
Reviewer #1

This paper tests several different methodological choices that are typically made (or could be
made) in paleoclimate reconstructions using DA. I think this presents a good and valuable
presentation  and  discussion  of  these  choices.  The  findings  and  suggestions  for  future
reconstructions are very helpful to the community performing these types of reconstructions.

We thank the Reviewer for the positive comments on our work and for the suggestion how to
improve our figures.

Section 3.1: Is there any specific justification for the choice of the ratio of L_z and L_m being
2:1? Could this, or some other ratio, be justified by looking at the correlation length scale in
observational data?

The idea behind a longer length scale in zonal direction than in meridional direction is based
on the zonal flow in the atmosphere. On multi-annual to multi-decadal time scales multiple
processes act in meridional direction, e.g. a widening/shrinking of the Hadley cell, shifts of
the ITCZ or changes in atmospheric modes like the AMO or the NAO. These can shift the
zonal circulation northward or southward but the zonal coherence will be less affected. 

In principle the correlation length scale found in observational data or reanalyses could be
used, but the anisotropy depends strongly on season, variable and location (e.g., it is much
larger  in  the tropics  than in  the extratropics).  Between experiments  “no localization” (of
Pclim)  and  localization  of  the  standard  setup,  a  2:1  experiment  seems  like  a  good
intermediate. 

We explained the hypothesis in more details in the revised manuscript.

Section 3.1: Is there any justification for the specific localization values that you chose for
each variable that was reconstructed? Are these values data-driven or just educated guesses?
Were any experiments done to test on optimal localization value? I would assume that if these
values were used based on weather DA experiments, they might not apply on the longer paleo
time scales where one would generally expect the correlation length scales to be larger.

The localization length scale parameters were defined based on the spatial correlation of the
variables in the monthly ECHAM model simulation fields. In Section 2.4 we refer to the
paper by Franke et al. 2017 how the localization was done in the original setup. We used the
same localization length scale parameters for localizing the sample covariance in most of
our experiments to evaluate improvements in comparison with this initial setup. For this
study, we calculated the latitudinal dependency of correlation of the state variables from a
bigger ensemble of the model than in Franke et al (2017). The result suggested that the
longer length scale parameters can be applied in the tropics and the predefined length scale
parameter of precipitation is probably too strict. Based on the rather strict correlation length
scale parameters in the previous study and the assumption that the covariances can be better
estimated from a bigger ensemble, we used doubled length scale parameters in some of the
experiments for localizing the climatological covariances. In this case, the L for temperature
is 3000 km, which means that the correlation is decreased close to zero approximately 6000
km away from the observation. We did not carry out further experiment to find the optimal
localization  value  because  even  double  the  localization  distance  hardly  changed  the
reconstruction skill, not even at locations that newly fall inside the radius of influence of at
least a single observation. Hence,  our setup does not appear to be very sensitive on the
localization distance as long as it remains in a reasonable range. On the one hand, we do not



further restrict the localization because that would limit updates to a small regions around
observations.  On  the  other  hand,  our  experiments  without  localization  showed  negative
reconstruction skill in locations far away from observations, even with the error covariance
matrix is calculated from climatology. We provide further explanation about localization in
Section 2.4 and Section 3.2 in the revised manuscript.

Section 4.2.1: When you are comparing the distributions, you say that for example,the most
skillful reconstruction is obtained from the 100c_PcL experiment. What is the basis for saying
it’s the best? What aspect of the distribution are you comparing? The median or some other
specific value(s)?

Yes, for comparison we used only the median.

Many of the distributions shown in the figures look very similar so it was hard for me to feel
confident about the statement that one particular set of reconstruction choices was better than
another. Are the distributions statistically distinct?

We agree with the Reviewer that the distributions of the skill of the experiments over the 
extratropical  Northern  hemisphere  look  similar.  We  have  not  checked  whether  the  
distributions are statistically distinct. In the revised paper we provide an evaluation of the 
skill scores of the experiments compared to the original analysis skills, using a permutation 
test.

Instead of comparing the distributions, would it be possible to show the differences compared
to the "original"reconstruction (i.e., you’d compute the difference in the skill score for each
location and then summarize this distribution of differences in the plots)? I’m wondering if
this,or something similar, might make the differences more clear. Because currently when I
look  at  the  distributions,  many  of  them  look  very  similar  and  perhaps  even  statistically
indistinguishable.

Thank you for your suggestion. We made the plots as it was suggested and replaced Fig. 4-6
and Fig. 8 showing the differences between the experiments and the original analysis.

Fig 8 & 10: It would be very helpful to give a little more explanatory information/labeling on
each panel, such as was done in Fig 3.

We added more labels to the figures (in the revised manuscript Fig. 7 and Fig. 9).



Reviewer #2

This manuscript identifies the best choices from a number of different spatial and temporal
localization approaches and from different inflation techniques for the background error
covariance matrix in Ensemble Kalman Filters used in paleoclimatic applications. The
optimization of these technical details in data assimilation is important for the growing
paleoclimate data assimilation community. The results are systematically derived and the
manuscript is in general well written. I support publication after the points listed below have
been clarified or corrected.

We  thank  the  Reviewer  for  the  careful  revision  of  the  manuscript.  We  will  follow  his/her
recommendations and add further details at the indicated points to provide better understanding how
ensemble Kalman filter methods work, how we set up the blending experiment and how covariance
inflation techniques can help to better estimate the background-error covariance matrix. We are also
thankful for improving the English of the manuscript.

Specific comments

Page 1, Line 2, replace ‘of the assimilation system’ with ‘of some assimilation systems’

We replaced it.

Page 1, Lines 17/18, 24/25, ‘boundary conditions’ are specifications of state variables at the
boundaries  of  a  model  domain,  and  thus  not  the  same as  ‘forcings’,  which  are  external
influences on the system. The two should be distinguished throughout the text. It seems that
here  the  statement  are  about  forcings.  If  so,  reformulate  avoiding  the  use  of  ‘boundary
condition’.

Was replaced as:

Climate models constrained with realistic, time-dependent external forcings provide fields 
that are consistent with these forcings and the model physics.

If information from observations is optimally blended with climate model simulations, the 
result is the best estimate of the climatic state, given the observations, given the external  
forcings, and given the known climate physics.

Page 2, line 6, ‘linear models’ of what? I think it should by ‘linear dynamical systems’. A short
comment on why KFs are used with non-linear systems, including GCMs, would be good.
‘Gaussian distributions’ of what? The state variables?

Yes, the KF is optimal for linear systems (linear dynamical model and linear observation  
operator)  with  Gaussian  error  distributions  (model,  background,  and  observation).  In  
atmospheric  data  assimilation  the  most  commonly  used  KFs  are  the  ensemble-based  
Kalman filters that can handle some non-linearity in the dynamics and in the observation  
operator.  Moreover,  in our approach we use an offline implementation of the ensemble  
square  root  filter,  i.e.  we  only  adjust  the  precomputed  model  simulations  with  the  
observations  and  never  deal  with  the  question  of  model  dynamics.  Nevertheless,  we  
removed this sentence because it was not necessary here and just caused confusion.

Page 2, line 13-16, I suggest using ‘stationary offline’ and ‘transient offline’ for the two
approaches.



Thank you for the suggestion. We used the terms as stationary (forcing-independent) offline
and transient (forcing-dependent) offline to better distinguish between the two methods. 

Page 2, lines 17/18, ‘The true climate state is not known, therefore it has to be estimated’. Does
‘it’ refer to ‘the true climate state’, as the sentence suggests or to ‘the uncertainty of the
background state’,  which would  link better to  the  first  sentence  in  this  paragraph? This
sentence should be clarified, or it could simply be deleted (which I think is the better option).

We deleted the sentence.

Page 2, line 20, What is a non-simplified KF? A KF with a ‘true’ background error covariance
matrix?  If  so,  how  can  this  exist?  The  background  error  covariance  has  always  to  be
estimated somehow. Please clarify the statement.

We repalced  ‘Ensemble-based KFs are simplification of the KF’ to ‘Ensemble-based KFs 
are approximations of the KF’.

In the Kalman filter, the background-error covariance matrix is given as

the superscripts b and t indicate the background state and the true state, while the overline 
marks the expectation value.

In practice, as was said, the background-error covariance matrix has to be estimated. In  
ensemble-based  Kalman  filter  techniques,  the  ensemble  covariance  will  provide  the  
background-error covariance matrix and the true state is estimated by the ensemble mean.

Page 2,  line  23,  It  seems that  the sampling error for the  background error is  not  only a
random error, but leads to a systematic underestimation of the background error, otherwise
inflation would not be a suitable approach. Please explain better.

Ensemble-based filters with flow-dependent covariances can diverge due to sampling error.
Our small 30 member ensemble may result in an error underestimation, because we do not
assess  the  uncertainties  in  SST boundary  conditions  and external  forcings.  In  an online
ensemble-based  KF approach, after the update step all ensemble members are propagated
forward according to the model dynamics. However, if the uncertainty of the analysis is
underestimated in the update step, the background error may be underestimated in the next
time step and the method will trust the model more and more, while giving less and less
weight to the observations in the following time steps. This should not be a problem in
offline approaches. However, we conduct this experiment for completeness because as we
say in the manuscript, there are two commonly used methods to reduce the negative effect of
sampling error: inflation (e.g., Anderson and Anderson, 1999), and localization (e.g., Hamill
et al., 2001) of the background-error covariance matrix.”

The multiplicative inflation part was rewritten as:

A simple inflation technique is the multiplicative inflation (Anderson and Anderson, 1999),
which  compensates  for  potential  underestimation  of  the  analysis  error.  Multiplicative

Pb=(xb−x t)(xb−x t)T

Pe
b=(xb−xb)(xb−xb)T



inflation  helps  to  maintain  a  more  realistic  distribution  of  the  ensemble  members  by
increasing  the  deviation  of  the  members  from  the  ensemble  mean  at  each  DA cycle
(Anderson and Anderson, 1999). However, the underestimation of the analysis error is of
minor importance in offline approaches, because the ensemble members are not propagated
forward in time.

Page 2, lines 25/26. The statement on distribution of ensemble members refers to online
approaches, but the approach used by the authors is an offline approach. This is confusing.
Please briefly explain how the ensembles are generated in an online KF, and that in offline
approaches the ensemble is given, but that the background error covariance still needs to be
inflated.

To avoid any confusion, we changed the sentence to: "Two methods are commonly used in
online ensemble-based KF approaches to reduce the negative effect of sampling error:” On
page 2, line 8-11 the main steps of an online KF is already described. These steps remain the
same in online ensemble-based Kfs. In the update step the ensemble members are updated
with  the  observation  when  they  become  available.  In  the  forecast  step  these  updated
ensemble members are propagated forward by the model to the next time step, then the
mean and the covariance are estimated again.  Finally, with regard to the need to inflate the
background error covariance, please see our answer to the last comment on page 2, line 23.

Page 3, line 14, replace ‘other method’ with ‘additive method’

We replaced it.

Page 3, line 25, replace ‘’form’ with ‘from’

We replaced it.

Page  3,  line  28,  Don’t  use  ‘forced  by  boundary  conditions’,  as  forcings  and  boundary
conditions  are  different  (see  comment  above).  If  I  understand  correctly  for all  ensemble
members the same greenhouse gas, solar and volcanic forcings have been used, as well as the
same SST boundary conditions. Please clarify.

Yes, the same forcings and boundary conditions were used in the 30 members.

Was replaced as:

The 30 ensemble members were forced and driven with the same external forcings and  
with the same boundary conditions.

Page 3, Lines 29-31, The SST reconstruction can be expected to strongly influence the results
of  this  data assimilation approach with an atmosphere-only GCM. There should be some
comments  on  how  the  SST reconstructions  have  been  made,  what  is  known  about  their
uncertainties, and why this approach is taken rather than data assimilation with a coupled
atmosphere-ocean GCM.

We use the SSTs from Mann et al. (2009), augmented as described in Bhend et al. (2012).
The main reason why we use the SST reconstruction by Mann et al. 2009 is that it was the
only available reconstruction at  the time when we ran the simulation ensemble,  like we
already  explained  in  the  paper:  “For  sea-surface  temperatures  (SSTs),  which  have  a



particularly large effect on the simulations, the reconstruction by Mann et al. (2009) was
used. This is the only global gridded SST reconstruction that dates back till 1600.”

We already describe limitations of the reconstruction and how we tried to improve them in
the  discussion  paper,  too:  “The  SST  reconstruction  by  design  captures  interdecadal
variations  (Mann  et  al.,  2009),  hence  intra-annual  variability  dependent  on  a  El
Niño/Southern Oscillation reconstructions (Cook et al.,2008) was added to the SST fields.”
We will add a reference to the paper of Bhend et al. 2012, which explains the simulations in
a little more detail.

There are multiple reasons why we do not use a coupled atmosphere-ocean model:

1.  We understand a  paleo-reanalysis  to  be a product  that  best  describes the atmospheric
states of the past globally. 400 years of just externally forced coupled atmosphere-ocean
simulations would not be in close agreement with the true state of the ocean in the past and
e.g. not produce El Niño events in the years when they actually occurred. Therefore such
simulations would not capture related teleconnections patterns in the corresponding years,
either. We can not gain the same information that currently comes from the SST boundary
conditions with our data assimilation setup because we only assimilate absolutely dated tree-
ring proxies on land and mostly at mid to high latitude. It would be an option to assimilate
coral data in the future but there are few records that back to 1600 and their assimilation has
not been tested yet. That is why coral data assimilation in not an option for the presented
sensitivity experiments. The focus of this study is to show, how the paleo data assimilation
setup published by Franke et al. (2017) can be further improved without introducing further
changes that would blur the effect of the improved covariance estimation.

2. If we would like the ocean to be in closer agreement with the observations in a coupled
model,  we would  need to  do  an  online  assimilation  scheme that  could  take  the  longer
memory of the ocean into account whereas our atmospheric states have no memory that
extends beyond a month or year when the next proxy observation becomes available. Hence,
running a coupled ocean-atmosphere model would not allow us to work with our offline
assimilation system and do all the sensitivity experiments, which we present in this study.

3. Finally, an ensemble of coupled simulations plus the additional spin-up time for the ocean
to reach equilibrium would have simply not been computationally affordable.

Page 3, line 30, I think ‘till’ should not be used in formal writing and should be replaced with
‘until’ (also later in the text).

We replaced it, also in page 4, line 10-12

Page 4, line 1, replace ‘boundary conditions’ with ‘forcing’, and make a separate statement on
land-surface boundary conditions, including which variables are prescribed.

Was replaced as:
 

Further  forcings  include  solar  irradiance,  volcanic  activity,  and  greenhouse  gas  
concentrations (for more details see Bhend et al., 2012; Franke et al., 2017). The land-use 
reconstruction by Pongratz et al. (2008) was used to derive the land-surface parameters.

We would suggest only mentioning that the land-use reconstruction by Pongratz et al. (2008)
was used in the paper because we would not like to give very different levels of detail for
each forcing or boundary condition. The reconstruction by Pongratz is the standard land-use



reconstruction used in basically all ECHAM model simulations since the reconstruction was
published. For the Reviewer interest, the 14 land-cover classes defined by Pongratz et al
(2008)  were  mapped  to  land  surface  parameters  closely  following  the  procedure  of
Hagemann et al. (1999). 

Page 4, line 16, ‘CCC400’ has not been introduced

In the title of section 2.1 we try to indicate that the model simulation is called CCC400.
CCC400 stands  for  “Chemical  climate  change  over  the  past  400  years”.  The  name is  
misleading since the model was run without chemistry due to a lack of computing resources.

To make it more clear we will replace page 3, line 25-26 as:
The  model  simulation,  termed  as  Chemical  Climate  Change  over  the  Past  400  years
(CCC400), has 30 ensemble members, that are used as background to reconstruct monthly
climate states between 1600 and 2005.

Page 4, line 23, If I understand correctly the deviations of the ensemble members from the
ensemble mean are updated in the online EnSRF according to equation 2,  but not  in the
offline EKF, which uses an existing ensemble. Please clarify.

In both online and offline EnSRF methods, the mean and the deviation from the mean are
updated, according to Eq. (1) and Eq. (2). However, in an online application each ensemble
member is propagated forward to the next time steps. In case of an offline approach the
process stops after all available observations at the current time steps have been  assimilated.

Page 4, lines 28-30, the statements on the 6 month periods are partly redundant.

Was replaced as:

In the EKF, the length of the assimilation window is 6 month (October-March and April-
September), which were adapted to the southern and northern hemispheric growing seasons
to  effectively  incorporate  the  proxy  records  stored  in  trees.  Due  to  the  6-monthly
assimilation window, xb contains the variables of 6 months.

Page 5, lines 5-7, How have the error variances been chosen? Should sigma^2 be K^2? If so,
why is the error for documentary data smaller than for instrumental data? Which multiple
regression?

The error variance of documentary indices without units is set to 0.25 standard deviations^2.
Because in the experiments described in this paper, we did not assimilate documentary data,
we will delete the information regarding to this source in the revised manuscript.

Was replaced as:

We set  the  error  variances  of  instrumental  temperature observations  to  0.9 K^2,  and of
instrumental pressure data to 10 hPa^2. The error variances are rough estimates that include
for instance measurement uncertainties, temporal inhomogeneities, and the fact that a station
is not representative for a grid cell (see Frei, 2014; Franke et al., 2017). The errors of tree-
ring proxy data are calculated as the variance of the multiple regression residuals of the H
operator.



We added further explanation about the H operator: 

H is the forward operator that maps the model state to the observation space (here, it  is
linear). H differs depending on the type of observation being assimilated. In case of tree-ring
width data H extracts temperature between May and August and precipitation between April
and June from the model, then these fields are transformed to observational space by using a
multiple regression approach (for more details see Franke et al., 2017).

Page 5, lines 16 – 19. The notation is not clean. In line 16 it is said that R is a diagonal matrix,
in line 19 that R is a scalar. The problem is that the same notation is used for an equation
using the full set of observations (where R is a diagonal matrix) and for the equation when the
individual observations are assimilated sequentially. Please reformulate.

It  is  true  that  the  same notation  is  used for  describing  the  whole  system or  the  serial  
approach, but in other papers (including the original paper by Whitaker and Hamill, 2002) 
the notation remains unchanged. Therefore, we would like to follow the common usage of 
the notation and keep it as it was in the submitted paper.

Page 6, line 1, replace ‘localization function’ with ‘the localization function’.

We replaced it.

Page 6, line 19/20, replace ‘additive inflation’ with ‘the additive inflation’, and ‘hybrid’ with
‘the hybrid’.

We replaced it.

Page 6, line 23-25, The explanation is confusing. One can select ensemble members for the
whole period or some or all  ensemble members for some time steps; how exactly are the
climatological  state  vector  and  the  associated  error  covariance  matrix  calculated?  The
simulations have already been performed; why are there substantial computational costs for
using a large number of ensemble members?

We added the following explanation:

The climatological state vector is created as: 1. Define the ensemble size (n) of  xclim ; 2.
Select n random years between 1601 and 2005; 3. Every year has 30 members from which
one member is randomly selected and kept; 4. The chosen members are combined in xclim .
xclim is  randomly  resampled  after  every  second  assimilation  cycle.  Using  xclim in  the
assimilation leads to increased computational cost, which partly comes from the creation of
xclim. The other time consuming part comes from the updating of the climatological part after
each  observation  is  assimilated.  (The  standard  way  when  observations  are  assimilated
serially). We tested numbers between 100 and 500. From xclim a climatological background-
error covariance matrix (Pclim) can be obtained by using the ensemble perturbations.

Page 6, line 29, HT is at the end of all terms in the equation. Can it not simply be deleted?

We deleted them.

Page 7, line 4-5. It is not clear how xclim is calculated and updated, what n is, and what
‘propagated’ means in an offline assimilation scheme.



Please see our reply to comment Page 6, line 23-25.

We assimilate observations serially, that is observations are processed one at a time. After
the  first  observation  is  assimilated  and  the  analysis  is  obtained,  this  analysis  field  will
become the background state for the next observation. On Figure 2 the arrows pointed from
the analyses to the background state vectors are meant to indicate this process. Here, by
propagating  we  refer  to  this  process,  that  the  information  from the  observation  is  also
incorporated into xclim and not only in xb in most of our experiments (see Table 2).

We replaced propagate with update to avoid confusion.

Page 8, line 7, replace ‘isotropic localization’ with ‘an isotropic localization’.

We replaced it.

Page 8, line 15, ENH is not defined.

In page 8 line 2, we introduced ENH, which stands for extratropical Northern hemisphere.

Page 9, line 3, Explain why Pb does not have full rank, why this is a problem, and what this
has to do with inflation.

In the Introduction (page 2, line 20-29), some applications of covariance inflation were  
mentioned and how they help  to  avoid  the  negative  effect  of  sampling  error.  Inflation  
techniques were discussed later again in section 3.2.

We rewrote the sentence as:

The  main  problem of  ensemble-based  DA techniques  is  the  computationally  affordable
limited ensemble size.  Due to the finite ensemble size the estimation of Pb suffers from
sampling error. Applying inflation techniques is one method to mitigate its effect (see Sec.
3.2).

Page 9, lines 5-6. This is not well phrased; it is not the covered model space that is multiplied
with the inflation factor.

Thank you for pointing out the mistake. 

We rewrote the sentence as:

Using  the  multiplicative  inflation  method,  the  deviations  from  the  ensemble  mean  are
multiplied with a small factor (y).

Page 9, line 16, It has not yet been mentioned in the main text in section 3 that 250 members
have been chosen and how they have been selected (see also earlier comment on this).

In most of our experiment, we indeed used 250 members to create the climatological state 
vector. We wrote that the ensemble size of the climatological part ranged between 100 and 
500 members in the experiments. 

Here, we added a sentence:



In most of our experiment n is 250.

Page 12, line 2, replace ‘verification’ with ‘validation’ (this is used elsewhere in the text) or
‘performance’

We replaced it.

Page 12, line 6, missing full stop after ‘2’.

We corrected it.

Page 12 and also in main text, Add a comment on whether the skill differences found are
substantial and practically relevant.

We agree that this statistic was missing. In the revised paper we provide an evaluation of the 
skill scores of the experiments compared to the original analysis skills, using a permutation 
test. 

Page 14, line 11, ‘kalman’ should be upper case.

We corrected it.

Page 14, line 16/17, typos and missing spaces

We corrected it.

Figs. 1, 3, 8, 10 should be bigger

We replaced the figures in the revised version.

References

Frei, C.: Interpolation of temperature in a mountainous region using nonlinear profiles and non-
Euclidean distances, International Journal of Climatology, 34, 1585–1605, 2014.



Relevant changes

- All figures were modified and Figure 4 and Figure 5 were combined into one Figure.

-  Eq. 1, Eq. 2 and Eq. 6 were rewritten.

- A permutation test was conducted to test significant difference between the experiments and the 
original version.
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Abstract. Data assimilation has been adapted in paleoclimatology to reconstruct past climate states. A key component of the

assimilation system
::::
some

:::::::::::
assimilation

::::::
systems

:
is the background-error covariance matrix, which controls how the information

from observations spreads into the model space. In ensemble-based approaches, the background-error covariance matrix can be

estimated from the ensemble. Due to the usually limited ensemble size, the background-error covariance matrix is subject to the

so-called sampling error. We test different methods to reduce the effect of sampling error in a published paleo data assimilation5

setup. For this purpose, we conduct a set of experiments, where we assimilate early instrumental data and proxy records stored

in trees, to investigate the effect of 1) the applied localization function and localization length scale; 2) multiplicative and

additive inflation techniques; 3) temporal localization of monthly data, which applies if several time steps are estimated together

in the same assimilation window. We find that the estimation of the background-error covariance matrix can be improved by

additive inflation where the background-error covariance matrix is not only calculated from the sample covariance, but blended10

with a climatological covariance matrix. Implementing a temporal localization for monthly resolved data also led to a better

reconstruction.

1 Introduction

Estimating the state of the atmosphere in the past is important to enhance our understanding of the natural climate variability,

the underlying mechanisms of past climate changes and their impacts. To infer past climate states, two basic sources of infor-15

mation are available: observations, and numerical models. Climate models constrained with realistic, time-dependent boundary

conditions
::::::
external

::::::::
forcings provide fields that are consistent with the external

::::
these

:
forcings and the model physics. Obser-

vations can be instrumental meteorological measurements, which are mainly available from the mid 19th century. Prior to this

time, information from proxies stored in natural archives (like trees, speleothems, marine sediments, ice cores) or documentary

data can be exploited. Observations provide important local information, however their spatial and temporal coverage is sparse.20

In recent years, a novel technique, the data assimilation (DA) approach, has been adapted for paleoclimatological research.

DA creates a framework to combine information from different sources. If information from observations is optimally blended

with climate model simulations, the result is the best estimate of the climatic state, given the observations, given the boundary

conditions
:::::::
external

:::::::
forcings, and given the known climate physics. The field of paleo data assimilation (PDA) has undergone

1
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profound developments, and many DA techniques have been implemented to reconstruct past climate states, such as forcing

singular vectors and pattern nudging (Widmann et al., 2010), selection of ensemble members (Goosse et al., 2006; Matsikaris

et al., 2015), particle filters (e.g., Goosse et al., 2010), the variation approach (Gebhardt et al., 2008), the Kalman filter and its

modifications (e.g., Bhend et al., 2012; Hakim et al., 2016; Franke et al., 2017; Steiger et al., 2018). However, there are still

unresolved problems, and thus, a need for improvements how to best combine observations with climate model simulations.5

One popular DA method is the Kalman filter (KF; Kalman, 1960). The KF provides an estimate of the state that can be shown

to be optimal with linear models and Gaussian distributions (Ghil and Malanotte-Rizzoli, 1991). In standard applications, the

processes of the KF can be summarized in two main steps (Ide et al., 1997). In the update step, the background state and the

uncertainty of the background state provided by the model simulation are adjusted by assimilating new observations. In the

forecast step, the updated state, called the analysis, and the uncertainty of the analysis are propagated forward in time. These10

processes are repeated when new observations become available. However, in PDA, the forecast step is usually neglected, that

is the filter is used offline (e.g., Franke et al., 2017). Because the process is not cycled, the background state is obtained from

a pre-computed model simulation. In some previous PDA studies, the background state is constructed once from the model

simulation, and later, the same state is used in every assimilation window (Steiger et al., 2018, and references therein)
:
;
::
we

:::::
refer

::
to

::::
them

::
as

:::::::::
stationary

::::::::::::::::::
(forcing-independent)

:::::
offline

::::
DA

:::::::
methods. In other PDA studies, the background state is specific for the15

current assimilation window, that is, the state changes in each assimilation window according to the forcings (Bhend et al.,

2012; Franke et al., 2017);
:::
we

:::
call

:::::
them

:::::::
transient

:::::::::::::::::
(forcing-dependent)

:::::
offline

::::
DA

:::::::
methods.

An essential component of the KF is the uncertainty of the background state. The true climate state is not known, therefore

it has to be estimated. In ensemble-based approaches, an ensemble of the background state provides estimation of the truth,

represented by the ensemble mean, and the perturbations from the mean are used to estimate the uncertainty, represented by20

the background-error covariance matrix. Ensemble-based KFs are simplification
::::::::::::
approximations

:
of the KF, because the true

state is usually sampled with a few tens to a few hundreds of ensemble members. The limited ensemble size leads to errors in

the estimation of the background-error covariance matrix. This effect is known as the sampling error.

Two methods are commonly used
:
in

::::::
online

:::::::::::::
ensemble-based

:::
KF

::::::::::
approaches to reduce the negative effect of sampling error:

inflation (e.g., Anderson and Anderson, 1999), and localization (e.g., Hamill et al., 2001) of the background-error covariance25

matrix. A simple inflation technique is the multiplicative inflation (Anderson and Anderson, 1999),
::::::
which

:::::::::::
compensates

:::
for

:::::::
potential

::::::::::::::
underestimation

::
of

:::
the

:::::::
analysis

:::::
error. Multiplicative inflation helps to maintain a more realistic distribution of the

ensemble members by increasing the deviation of the members from the ensemble mean at each DA cycle (Anderson and

Anderson, 1999), which
:
.
::::::::
However,

:::
the

::::::::::::::
underestimation

::
of

:::
the

:::::::
analysis

:::::
error

:
is of minor importance in offline approaches

:
,

::::::
because

:::
the

::::::::
ensemble

::::::::
members

:::
are

:::
not

::::::::::
propagated

::::::
forward

::
in
:::::
time. Covariance inflation, besides reducing the sampling error,30

also accounts
:::
can

::::
also

:::::::
account for underestimated model error. In the additive inflation technique, the covariances are inflated

by e.g., adding an additional error term to the background-error covariances (Houtekamer et al., 2005). Covariance localization

removes long-range spurious covariances in the background-error covariance matrix that occur by chance due to a limited

sample size. Several localization techniques have been proposed, from a simple cut-off radius approach (Houtekamer and

Mitchell, 1998) to more sophisticated ones (Houtekamer and Mitchell, 2001; Hamill et al., 2001). By applying covariance35
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localization methods, the elements of the background-error covariance matrix are modified, and in the standard approach the

covariances are forced to approach zero at a certain separation length from the location of the observation. This is achieved by

multiplying the background-error covariance matrix element-wise with a distance-dependent function. In practice, this function

is often estimated by a Gaussian localization function, recommended by Gaspari and Cohn (1999).

In
::::::::
stationary

::::::
offline

:
PDA studies, the time-dependent background-error covariance matrix is often replaced by a constant5

covariance matrix (e.g., Steiger et al., 2014). By using a constant background-error covariance matrix in the update step, the

dependence on the climate state is lost. However, it is possible to estimate the covariance matrix from a much larger ensemble

size, which reduces the sampling error. If the constant covariance matrix is built from a large enough sample size, representing

different climate states, it can be successfully used in the assimilation process (Steiger et al., 2014).

Covariance inflation and localization techniques are used and under improvement in weather forecasting (e.g., Bowler et al.,10

2017), but have not been yet sufficiently explored for PDA. In this paper, we discuss three possibilities to improve the estimates

of background error, relevant to our PDA method:

– using a two-dimensional multivariate Gaussian function as a horizontal localization function to test the hypothesis of

longer correlation length scales in zonal than meridional direction.

– applying covariance inflation techniques. In the multiplicative inflation technique, a constant factor is used to inflate the15

deviations from the ensemble mean. In the other
:::::::
additive method, the background-error covariance matrix is calculated

as the sum of the sample covariance matrix plus a climatological background matrix, where the climatological back-

ground is based on all ensemble members of multiple years. This larger sample size decreases the chances of spurious

correlations.

– adding temporal localization to the background-error covariance matrix. Multiple time steps are combined in one assim-20

ilation window to efficiently assimilate seasonal paleodata. In case of monthly observations, covariances between the

months have been used to update all six months (Franke et al., 2017).

This paper is structured as follows: An overview of our PDA approach, introducing the model, the observational network

and the offline DA technique is given in Sect. 2. Section 3 describes the experimental framework. In Sect. 4 the results are

presented and each experiment followed directly by a discussion. We summarize our experiments in Sect. 5.25

2 Ensemble Kalman Fitting Framework

2.1 Model Simulation: CCC400

We start form
::::
from

:
an existing DA system, which is described in Bhend et al. (2012) and Franke et al. (2017). It uses a

:::
We

:::
use

::
the

:::::
same

::::::::::
atmospheric

::::::
model

:::::::::
simulation

::
as

::
in

:::
the

:::::::
previous

:::::::
studies.

:::
The

::::::
model

:::::::::
simulation,

::::::
termed

::
as

::::::::
Chemical

:::::::
Climate

:::::::
Change

:::
over

::::
the

::::
Past

:::
400

:::::
years

::::::::::
(CCC400),

:::
has 30 member ensemble of atmospheric model simulations as

::::::::
ensemble

::::::::
members,

::::
that30

::
are

:::::
used

::
as

:
background to reconstruct monthly climate states between 1600 and 2005. Simulations were performed with the
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ECHAM5.4 climate model (Roeckner et al., 2003) at a resolution of T63 with 31 levels in the vertical. The 30 ensemble mem-

bers were forced
:::
and

:::::
driven

:
with the same

:::::::
external

:::::::
forcings

:::
and

::::
with

:::
the

:::::
same boundary conditions. For sea-surface tempera-

tures (SSTs), which have a particularly large effect on the simulations, the reconstruction by Mann et al. (2009) was used. This

is the only
::
At

:::
the

::::
time

:::::
when

:::
the

:::::
model

:::::::::
simulation

::::
was

:::
run,

::::
this

:::
was

:::
the

:::::
only

:::::::
available

:
global gridded SST reconstruction that

dates back till
::::
dated

:::::
back

::::
until 1600. The

::::::
surface

::::::::::
temperature

::::::::::::
reconstruction

:::
by

::::::::::::::::
Mann et al. (2009)

:
is

:::::
based

:::
on

:
a
::::::::::
multiproxy5

:::::::
network

:::
and

::::
was

::::::::
produced

::
by

::
a

::::::
climate

::::
field

::::::::::::
reconstruction

:::::::
method.

::::
The SST reconstruction by design captures interdecadal

variations (Mann et al., 2009), hence intra-annual variability dependent on a El Niño/Southern Oscillation reconstructions

(Cook et al., 2008) was added to the SST fields. Further boundary conditions
::::::
forcings

:
include solar irradiance, land-surface

parameters, volcanic activity, and greenhouse gas concentrations (for more details see Bhend et al., 2012; Franke et al., 2017)

. The
::::::::::::::::::::::::::::::::::::::::::::::::
(for more details see Bhend et al., 2012; Franke et al., 2017).

::::
The

::::::::
land-use

::::::::::::
reconstruction

::
by

:::::::::::::::::::
Pongratz et al. (2008)

:::
was10

::::
used

::
to

:::::
derive

::::
the

::::::::::
land-surface

::::::::::
parameters.

::::
The 6-hourly output fields provided by the model were transformed to monthly

means. To reduce the computational burden only every second grid points in the latitude and longitude were selected. We limit

the analysis in this study to 2m-temperature, precipitation and sea-level pressure.

2.2 Observational network

In this study, we use the same observational network of tree-ring proxies, documentary data and early instrumental measure-15

ments as described in Franke et al. (2017) (Fig. 1)
:
;
:::
but

:::
we

::::
only

::::::::
assimilate

:::::::
tree-ring

:::::::
proxies

:::
and

::::::::::
instrumental

::::
data. The temporal

resolution of the instrumental air temperature and sea-level pressure measurements , as well as the documentary temperature

data, is monthly. The tree-ring proxy records have annual resolution. Trees respond to a locally varying growing seasons.

We consider temperature from May till
:::
until

:
August and precipitation from April till

::::
until

:
June to possibly affect tree-ring

width data. The maximum latewood density proxies were considered to be affected by temperature over May till
::::
until August.20

The observations were quality checked before the assimilation, and outliers which were more than 5 standard deviation away

from the calculated 71-year running mean were discarded,
:::
both

:
for instrumental and proxy data. The documentary data were

manually screened.

2.3 Assimilation method

In our paleoclimate reconstruction, we combine the CCC400 model simulation with the observations as described above by25

implementing a modified version of the ensemble square root filter (EnSRF; Whitaker and Hamill, 2002). This ensemble-based

DA method is called ensemble Kalman fitting (EKF; Franke et al., 2017). In fact, the EKF is an offline version of the EnSRF
:
;

:::
and

:::
the

::::::
update

:::
step

:::
of

:::
the

::::
EKF

:::::::
remains

:::
the

::::
same

::
as

:::
of

:::
the

::::::
EnSRF. EKF is described in more detail in Bhend et al. (2012) and

Franke et al. (2017). Here we shortly highlight the most important aspects of the EKF. The update equation
:::
step

:
in the EnSRF
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scheme has two parts: updating the mean (x), and for each member, the deviation from the mean (x′). They are calculated as

xa = xb +K
(
y−Hxb

)
(1)

x′a = x′b + K̃
(
′−Hx′b

)
, with ′ = 0 (2)

where K and K̃ are

K = PbHT (HPbHT +R
)−1

(3)5

K̃ = PbHT
((√

HPbHT +R
)−1)T

×
(√

HPbHT +R+
√

R
)−1

(4)

The background state vector (xb) contains the variables of interest from CCC400 (Table 1). In the EKF, the length of the assim-

ilation window is 6 month (October-March and April-September), which were
:::
was adapted to the southern and northern hemi-

spheric growing seasons to effectively incorporate the proxy records stored in trees. Hence
::::
Due

::
to

:::
the

:::::::::
6-monthly

::::::::::
assimilation

:::::::
window, xb contains the variables of 6 months(October–March, April–September). xa stands for the analysis state vector.10

H is the forward operator that maps the model state to the observation space (here, it is linear). H differs depending on the

type of observation being assimilated(see Franke et al., 2017).
:
.
::
In

::::
case

::
of

:::::::
tree-ring

:::::
width

::::
data

::
H

:::::::
extracts

::::::::::
temperature

:::::::
between

::::
May

:::
and

::::::
August

::::
and

:::::::::::
precipitation

:::::::
between

::::
April

::::
and

::::
June

:::::
from

:::
the

::::::
model,

::::
then

::::
these

:::::
fields

:::
are

::::::::::
transformed

::
to
::::::::::::
observational

::::
space

:::
by

:::::
using

::
a

:::::::
multiple

:::::::::
regression

::::::::
approach

:::::::::::::::::::::::::::::::::
(for more details see Franke et al., 2017).

:
y represents the observations. K is

the Kalman gain matrix, and K̃ is the reduced Kalman gain matrix. Pb is the background-error covariance matrix, estimated15

from the 30 ensemble members. A common assumption is to treat the observation-error covariance matrix (R) as a diagonal

matrix: it is presumed that the elements of R are uncorrelated. Therefore, the observations can be processed serially. We set the

error variances of instrumental temperature observations to 0.9
::
K2, and of instrumental pressure data to 10 . The defined error

variance of documentary temperature data is 0.25 σ2, while the
:::::
hPa2.

:::
The

:::::
error

::::::::
variances

:::
are

:::::
rough

::::::::
estimates

:::
that

:::::::
include

:::
for

:::::::
instance

:::::::::::
measurement

:::::::::::
uncertainties,

::::::::
temporal

::::::::::::::
inhomogeneities,

::::
and

:::
the

:::
fact

::::
that

:
a
::::::
station

::
is
:::
not

::::::::::::
representative

:::
for

:
a
::::

grid
::::
cell20

:::::::::::::::::::::::::::::
(see Frei, 2014; Franke et al., 2017).

::::
The errors of tree-ring proxy data are calculated as the variance of the multiple regression

residuals
:
of

:::
the

:::
H

:::::::
operator. The assimilation is conducted on the anomaly level: we subtract both from model and from ob-

servational data their 71-yr running mean in order to deal with the biases related to systematic model errors and inconsistent

low-frequency variability in the paleodata.

The use of DA in an offline manner is typical in paleoclimate reconstructions (e.g., Dee et al., 2016). Bhend et al. (2012)25

argue that the assimilation step is too long for initial conditions to matter, whereas there is some predictability from the

boundary conditions. In addition, Matsikaris et al. (2015) found that both online and offline DA methods perform similarly

in their paleoclimate reconstruction setup. Furthermore, the offline DA is advantageous as it allows using the pre-computed

simulations. In our case, we can use CCC400 (Bhend et al., 2012) and test the method without having to repeat the simulations.
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2.4 Spatial localization

As R is a diagonal matrix the EKF can be used to assimilate the observations one by one.
:
,
:::
that

::
is
::::
after

:::
the

::::
first

::::::::::
observation

::
is

:::::::::
assimilated

:::
and

:::
the

:::::::
analysis

::
is

::::::::
obtained,

:::
this

:::::::
analysis

::::
field

:::::::
becomes

:::
the

::::::::::
background

::::
state

:::
for

:::
the

:::
next

::::::::::
observation

::::
(see

:::
the

:::::
arrow

:::::::
pointing

::::
from

:
xa

::
to xb

::
on

::::
Fig.

::
2).

:
This serial implementation makes the calculation of Pb simpler. H is then

:::::::
becomes a vector

(not a matrix) of the same length as xb. It is zero everywhere except for few elements (those required to model the observation).5

This translates to only a few columns of Pb that are actually required. HPbHT and R are then scalars (Whitaker and Hamill,

2002). This procedure also makes the localization simpler, as it needs to be applied only to those columns. In the original

setup the elements of Pb were Schur-product with a distance-dependent function (see Eq. (7) in Franke et al., 2017). For all

the variables in the state vector, the same Gaussian function was used but with different localization length scale parameters

(Table 1).
:::
The

::::::::::
localization

::::::
length

::::
scale

::::::::::
parameters

:::
are

::::::
defined

:::::
based

:::
on

:::
the

:::::
spatial

::::::::::
correlation

::
of

:::
the

:::::::
variables

:::
in

:::
the

:::::::
monthly10

:::::::
CCC400

::::::
model

::::::::
simulation

::::::
fields. For the cross-covariances between two variables, the smaller localization length scale of the

two variables is applied. With the serial implementation, the calculation and localization of Pb is significantly simplified.

3 Experiment design

Franke et al. (2017) produced a monthly global paleoclimatological data set by using the EKF method. We leave most of the

original setup unchanged and mainly focus on the estimation of Pb. To investigate the performance of the EKF some aspects15

involving localization and estimation of the Pb matrix were tested. An overview of all experiments conducted in this study is

given in Table 2. The results of the various experiments are evaluated in terms of performance measures, which then compared

to those obtained with the original setup.

3.1 Spatial localization

In most of the studies,
::
the

:
localization function is implemented in an isotropic manner. In the original setup, the same hori-20

zontally isotropic localization function was used with different localization parameters. However, such spatial symmetries may

not be realistic. In the real atmosphere, correlation lengths might be longer in the zonal than in the meridional direction, due

to the prevailing winds and the weaker large-scale temperature gradients in this direction.
::
On

:::::::::::
multi-annual

::
to

::::::::::::
multi-decadal

::::
time

:::::
scales

:::::::
multiple

:::::::::
processes

:::
act

::
in

::::::::::
meridional

::::::::
direction,

::::
e.g.

:
a
::::::::::::::::
widening/shrinking

:::
of

:::
the

::::::
Hadley

:::::
cell,

:::::
shifts

::
of

:::
the

:::::
Inter

:::::::
Tropical

:::::::::::
Convergence

::::
Zone

::
or

:::::::
changes

::
in

::::::::::
atmospheric

::::::
modes

::::
like

::
the

:::::::
Atlantic

::::::::::::
Multi-Decadal

::::::::::
Oscillation

::
or

:::
the

:::::
North

:::::::
Atlantic25

:::::::::
Oscillation.

::::::
These

:::
can

::::
shift

:::
the

:::::
zonal

:::::::::
circulation

::::::::
northward

:::
or

::::::::
southward

:::
but

:::
the

:::::
zonal

:::::::::
coherence

:::
will

:::
be

:::
less

::::::::
effected. Hence,

instead of using a circular Gaussian function, we conducted an experiment with a spatially anisotropic localization function

C = exp
(
−1

2

(
d2z
L2
z

+
d2m
L2
m

))
, (5)

where dz and dm are the distances from the selected grid box in the zonal and meridional directions, respectively. Lz and Lm

are the length scale parameters used for localization in the zonal and meridional directions, respectively. As a first experiment30
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we tested a 2:1 ratio for Lz:Lm. We used the values from Table 1 in the meridional direction and doubled them in the zonal

direction. Thus, the resulting localization function has an elliptical shape.

3.2 Inflation techniques

Covariance inflation techniques are another possible method to compensate for errors in the DA system (Whitaker et al., 2008).

The multiplicative inflation technique uses a small factor γ (γ > 1) with which the x′b is multiplied (Anderson and Anderson,5

1999). This type of covariance inflation accounts for filter divergence due to sampling error (Whitaker and Hamill, 2002),

but can be also applied to take into account system errors (Whitaker et al., 2008). We conducted some experiments using

multiplicative inflation, although in our offline approach, filter divergence is not the main concern as Pb is
::::::::
ensemble

::::::::
members

::
are

:
not propagated in time.

The other methodology that we adapt, shows similarities with
::
the

:
additive inflation technique (e.g., Houtekamer and Mitchell,10

2005) and with
::
the hybrid DA scheme (e.g., Clayton et al., 2013). In both methods Pb is modified by either adding model error

(Houtekamer and Mitchell, 2005) or a so-called climatological covariance matrix (Clayton et al., 2013) to Pb. This has given

rise to the idea of generating a climatological ensemble in order to alleviate the effect of the small ensemble size. In the orig-

inal setup Pb is approximated from only 30 members. Here, we additionally build a climatological state vector (xclim) from

randomly selected ensemble members from our 400-year long model simulation. The number of ensemble members should15

be higher than the original ensemble size, but still computationally affordable.
::::
The

::::::::::::
climatological

::::
state

:::::
vector

::
is
:::::::

created
:::
as:

::
1.

:::::
Define

::::
the

::::::::
ensemble

:::
size

:::
(n)

:::
of xclim

:
;
::
2.

::::::
Select

:
n
:::::::
random

:::::
years

:::::::
between

:::::
1601

:::
and

:::::
2005;

::
3.
::::::

Every
::::
year

:::
has

:::
30

::::::::
members

::::
from

:::::
which

::::
one

:::::::
member

::
is

::::::::
randomly

:::::::
selected

::::
and

::::
kept;

::
4.

::::
The

::::::
chosen

::::::::
members

:::
are

:::::::::
combined

::
in xclim

:
. xclim

:
is
:::::::::

randomly

::::::::
resampled

::::
after

:::::
every

::::::
second

::::::::::
assimilation

::::::
cycle.

:::::
Using xclim

:
in
:::
the

:::::::::::
assimilation

::::
leads

::
to

::::::::
increased

::::::::::::
computational

::::
cost,

::::::
which

:::::
partly

:::::
comes

:::::
from

:::
the

:::::::
creation

::
of

:
xclim.

::::
The

:::::
other

::::
time

:::::::::
consuming

::::
part

::::::
comes

::::
from

:::
the

::::::::
updating

::
of

:::
the

::::::::::::
climatological

::::
part20

::::
after

::::
each

::::::::::
observation

::
is

::::::::::
assimilated.

::::
(The

::::::::
standard

::::
way

:::::
when

::::::::::
observations

:::
are

::::::::::
assimilated

::::::::
serially). We tested numbers be-

tween 100 and 500. From xclim a climatological background-error covariance matrix (Pclim) can be obtained
::
by

:::::
using

:::
the

::::::::
ensemble

:::::::::::
perturbations. The background-error covariance matrix used in the blending experiments (Pblend) is built as a linear

combination of the sample covariance matrix (Pb) and the climatological covariance matrix (Pclim):

PblendHT = β1PbHT +β2PclimHT, (6)25

where β1, β2 mean the weights given to the covariance matrices. The sum of the weights is unity.

Figure 2 shows the main steps of the blending assimilation process. First, the covariance matrices were localized separately,

then we blended them according to the given weights. We conducted several experiments to tune the ratio between the two

covariance matrices while using different localization length scale parameters (L) (Table 2).
:::
We

::::
used

:::
the

::::
same

:::
Ls

::
for

:::::::::
localizing

::
Pb

:
in

:::::
most

::
of

:::
our

:::::::::::
experiments

::
to

:::::::
evaluate

::::::::::::
improvements

::
in

::::::::::
comparison

::::
with

:::
the

:::::::
original

:::::
setup.

:::
For

::::
this

:::::
study,

:::
we

:::::::::
calculated30

::
the

:::::::::
latitudinal

::::::::::
dependency

::
of

:::::::::
correlation

::
of

:::
the

::::
state

::::::::
variables

::::
from

::
a

:::::
bigger

::::::::
ensemble

::
of

:::
the

::::::
model

::::
than

::
in

::::::::::::::::
Franke et al. (2017)

:
.
:::
The

:::::
result

::::::::
suggested

::::
that

:::::
longer

:::
Ls

:::
can

:::
be

::::::
applied

::
in

:::
the

::::::
tropics

:::
and

:::
the

::
L

::
of

:::::::::::
precipitation

:
is
::::::::
probably

:::
too

:::::
strict.

:::::
Based

:::
on

:::
the

:::::
rather

::::
strict

:::
Ls

::
in

:::
the

:::::::
previous

:::::
study

::::
and

::
the

::::::::::
assumption

::::
that

:::
the

::::::::::
covariances

:::
can

::
be

:::::
better

:::::::::
estimated

::::
from

:
a
::::::

bigger
:::::::::
ensemble,
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::
we

::::
used

:::::::
doubled

::::::
length

::::
scale

::::::::::
parameters

::::
(2L)

::
in

::::
some

:::
of

:::
the

::::::::::
experiments

:::
for

::::::::
localizing

:::
the

::::::::::::
climatological

::::::::::
covariances.

::
In

::::
this

::::
case,

:::
the

::
L

:::
for

::::::::::
temperature

::
is

:::::
3000

:::
km,

::::::
which

:::::
means

::::
that

:::
the

:::::::::
correlation

::
is
:::::::::
decreased

:::::
close

::
to

::::
zero

::::::::::::
approximately

:::::
6000

:::
km

::::
away

:::::
from

:::
the

::::::::::
observation.

Since observations are assimilated serially, we also update xclim after an observation is assimilated with the same Kalman

gain matrices as xb. Thus, in the assimilation process we propagate
:::::
update

:
30 + n ensemble members, which leads to an5

increased computational time. .
:

3.3 Temporal localization

Localizing observations in time is a special feature of the EKF due to its 6-month assimilation window. Having the state

vector in half-year format, every month within the October–March or April–September time window is updated by each single

observation. To test whether the covariances between a single observation and the multivariate climate fields are correctly10

captured, we ran an instrumental-only experiment with temporal localization. We set covariances between different months to

zero.

3.4 Skill scores

The EKF method is tested with different localization functions and with a set of mixed background-error covariance matri-

ces as described above. We have performed the experiments by assimilating either only proxy records (proxy-only) or only15

instrumental data (instrumental-only). The proxy-only experiments were carried out between 1902 and 1959, because many

proxy records already end in the 1960s, while the instrumental-only experiments were tested over the 1902–2002 period. We

separated the different observation types to see whether different settings perform better depending on the type of data being

assimilated. We do not compare proxy-only results with instrumental-only results, hence the difference in time periods used

does not matter; we simply use the longest possible time period. To evaluate the reconstructions we examined two verification20

measures: correlation coefficient, and reduction of error (RE) skill score (Cook et al., 1994). We use the CRU TS 3.10 dataset

(Harris et al., 2014) for reference in the validation process. The presented verification measures are functions of time. Correla-

tion is calculated between the absolute values of the ensemble mean of the analysis and the reference series at each grid point.

The RE compares
:
,
::
in

:::
our

::::
case,

:
the reconstruction with a no knowledge prediction (such as a climatology)

:::
the

:::::
model

:::::::::
simulation,

both expressed as deviations from a reference.25

RE = 1−
∑

(xui −x
ref
i )2∑

(xfi −x
ref
i )2

(7)

where xu is the ensemble mean of the analysis, xf is the ensemble mean of the model background state, xref is the reference

dataset and i refers to the time step. The RE skill scores are computed based on anomalies with respect to the 71-year running

climatologies. Note that xf comes from a forced model simulation, therefore it already has skill compared with a climatological

state vector. The RE is 1 if the xu is equal to xref . Negative RE values indicates that the background state is closer to the30

reference series than the analysis.
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::
To

:::
test

::::::
which

::::::::::
experiments

:::::
have

::::::::::
significantly

::::::::
different

::::
skill

::::::::
compared

::::
with

:::
the

:::::::
original

:::::
skill,

:::
we

::::::
carried

:::
out

:
a
:::::::::::

permutation

:::
test

::::::::
following

:::
the

:::::::
method

::::::::
described

::
in

::::::::::::::::::::::
DelSole and Tippett (2014)

:
.
::::::::::
Permutation

::::
was

::::::::
performed

::::::
10000

:::::
times.

::
If
:::
the

:::::::::
difference

:::::::
between

:::
the

::::::
median

:::
of

:::
the

:::::::::
experiment

::::
and

:::
the

:::::::
median

::
of

:::
the

:::::::
original

::::
data

::::
falls

:::::::
outside

::
of

:::
the

::::
95%

::::::::::
confidence

::::
level

:::
of

:::
the

::::::
interval

:::::::::
calculated

::::
from

::::::::
permuted

::::
data,

::::
then

:::
the

::::::::::
experiment

::
is

::::::::::
significantly

:::::::
different

:::::
from

:::
the

::::::
original

:::::
data.

In the next section, we will focus on analysing the result of the experiments mainly over the extratropical Northern hemi-5

sphere (ENH), because most of the data are located in this region. The skill scores refer to seasonal averages of the ensemble

mean.

4 Results and Discussions

4.1 Localization function

4.1.1 Results10

We compared the original setup applying
::
an isotropic localization function and the experiment in which an anisotropic local-

ization function was used, to test whether we can obtain a more skilful reconstruction by implementing anisotropic localization

method. As an example of the spatial reconstruction skill, we show the RE values of temperature (Fig. 3). The figures reveal

that the type of localization function only resulted in small differences in both experiments. Nonetheless, there are larger areas

of negative RE values (Greenland, Siberia) with the anisotropic localization function in the proxy-only experiment (Fig. 3f).15

In the instrumental-only experiment the decrease of RE values occur in the northern high latitudes and in the Tibetan plateau

in both seasons (Fig. 3d, Fig. 3e). To have a better overview how the skill scores changed we summarize their distributions

with the help of box plots. Figure 4 shows how the correlation coefficients of the
:::::::::
differences

::
of

::::
skill

::::::
scores

:::::::
between

:::
the

:::::
aniso

:::::::::
experiment

:::
and

:::
the

:::::::
original

::::
skill

:::
for

:::
the three variables (temperature, precipitation and sea-level pressure) were affected in the

ENH regionby using the anisotropic localization function. In the instrumental-only experiment correlation values of temper-20

ature and sea-level pressure decreased in both season while for precipitation it remained mostly unchanged. The RE values

show that the experiments with anisotropic localization function reduced the skill of the reconstructions, but the extent of the

reduction varies with the variables and with the seasons (Fig. ??
:
4). In general, the same holds for the proxy-only experiment

(Fig. 4, Fig. ??).

4.1.2 Discussion25

In a previous ozone reconstruction study, a seasonally and latitudinally varying localization method was tested which mostly

positively affected the analysis (Brönnimann et al., 2013). Here, we increased the zonal distances to see if we can use the in-

formation of the observations for a larger region. However, the verification measures are shifted more to the negative direction.

We assume that the degraded skill of the reconstruction is due to the choice of too long Lz, hence spurious correlations were

not removed. Using anisotropic localization (doubling the Ls only in the zonal direction) consistently makes the reconstruction30

worse.
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4.2 Inflation experiments

4.2.1 Results

The rank-deficiency of Pb is the
:::
The

:
main problem of ensemble-based DA techniques . To improve this issue we have

tested different inflation methods.
:
is
:::

the
::::::::::::::

computationally
:::::::::
affordable

::::::
limited

::::::::
ensemble

::::
size.

::::
Due

::
to

:::
the

:::::
finite

::::::::
ensemble

::::
size

:::
the

::::::::
estimation

::
of
:::
Pb

:::::
suffers

::::
from

::::::::
sampling

:::::
error.

::::::::
Applying

:::::::
inflation

:::::::::
techniques

::
is

:::
one

:::::::
method

::
to

:::::::
mitigate

::
its

:::::
effect

::::
(see

::::
Sec.

::::
3.2).

:
5

Using the multiplicative inflation method, the model space covered by the ensemble is extended by being
::::::::
deviations

:::::
from

::
the

:::::::::
ensemble

::::
mean

:::
are

:
multiplied with a small factor (γ). To find the optimal γ a set of experiment runs is required. We used

γ = 1.02 and γ = 1.12 in our experiments, where only instrumental data were assimilated. We chose γ from a range that was

previously tested by Whitaker and Hamill (2002). Multiplying the deviations from the ensemble mean with γ = 1.02 in the

assimilation process hardly affected the skill of the reconstruction over the ENH region (not shown). When we increased the10

value of γ to 1.12, the RE values slightly decreased (not shown). We did not carry out further experiments since based on the

results randomly increasing the error in background field did not lead to improvement.

In the other set of experiments, we used Pblend in the update equation (Eq. 6). The experiments were run with using β2 equal

to 0.25, 0.50, 0.75, and 1 to estimate the Pblend (denoted 25c, 50c, etc.). Besides the varying weight given to Pclim, the applied

Ls on Pb and Pclim differed as well. Three Ls were used: No localization (termed no), applying Ls as in Table 1 (L) and doubling15

these numbers (2L). Different combinations of the fraction of Pclim and Ls were termed accordingly (e.g., 50c_PbL_Pc2L).

We expect that estimating the covariances from 250 members a
::::::
bigger

::::::::
ensemble

::::
size

:::::::::::
(n=100-500) instead of 30

::::::::
members

leads to a more accurate background matrix.
::
In

::::
most

:::
of

:::
our

::::::::::
experiment

:
n
::
is
::::
250.

:
Hence, Pclim is

::::
likely

:
less affected by the

sampling error implying that long-range spurious correlations are less prominent, which makes localization less needed. We

presume that using Pblend helps to better reconstruct areas which were characterized with lower skill score values in the original20

setup and to improve the estimation of unobserved climate variables. The reconstruction skill of the blending experiments is

always calculated from xa (Fig. 2).

For the ENH region we present how the verification measures changed by replacing Pb with Pblend in the assimilation process.

We conducted an experiment without localizing Pclim and using Ls from Table 1 on Pb in the constructionn
:::::::::
construction

:
of

Pblend. However, the skill of the reconstruction was largely reduced, implying that 250 members are not enough to avoid25

localization altogether (not shown).

Figure 5 and Figure 6 show the distribution of
:::
the

:::::::::
differences

::
of

:::
the

::::
skill

::::::
scores

:::::::
between

:::
the

::::::::::
experiments

::::
and

:::
the

:::::::
original

:::::::
analysis,

:::
for correlation coefficients and RE values , respectively. Depending on the variables and the data type being assim-

ilated, different setups perform best
:::::
better. In case of assimilating only instrumental data, the most skilful

:::
one

:::
of

:::
the

::::::
largest

:::::::
increase

::
of

::::::
median

:::
for

:
temperature reconstruction was obtained from the 100c_PcL experiment in both seasons (Fig. 5a and30

b, Fig. 6a and b). Precipitation records were not assimilated, thus a reasonable estimation of the cross-variable covariances is

essential. The skill of the precipitation reconstruction
::::
with

:::
the

:::::::
original

:::::
setup, in terms of correlation, is better than the forced

simulation (Fig. 5d). However
::
not

:::::::
shown);

:::::::
however, the RE skill score are rather decreased with the original setup over the ENH

region
:::::
values

:::
are

:::::::
negative

::::
over

::::
large

::::::
regions

:::
in

::
the

:::::
ENH

:
(Fig. 7a and b). The settings of 75c

:
).

:::::
Using

:::::
Pblend

:
in

:::
the

:::::::::::
assimilation,

10



::::
with

:::
e.g.

:::
the

:::::::
settings

::
of
::::

50c_PbL_Pc2L experiment lead to improved analysis
::::
more

:::::::
positive

:::
RE

::::
skill

:
(Fig. 7c and d). The

biggest improvement, in terms of RE skill score, was found in Europe (Fig. 7c and d). The 75c
:::
50c_PbL_Pc2L analysis also

has higher skill in North-America, especially in the summer season (Fig. 7d). The largest improvement in
:::
skill

::
of

:
the sea-level

pressure reconstruction was achieved
:::
also

::::::::
improved

:
in the 50c_PbL_Pc2L experiment (Fig. 5g and h, Fig. 6g and h). In the

proxy-only experiments, 75c_PbL_Pc2L is among the best performing experiments for all the variables (Fig. 5c, f, i; ,
:
Fig. 6c,5

f, i).

We also investigated the effect of the ensemble size in the estimation of Pclim. To test whether further improvements can

be achieved by doubling the ensemble size of xclim, we ran an experiment with the following setup: β1 and β2 are equally

weighted, and L and 2L is applied on Pb, Pclim, respectively (Table 2). In the experiment we assimilated only instrumental data.

The skill scores of xa (corr, RE) from the 500 ensemble members experiment showed no marked improvement compared with10

the same experiment with 250 ensemble members. An additional experiment was carried out with the same setup but using

only 100 ensemble members in the construction of xclim. The verification measures of the 50c_PbL_Pc2L_100m experiment

are higher than the original one, and the distribution of the skill scores over the ENH region is very similar to what we obtain by

using 250 members in Pclim for temperature and precipitation. However, the sea-level pressure fields from the 50c_PbL_Pc2L

have higher skill than in the 50c_PbL_Pc2L_100m experiment (not shown).15

Furthermore, we conducted two experiments in which only xb was updated after an observation was assimilated, and xclim

was kept constant in the assimilation window. However, the ensemble members of xclim were randomly reselected for each

year (October–September). The advantage of this setup compared to the setup described in Sect. 3.2 is that, it is computationally

less demanding since only the original 30 members keep being updated with the observations. In the first test, we give β2=0.75

weight to Pclim with 2Ls. In the second test β2=1, that is only Pclim used for updating xb and for localization the Ls in Table 120

were applied. By comparing the skill of the reconstructions without and with updating the climatological part, we see that the

skill scores are higher when the climatological part is also updated with the information from the observations (Fig. 8). The

only exception is the correlation values of sea-level pressure: when keeping the climatological part constant, they are slightly

higher in both seasons (Fig. 8e and f). Nonetheless, by keeping the climatological part static in one assimilation window, the

experiments still outperform the original reconstruction (Fig. 8).25

4.3 Discussion

4.2.1
:::::::::
Discussion

We have tested a number of configurations of the mixed covariance matrix Pblend to evaluate the effect of the sampling error.

In numerical weather predication (NWP) applications, various methods have been designed to better estimate the errors of the

background state. In hybrid DA systems, the advantages of variational and ensemble Kalman filter techniques are combined30

(Hamill and Snyder, 2000; Lorenc, 2003). In another method, the background-error covariances are obtained from an ensemble

of assimilation experiments performed by a variational assimilation system (Pereira and Berre, 2006). In an additive inflation

experiment, a term is added to the xa to account for the errors of the DA system (Whitaker et al., 2008).
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In our implementation, Pblend is calculated from xb and xclim. Using Pblend in the assimilation process improved on the

reconstruction performed with the original setup. The skill scores show the largest improvement in the sea-level pressure recon-

struction. Moreover, the skill of the precipitation reconstruction also improved, indicating that Pclim helps to better estimate the

cross-covariances of the background errors between the variables. In general, increasing the weight of Pclim in forming Pblend,

positively affected the skill of the analysis. The 100c_PcL experiment, in which Pblend is equal to Pclim, is similar to the DA5

technique used in the last millennium climate reanalysis (LMR) project (Hakim et al., 2016). In the LMR, 100 randomly cho-

sen ensemble members form a climatological state vector, which is used in each assimilation window and is updated with the

observations. In this study, xclim is randomly resampled every year and primarily used in the estimation of Pblend. The analysis

of the 100c_PcL experiment is more skilful, than the original reconstruction. The settings used in the 100c_PcL experiment

lead to the best
::
one

:::
of

::
the

::::::
largest

:::::::
increase

::
in

:::
the

:::::::
median

::
for

:
temperature reconstruction when only instrumental measurements10

are assimilated. However, other settings performed better
::::::
resulted

::
in

:::::
larger

:::::::
increase

::
of

::::::
median

:
for different variables and obser-

vation types. By applying no localization on Pclim in the 50c_PbL_PcnoL experiment we obtained a less skilful reconstruction

than by using the other two localization schemes. The skills reduced especially over the areas where no local observations were

assimilated. Using 2Ls for localizing the covariances of Pclim in the instrumental-only experiments resulted in better analysis

:::::
higher

:::::::::
correlation

::::::
values

:
of sea-level pressure (50c_PbL_Pc2L) and helped to better reconstruct summer precipitation

:::::
obtain15

:::::
higher

:::::::::
correlation

::::::
scores

::
of

:::::::::::
precipitation

::
in

:::::::
summer. Among the proxy-only experiments, 75c_PbL_Pc2L shows the best skill

:::::
largest

:::::::
increase

:::
of

::::::
median

:
for pressure reconstruction. Here, pressure data are not assimilated, and the result suggests that by

applying longer Ls, the cross-variable covariances are better treated.
:::
We

:::::
tested

:::::::
whether

:::
the

::::
skill

::
of

:::
the

::::::::::
experiments

:::::::::
performed

::::
with

::::::
various

::::::
settings

::
is
:::::::::::
significantly

:::::::
different

::::
from

:::
the

::::
skill

::
of

:::
the

:::::::
original

:::::::
analysis.

:::
We

:::::::::
compared

:::
the

::::::
median

:::::
value

::
of

:::
the

::::
skill

:::::
scores

::::
from

:::
the

::::::::::
experiments

::::
and

:::
the

::::::
original

:::::
data,

:::
and

::::
with

::::
most

:::
of

::
the

:::::::
settings

:
a
:::::::::
significant

:::::::::
difference

:::
was

::::::::
obtained

::
for

:::
all

:::
the20

::::::::
variables. The results of the experiments show that with a mixed covariance matrix implementation a major drawback of the

ensemble-based DA system, due to the limited ensemble size, can be improved.

4.3 Localization in time

4.3.1 Results

Since six monthly time steps were combined in one state vector (one assimilation window), covariances between different25

months also need to be considered. An additional experiment was conducted in which the (localized) Pb was multiplied with

a temporal localization function when instrumental data were assimilated. This is a specific experiment due to the structure of

EKF. The assimilation window in the EKF is 6-month, hence a single observation is enabled to adjust all the meteorological

variables in xb in a half-year time window. In the temporal localization experiment, the information from a given observation

can only modify the different climate fields in its current month, while leaving all other fields of the 5 months unchanged30

(Table 2). In general, the skill scores indicate an improvement. The difference of RE values between the temp_loc and original

experiments are mostly positive over the northern high latitude areas (Fig. 9).
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4.3.2 Discussion

The higher skill scores with temporal localization (Fig. 9) indicate that the cross-covariances in time were not correctly rep-

resented by Pb. Hence, it is likely that in the original setup some non-physical covariances were taken into account. Applying

the same assimilation scheme to another problem (estimating the two-dimensional ozone distribution from an ensemble of

chemistry-climate models and historical observations), Brönnimann et al. (2013) used a localization time scale of 3 months5

based on empirical studies.
:
It
::::

may
:::
be

:::::
worth

::::::::::
considering

::
or

::::::::
allowing

::
for

::::::::
temporal

:::::::::
covariance

::
in

:::::::
specific

:::::
cases

::::
(e.g.

::
in

:::
the

::::
case

::
of

:::::
ozone

:::::::::::::
concentrations)

:::::
which

::::
vary

:::
on

:::::
longer

::::
time

:::::
scale.

:

5 Conclusions

In this study, an
:
a
::::::::
transient offline data assimilation approach was used to test the effect of the estimation of the background-

error covariance matrix in a climate reconstruction. Several experiments were evaluated with different verification
::::::::
validation10

measures to see which background-error covariance matrix estimation techniques improve the skill of the reconstruction. The

validation
::::::::
evaluation

:
of the presented techniques suggests the following: 1. Applying an anisotropic localization function

on the sample covariance matrix did not improve the reconstruction; 2 Constructing the background-error covariance matrix

from the sample and climatological covariance matrices, allows using longer localization length scales, and it leads to higher

skill scores
::
2.

:::::
Most

::
of

:::
the

:::::::
settings,

::::::
which

:::::
make

::::
use

::
of

:::::::::
covariance

:::::::::
estimates

::::
from

::
a
:::::
larger

::::::::::::
climatological

:::::::
sample,

:::::
result

:::
in15

::::::::::
significantly

::::::::
improved

:::::
skills

:::::::::
compared

::
to

:::
an

:::::::::
estimation

::::
from

:::
the

:::
30

:::::::
member

:::::::::
ensemble; 3. Assimilating early instrumental

data with temporal localization leads to a better analysis. To which extent the different techniques helped in the estimation of

the background-error covariance matrix varies geographically and also depends on the climate variable being reconstructed.

The cross-variable covariances of the background-error covariance matrix can provide information from unobserved climate

variables. Including climatological information in the estimation of precipitation has lead to a better reconstruction, especially20

in Europe. Estimating sea-level pressure with the blended Pblend matrix also improved the skill of the reconstruction. For

instance, the 50c_PbL_Pc2L experiment performs constantly better than the original setup. This study shows that results can

be improved by better specifying the background-error covariance matrix. In the future we will combine all the techniques that

lead to more skilful analyses to produce a climate reconstruction over the last 400 years.
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Figure 1. The observational network in 1904, before quality check.
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Figure 2. The main steps of the blending experiment in one assimilation window. The blended covariance matrix Pblend is calculated as a linear

combination from the year specific and climatological covariance matrices. The calculation of the Kalman gain (K) and reduced Kalman

gain (K̃) matrices is the same as in Eq.3 and Eq. 4 except the covariance matrix is replaced with Pblend. The observation is assimilated to both

state vectors and these analysis become to the starting point for assimilating the next observation.
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Figure 3. Spatial skill of temperature reconstruction presented by RE values, assimilating only instrumental data (a,b,d,e
:::
left

:::
and

::::::
middle

::::::
columns) and only proxy records (c,f

:::
right

::::::
column). Comparing the skill of the reconstruction using isotropic localization function (a,b,c

:::
top

:::
row) versus an anisotropic localization function (d,e,f

:::::
bottom

:::
row). Panel a and d show the skill

::::
Skill in the winter season , while panel b, c,

e,
:::
(left

::::::
column)

:
and f illustrate the skill in the summer season

:::::
(middle

:::
and

::::
right

:::::::
columns)

:::
are

:::::
shown.
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Reduction of Error differences

Figure 4. Distribution of
::::::::
Difference

::::::
between

:
the correlation coefficient values

::::
aniso

:::::::::
experiment

::
and

:::
the

::::::
original

::::
setup

:
in

::::
terms

::
of
::::
skill

:::::
scores

:::
over

:
the ENH regionin .

::::::::::
Distributions

::
of

:::::::::
correlation

:::::
values

:::
and

::
of

::
RE

::::::
values

::
are

:::
on the winter (left column) and summer (middle and right

columns) half-years
:::::
figures,

::::::::::
respectively.

:::::::::
Distribution of temperature (a,b,c

:::
top

:::
row), precipitation (d,e,f

:::::
middle

:::
row),

:
and sea-level pressure

(g,h,i
:::::
bottom

:::
row)

::
are

::::::
shown. Blue is

:::::
colour

:::::::
indicates the instrumental-only experiment and yellow is

::::::
indicates

:
the proxy-only experiment.

The midline of the box is the median. The lower (upper) border of the box is the first (third) quartile. The whiskers extend up to 1.5 times the

interquartile range; beyond these distances the number of outliers are given under the box plots. The grid boxes were not area-weighted.
:::
The

:::::
asterisk

:::::
above

:::
the

:::
box

:::::::
indicates

::::::::
significant

::::::::
differences

:::::::
between

::
the

::::::
median

::
of

:::
the

::::::::
experiment

:::
and

:::
the

::::::
original

:::::
setup.

Distribution of RE values, as in Fig. 4.
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Figure 5. Distribution of correlation coefficients in
::::::::
differences

::::::
between

:
the different mixed background-error covariance matrix experiments

in
::
and

:
the

:::::
original

::::
setup

::::
over

:::
the ENH region. The left column shows the skill of the reconstruction in the winter seasons, while the middle

and right columns in the summer season. The labels on the x-axis indicating the experiments. Box plot,
:::::
colour,

:
number on the panels and

colors
:::::
asterisk

:
represent the same as in Fig. 4.
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Figure 6. Distribution of RE values in
::::
value

::::::::
differences

::::::
between

:
the different mixed background-error covariance matrix experiments in

:::
and

the
:::::
original

::::
setup

::::
over

:::
the ENH region, ;

:
otherwise same as in Fig. 5.
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Figure 7. Spatial reconstruction skill of precipitation in terms of RE values,
:::::::::
assimilating

::::
only

:::::::::
instrumental

::::
data. Panel a and b show

:::
Top

:::
row

::::
shows

:
the skill using

:
of the original setup, and panel c and d show

:::::
bottom

::::
row

::::
shows

:
the result of the 75c

:::
50c_PbL_PcL2

::::
Pc2L experiment.

The skill in the winter season presented in the a
::
left

::::::
column and c panel and for

::
the summer on

:::::
season

:
in
:
the b and d panels

:::
right

::::::
column.
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Figure 8. Distribution of skill scores over the ENH region. The skill of the original setup is compared with experiment 75c_PbL_constPc2L,

75c_PbL_Pc2L, 100c_constPcL, and 100c_PcL. Distribution of correlation coefficients in the winter (left column) and in the summer (right

column) seasons. Distribution of RE values in the winter (left column) and in the summer (right column) seasons.
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Figure 9. Difference of the RE skill between the temporally localized experiment and the original setup: temperature
:
,
::::
when

:::
only

::::::::::
instrumental

:::
data

:::
are

:::::::::
assimilated.

:::::::::
Temperature

:
(a
:::
top

:::
row) in winter and (b) in summer; precipitation (c

:::::
bottom

:::
row)

::::::::
differences

:::
are

:::::
shown in

:::
the winter

and (d
::
left

::::::
column)

:::
and in

:::
the summer

::::
(right

:::::::
column)

::::::
seasons. The black dots indicate the negative RE values in the temporally localized

experiment.
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Table 1. Defined localization length scale parameters

Variable Localization length scale (km)

Temperature (2m) 1500

Precipitation 450

Sea-level pressure 2700
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Table 2. Summary of the experiments carried out in this study. The name of the experiments indicate which settings were used in the

assimilation. Localization refers to the shape of the localization function applied on Pb. γ is the multiplicative inflation factor. xclim indicate

from how many ensemble members the climatological state vector was constructed. xclimconst stands for keeping the climatological part in

the blending experiment unchanged in one October–September time window. Pbloc indicates the localization length scale parameter applied

for localizing Pb. β2 refers to the weight given to Pclim. Pclimloc indicates the localization length scale parameter applied for localizing Pclim.

i and p stands for instrumental-only and proxy-only observations experiments, respectively.

Name Localization γ Blending Temporal localization Obs. type

xclim xclimconst Pbloc β2 (%) Pclimloc

original iso no no i,p

aniso aniso no no i,p

mul1.02 iso 1.02 no i

mul1.12 iso 1.12 no i

25c_PbL_PcL iso no 250 no L 25 L no i,p

50c_PbL_PcnoL iso no 250 no L 50 no no i

50c_PbL_PcL iso no 250 no L 50 L no i,p

50c_PbL_Pc2L_100m iso no 100 no L 50 2L no i

50c_PbL_Pc2L iso no 250 no L 50 2L no i,p

50c_PbL_Pc2L_500m iso no 500 no L 50 2L no i

50c_Pb1.5L_Pc1.5L iso no 250 no 1.5L 50 1.5L no i,p

50c_Pb2L_Pc2L iso no 250 no 2L 50 2L no i,p

75c_PbL_PcL iso no 250 no L 75 L no i,p

75c_PbL_Pc2L iso no 250 no L 75 2L no i,p

75c_PbL_constPc2L iso no 250 yes L 75 2L no i

100c_PcL iso no 250 no 100 L no i,p

100c_constPcL iso no 250 yes 100 L no i

temp_loc iso no yes i
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