::::::
appropriate

::::::::::::
reconstruction

:::::::
method

:::::
based

:::
on

:::
the

:::::
input

::::
data.

::::
For

:::::::::::
quantification

::::
and

:::::::::
assessment

:::
of

::::::::
real-world

:::::
proxy

:::::::
quality,

:::::::
forward

:::::
proxy

::::::::
modelling

::
is
::
a

:::::::
powerful

::::
tool

:::
that

::::::
models

::::::
proxy

:::::::::::::::
growth/deposition

::::::
instead

::
of

:::
the

:::::
target

::::::
variable

:::::::::
evolution,

:::
also

::::::
taking

::::::
known

:::::
proxy

::::::::::
uncertainties

::::
and

:::::
biases

::::
into

:::::::::::
consideration.

::::
See

:::
for

:::::::
example

::::::::::::::::
Dee et al. (2017) for

::
a

::::::::::::
comprehensive

:::::
study

::
on

::::::::
terrestrial

:::::
proxy

::::::
system

:::::::::
modeling,

:::
and

:::::::::::::::::::::::::
Dolman and Laepple (2018) on

:::::::
forward

:::::::::
modelling

::
of

::::::::::::
sediment-based

::::::
proxies.30

5.2 Concluding remarks

A natural continuation of the pseudoproxy study presented here would be to
::::::
Several

:::::::::
extensions

::
to
:::
the

:::::::::
presented

::::
work

:::::::
appears

::::::
relevant

:::
for

::::::
future

::::::
studies,

:::::::::
including

:::
(a)

:::::::::::
implementing

:::::::
external

:::::::
forcing

:::
and

:::::::::
responses

::
to

:::::
these

:::::::
forcings

::
in

:::
the

::::::
target

::::
data

::
to

::::
make

:::
the

:::::::::
numerical

::::::::::
experiments

:::::
more

:::::::
realistic,

:::
(b)

:
generate target data using a more complex model . The

:::
than

:::::::::
described

::
in

:::::::
Sect.2.2,

:::
and

:::
(c)

::::::::::
reformulate

:::::::::
BARCAST

::::::
model

:::
Eq.

::::
1-2.

::
to

::::::
account

:::
for

:::::
LRM

::::::::
properties

::
in

:::
the

:::::
target

:::::
data.

::
In

:::::::
addition,

:::::
there

:
is
::
a
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::::::::
possibility

::
of
::::::::
repeating

:::
the

:::::::::::
experiments

::::
from

:::
this

:::::
study

:::::
using

:
a
::::::::
different

::::::::::::
reconstruction

::::::::
technique,

::::
and

::::::::::
experiments

::::
with

:::::
more

::::::::::
complicated

::::::::::::
spatiotemporal

::::::
design

::
of

:::
the

:::::::::
multiproxy

:::::::
network

::::
can

:::
also

:::
be

:::::::::
considered

::::::::::::::::::::::::::::::
(Smerdon, 2012; Wang et al., 2014).5

:::
The

::::::::::
alternatives

::
(a)

::::
and

:::
(b)

:::
can

::
be

:::::::::::
implemented

::::::::
together.

:::::::
Relevant

::::::::::::
advancements

:::
for

:::::
target

::::
data

:::::::::
generation

:::
can

::
be

::::::::
obtained

::::
using

:::
the

:::::
class

::
of

:
stochastic-diffusive models,

::::
such

:::
as

:::
the

::::::
models

:
described in North et al. (2011); Rypdal et al. (2015)make

interesting candidates because of the
:
.
:::
The

:
alternative method for generating spatial covariance . The reconstruction

:::::
stands

::
in

::::::
contrast

::
to

:::::
what

:
is
:::::
done

:
in
:::
the

::::::
present

::::::
study.

:::
The

::::
data

:::::::::
generation technique used in this paper

:::
and

::::
also

::
in

::::::::::::::::::::::
Werner and Tingley (2015) generates

a signal without spatial dynamics, where the spatial covariance is defined through the noise term. On the other hand, the10

stochastic-diffusive models generate the spatial covariance through the diffusion, without spatial structure in the noise term.

The latter model type may be considered more physically correct and intuitive than the simplistic model used here. North

et al. (2011) use an exponential model for the temporal covariance structure, while Rypdal et al. (2015) use an LRM model.

However, the intention of the present study was to conduct experimentswhere the target data follows all the model assumptions

of BARCAST, except for the temporal correlation structure. Since this small modification had a pronounced effect on the15

reconstructions it is likely that using a different model would have even larger influence. Using the stochastic diffusive models

in either North et al. (2011) or Rypdal et al. (2015) it would also be possible to implement external forcing and responses to

these forcings in the target data to make the numerical experiments more realistic.

Another extension proposed for BARCAST already in Tingley and Huybers (2010a) was to generalize
:::
For

:::
the

::::::::::
BARCAST

::::
CFR

:::::::::::
methodology,

::::::::::::
reformulation

::
of

:::::
model

:::
Eq.

:::
1-2

::::::
would

:::::::::
drastically

:::::::
improve

::
the

:::::::::::
performance

::
in

:::
our

:::::::::::
experiments.

::::::::
However,

::
at20

::::::
present

:::
we

:::::
cannot

:::::::::
guarantee

:::
that

::::::::::::
modifications

:::::::
favoring

:::::
LRM

::
are

:::::::::
practically

:::::::
feasible

::
in

:::
the

::::::
context

:::
of

:
a
::::::::
Bayesian

::::::::::
hierarchical

::::::
model,

::::
due

::
to

:::::
higher

::::::::::::
computational

::::::::
demands.

:::::::::
Changing

::
the

::::::
AR(1)

:::::
model

::::::::::
assumption

::
to

::::::
instead

:::::::
account

:::
for

::::
LRM

::::::
would

::
in

:::
the

:::
best

:::::::
scenario

:::::
slow

:::
the

::::::::
algorithm

:::::
down

:::::::::::
substantially,

:::
and

::
in
:::
the

:::::
worst

::::::::
scenario

:
it
::::::
would

:::
not

::::::::
converge

::
at

:::
all.

:::::
Some

::::::
cut-off

::::
time

::::
scale

::::::
would

::::
have

::
to

::
be

:::::::
chosen

::
to

:::::
ensure

:::::::::::
convergence.

:::::::::
Regarding

:
the spatial covariance structureusing the Matérn covariance

function. This would make the assumptions of BARCAST more realistic with respect to teleconnections ,
::::::::::
accounting

:::
for25

::::::::::::
teleconnections

::::::::
introduce

::::::
similar

::::::::::::
computational

:::::::::
challenges.

::::
The

::::
more

:::::::
general

:::
Mat

:
é
::
rn

:::::::::
covariance

:::::
family

:::::
form

:::::::::::::::::::::::::::
(Tingley and Huybers, 2010a) has

::::::
already

::::
been

:::::::::::
implemented

:::
for

::::::::::
BARCAST,

:::
but

:::
was

:::
not

:::::
used

::
in

:::
this

:::::
study.

:::::::
Another

:::::::
problem

::
is
:::
the

::::::::
potential

:::::::
temporal

:::::::::
instability

::
of

:::::::::::::
teleconnections;

::
it
::
is

:::::::
possible

::::
that

:::::
major

::::::
climate

::::::
modes

:::::
might

:::::
have

:::::::
changed

::::
their

:::::::::::
configuration

:::::::
through

::::
time. The change

has been implemented but slows the algorithm down substantially in its present form.

Smerdon (2012) further proposed a number of improvements to be implemented in future pseudoproxy experiments, including

accounting for temporal nonuniform availability of proxy data. Most studies overestimate the proxy sampling in the earlier part5

of the reconstruction period when using temporally invariant pseudoproxy networks. BARCAST is fully capable of taking

such networks as input. Wang et al. (2014) later performed pseudo proxy experiments using four different CFR techniques,

and tested two types of proxy networks: one that is fixed through the entire reconstruction period and one where the number

of proxy records is reduced back in time, (staircase network). The effect of temporal heterogeneities is unexpectedly that the

reconstruction skill does not decrease strictly following the proxy availability. Strong forcing events has a larger impact on the

skill according to that study
:::::::::
Therefore,

:::::
setting

:::::::::
additional

:
a
:::::
priori

:::::::::
constraints

:::
on

:::
the

:::::
model

::::
may

:::
not

:::
be

:::::::::
considered

:::::::
justified.

::::
The5

:::
use

::
of

::::::::::
exponential

:::::::::
covariance

:::::::
structure

:::::::
appears

::
to

::
be

::
a

::::::::::
conservative

::::::
choice

::
in

::::
such

:
a
::::::::
situation.
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The pseudoproxy study presented here is based on simplistic target data generated using a novel technique
:::
sets

::
a
::::::::
powerful

:::::::
example

:::
for

:::
how

:::
to

:::::::
construct

::::
and

:::::
utilize

:::
an

:::::::::::
experimental

:::::::
structure

::
to

::::::
isolate

::::::
specific

:::::::::
properties

::
of

:::::::::::
paleoclimate

::::::::::::
reconstruction

:::::::::
techniques. The generation of the input data requires far less computation power and time than for GCM paleoclimatic sim-

ulations, but also results in less realistic target temperature fields. However, we
::
We

:
demonstrate that there are many areas of10

use for these types of data, including statistical modelling and hypothesis testing. In particular, the pseudoproxy experiment

presented here may be replicated using different index or field reconstruction techniques.
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Appendix A: Information on true parameters, prior and posterior distributions of BARCAST parameters

Appendix A:
:::::::::
Estimation

::
of

::::
the

:::::::::::
periodogram

:::
The

:::::::::::
periodogram

::
is

::::::
defined

::::
here

::
in

:::::
terms

::
of

:::
the

:::::::
discrete

::::::
Fourier

::::::::
transform

::::
Hm::

as
::::::::::::::::::::::::::
(Malamud and Turcotte, 1999):

S(fm) =

(
2

N

)
|Hm|2, m= 1,2, . . . ,N/2

:::::::::::::::::::::::::::::::::::

:::
For

::::::
evenly

:::::::
sampled

::::
time

:::::
series

:::::::::::
x1,x2, ....xN .

::::
The

::::::::
sampling

::::
time

::
is

::
an

::::::::
arbitrary

::::
time

::::
unit,

:::
and

:::
the

:::::::::
frequency

:
is
:::::::::
measured

::
in15

:::::
cycles

:::
per

::::
time

::::
unit:

::::::::
fm = m

N .
::::::::
∆f = 1

N :
is
:::
the

:::::::::
frequency

::::::::
resolution

::::
and

:::
the

:::::::
smallest

::::::::
frequency

:::::
which

::::
can

::
be

::::::::::
represented

::
in

:::
the

::::::::
spectrum.
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Appendix B:
::::::::::
Continuous

::::::
ranked

::::::::::
probability

:::::
score

:::::::
(CRPS)

:::
for

::
a

:::::::::::::
reconstruction

::::::::
ensemble

:::
For

::::::::::
probabilistic

:::::::::
forecasts,

::::::
scoring

:::::
rules

:::
are

::::
used

::
to

::::::::
measure

:::
the

:::::::
forecast

::::::::
accuracy,

:::
and

::::::
proper

:::::::
scoring

::::
rules

::::::
secure

::::
that

:::
the20

::::::::
maximum

::::::
reward

:::
is

:::::
given

:::::
when

:::
the

::::
true

::::::::::
probability

:::::::::
distribution

:::
is

::::::::
reported.

::
In

::::::::
contrast,

:::
the

::::::::
reduction

:::
of

::::
error

:::::
(RE)

::::
and

::::::::
coefficient

:::
of

::::::::
efficiency

::::
(CE)

:::
are

::::::::
improper

:::::::
scoring

:::::
rules,

:::::::
meaning

::::
they

:::::::
measure

:::
the

::::::::
accuracy

::
of

::
a

:::::::
forecast,

:::
but

:::
the

:::::::::
maximum

::::
score

::
is
::::

not
:::::::::
necessarily

:::::
given

::
if
:::
the

::::
true

::::::::::
probability

::::::::::
distribution

::
is

::::::::
reported.

:::
For

:::::::
climate

:::::::::::::
reconstructions,

::::::
RE=1

:::
and

::::::
CE=1

::::::
implies

::
a

:::::::::::
deterministic

:::::::
forecast,

::::
the

:::::::::
maximum

::::
score

:::
is

:::::::
obtained

:::::
when

::::
the

:::::
mean

::
(a

:::::
point

::::::::
measure)

::::::
within

:::
the

::::::::::
probability

:::::::::
distribution

::
P

::
is

::::
used

::::::
instead

:::
of

:::
the

::::::::
predictive

::::::::::
distribution

::
P

:::::
itself.25

:::
The

:::::::
concept

::::::
behind

::::
the

:::::
CRPS

:::
is

::
to

:::::::
provide

::
a

::::::
metric

::
of

:::
the

::::::::
distance

:::::::
between

::::
the

::::::::
predicted

::::::::::
(forecasted)

::::
and

::::::::
occurred

:::::::::
(observed)

:::::::::
cumulative

:::::::::
distribution

::::::::
functions

:::
of

::
the

:::::::
variable

:::
of

::::::
interest.

::::
The

::::::
lowest

:::::::
possible

::::
value

:::
for

:::
the

::::::
metric

::::::::::::
corresponding

::
to

:
a
::::::
perfect

:::::::
forecast

::
is

:::::::
therefore

::::::::
CRPS=0.

:::::::::
Following

::::
Sect.

:::
4.b

:::
of

::::::::::::::
Hersbach (2000),

:::::::::
(elaborated

:::
for

:::::::
clarity)

::
the

:::::::::
definition

::
of

:::
the

:::::
CRPS

:::
and

:::
its

:::::::::::::
subcomponents

:::
can

::
be

:::::::
defined

::
as

:::::::
follows:5

CRPS(P,xtarget) =

∞∫

−∞
:::::::::::::::::::

[P (x)−Θ(x−xtarget)
::::::::::::::::::

]2dx
:::

(B1)

:::::
Where

::
x
::
is
:::

the
::::::::

variable
::
of

:::::::
interest,

::::::
xtarget:::::::

denotes
:::::
target

::::::::::
(validation)

:::::
data,

::
Θ

::
is
::::

the
:::
unit

::::
step

::::::::
function

:::
and

:::::
P (x)

:::
is

:::
the

:::::::::
cumulative

:::::::::
distribution

::::::::
function

::
of

:::
the

:::::::
forecast

::::::::
ensemble

::::
with

:
a
:::::::::
probability

:::::::
density

:::::::
function

:::::
(PDF)

::
of
:::::
ρ(y):

:

P (x) =

x∫

−∞

ρ(y)dy

:::::::::::::::

(B2)

::
In

:::
the

::::
case

::
of

:
a
::::::::::::
reconstruction

::::::::
ensemble

::
at
::::
each

::::::
spatial

:::::::
location

::
j

:::
and

::::
time

::::
step

:
t
::::::::
(omitted

::
for

::::::::::::
convenience),

:::
the

:::::
CPRS

::::
can10

::
be

::::::::
evaluated

:::
as:

CPRS =

N∑

i=0

xi+1∫

xi

[
i

N
−Θ(x−xtarget)

]2

dx

::::::::::::::::::::::::::::::::::::

(B3)

:::::
Where

:::::::::::::
xi < x < xi+1 ::::

refer
:::

to
::::::::
members

::
of

::::
the

::::::
locally

:::::::
ordered

::::::::::::
reconstruction

:::::::::
ensemble

::
of

::::::
length

:::
N .

::::
For

:::
this

::::::
study,

::
x

::::::::::
corresponds

::
to

:::
the

::::::::
ensemble

::
of

::::
local

::::::::::::
reconstructed

:::::
values

::
of

:::
T .

15

:::
For

:::
the

::::::
average

::::
over

::
K

:::::
time-

::::::
and/or

:::
grid

::::::
points,

:::
the

::::::
average

::::::
CRPS

:::::::
(CPRS)

::
is

::::::
defined

::
as

:
a
::::::::
weighted

::::
sum

::::
with

:::::
equal

:::::::
weights,

:::::::
yielding:

:

CPRS =

N∑

i=0

gi

[
(1− oi)(

i

N
)2 + oi(1−

i

N
)2

]

:::::::::::::::::::::::::::::::::::::

(B4)
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::::
Here,

:::
gi :::

and
::
oi::::::

define
:::
two

:::::::::
quantities

::::::::::::
characterizing

:::
the

::::::::::::
reconstruction

::::::::
ensemble

:::
and

:::
its

:::
link

::::
with

:::
the

::::::::
verifying

:::::
target

:::::
data.

:::
The

:::::::
quantity

:::::::::::::
gi = xi+1−xi,:::::::::

i ∈ (0,N)
::::::::
represents

:::
the

:::::::
average

::::
over

::
K

::::::::
distances

:::::::
between

:::
the

::::::::::
neighboring

::::::::
members

:
i
:::
and

:::::
i+ 120

::
of

:::
the

:::::
locally

:::::::
ordered

::::::::::::
reconstruction

::::::::
ensemble,

::::
and

:::::::::
essentially

::::::::
quantifies

:::
the

::::::::
ensemble

::::::
spread.

:::
The

:::::::
quantity

::
oi::

in
::::
turn

::
is

::::::
related

::::
with

:::
the

::::::
average

:::::
over

::
K

:::
the

:::::::::
frequency

::
of

:::
the

::::::::
verifying

:::::
target

:::::::
analysis

::::::
xtarget::

to
:::

be
:::::
below

::::::::::::

1
2 (xi +xi+1),

::::
and

::::::
should

::::::
ideally

:::::
match

:::
the

:::::::::
forecasted

:::::::::
probability

::
of

::::
i/N .

:

:
It
:::
can

:::
be

:::::::::::
demonstrated

::::
that

:::
the

:::::::
spatially

:::::
and/or

::::::::::
temporally

:::::::
averaged

::::::
CRPS

:::
can

::::::
further

::
be

::::::
broken

::::
into

:::
two

:::::
parts:

:::
the

:::::::
average

::::::::
reliability

::::
score

::::::
metric

:::::
(Reli)

::::
and

:::
the

::::::
average

::::::::
potential

:::::
CRPS

:::::::::::
(CRPSpot):

CPRS = Reli + CRPSpot
:::::::::::::::::::::

:::::
where

Reli =

N∑

i=0

gi

(
oi−

i

N

)2

::::::::::::::::::::

(B5)

CRPSpot =
N∑

i=0

gioi(1− oi)
:::::::::::::::::::::::

(B6)5

:::
Eq.

:::
B5

:::::::
suggests

::::
that

::::
Reli

::::::::::
summarizes

:::::::
second

::::
order

::::::::
statistics

:::
on

:::
the

::::::::::
consistency

:::::::
between

:::
the

:::::::
average

:::::::::
frequency

::
of

::
oi:::

of

::
the

::::::::
verifying

:::::::
analysis

:::
to

::
be

:::::
found

::::::
below

:::
the

::::::
middle

::
of

:::::::
interval

:::::::
number

:
i
:::
and

:::::
i/N ,

:::::::::
estimating

::::::
thereby

::::
how

:::::
well

:::
the

:::::::
nominal

:::::::
coverage

:::::
rates

::
of

:::
the

:::::::::
ensemble

:::::::::::::
reconstructions

:::::::::
correspond

::
to
::::

the
::::::::
empirical

::::::::::::
(target-based)

:::::
ones.

:::::
Hence

:::::
Reli

:::::::::
represents

:::
the

:::::
metric

:::
for

::::::::
assessing

:::
the

:::::::
validity

::
of

:::
the

:::::::::
uncertainty

::::::
bands.

::::
Reli

:::
can

::::
also

::
be

::::::::::
interpreted

::
as

:::
the

::::
MSE

:::
of

:::
the

:::::::::
confidence

::::::::
intervals,

:::::
which

::
in

:
a
::::::::
perfectly

::::::
reliable

::::::
system

::::
has

::::::
Reli=0.

:
10

::::::::
CRPSpot::

in
:::
turn

::::::::
measures

:::
the

::::::::
accuracy

::
of

:::
the

:::::::::::
reconstruction

:::::
itself,

::::::::::
quantifying

:::
the

:::::
spread

:::
of

::
the

::::::::
ensemble

::::
and

:::
the

::::::::
mismatch

:::::::
between

:::
the

::::
best

:::::::
estimate

::::
and

:::
the

::::::
target

::::::::
variable.

:::
Eq.

:::
B6

::::::::::::
demonstrates

:::
that

::::
the

::::::
smaller

::::
gi; ::::::::

indicative
:::
of

:
a
:::::

more
:::::::

narrow

:::::::::::
reconstruction

:::::::::
ensemble,

:::
the

::::::
lower

:::
the

::::::::
resulting

::::::::
CRPSpot:::

is.
::
At

::::
the

::::
same

:::::
time

::::::::
CRPSpot:::::

takes
::::
into

:::::::
account

:::
the

:::::
effect

:::
of

::::::
outliers,

:::
i.e.

:::
the

:::::
cases

::::
with

:::::::::::::::
xtarget /∈ [x1,xN ].

::::::::
Although

:::
the

::::::::::::
reconstruction

::::::::
ensemble

:::
can

:::
be

:::::::
compact

::::::
around

::
its

::::
local

::::::
mean,

:::
too

:::::::
frequent

::::::
outliers

::::
will

::::
have

:
a
::::
clear

::::::::
negative

:::::
impact

:::
on

:::
the

:::::::
resulting

:::::::::
CRPSpot.::::

Note
::::
that

:::
this

::::::
metric

:
is
::::
akin

::
to

:::
the

:::::
Mean

::::::::
Absolute15

::::
Error

::
of

::
a
:::::::::::
deterministic

:::::::
forecast

:::::
which

:::::::
achieves

:::
its

:::::::
minimal

:::::
value

::
of

::::
zero

::::
only

::
in

:::
the

::::
case

::
of

:
a
::::::
perfect

::::::::
forecast.

::::
Both

:::::
scores

:::
are

:::::
given

::
in

:::
the

:::::
same

:::
unit

:::
as

:::
the

::::::
variable

:::::
under

::::::
study,

::::
here

::::::
surface

::::::::::
temperature.

:
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Appendix C:
::::::::::
Information

:::
on

::::
true

:::::::::::
parameters,

:::::
prior

:::
and

:::::::::
posterior

:::::::::::
distributions

::
of

::::::::::
BARCAST

::::::::::
parameters

The forms of the prior PDF’s for the scalar parameters in BARCAST are identical to those used in (Werner et al., 2013).

The values of the hyperparameters were chosen after analyzing the target data. The forms of the priors and the values of the

hyperparameters are listed in Tab.
::::
Table

:
C1.

5

The parameter values prescribed for the target data are listed in Tab.
::::
Table

:
C2. The instrumental observations are identical to

the true target values, and the instrumental error variance τ2
I is therefore zero. The proxy noise variance τ2

P is varied systemat-

ically for the different SNR through the relation in Eq. 12

The mean of the posterior distributions of the BARCAST parameters α,µ,σ2,1/φ, τ2
I and β0 are listed in Tab.

::::
Table

:
C3,10

together with the reconstructed SNR.
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Figure 1. (a) Arbitrary fGn time series with β = 0.75. (b) Arbitrary time series of an AR(1) process with parameters estimated from the time

series in (a) using Maximum Likelihood. (c) Log-log spectrum
:::::
spectra showing 95% confidence ranges based on Monte Carlo ensembles of

fGn with β = 0.75 (blue shaded area), and AR(1) processes with parameters estimated from the time series in (a) (red, shaded area). Dashed

(dotted) lines mark the ensemble means of the fGn (AR(1
:::

AR1) process)
::::::
spectra respectively.
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Figure 2. The spatial domain of the reconstruction experiments. Dots mark locations of instrumental sites, proxy sites are highlighted by red

circles. The superimposed map of Europe provides a spatial scale.
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Figure 3. Mean raw and log-binned PSD for pseudoproxy data (blue curve and asterisks, respectively) and reconstruction at the same site

(red curve and dots, respectively) generated from βtarget =0.75 and different SNR
:::::::
indicated

:
in
:::
the

:::::
panels. Colored gray shadings and dashed,

gray lines indicate 95% confidence range and the ensemble mean, respectively, for a Monte Carlo ensemble of fGn with β =0.75.
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Figure 4. Mean raw and log-binned PSD for local reconstructed data at a site between proxies (gray curve and dots, respectively) generated

from βtarget =0.75 and different SNR. Colored shadings and dashed/dotted lines indicate 95% confidence range and the ensemble mean,

respectively, for a Monte Carlo ensemble of fGn with β =0.75 (blue) and of AR(1) processes with α estimated from BARCAST (red). The

confidence ranges found consistent with the data are drawn with solid lines.
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Figure 5. Mean raw and log-binned PSD for the spatial mean reconstruction (gray curve and dots, respectively), generated from βtarget =0.75

and different SNR. Colored shadings and dashed/dotted lines indicate 95% confidence range and the ensemble mean, respectively, for a Monte

Carlo ensemble of fGn with β =0.75 (blue) and of AR(1) processes with α estimated from BARCAST (red). The confidence ranges found

consistent with the data are drawn with solid lines.
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Figure 6.
::::::
Log-log

:::
plot

:::::::
showing

::::::::
log-binned

:::::
power

:::::
spectra

::
of
:::::
spatial

:::::
mean

::::
target

:::::
(blue)

:::
and

:::::::::::
reconstruction

::::
(red)

::
for

:::
one

:::::::::
experiment.

:::::::
Vertical,

:::
gray

::::
lines

::::
mark

:::
the

:::::::
frequency

::::::
ranges

:::
used

::
to
:::::::
estimate

:::
bias

::
of

::::::
variance

::
as
:::::::
referred

:
to
::
in
::::
Sect.

:::
4.4.

:
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Figure 7. Mean local
::::
Local correlation coefficient between reconstructed temperature field and target field for the reconstruction

::::::::
verification

period
:::::::
(ensemble

:::::
mean).

:::
The

:::::::
boxplots

:::
left

::
of

::
the

::::
color

::::
bars

::::::
indicate

:::
the

::::::::
distribution

::
of

::::
grid

::::
point

::::::::
correlation

:::::::::
coefficients.

:
β =0.75
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Figure 8. Mean local
::::
Local

:
root-mean square error (RMSE) between reconstructed temperature field and target field for the reconstruction

::::::::
verification

:
period.

:::
The

:::::::
boxplots

::
left

::
of
:::
the

::::
color

::::
bars

::::::
indicate

::
the

:::::::::
distribution

::
of

:::
grid

:::::
point

::::::::
correlation

:::::::::
coefficients. β =0.75.
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Mean local CRPSpot between

reconstructed temperature field and target field. β =0.75.

Figure 9. Mean local Reliability
::::
Local

::::::::
CRPSpot between reconstructed temperature field and target field . β =0.75. Log-log plot showing

log-binned power spectra of spatial mean target (blue) and reconstruction (red) for one experiment
::

the
::::::::
verification

:::::
period. Vertical, gray lines

mark
:::
The

:::::::
boxplots

::
left

::
of
:
the frequency ranges used to estimate bias

:::
color

::::
bars

::::::
indicate

:::
the

::::::::
distribution

:
of variance as referred to in Sec

:::
grid

::::
point

::::::::
correlation

:::::::::
coefficients. 5

:::::::
β =0.75.
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Table 1. Summary of the experiment setup.

Spatiotemporal resolution: 5x5 degrees /annual

Strength of persistence: β=0.55, 0.75, 0.95

Noise level: SNR=∞, 3, 1, 0.3

Iterations before/after thinning: 5000/500

Input data Reconstruction

Ensemble members per experiment 20 30 000

39



Table 2. Hypothesis testing results for local reconstructed data compared to Monte Carlo ensembles of fGn and AR(1) processes. The mark

"x" in the table indicates that the null hypothesis cannot be rejected. The null hypotheses 1 and 2 are:

1: The reconstruction is consistent with the fGn structure in the target data for all frequencies.

2: The reconstruction is consistent with the AR(1) assumption from BARCAST for all frequencies.

Local field values

SNR ∞ 3 1 0.3

β = 0.55 Proxy site

1 x x x x

2: x x x

β = 0.55 Between proxy sites

1: x x x x

2: x x x x

β = 0.75 Proxy site

1: x x x

2: x

β = 0.75 Between proxy sites

1: x x

2: x x x x

β = 0.95 Proxy site

1: x x x

2: x

β = 0.95 Between proxy sites

1: x

2: x x x x
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Table 3. Hypothesis testing results for spatial mean reconstructed data compared to Monte Carlo ensembles of fGn and AR(1) processes.

The null hypotheses 1 and 2 are the same as in Table 2, and the "x" has the same meaning.

Spatial mean values

SNR ∞ 3 1 0.3

β = 0.55

1: x x x x

2: x

β = 0.75

1: x x x x

2: x

β = 0.95

1: x x x x

2:
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Table 4. Mean
::::::
Median local skill measures

SNR r RMSE CRPSpot Reliability

β = 0.55

∞ 0.65
::::
0.60 0.74

::::
0.89 0.530.30

:::
0.36

3 0.54
::::
0.52 0.93

::::
0.97 0.630.12

:::
0.39

1 0.43
::::
0.42 1.04

::::
1.05 0.646.6 ∗ 10−2

:::
0.43

0.3 0.29 1.16 0.623.1 ∗ 10−2
:::
0.48

β = 0.75

∞ 0.65
::::
0.60 0.74

::::
0.89 0.530.3

:::
0.36

3 0.55
::::
0.52 0.92

::::
0.96 0.630.13

:::
0.39

1 0.46
::::
0.45 1.02

::::
1.03 0.647.6 ∗ 10−2

:::
0.42

0.3 0.33 1.13
::::
1.14 0.633.8 ∗ 10−2

:::
0.47

β = 0.95

∞ 0.66
::::
0.61 0.74

::::
0.88 0.530.30

:::
0.35

3 0.56
::::
0.53 0.91

::::
0.95 0.630.14

:::
0.39

1 0.49
::::
0.48 0.99

::::
1.01 0.659.2 ∗ 10−2

:::
0.41

0.3 0.39
::::
0.38 1.09

::::
1.10 0.645.1 ∗ 10−2

:::
0.45
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Table 5. Mean
::::::
Median skill measures for spatial mean

SNR r RMSE

β = 0.55

∞ 0.97
::::
0.95 0.17

::::
0.18

3 0.86
::::
0.87 0.29

::::
0.28

1 0.75
::::
0.76 0.38

0.3 0.554
::::
0.564 0.52

::::
0.51

β = 0.75

∞ 0.95 0.17
::::
0.18

3 0.85
::::
0.87 0.29

::::
0.28

1 0.8
::::
0.78 0.37

0.3 0.64
::::
0.60 0.51

::::
0.50

β = 0.95

∞ 0.96
::::
0.94 0.17

::::
0.18

3 0.87
::::
0.88 0.28

1 0.82
::::
0.79 0.36

0.3 0.72
::::
0.66 0.45

::::
0.46
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Table C1. List of parameters defined in BARCAST, form of prior and hyperparameters

Parameter Form Hyperparameters

α Truncated normal N[0,1](αµ, ασ), αµ = 0.5, ασ = 0.1

µ Normal N(µµ, µσ), µµ =−0.4, µσ = 0.12

σ2 Inv-gamma shape=0.5, scale=0.5

φ Lognormal logφ∼N(φµ, φσ), φµ =−7, φσ = 0.2

τ2I Inv-gamma shape=0.5, scale=0.5

τ2P Inv-gamma shape=0.5, scale=0.5

β0 Normal N(β0,µ, β0,σ), β0,µ = 0, β0,σ = 0.04

β1 Normal N(β1,µ, β1,σ), β1,µ = 1.14, β1,σ = 0.04
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Table C2. List of parameter values defined for the target data set. The four values of τ2P listed are related to the four different signal-to-noise

ratios: SNR = 1
τ2
P

. εmach is machine epsilon, the smallest number represented by the computer which is greater than zero.

Parameter Target value

µ 0

φ 1/1000

τ2I 0

τ2P εmach, 0.333, 1, 3.33

β0 0

β1 1

β 0.5, 0.75, 0.95
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Table C3. Mean of posterior distribution for each parameters

Persistence SNRtarget SNRrec α µ σ2 1/φ τ2I β0

β = 0.55

∞ 117.6 0.40 −2.2 ∗ 10−2 0.83 1020 2.3 ∗ 10−3 6.7 ∗ 10−4

3 3.05 0.43 −2.6 ∗ 10−2 0.78 1053 2.4 ∗ 10−2 -2.7 ∗ 10−3

1 1.01 0.44 −3.3 ∗ 10−2 0.75 1064 3.0 ∗ 10−2 3.8 ∗ 10−3

0.3 0.38 0.44 −2.7 ∗ 10−2 0.75 1053 3.3 ∗ 10−2 3.2 ∗ 10−3

β = 0.75

∞ 115.8 0.57 −3.5 ∗ 10−2 0.68 1020 2.3 ∗ 10−3 −8.2 ∗ 10−4

3 2.81 0.62 −4.5 ∗ 10−2 0.61 1111 2.8 ∗ 10−2 5.1 ∗ 10−3

1 0.99 0.64 −5.6 ∗ 10−2 0.59 1136 3.3 ∗ 10−2 8.3 ∗ 10−3

0.3 0.36 0.64 −5.1 ∗ 10−2 0.59 1136 3.4 ∗ 10−2 3.8 ∗ 10−3

β = 0.95

∞ 112.9 0.71 −4.8 ∗ 10−2 0.5 1020 2.4 ∗ 10−3 −5.3 ∗ 10−4

3 2.69 0.77 −8.5 ∗ 10−2 0.44 1205 2.8 ∗ 10−2 3.0 ∗ 10−3

1 0.97 0.79 −9.7 ∗ 10−2 0.41 1235 3.1 ∗ 10−2 1.1 ∗ 10−2

0.3 0.36 0.77 −1.0 ∗ 10−1 0.42 1190 2.9 ∗ 10−2 1.6 ∗ 10−2
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