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Abstract. Data assimilation has been adapted in paleoclimatology to reconstruct past climate states. A key component of

some assimilation systems is the background-error covariance matrix, which controls how the information from observations

spreads into the model space. In ensemble-based approaches, the background-error covariance matrix can be estimated from

the ensemble. Due to the usually limited ensemble size, the background-error covariance matrix is subject to the so-called

sampling error. We test different methods to reduce the effect of sampling error in a published paleo data assimilation setup.5

For this purpose, we conduct a set of experiments, where we assimilate early instrumental data and proxy records stored in

trees, to investigate the effect of 1) the applied localization function and localization length scale; 2) multiplicative and additive

inflation techniques; 3) temporal localization of monthly data, which applies if several time steps are estimated together in

the same assimilation window. We find that the estimation of the background-error covariance matrix can be improved by

additive inflation where the background-error covariance matrix is not only calculated from the sample covariance, but blended10

with a climatological covariance matrix. Implementing a temporal localization for monthly resolved data also led to a better

reconstruction.

1 Introduction

Estimating the state of the atmosphere in the past is important to enhance our understanding of the natural climate variability, the

underlying mechanisms of past climate changes and their impacts. To infer past climate states, two basic sources of information15

are available: observations, and numerical models. Climate models constrained with realistic, time-dependent external forcings

provide fields that are consistent with these forcings and the model physics. Observations can be instrumental meteorological

measurements, which are mainly available from the mid 19th century. Prior to this time, information from proxies stored in

natural archives (like trees, speleothems, marine sediments, ice cores) or documentary data can be exploited. Observations

provide important local information, however their spatial and temporal coverage is sparse.20

In recent years, a novel technique, the data assimilation (DA) approach, has been adapted for paleoclimatological research.

DA creates a framework to combine information from different sources. If information from observations is optimally blended

with climate model simulations, the result is the best estimate of the climatic state, given the observations, given the external

forcings, and given the known climate physics. The field of paleo data assimilation (PDA) has undergone profound develop-
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ments, and many DA techniques have been implemented to reconstruct past climate states, such as forcing singular vectors and

pattern nudging (Widmann et al., 2010), selection of ensemble members (Goosse et al., 2006; Matsikaris et al., 2015), particle

filters (e.g., Goosse et al., 2010), the variation approach (Gebhardt et al., 2008), the Kalman filter and its modifications (e.g.,

Bhend et al., 2012; Hakim et al., 2016; Franke et al., 2017; Steiger et al., 2018). However, there are still unresolved problems,

and thus, a need for improvements how to best combine observations with climate model simulations.5

One popular DA method is the Kalman filter (KF; Kalman, 1960). In standard applications, the processes of the KF can be

summarized in two main steps (Ide et al., 1997). In the update step, the background state and the uncertainty of the background

state provided by the model simulation are adjusted by assimilating new observations. In the forecast step, the updated state,

called the analysis, and the uncertainty of the analysis are propagated forward in time. These processes are repeated when

new observations become available. However, in PDA, the forecast step is usually neglected, that is the filter is used offline10

(e.g., Franke et al., 2017). Because the process is not cycled, the background state is obtained from a pre-computed model

simulation. In some previous PDA studies, the background state is constructed once from the model simulation, and later, the

same state is used in every assimilation window (Steiger et al., 2018, and references therein); we refer to them as stationary

(forcing-independent) offline DA methods. In other PDA studies, the background state is specific for the current assimilation

window, that is, the state changes in each assimilation window according to the forcings (Bhend et al., 2012; Franke et al.,15

2017); we call them transient (forcing-dependent) offline DA methods.

An essential component of the KF is the uncertainty of the background state. In ensemble-based approaches, an ensemble

of the background state provides estimation of the truth, represented by the ensemble mean, and the perturbations from the

mean are used to estimate the uncertainty, represented by the background-error covariance matrix. Ensemble-based KFs are

approximations of the KF, because the true state is usually sampled with a few tens to a few hundreds of ensemble members.20

The limited ensemble size leads to errors in the estimation of the background-error covariance matrix. This effect is known as

the sampling error.

Two methods are commonly used in online ensemble-based KF approaches to reduce the negative effect of sampling error:

inflation (e.g., Anderson and Anderson, 1999), and localization (e.g., Hamill et al., 2001) of the background-error covariance

matrix. A simple inflation technique is the multiplicative inflation (Anderson and Anderson, 1999), which compensates for25

potential underestimation of the analysis error. Multiplicative inflation helps to maintain a more realistic distribution of the

ensemble members by increasing the deviation of the members from the ensemble mean at each DA cycle (Anderson and

Anderson, 1999). However, the underestimation of the analysis error is of minor importance in offline approaches, because

the ensemble members are not propagated forward in time. Covariance inflation, besides reducing the sampling error, can also

account for underestimated model error. In the additive inflation technique, the covariances are inflated by e.g., adding an30

additional error term to the background-error covariances (Houtekamer et al., 2005). Covariance localization removes long-

range spurious covariances in the background-error covariance matrix that occur by chance due to a limited sample size.

Several localization techniques have been proposed, from a simple cut-off radius approach (Houtekamer and Mitchell, 1998)

to more sophisticated ones (Houtekamer and Mitchell, 2001; Hamill et al., 2001). By applying covariance localization meth-

ods, the elements of the background-error covariance matrix are modified, and in the standard approach the covariances are35
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forced to approach zero at a certain separation length from the location of the observation. This is achieved by multiplying

the background-error covariance matrix element-wise with a distance-dependent function. In practice, this function is often

estimated by a Gaussian localization function, recommended by Gaspari and Cohn (1999).

In stationary offline PDA studies, the time-dependent background-error covariance matrix is replaced by a constant co-

variance matrix (e.g., Steiger et al., 2014). By using a constant background-error covariance matrix in the update step, the5

dependence on the climate state is lost. However, it is possible to estimate the covariance matrix from a much larger ensemble

size, which reduces the sampling error. If the constant covariance matrix is built from a large enough sample size, representing

different climate states, it can be successfully used in the assimilation process (Steiger et al., 2014).

Covariance inflation and localization techniques are used and under improvement in weather forecasting (e.g., Bowler et al.,

2017), but have not been yet sufficiently explored for PDA. In this paper, we discuss three possibilities to improve the estimates10

of background error, relevant to our PDA method:

– using a two-dimensional multivariate Gaussian function as a horizontal localization function to test the hypothesis of

longer correlation length scales in zonal than meridional direction.

– applying covariance inflation techniques. In the multiplicative inflation technique, a constant factor is used to inflate the

deviations from the ensemble mean. In the additive method, the background-error covariance matrix is calculated as the15

sum of the sample covariance matrix plus a climatological background matrix, where the climatological background is

based on all ensemble members of multiple years. This larger sample size decreases the chances of spurious correlations.

– adding temporal localization to the background-error covariance matrix. Multiple time steps are combined in one assim-

ilation window to efficiently assimilate seasonal paleodata. In case of monthly observations, covariances between the

months have been used to update all six months (Franke et al., 2017).20

This paper is structured as follows: An overview of our PDA approach, introducing the model, the observational network

and the offline DA technique is given in Sect. 2. Section 3 describes the experimental framework. In Sect. 4 the results are

presented and each experiment followed directly by a discussion. We summarize our experiments in Sect. 5.

2 Ensemble Kalman Fitting Framework

2.1 Model Simulation: CCC40025

We start from an existing DA system, which is described in Bhend et al. (2012) and Franke et al. (2017). We use the same

atmospheric model simulation as in the previous studies. The model simulation, termed as Chemical Climate Change over the

Past 400 years (CCC400), has 30 ensemble members, that are used as background to reconstruct monthly climate states between

1600 and 2005. Simulations were performed with the ECHAM5.4 climate model (Roeckner et al., 2003) at a resolution of T63

with 31 levels in the vertical. The 30 ensemble members were forced and driven with the same external forcings and with the30

same boundary conditions. For sea-surface temperatures (SSTs), which have a particularly large effect on the simulations, the
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reconstruction by Mann et al. (2009) was used. At the time when the model simulation was run, this was the only available

global gridded SST reconstruction that dated back until 1600. The surface temperature reconstruction by Mann et al. (2009) is

based on a multiproxy network and was produced by a climate field reconstruction method. The SST reconstruction by design

captures interdecadal variations (Mann et al., 2009), hence intra-annual variability dependent on a El Niño/Southern Oscillation

reconstructions (Cook et al., 2008) was added to the SST fields. Further forcings include solar irradiance, volcanic activity, and5

greenhouse gas concentrations (for more details see Bhend et al., 2012; Franke et al., 2017). The land-use reconstruction by

Pongratz et al. (2008) was used to derive the land-surface parameters. The 6-hourly output fields provided by the model were

transformed to monthly means. To reduce the computational burden only every second grid points in the latitude and longitude

were selected. We limit the analysis in this study to 2m-temperature, precipitation and sea-level pressure.

2.2 Observational network10

In this study, we use the same observational network of tree-ring proxies, documentary data and early instrumental measure-

ments as described in Franke et al. (2017) (Fig. 1); but we only assimilate tree-ring proxies and instrumental data. The temporal

resolution of the instrumental air temperature and sea-level pressure measurements is monthly. The tree-ring proxy records have

annual resolution. Trees respond to a locally varying growing seasons. We consider temperature from May until August and

precipitation from April until June to possibly affect tree-ring width data. The maximum latewood density proxies were con-15

sidered to be affected by temperature over May until August. The observations were quality checked before the assimilation,

and outliers which were more than 5 standard deviation away from the calculated 71-year running mean were discarded, both

for instrumental and proxy data.

2.3 Assimilation method

In our paleoclimate reconstruction, we combine the CCC400 model simulation with the observations as described above by20

implementing a modified version of the ensemble square root filter (EnSRF; Whitaker and Hamill, 2002). This ensemble-based

DA method is called ensemble Kalman fitting (EKF; Franke et al., 2017). In fact, the EKF is an offline version of the EnSRF;

and the update step of the EKF remains the same as of the EnSRF. EKF is described in more detail in Bhend et al. (2012) and

Franke et al. (2017). Here we shortly highlight the most important aspects of the EKF. The update step in the EnSRF scheme

has two parts: updating the mean (x), and for each member, the deviation from the mean (x′). They are calculated as25

xa = xb +K
(
y−Hxb

)
(1)

x′a = x′b + K̃
(
Hx′b

)
(2)

where K and K̃ are

K = PbHT (HPbHT +R
)−1

(3)

K̃ = PbHT
((√

HPbHT +R
)−1)T

×
(√

HPbHT +R+
√

R
)−1

(4)30
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The background state vector (xb) contains the variables of interest from CCC400 (Table 1). In the EKF, the length of the

assimilation window is 6 month (October-March and April-September), which was adapted to the southern and northern hemi-

spheric growing seasons to effectively incorporate the proxy records stored in trees. Due to the 6-monthly assimilation window,

xb contains the variables of 6 months. xa stands for the analysis state vector. H is the forward operator that maps the model

state to the observation space (here, it is linear). H differs depending on the type of observation being assimilated. In case5

of tree-ring width data H extracts temperature between May and August and precipitation between April and June from the

model, then these fields are transformed to observational space by using a multiple regression approach (for more details see

Franke et al., 2017). y represents the observations. K is the Kalman gain matrix, and K̃ is the reduced Kalman gain matrix.

Pb is the background-error covariance matrix, estimated from the 30 ensemble members. A common assumption is to treat the

observation-error covariance matrix (R) as a diagonal matrix: it is presumed that the elements of R are uncorrelated. Therefore,10

the observations can be processed serially. We set the error variances of instrumental temperature observations to 0.9 K2, and

of instrumental pressure data to 10 hPa2. The error variances are rough estimates that include for instance measurement uncer-

tainties, temporal inhomogeneities, and the fact that a station is not representative for a grid cell (see Frei, 2014; Franke et al.,

2017). The errors of tree-ring proxy data are calculated as the variance of the multiple regression residuals of the H operator.

The assimilation is conducted on the anomaly level: we subtract both from model and from observational data their 71-yr15

running mean in order to deal with the biases related to systematic model errors and inconsistent low-frequency variability in

the paleodata.

The use of DA in an offline manner is typical in paleoclimate reconstructions (e.g., Dee et al., 2016). Bhend et al. (2012)

argue that the assimilation step is too long for initial conditions to matter, whereas there is some predictability from the

boundary conditions. In addition, Matsikaris et al. (2015) found that both online and offline DA methods perform similarly20

in their paleoclimate reconstruction setup. Furthermore, the offline DA is advantageous as it allows using the pre-computed

simulations. In our case, we can use CCC400 (Bhend et al., 2012) and test the method without having to repeat the simulations.

2.4 Spatial localization

As R is a diagonal matrix the EKF can be used to assimilate the observations one by one, that is after the first observation is

assimilated and the analysis is obtained, this analysis field becomes the background state for the next observation (see the arrow25

pointing from xa to xb on Fig. 2). This serial implementation makes the calculation of Pb simpler. H becomes a vector (not a

matrix) of the same length as xb. It is zero everywhere except for few elements (those required to model the observation). This

translates to only a few columns of Pb that are actually required. HPbHT and R are then scalars (Whitaker and Hamill, 2002).

This procedure also makes the localization simpler, as it needs to be applied only to those columns. In the original setup the

elements of Pb were Schur-product with a distance-dependent function (see Eq. (7) in Franke et al., 2017). For all the variables30

in the state vector, the same Gaussian function was used but with different localization length scale parameters (Table 1). The

localization length scale parameters are defined based on the spatial correlation of the variables in the monthly CCC400 model

simulation fields. For the cross-covariances between two variables, the smaller localization length scale of the two variables is

applied. With the serial implementation, the calculation and localization of Pb is significantly simplified.
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3 Experiment design

Franke et al. (2017) produced a monthly global paleoclimatological data set by using the EKF method. We leave most of the

original setup unchanged and mainly focus on the estimation of Pb. To investigate the performance of the EKF some aspects

involving localization and estimation of the Pb were tested. An overview of all experiments conducted in this study is given in

Table 2. The results of the various experiments are evaluated in terms of performance measures, which then compared to those5

obtained with the original setup.

3.1 Spatial localization

In most of the studies, the localization function is implemented in an isotropic manner. In the original setup, the same hori-

zontally isotropic localization function was used with different localization parameters. However, such spatial symmetries may

not be realistic. In the real atmosphere, correlation lengths might be longer in the zonal than in the meridional direction, due to10

the prevailing winds and the weaker large-scale temperature gradients in this direction. On multi-annual to multi-decadal time

scales multiple processes act in meridional direction, e.g. a widening/shrinking of the Hadley cell, shifts of the Inter Tropical

Convergence Zone or changes in atmospheric modes like the Atlantic Multi-Decadal Oscillation or the North Atlantic Oscilla-

tion. These can shift the zonal circulation northward or southward but the zonal coherence will be less effected. Hence, instead

of using a circular Gaussian function, we conducted an experiment with a spatially anisotropic localization function15

C = exp
(
−1

2

(
d2z
L2
z

+
d2m
L2
m

))
, (5)

where dz and dm are the distances from the selected grid box in the zonal and meridional directions, respectively. Lz and Lm

are the length scale parameters used for localization in the zonal and meridional directions, respectively. As a first experiment

we tested a 2:1 ratio for Lz:Lm. We used the values from Table 1 in the meridional direction and doubled them in the zonal

direction. Thus, the resulting localization function has an elliptical shape.20

3.2 Inflation techniques

Covariance inflation techniques are another possible method to compensate for errors in the DA system (Whitaker et al., 2008).

The multiplicative inflation technique uses a small factor γ (γ > 1) with which the x′b is multiplied (Anderson and Anderson,

1999). This type of covariance inflation accounts for filter divergence due to sampling error (Whitaker and Hamill, 2002),

but can be also applied to take into account system errors (Whitaker et al., 2008). We conducted some experiments using25

multiplicative inflation, although in our offline approach, filter divergence is not the main concern as ensemble members are

not propagated in time.

The other methodology that we adapt, shows similarities with the additive inflation technique (e.g., Houtekamer and Mitchell,

2005) and with the hybrid DA scheme (e.g., Clayton et al., 2013). In both methods Pb is modified by either adding model error

(Houtekamer and Mitchell, 2005) or a so-called climatological covariance matrix (Clayton et al., 2013) to Pb. This has given30

rise to the idea of generating a climatological ensemble in order to alleviate the effect of the small ensemble size. In the orig-
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inal setup Pb is approximated from only 30 members. Here, we additionally build a climatological state vector (xclim) from

randomly selected ensemble members from our 400-year long model simulation. The number of ensemble members should

be higher than the original ensemble size, but still computationally affordable. The climatological state vector is created as:

1. Define the ensemble size (n) of xclim; 2. Select n random years between 1601 and 2005; 3. Every year has 30 members

from which one member is randomly selected and kept; 4. The chosen members are combined in xclim. xclim is randomly5

resampled after every second assimilation cycle. Using xclim in the assimilation leads to increased computational cost, which

partly comes from the creation of xclim. The other time consuming part comes from the updating of the climatological part

after each observation is assimilated. (The standard way when observations are assimilated serially). We tested numbers be-

tween 100 and 500. From xclim a climatological background-error covariance matrix (Pclim) can be obtained by using the

ensemble perturbations. The background-error covariance matrix used in the blending experiments (Pblend) is built as a linear10

combination of the sample covariance matrix (Pb) and the climatological covariance matrix (Pclim):

Pblend = β1Pb +β2Pclim, (6)

where β1, β2 mean the weights given to the covariance matrices. The sum of the weights is unity.

Figure 2 shows the main steps of the blending assimilation process. First, the covariance matrices were localized separately,

then we blended them according to the given weights. We conducted several experiments to tune the ratio between the two15

covariance matrices while using different localization length scale parameters (L) (Table 2). We used the same Ls for localizing

Pb in most of our experiments to evaluate improvements in comparison with the original setup. For this study, we calculated

the latitudinal dependency of correlation of the state variables from a bigger ensemble of the model than in Franke et al. (2017).

The result suggested that longer Ls can be applied in the tropics and the L of precipitation is probably too strict. Based on the

rather strict Ls in the previous study and the assumption that the covariances can be better estimated from a bigger ensemble,20

we used doubled length scale parameters (2L) in some of the experiments for localizing the climatological covariances. In this

case, the L for temperature is 3000 km, which means that the correlation is decreased close to zero approximately 6000 km

away from the observation.

Since observations are assimilated serially, we also update xclim after an observation is assimilated with the same Kalman

gain matrices as xb. Thus, in the assimilation process we update 30 + n ensemble members.25

3.3 Temporal localization

Localizing observations in time is a special feature of the EKF due to its 6-month assimilation window. Having the state

vector in half-year format, every month within the October–March or April–September time window is updated by each single

observation. To test whether the covariances between a single observation and the multivariate climate fields are correctly

captured, we ran an instrumental-only experiment with temporal localization. We set covariances between different months to30

zero.
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3.4 Skill scores

The EKF method is tested with different localization functions and with a set of mixed background-error covariance matri-

ces as described above. We have performed the experiments by assimilating either only proxy records (proxy-only) or only

instrumental data (instrumental-only). The proxy-only experiments were carried out between 1902 and 1959, because many

proxy records already end in the 1960s, while the instrumental-only experiments were tested over the 1902–2002 period. We5

separated the different observation types to see whether different settings perform better depending on the type of data being

assimilated. We do not compare proxy-only results with instrumental-only results, hence the difference in time periods used

does not matter; we simply use the longest possible time period. To evaluate the reconstructions we examined two verification

measures: correlation coefficient, and reduction of error (RE) skill score (Cook et al., 1994). We use the CRU TS 3.10 dataset

(Harris et al., 2014) for reference in the validation process. The presented verification measures are functions of time. Correla-10

tion is calculated between the absolute values of the ensemble mean of the analysis and the reference series at each grid point.

The RE compares, in our case, the reconstruction with the model simulation, both expressed as deviations from a reference.

RE = 1−
∑

(xui −x
ref
i )2∑

(xfi −x
ref
i )2

(7)

where xu is the ensemble mean of the analysis, xf is the ensemble mean of the model background state, xref is the reference

dataset and i refers to the time step. The RE skill scores are computed based on anomalies with respect to the 71-year running15

climatologies. Note that xf comes from a forced model simulation, therefore it already has skill compared with a climatological

state vector. The RE is 1 if the xu is equal to xref . Negative RE values indicates that the background state is closer to the

reference series than the analysis.

To test which experiments have significantly different skill compared with the original skill, we carried out a permutation

test following the method described in DelSole and Tippett (2014). Permutation was performed 10000 times. If the difference20

between the median of the experiment and the median of the original data falls outside of the 95% confidence level of the

interval calculated from permuted data, then the experiment is significantly different from the original data.

In the next section, we will focus on analysing the result of the experiments mainly over the extratropical Northern hemi-

sphere (ENH), because most of the data are located in this region. The skill scores refer to seasonal averages of the ensemble

mean.25

4 Results and Discussions

4.1 Localization function

4.1.1 Results

We compared the original setup applying an isotropic localization function and the experiment in which an anisotropic local-

ization function was used, to test whether we can obtain a more skilful reconstruction by implementing anisotropic localization30
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method. As an example of the spatial reconstruction skill, we show the RE values of temperature (Fig. 3). The figures reveal

that the type of localization function only resulted in small differences in both experiments. Nonetheless, there are larger areas

of negative RE values (Greenland, Siberia) with the anisotropic localization function in the proxy-only experiment (Fig. 3). In

the instrumental-only experiment the decrease of RE values occur in the northern high latitudes and in the Tibetan plateau in

both seasons (Fig. 3). To have a better overview how the skill scores changed we summarize their distributions with the help5

of box plots. Figure 4 shows the differences of skill scores between the aniso experiment and the original skill for the three

variables (temperature, precipitation and sea-level pressure) in the ENH region. In the instrumental-only experiment correlation

values of temperature and sea-level pressure decreased in both season while for precipitation it remained mostly unchanged.

The RE values show that the experiments with anisotropic localization function reduced the skill of the reconstructions, but the

extent of the reduction varies with the variables and with the seasons (Fig. 4). In general, the same holds for the proxy-only10

experiment (Fig. 4).

4.1.2 Discussion

In a previous ozone reconstruction study, a seasonally and latitudinally varying localization method was tested which mostly

positively affected the analysis (Brönnimann et al., 2013). Here, we increased the zonal distances to see if we can use the in-

formation of the observations for a larger region. However, the verification measures are shifted more to the negative direction.15

We assume that the degraded skill of the reconstruction is due to the choice of too long Lz, hence spurious correlations were

not removed. Using anisotropic localization (doubling the Ls only in the zonal direction) consistently makes the reconstruction

worse.

4.2 Inflation experiments

4.2.1 Results20

The main problem of ensemble-based DA techniques is the computationally affordable limited ensemble size. Due to the finite

ensemble size the estimation of Pb suffers from sampling error. Applying inflation techniques is one method to mitigate its

effect (see Sec. 3.2).

Using the multiplicative inflation method, the deviations from the ensemble mean are multiplied with a small factor (γ).

To find the optimal γ a set of experiment runs is required. We used γ = 1.02 and γ = 1.12 in our experiments, where only25

instrumental data were assimilated. We chose γ from a range that was previously tested by Whitaker and Hamill (2002).

Multiplying the deviations from the ensemble mean with γ = 1.02 in the assimilation process hardly affected the skill of the

reconstruction over the ENH region (not shown). When we increased the value of γ to 1.12, the RE values slightly decreased

(not shown). We did not carry out further experiments since based on the results randomly increasing the error in background

field did not lead to improvement.30

In the other set of experiments, we used Pblend in the update equation (Eq. 6). The experiments were run with using β2 equal

to 0.25, 0.50, 0.75, and 1 to estimate the Pblend (denoted 25c, 50c, etc.). Besides the varying weight given to Pclim, the applied
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Ls on Pb and Pclim differed as well. Three Ls were used: No localization (termed no), applying Ls as in Table 1 (L) and doubling

these numbers (2L). Different combinations of the fraction of Pclim and Ls were termed accordingly (e.g., 50c_PbL_Pc2L).

We expect that estimating the covariances from a bigger ensemble size (n=100-500) instead of 30 members leads to a more

accurate background matrix. In most of our experiment n is 250. Hence, Pclim is likely less affected by the sampling error

implying that long-range spurious correlations are less prominent, which makes localization less needed. We presume that5

using Pblend helps to better reconstruct areas which were characterized with lower skill score values in the original setup and

to improve the estimation of unobserved climate variables. The reconstruction skill of the blending experiments is always

calculated from xa (Fig. 2).

For the ENH region we present how the verification measures changed by replacing Pb with Pblend in the assimilation

process. We conducted an experiment without localizing Pclim and using Ls from Table 1 on Pb in the construction of Pblend.10

However, the skill of the reconstruction was largely reduced, implying that 250 members are not enough to avoid localization

altogether (not shown).

Figure 5 and Figure 6 show the distribution of the differences of the skill scores between the experiments and the original

analysis, for correlation coefficients and RE values respectively. Depending on the variables and the data type being assimi-

lated, different setups perform better. In case of assimilating only instrumental data, one of the largest increase of median for15

temperature reconstruction was obtained from the 100c_PcL experiment in both seasons (Fig. 5, Fig. 6). Precipitation records

were not assimilated, thus a reasonable estimation of the cross-variable covariances is essential. The skill of the precipita-

tion reconstruction with the original setup, in terms of correlation, is better than the forced simulation (not shown); however,

the RE values are negative over large regions in the ENH (Fig. 7). Using Pblend in the assimilation, with e.g. the settings of

50c_PbL_Pc2L experiment lead to more positive RE skill (Fig. 7). The biggest improvement, in terms of RE skill score, was20

found in Europe (Fig. 7). The 50c_PbL_Pc2L analysis also has higher skill in North-America, especially in the summer season

(Fig. 7). The skill of the sea-level pressure reconstruction also improved in the 50c_PbL_Pc2L experiment (Fig. 5, Fig. 6). In

the proxy-only experiments, 75c_PbL_Pc2L is among the best performing experiments for all the variables (Fig. 5, Fig. 6).

We also investigated the effect of the ensemble size in the estimation of Pclim. To test whether further improvements can

be achieved by doubling the ensemble size of xclim, we ran an experiment with the following setup: β1 and β2 are equally25

weighted, and L and 2L is applied on Pb, Pclim, respectively (Table 2). In the experiment we assimilated only instrumental data.

The skill scores of xa (corr, RE) from the 500 ensemble members experiment showed no marked improvement compared with

the same experiment with 250 ensemble members. An additional experiment was carried out with the same setup but using

only 100 ensemble members in the construction of xclim. The verification measures of the 50c_PbL_Pc2L_100m experiment

are higher than the original one, and the distribution of the skill scores over the ENH region is very similar to what we obtain by30

using 250 members in Pclim for temperature and precipitation. However, the sea-level pressure fields from the 50c_PbL_Pc2L

have higher skill than in the 50c_PbL_Pc2L_100m experiment (not shown).

Furthermore, we conducted two experiments in which only xb was updated after an observation was assimilated, and xclim

was kept constant in the assimilation window. However, the ensemble members of xclim were randomly reselected for each

year (October–September). The advantage of this setup compared to the setup described in Sect. 3.2 is that, it is computationally35

10



less demanding since only the original 30 members keep being updated with the observations. In the first test, we give β2=0.75

weight to Pclim with 2Ls. In the second test β2=1, that is only Pclim used for updating xb and for localization the Ls in Table 1

were applied. By comparing the skill of the reconstructions without and with updating the climatological part, we see that

the skill scores are higher when the climatological part is also updated with the information from the observations (Fig. 8).

The only exception is the correlation values of sea-level pressure: when keeping the climatological part constant, they are5

slightly higher in both seasons (Fig. 8). Nonetheless, by keeping the climatological part static in one assimilation window, the

experiments still outperform the original reconstruction (Fig. 8).

4.2.2 Discussion

We have tested a number of configurations of the mixed covariance matrix Pblend to evaluate the effect of the sampling error.

In numerical weather predication (NWP) applications, various methods have been designed to better estimate the errors of the10

background state. In hybrid DA systems, the advantages of variational and ensemble Kalman filter techniques are combined

(Hamill and Snyder, 2000; Lorenc, 2003). In another method, the background-error covariances are obtained from an ensemble

of assimilation experiments performed by a variational assimilation system (Pereira and Berre, 2006). In an additive inflation

experiment, a term is added to the xa to account for the errors of the DA system (Whitaker et al., 2008).

In our implementation, Pblend is calculated from xb and xclim. Using Pblend in the assimilation process improved on the15

reconstruction performed with the original setup. The skill scores show the largest improvement in the sea-level pressure re-

construction. Moreover, the skill of the precipitation reconstruction also improved, indicating that Pclim helps to better estimate

the cross-covariances of the background errors between the variables. In general, increasing the weight of Pclim in forming

Pblend, positively affected the skill of the analysis. The 100c_PcL experiment, in which Pblend is equal to Pclim, is similar to the

DA technique used in the last millennium climate reanalysis (LMR) project (Hakim et al., 2016). In the LMR, 100 randomly20

chosen ensemble members form a climatological state vector, which is used in each assimilation window and is updated with

the observations. In this study, xclim is randomly resampled every year and primarily used in the estimation of Pblend. The

settings used in the 100c_PcL experiment lead to one of the largest increase in the median for temperature reconstruction when

only instrumental measurements are assimilated. However, other settings resulted in larger increase of median for different

variables and observation types. By applying no localization on Pclim in the 50c_PbL_PcnoL experiment we obtained a less25

skilful reconstruction than by using the other two localization schemes. The skills reduced especially over the areas where no

local observations were assimilated. Using 2Ls for localizing the covariances of Pclim in the instrumental-only experiments

resulted in higher correlation values of sea-level pressure (50c_PbL_Pc2L) and helped to obtain higher correlation scores of

precipitation in summer. Among the proxy-only experiments, 75c_PbL_Pc2L shows the largest increase of median for pressure

reconstruction. Here, pressure data are not assimilated, and the result suggests that by applying longer Ls, the cross-variable30

covariances are better treated. We tested whether the skill of the experiments performed with various settings is significantly

different from the skill of the original analysis. We compared the median value of the skill scores from the experiments and

the original data, and with most of the settings a significant difference was obtained for all the variables. The results of the

11



experiments show that with a mixed covariance matrix implementation a major drawback of the ensemble-based DA system,

due to the limited ensemble size, can be improved.

4.3 Localization in time

4.3.1 Results

Since six monthly time steps were combined in one state vector (one assimilation window), covariances between different5

months also need to be considered. An additional experiment was conducted in which the (localized) Pb was multiplied with

a temporal localization function when instrumental data were assimilated. This is a specific experiment due to the structure of

EKF. The assimilation window in the EKF is 6-month, hence a single observation is enabled to adjust all the meteorological

variables in xb in a half-year time window. In the temporal localization experiment, the information from a given observation

can only modify the different climate fields in its current month, while leaving all other fields of the 5 months unchanged10

(Table 2). In general, the skill scores indicate an improvement. The difference of RE values between the temp_loc and original

experiments are mostly positive over the northern high latitude areas (Fig. 9).

4.3.2 Discussion

The higher skill scores with temporal localization (Fig. 9) indicate that the cross-covariances in time were not correctly rep-

resented by Pb. Hence, it is likely that in the original setup some non-physical covariances were taken into account. Applying15

the same assimilation scheme to another problem (estimating the two-dimensional ozone distribution from an ensemble of

chemistry-climate models and historical observations), Brönnimann et al. (2013) used a localization time scale of 3 months

based on empirical studies. It may be worth considering or allowing for temporal covariance in specific cases (e.g. in the case

of ozone concentrations) which vary on longer time scale.

5 Conclusions20

In this study, a transient offline data assimilation approach was used to test the effect of the estimation of the background-error

covariance matrix in a climate reconstruction. Several experiments were evaluated with different validation measures to see

which background-error covariance matrix estimation techniques improve the skill of the reconstruction. The evaluation of the

presented techniques suggests the following: 1. Applying an anisotropic localization function on the sample covariance matrix

did not improve the reconstruction; 2. Most of the settings, which make use of covariance estimates from a larger climatolog-25

ical sample, result in significantly improved skills compared to an estimation from the 30 member ensemble; 3. Assimilating

early instrumental data with temporal localization leads to a better analysis. To which extent the different techniques helped

in the estimation of the background-error covariance matrix varies geographically and also depends on the climate variable

being reconstructed. The cross-variable covariances of the background-error covariance matrix can provide information from

unobserved climate variables. Including climatological information in the estimation of precipitation has lead to a better re-30

12



construction, especially in Europe. Estimating sea-level pressure with the blended Pblend matrix also improved the skill of

the reconstruction. For instance, the 50c_PbL_Pc2L experiment performs constantly better than the original setup. This study

shows that results can be improved by better specifying the background-error covariance matrix. In the future we will combine

all the techniques that lead to more skilful analyses to produce a climate reconstruction over the last 400 years.
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Figure 1. The observational network in 1904, before quality check.
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Figure 2. The main steps of the blending experiment in one assimilation window. The blended covariance matrix Pblend is calculated as a linear

combination from the year specific and climatological covariance matrices. The calculation of the Kalman gain (K) and reduced Kalman

gain (K̃) matrices is the same as in Eq.3 and Eq. 4 except the covariance matrix is replaced with Pblend. The observation is assimilated to both

state vectors and these analysis become to the starting point for assimilating the next observation.
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Figure 3. Spatial skill of temperature reconstruction presented by RE values, assimilating only instrumental data (left and middle columns)

and only proxy records (right column). Comparing the skill of the reconstruction using isotropic localization function (top row) versus an

anisotropic localization function (bottom row). Skill in the winter season (left column) and in the summer season (middle and right columns)

are shown.
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Figure 4. Difference between the aniso experiment and the original setup in terms of skill scores over the ENH region. Distributions of

correlation values and of RE values are on the left and right figures, respectively. Distribution of temperature (top row), precipitation (middle

row), and sea-level pressure (bottom row) are shown. Blue colour indicates the instrumental-only experiment and yellow indicates the proxy-

only experiment. The midline of the box is the median. The lower (upper) border of the box is the first (third) quartile. The whiskers extend

up to 1.5 times the interquartile range; beyond these distances the number of outliers are given under the box plots. The grid boxes were not

area-weighted. The asterisk above the box indicates significant differences between the median of the experiment and the original setup.
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Figure 5. Distribution of correlation coefficients differences between the mixed background-error covariance matrix experiments and the

original setup over the ENH region. The left column shows the skill of the reconstruction in the winter seasons, while the middle and right

columns in the summer season. The labels on the x-axis indicating the experiments. Box plot, colour, number and asterisk represent the same

as in Fig. 4.
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Figure 6. Distribution of RE value differences between the mixed background-error covariance matrix experiments and the original setup

over the ENH region; otherwise same as in Fig. 5.
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Figure 7. Spatial reconstruction skill of precipitation in terms of RE values, assimilating only instrumental data. Top row shows the skill of

the original setup, and bottom row shows the result of the 50c_PbL_Pc2L experiment. The skill in the winter season presented in the left

column and for the summer season in the right column.
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Figure 8. Distribution of skill scores over the ENH region. The skill of the original setup is compared with experiment 75c_PbL_constPc2L,

75c_PbL_Pc2L, 100c_constPcL, and 100c_PcL. Distribution of correlation coefficients in the winter (left column) and in the summer (right

column) seasons. Distribution of RE values in the winter (left column) and in the summer (right column) seasons.
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Figure 9. Difference of the RE skill between the temporally localized experiment and the original setup, when only instrumental data are

assimilated. Temperature (top row) and precipitation (bottom row) differences are shown in the winter (left column) and in the summer (right

column) seasons. The black dots indicate the negative RE values in the temporally localized experiment.
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Table 1. Defined localization length scale parameters

Variable Localization length scale (km)

Temperature (2m) 1500

Precipitation 450

Sea-level pressure 2700
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Table 2. Summary of the experiments carried out in this study. The name of the experiments indicate which settings were used in the

assimilation. Localization refers to the shape of the localization function applied on Pb. γ is the multiplicative inflation factor. xclim indicate

from how many ensemble members the climatological state vector was constructed. xclimconst stands for keeping the climatological part in

the blending experiment unchanged in one October–September time window. Pbloc indicates the localization length scale parameter applied

for localizing Pb. β2 refers to the weight given to Pclim. Pclimloc indicates the localization length scale parameter applied for localizing Pclim.

i and p stands for instrumental-only and proxy-only observations experiments, respectively.

Name Localization γ Blending Temporal localization Obs. type

xclim xclimconst Pbloc β2 (%) Pclimloc

original iso no no i,p

aniso aniso no no i,p

mul1.02 iso 1.02 no i

mul1.12 iso 1.12 no i

25c_PbL_PcL iso no 250 no L 25 L no i,p

50c_PbL_PcnoL iso no 250 no L 50 no no i

50c_PbL_PcL iso no 250 no L 50 L no i,p

50c_PbL_Pc2L_100m iso no 100 no L 50 2L no i

50c_PbL_Pc2L iso no 250 no L 50 2L no i,p

50c_PbL_Pc2L_500m iso no 500 no L 50 2L no i

50c_Pb1.5L_Pc1.5L iso no 250 no 1.5L 50 1.5L no i,p

50c_Pb2L_Pc2L iso no 250 no 2L 50 2L no i,p

75c_PbL_PcL iso no 250 no L 75 L no i,p

75c_PbL_Pc2L iso no 250 no L 75 2L no i,p

75c_PbL_constPc2L iso no 250 yes L 75 2L no i

100c_PcL iso no 250 no 100 L no i,p

100c_constPcL iso no 250 yes 100 L no i

temp_loc iso no yes i
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