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“Identifying teleconnections and multidecadal variability of East Asian surface temperature during
the last millennium in CMIPS simulations” by Satyaban B. Ratna et al.

We have responded to the referee’s comments in blue text below, as well as modifying our manuscript
and providing a new supplement containing some additional supporting results.

Replies to anonymous Referee #1

Ratna et al., examined the relationships between AMO/PDO and surface temperature in East Asia (TAS)
at multidecadal time scales based on models and reconstructions data, found that external forcing
greatly strengthened the relationship between AMO and TAS but weakened relationship between PDO
and TAS, and discussed the volcano influences. This is an interesting study on how external forcing
influences on teleconnetions between AMO/PDO and TAS. However, | still have some concerns on this
study.

Reply: We thank the referee for their time and for their helpful suggestions.
Major concerns:

1) On the reliability of model and reconstruction data. Comparisons between modeled PDO/AMO from
(CCSM4, MPI-ESM-P, BCC) with observed PDO/AMO index from HadISST/NCDC ERSST during the period
of 1870-2000 should be added to evaluate the reliability of PDO/AMO index from model. There are
several PDO/AMO reconstruction (such as, Gray et al., 2004; Shen et al., 2006). Although such PDO/AMO
reconstructions are relatively short, the results seem more convincing by adding these records. In
addition, there are published and robust Asian summer temperature reconstructions (e.g. Cook et al.,
2013, Shi et al., 2015), such reconstruction data should be used. Comparisons among different
reconstructions are as important as comparisons among the different models.

Shen, C., W.-C. Wang, W. Gong, and Z. Hao. 2006. A Pacific Decadal Oscillation record since 1470 AD
reconstructed from proxy data of summer rainfall over eastern China. Geophysical Research Letters, vol.
33, L03702, 2006.

Gray, S.T., LJ. Graum-lich, J.L. Betancourt, and G.T. Pederson. 2004. A tree-ring based reconstruction of
the Atlantic Multidecadal Oscillation since 1567 A.D. Geophysical Research Letters, 31:L12205,
doi:10.1029/2004GL019932.

Cook E R, Krusic P J, Kevin J. Anchukaitis et al. Tree-ring reconstructed summer temperature nomalies
for temperate East Asia since 800 C.E. Climate Dynamics, 2013, 41(11-12):2957-2972.

Shi F, Ge Q, Yang B, et al. A multi-proxy reconstruction of spatial and temporal variations in Asian
summer temperatures over the last millennium. Climatic Change, 2015, 131(4):663-676.



10

15

20

25

30

35

Reply:

Evaluation of model PDO/AMO. We now include a spatial comparison of the models’ PDO/AMO
signatures with those observed PDO/AMO, using HadlISST and ERSST in Figs. 1 and 2 of our revised
manuscript.

Analysis of additional, shorter PDO/AMO reconstructions. The primary focus of this study is on the
model simulations and the influence of external forcings, and on records of at least 1000-year length.
While analysis of additional reconstructions is worth doing, that is more suited to another study examining
shorter periods. We would prefer not to dilute our focus by analysis of additional reconstructions that are
shorter (and, since our focus is also exclusively on multidecadal timescales and longer, having millennial-
length timeseries is beneficial). Concerning the Gray et al. AMO reconstruction, we note the comments
of Wangetal. (2017: disclosure, several authors are also authors of the current study): “The reconstruction
of Gray et al. is based on a sparse tree-ring network, completely independent of our predictors; it has
precise dating control, but its smaller network (only 12 sites) may compromise its representation of AMV
if the centres of climate impact of AMV shift through time (also see the discussions in ref. 16).”

Wang J, Yang B, Ljungqvist FC, Luterbacher J, Osborn TJ, Briffa KR and Zorita E (2017) Internal and
external forcing of multidecadal Atlantic climate variability over the past 1,200 years. Nature Geoscience
10, 512-517 (d0i:10.1038/nge02962).

Analysis of individual Asian summer temperature reconstructions. The E Asian temperature
reconstruction we used, from Wang et al. (2018), is a composite of seven published reconstructions that
already includes the two suggested by the referee (Cook et al. 2013, Shi et al. 2015). The time series
comparison of these three datasets can be seen in Wang et al (2018). Nevertheless, we have calculated
the correlations between three of the individual summer temperature reconstructions (Cook et al. 2013,
Shi et al. 2015, Zhang et al. 2018) and AMO (Wang et al. 2017, Mann et al. 2009), PDO (Mann et al.
2009, MacDonald et al. 2005), volcanic (GRA, Gao et al. 2008; CEA, Crowley et al. 2008; SIG, Sigl et
al. 2015) and solar forcing (VSK, Vieira et al. 2011; DB, Delaygue and Bard (2011); SBF; Steinhilber et
al. 2009). They do show some interesting differences, perhaps related to how well they resolve the
response to volcanic forcing, so we have included these additional results in the supplementary material
of our revised manuscript (Fig. S3). However, with the exception of the correlations between E Asian
temperature and the Mann et al. (2009) AMO index, the only significant correlations (with some solar
forcing, PDO and AMO reconstructions) at the multidecadal timescales are with the Wang et al. (2018)
composite reconstruction.

2) On PDO signal. PDO has clear decadal and inter-decadal signal. Figure 11 also showed significant 15-
20 years periods for PDO. However, all the time series are passed through a 30-year low pass filter using
the Lanczos filter, which may miss key information of PDO. 10-year low pass filter should be used for
PDO analysis.

Reply: We agree that PDO has a decadal signal which can been identified in Figure 11. However, the
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specific purpose of our study is to look at variability on multidecadal timescales (title and first line of the
abstract), not decadal timescales, which is why we have passed all timeseries (including the PDO) through
a 30-year low-pass filter. Therefore we do not use a 10-year filter because that would conflict with the
aim of our study.

3) On Volcano influences. Although previous studies showed that volcano eruptions affected decadal
climate changes, it is equivocal that volcano eruptions affected multidecadal climate changes. For
example, TAS reconstruction showed clear volcanic forcing signal, and volcano eruptions resulting in
pulses of cooler summer conditions that may persist for several years (See Figure 12 in Cook et al., 2013).
However, this study showed that there were not significant correlations between TAS and volcanic
forcing (Figure 8c). In addition, superposed epoch analysis (SEA) should be used to test the impact of
explosive volcanism on temperature.

Reply: Again, we note the aim of our study is explicitly to look at multidecadal timescales, so a
superposed epoch analysis would not add more to the results already found. However, as noted above, we
have now also analysed three individual E Asian temperature reconstructions, including Cook et al. (2013).
Although the correlations with volcanic forcing are slightly stronger for Cook et al. (2013) than for the
other reconstructions (Fig. S3 of our revised manuscript), they are still not statistically significant at the
multidecadal timescale. This contrasts with six of the seven climate models, which show significant
multidecadal correlations between simulated E Asian T and volcanic forcing, a finding that we report in
the paper. There is also evidence that volcanic eruptions affect heat content and SST on these longer
timescales (e.g. Gleckler et al. 2006). As suggested by the referee, the volcanic influence on the
reconstructed temperatures is probably limited to the interannual timescale — but this timescale is not the
focus of our study.

Gleckler, P. J.,, T. M. L. Wigley, B. D. Santer, J. M. Gregory, K. AchutaRao, and K. E. Taylor, 2006:
Volcanoes and climate: Krakatoa's signature persists in the ocean. Nature, 439, 675.

4) On time scales of external forcing. there are other external forcings (e.g. solar activity) that should be
considered. Solar activity has multi-decadal periods.

Reply: We focussed on volcanic forcing because it had previously been established that this was the
largest external influence on the last millennium simulations (see the first paragraph of section 5 of our
manuscript). However, since we are also looking at reconstructions, the referee is correct that we should
not neglect solar forcing, because the reconstructions might show a significant association with solar
forcing (indeed, as Wang et al. 2018 showed) even though the models may not. We have now included
solar forcings in our analysis of the correlations between E Asian temperature and PDO/AMO/external
forcing, both in model and reconstructions (Figs. 7 and 8 of our revised manuscript). We used three
different solar forcing reconstructions (Vieira et al. 2011; DB, Delaygue and Bard (2011); Steinhilber et
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forcing is the composite reconstruction of Wang et al. (2018).

5) On influences of external forcing, external forcing greatly strengthened the relationship between
AMO and TAS but weakened relationship between PDO and TAS. Do you think such results are related
to definition and calculation of AMO and PDO? In simple terms, AMO reflects average SST, but PDO
reflects spatial configuration of SST. So AMO may be related to external forcing while PDO may be
related to internal variability.

Reply: Yes, the referee’s explanation is correct.

Minor Concerns:

1) Page 3, Line 20-22. For temperature over East Asia, TAS reconstruction is summer temperature, and
TAS model data is summer, cold season temperature and annual temperature. It is confusing. Please
clarify which season temperature used in Figure 3-8 in Figure caption.

Reply: The annual mean temperature is used in Figures 3-8. We have amended the figure captions to
make this clear.

2) Page 13, Line 9, East Asiantemperature should be East Asian temperature.

Reply: We have corrected this typo.

3) Figure 7a, the label for y axis for volcanic forcing should be added.

Reply: We have added the y-axis label for volcanic forcing: 'Radiative forcing (W m-2)’
4) Figure 8, confidence level explanation should be added.
Reply: We have changed the way that we mark the significant correlations (bold symbols or dashed lines

for significance levels) and we have added to the captions that these indicated 'values significant at 95%
level using a two-tailed student t-test'.
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Replies to Anonymous Referee #2

General Comments: Ratna et al. examine the influence of transient external forcing (volcanic eruptions)
on PDO and AMO variability and teleconnection patterns as they relate to East Asian surface air
temperatures (SAT) in three PMIP3/CMIP5 past1000 simulations and paleoclimate reconstructions. This
is an interesting study, and the results have interesting implications for how external forcing can impact
internal variability and teleconnections. However, more work is needed to compare model output to
observations and expand the study to other models.

Reply: We are grateful to the referee for their careful review and that they consider our work to be of
interest. We respond below to the suggestions for expanding the scope of the work.

Main Concerns:

1) There are at least ten CMIP5/PMIP3 past1000 (Last Millennium) simulations available on ESGF that
span the 850-1849 CE time period (BCC, CCSM4, CSIRO, FGOALS, GISS, Had, IPSL, MIROC, MPI,
MRI). The authors exclude several of these simulations (MIROC, FGOALS, GISS) due to spin up/model
drift/trend issues and cite Atwood et al for why they exclude these simulations. However, the authors
choose not to use the output from CSIRO, HadCM3, IPSL, or MRI (some of which are included in the
analysis of Atwood et al). The results therefore seem incomplete and selectively presented- why the
exclusion of these other simulations? Please include analyses of these other Last Millennium simulations
or at least provide a reason for why these other Last Millennium simulations have been excluded (the data
have been available for at least 8-12 months online, so I hope it’s not a data availability issue?). As the
manuscript is currently written, 1/3 of the models show a completely different result, but this is only one
model- is this really 1/3 of all CMIP5 Last Millennium models, or just one outlier in the CMIP5 Last
Millennium simulations?

Reply: We originally considered all six models that had CMIP5/PMIP3 Last Millennium and CMIP5
historical simulations and that had data for all the necessary variables in the UK JASMIN facilities. We
then discarded three due to drift issues as explained in our manuscript. Following the referee’s
recommendation, we sought data for the additional models suggested from other parts of the ESGF and
we obtained sufficient data to extend our study to another four CMIP5 models (HadCM3, MR, IPSL and
CSIRO-Mk3L-1-2). We agree that our revised manuscript has been strengthened by including these
additional model results. Some of the results are similar, but there are some differences in the correlations
with E Asian temperature that we discuss in our revised manuscript.

2) The authors concatenate the Last Millennium (850-1849CE) and the Historical simulations (1850-
2005CE) after removing the linear trend from each of these time segments separately. Removing a linear
trend from either instrumental or CMIP5 data over the entire 1850-2005CE time period can be
problematic if the main component of the ‘warming trend’ is in the 20th century. Multiple papers choose
to remove the linear trend over the 20th century only (e.g., Deser et al., 2010; Messie and Chavez, 2011,



10

15

20

25

30

35

40

Franzke, 2014, Nature Climate Change; Ji et al., Nature Climate Change, 2014). Similarly, many CMIP5
historical simulations appear to show much of the global warming trend starting in the 20th century, so
removing a trend over the full historical simulation period (1850-2005) may add in decadal-centennial
variability. To avoid this detrending and concatenation problem, could the analysis just be conducted over
the 850-1849CE time period (especially because it seems the authors are mostly focused on the impacts
of volcanic eruptions on the PDO and AMO in the pre-1850CE time period?). Some recent work even
suggests that the dynamics of the system change once GHG forcing becomes dominant (e.g., Song and
Yu, 2015, J Clim; Brown et al., 2017, Nature Climate Change), so including this time period could be
arguably problematic.

Reply: We recognise the referee’s concerns about linearly detrending the Historical simulations, but our
findings are not sensitive to this choice.

We note that we are trying to replicate in the models some aspects of what other studies have done using
observations (proxy-based reconstructions and/or instrumental) and (a) in some cases linear detrending
over the instrumental era is done even though it may not be optimal for the reasons given by the referee;
and (b) the timing of the start of the anthropogenic warming can be in conflict with a linear detrending
that begins in 1850 but this would be ameliorated for the PDO and for the AMOrem indices by the prior
removal of global-mean SST from the Atlantic or Pacific SST values.

Nevertheless, we have tested to see whether our findings are sensitive to this issue by restricting the
analysis to only the Last Millennium simulation and found that our results are quite similar to those we
obtained by the combined detrended LM plus detrended historical simulations (compare columns of Figs.
S1 and S2 for correlations with E Asia temperature for AMO and PDO, respectively).

We report this sensitivity test in the revised manuscript and discuss the few small differences that do
occur. We keep the main results based on the combined LM+Historical analysis because the benefits of
having a longer series to analyse outweighs the concerns raised now that we have shown that our findings
are not sensitive to this issue.

3) There is no comparison between the spatial patterns of the AMO and PDO in instrumental-based
reconstructions and the three models used here- perhaps some of these simulated spatial patterns are more
realistic than others? The authors state that the model results are realistic, but never show this in the
manuscript. The Climate Variability Diagnostics Package (http://webext.cgd.ucar.edu/Multi-
Case/CVDP_ex/CMIP5-Historical/) shows that the spatial expressions of the AMO (and PDO) can be
quite different in the various CMIP5 Historical simulations. Interpretation of the model results may be
viewed through a more informed perspective if the models are compared to instrumental-based
observations.

Reply: We now include a comparison of the AMO and PDO patterns with the instrumental data (similar
comment from referee 1) in our revised Fig. 1 and 2.
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4) Varying significance levels are used in the paper (90% vs 95%). Please use a consistent 95% or 99%
significance level- as the paper stands, it appears that the significance level has been lowered to show
‘significance spectral peaks’ (e.g., Fig 10), but the spectra barely surpass this 90% level- why not use
95% or 99% everywhere? At least please include some discussion of the sensitivity of the results to
significance level if the results don’t pass this higher threshold (significance levels are admittedly is
arbitrary, but the current, inconsistent use of 90% runs the risk of appearing selectively low to attempt to
present a ‘significant’ result).

Reply: Significance tests are reported for three types of analysis in the manuscript. (1) For correlations
between area-averaged temperature and driving factors (bar charts) we used the ‘standard’ 95% level. (2)
For correlations between temperature fields and driving factors (contoured maps) we lowered this to the
90% level because the additional noise at the grid cell level increases the risk of a type Il error (wrongly
failing to reject the null hypothesis that there is no correlation). (3) For power spectra of AMO and PDO,
we used a 90% level, but actually our interest is not really in the significance of the individual spectral
peaks (and whether they pass an arbitrary level or not) but in the overall shape of the spectra, their redness
and broad multi-decadal power, and whether these are similar between models, with/without forcing, and
between AMO index definitions. We explain this better in the revised manuscript and we removed the
significance lines from the spectra.

General minor issues:

Many authors abbreviate pre-industrial Control as P1 (e.g., Atwood et al., 2016, J Clim, among others)-
in an effort to maintain some sort of standard abbreviation that may be quickly recognized, I would
encourage the authors to employ more commonly used acronyms (e.g., Pl or piControl).

Reply: We modified the manuscript to use the abbreviation P1 for pre-industrial Control.

Also, when reading through the figures, it is difficult to interpret the acronyms used in each figure without
searching through the other figure captions or the text for the definitions of the acronyms- please define
the acronyms used in each figure in each figure caption (or at least reference where they are defined) so
readers can quickly understand the figure without searching for what they mean.

Reply: We now define the acronyms in the Figure captions.

Specific comments:

Page 1, Line 12-13: The simulated PDO and AMO spectra and spatial patterns are never compared to
instrumental-based patterns or spectra (or even to proxy-based spatial patterns). Please include
figures/analysis that support this statement in the main text or remove it.
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Reply: We now include a comparison of the AMO and PDO patterns with the instrumental data (Fig. 1
and 2). We have also compared the spectrum of reconstruction and instrumental data for both AMO (Fig.
10) and PDO (Fig. 11).

Page 2, _line 10: The previous paragraph critiques the instrumental and proxy-based records, but little
attention is paid to potential model deficiencies- can you at least briefly discuss or cite a few papers that
may critique or even acknowledge that CMIP5/PMIP3 models have their own biases and problems as
they relate to low-frequency SAT variability (e.g., Laepple and Huybers, 2014; Parsons et al., 2017 J
Clim; ) or ‘modes’ of internal variability (or their responses to stratospheric aerosol loading from volcanic
eruptions)? Alternatively, directing the reader to where these model deficiencies, and their implications
for your results, are going to be discussed later in the paper could be helpful.

Reply: we now cite these references and added a few sentences to describe their implications for potential
model deficiencies. We discuss that Laepple and Huybers (2014) found potential deficiencies in CMIP5
SST variability, with model simulations diverging from a multiproxy estimate of SST variability (that is
consistent between proxy types and with instrumental estimates) toward longer timescales. Parsons et al.
(2017) found very different pictures of natural variability between CMIP5 models, including the North
Atlantic, and between models and paleoclimate data in the tropics, in terms of the magnitude and spatial
consistency of climate variance across interannual to centennial timescales.

Laepple, T., and P. H. Huybers, 2014: Ocean surface temperature variability: Large model-data
differences at decadal and longer periods. Proc. Natl. Acad. Sci. USA, 111, 16 682-16 687,
https://doi.org/10.1073/pnas.1412077111.

Page 3, lines 5-6: please see general comments in previous section- why were the bulk of the
CMIP5/PMIP3 Last Millennium simulations excluded? Analysis of results would appear much more
robust if an attempt is made to present more than 1/3 of the Last Millennium simulations, or if reasoning
can be given why the other simulations were excluded. Also, what is the cutoff used for a drift that is ‘too
strong’? Is this a global or local drift? All the CMIP5/PMIP3 past1000 simulations appear to show some
sort of trend/drift at many grid points- the question is what is too much for the purposes of this AMO/PDO
teleconnection study. Please clarify.

Reply: This comment has been addressed under the first “Main Concerns” earlier: we have extended our
analysis to include four more models CSIRO, HadCM3, MRI and IPSL and revised the manuscript to
include these models and compare the additional results.

Our decision to exclude three CMIP5 models (MIROC-ESM, FGOALS-s2 and GISS) was based on the
results discussed in Atwood et al. (2016), Fleming and Anchukaitis (2016) and Bothe et al. (2013). This
is mentioned in our original manuscript. Atwood et al (2016) and Bothe et al (2013) discussed long-term
drift in global mean surface air temperature in their Pl simulations. Similarly, Fleming and Anchukaitis
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(2016) found drift in the Last Millennium simulations, which are apparent in the initial several centuries
and excluded from their PDO analysis.

Page 3, Line 20: please see general comments in previous section- removing one linear trend over the full
1850-2005CE time period seems like it may add in low-frequency variability, and I am still not even sure
why the historical simulations have been included if the focus is on the impact of volcanic eruptions in
the pre-historical simulation time period.

Reply: This comment has been addressed under the second “Main Concerns” earlier. Our findings are
not sensitive to this choice and we explain this in the revised manuscript. Our focus is broader than just
the impact of volcanic eruptions, we are interested in the influence of external forcings in general on the
diagnosis of the role of internal variability from observational evidence. During these simulations,
volcanic forcing plays a major role so we did some additional analysis of that but it is not our only result.

Page 4, Line 8: ‘we don’t see much differences’- this is a subjective statement. What criteria are used?
Perhaps something like a pattern metric or Euclidean distances metric could be used to say something
more quantitative?

Reply: we revised this sentence to be less subjective, noting which key features (position and strength of
the loading maxima and loading gradients) of the PDO patterns are present in the simulated and observed
fields.

Page 4, Line 10: Please explain how the TAS time series is made- | assume annual mean (Jan-Dec?)
temperature at each grid box, latitude-weighted, and masked ocean grid boxes? Over what latitude and
longitude range is this area average made (is it the whole region used in the maps in the figures showing
East Asia?)? Please provide more details in the text.

Reply: For the TAS time series, the annual mean (Jan-Dec) TAS is calculated over the land grid points
only and area averaged over the region 60E -150E and 10N-55N. We added this additional information
to the revised manuscript.

Page 5, line 5-7: There are other PDO reconstructions- fine to not include them, but can you state why
this one is selected over others?

Reply: We have used the selected PDO reconstructions based on the availability of the data for a longer
period that covers at least 1000 years of our main analysis period 850-2000. The revised manuscript now
states this selection criterion.

Page 5, lines 11-15: As far as | can tell, the model-based PDO indices are made from monthly data, and
the paleo-based PDO indices are made ‘annual’ data (or seasonally sensitive proxy records)- would a
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better comparison be to make annual means of SAT for the model data, then construct the PDO index, so
the index is more comparable to the annual proxy-based index? (or can you show that the annual and
monthly modelbased PDO patterns and time series are similar?).

Reply: The model simulated monthly mean SST data were, in fact, already converted to annual mean data
before applying the EOF analysis to get the PDO pattern and its time series (i.e. as suggested by the
reviewer — we now make this clear by adding ‘annual-mean SST anomalies’ to the Fig. 2 caption). We
have done this because all our analysis is based on the annual mean data, which also compares with the
annual mean reconstructed data. We have also confirmed that model based PDO patterns for annual and
monthly data are similar (see figure R7 of our reply in the interactive discussion).

Page 5, Line 21, line 25: The 90% significance level seems oddly low, and arbitrarily used in only certain
cases- do your results consistently pass a 95% significance test (both the regions in the maps and the
spectra)? For example, the ‘significant’ spectral peaks in Figure 10 appear quite close to the 90%
significance level- if you made this a 95 or 99%, are these ‘significant spectral peaks’ at all significant?

Reply: Please see our response to “main concern (4)” above.

Page 8, line 26: the authors discuss a weak response in BCC to volcanic eruptions- is this a finding that
has been noted previously (e.g., Driscoll et al., JGR, 2012, or some sort of similar CMIP5 comparison to
observations?)? How realistic is this model’s response relative to the other models’ responses to volcanic
eruptions (especially compared to observations of more recent eruptions and their impacts)? | ask because
this difference seems to be important to the results- for example, should the BCC changes (or lack thereof
relative to the other models) in PDO, AMO, and associated teleconnections with E Asia be viewed as just
as realistic as the other models’ responses? Or is it an outlier because it doesn’t respond at all to volcanic
eruptions when it should?

Reply: By analysing the CMIP5 historical simulations, Driscoll et al. (2012) found largest anomaly in the
reflected SW radiation in the BCC model. Here, we show that the weak response in BCC to volcanic
response only exists in the last millennium simulations, where we have analysed three major volcanic
eruptions that happened in the last millennium. We also analysed the same for the major volcanic events
during the historical period but didn’t find such weak response in BCC model compared to the other
models. So, it seems that the weak volcanic forcing and response in BCC GCM only exist in its last
millennium simulation.

Page 9, Line 25-26: It would be helpful to show results from the other four CMIP5 Last Millennium
simulations here to put these results in context- right now, 1/3 of the models show a completely different
result, but this ‘1/3 of models’ is just the BCC model.

Reply: As noted earlier, we now analyse four other models and it has improved our manuscript.

10
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Page 9, Line 26-29: Would this result imply that the models show an unrealistically large response to
eruptions? Or that there is too little internal, low-frequency variability (e.g., Laepple and Huybers)? Or
does this suggest both, or something else?

Reply: The potential reasons for the stronger volcanic signal in some models compared with some
reconstructions are varied and could include those stated by the referee alongside other reasons (notably
errors and biases in the reconstructed temperatures, AMO, PDO and/or forcing histories). We prefer not
to over-speculate at this point and instead present the findings.

Page 10, line 2-3: the authors state that ‘all models display red spectra’- in the methods (and in the time
series in the figures), it seems that the data have been low-pass filtered, so by definition, the high-
frequency variability has been reduced relative to the low-frequency variability (thus reddened)- I’m not
sure that ‘redness’ really means anything in this case. If ‘redness’ does mean something after the data
have been filtered, or if the data have not been low-pass filtered before spectral estimation, please
clarify/explain- for example, if the authors mean to say that one model has more lowfrequency variability
than another, that may be more accurate.

Reply: The data have not been low pass filtered before spectral estimation. We have now clearly
mentioned this in the revised manuscript.

Furthermore, the ‘pronounced multidecadal variability” barely surpasses the 90% significance threshold,
as do most of the ‘significant’ peaks referenced in this paragraph.

Reply: As noted above, the presence of individual periodicities is of less interest than the overall shape
of the spectra (to repeat here for convenience, we are interested in: “the overall shape of the spectra, their
redness and broad multi-decadal power, and whether these are similar between models, with/without
forcing, and between AMO index definitions™). This paragraph discusses some of these features and not
individual significant periodicities, so it is not affected by the choice of the significance threshold. We
have removed the significance lines to avoid this confusion.

These power spectra (AMO and PDO power spectra figures) are shown without any error bars- when the
spectra are compared and declared similar/different, some sort of spectral estimation confidence
bound/error bar on the figure could show if these differences fall within the confidence bounds of the
spectral estimates.

Reply: We cannot add individual confidence intervals to each individual spectrum, especially now that
there are seven GCMs, without obscuring the message of the diagram by two many lines. Using a log-
scale for the y-axis would mean that a single confidence interval could be marked that applies to all
frequencies but we decided not to do this because (a) a single confidence interval would only apply to all
series if they are based on the same length timeseries (which is not true for the PI runs, though it is for

11
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the LMH runs) and (b) we tried using a log-scale and felt that it made it harder to see the differences
between the GCMs.

Page 10, Lines _5-15: Perhaps this is the first time that this analysis has been done, but I would be
surprised- has anyone else compared the power spectra across these simulations before? For example,
Cheung et al., (2017) compares instrumental-based AMO and Pacific variability to CMIP5 historical
simulations (and also how the spatial patterns associated with these modes can change through time).
Parsons et al., 2017 (J Clim) compares instrumental, AR1, and CMIP5 Last Millennium, and CMIP5
Control spectra over the North Pacific and North Atlantic, and Fredriksen and Rypdal (2016, J Clim)
compare spectra over ocean basins in CMIP5 models.

Reply: As per our understanding, we didn’t find any study that compared the power spectra across the
simulations in detail. As the reviewer mentioned, Parsons et al. (2017) discussed the power spectra in
terms of ensemble mean of CMIP5 models but not the details of the power spectrum of individual CMIP5
models. Similarly, Cheung et al. (2017) did mention the power spectrum of ensemble mean for the
historical period and not the details of the individual members nor the last millennium runs. Fredriksen
and Rypdal (2016) compared the power spectrum of CMIP5 control runs with instrumental records but
did not compare with last millennium simulations. So, we focused on the power spectra of individual
CMIP5 models used in our study and compare the results between control and last millennium
simulations.

Page 10, Line 23: the authors claim that the spatial patterns of AMO and PDO are similar to the patterns
from observations. | see no comparisons among modelled and observed spatial patterns of variability. In
fact, it would be helpful if the authors would show the spatial patterns from observations (of course
acknowledging that the instrumental-based data have their own limitations) in Figures 1 and 2- this would
help put the model results in context.

Reply: We have added the spatial patterns of AMO and PDO using observation data (Fig. 1 and 2).

Page 10, line 25: again, it’s unclear if the data have been low-pass filtered before spectral analysis. Also,
see my above comments- saying the spectra are ‘red’ seems meaningless if the data have been low-pass
filtered. Again, the significant peaks barely surpass a 90% threshold- please discuss or mention if this
significance is sensitive to threshold level.

Reply: The data have not been low pass filtered before the spectral analysis. We make this clear in the
revised manuscript.

Also, as stated above it would be good to include error bars/lines on the spectra to know if the ‘significant’

differences from the background spectrum significant given uncertainties in the power spectral
estimation?
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Reply: See earlier response.
Page 11, _Line 25: good point.
Reply: Thank you.

Page 12, line 4: OK, so other recent methods have been used to reconstruct SAT fields (e.g., Last
Millennium Reanalysis from Hakim et al., 2016, JGRA and Tardiff et al., in review at CP)

Reply: We will cite the most recent Last Millennium Reanalysis paper and note that this does provide a
surface temperature field that could be used to define an index based on the difference between the
regional and global SST (though it is not independent of the climate model used to produce the reanalysis,
so there may be some circularity in using the resultant AMO reconstruction to evaluate climate model
behaviour).

Figures:
Figures 1, 2, 3, 5: please include panels showing similar analyses from instrumental-based data products.

Reply: We have now included panels based on the data from the instrumental period for Figl and 2. We
have not included the instrumental data analysis for Figure 3 and 5, because the data length is not enough
to calculate the correlation which is based on 30-year low pass filtered data.

Figure 4, Figure 6: it is interesting to see the PDO-E Asia and AMO-E Asia differences, but it would be
nice to see some confidence bars on the control run values. For example, Coats et al. 2013 show that
teleconnections can change from century to century. Could you do some sort of running correlation or
subsample the control run to see how variable this E Asian relationship is (or is there enough data?)

Reply: We considered using confidence intervals instead indicating the statistical significance (which
occurs when the confidence interval does not include zero) but now that we extended our analysis to seven
GCMs it is problematic to fit all the information without obscuring the individual model results. A running
correlation or equivalent is not appropriate here because we are working with 30-year smoothed data (so
that we can assess multi-decadal variability rather than the interannual variability that Coats et al., 2013,
considered) and dividing it century by century would leave insufficient independent 30-year samples in
each century.

Figure 9: Is there a way to put these results in context? For example, if you include the post-Pinatubo

response in these models, could you show how the models compare to obs? Which models are more
realistic? (CCSM4/MPI or BCC?)
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Reply: The issue with BCC appears to be confined to the Last Millennium simulation and not to the
Historical simulation, so a comparison with observations post-Pinatubo would not help.

Figures 10 and 11: inclusion of instrumental-based spectra could be helpful here too how realistic are
these reconstructions?

Reply: We have included the instrumental based spectra although the data length is short.

Compact listing of purely technical corrections (typing errors, etc.).

Page 1, Line 13: ‘and their spectral characteristics’- remove ‘their’

Page 3, linel7: change sentence to: ‘Each model version was the same across all the simulations.’

Page 4, line 8: ‘much differences’- please re-word (e.g., ‘A pattern correlation statistic shows minimal
differences among : : ’

Page 5, Line 7: ‘largely suffer from the influence of external forcing’

Page 6, Line 4: ‘no time-varying (transient?) external radiative forcing’

Page 6, line 31: ‘This situation is equivalent to (that?) of Fig.” — there appears to be a missing

word here

Page 7, Line 13-15: “in the southern parts’: : :’in all three models’: : :’with the strongest correlation in the
northeast region’

Page 7, line17: ‘though it varies’

Page 9, Line 10: the sentence starting with ‘Despite’ appears a bit awkward- suggest rewording.

Reply: Thank you for the careful checking — we have addressed these minor technical/wording errors in
our revised manuscript.
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Identifying teleconnections and multidecadal variability of East Asian
surface temperature during the last millennium in CMIP5 simulations

Satyaban B. Ratnal, Timothy J. Osborn?, Manoj Joshil, Bao Yang?, Jianglin Wang?

IClimatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, NR2 2BP, United Kingdom
2Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of
Sciences, Lanzhou, 730000, China

Correspondence to: Satyaban B. Ratna (s.bishoyi-ratna@uea.ac.uk)

Abstract. We examine the relationships in models and reconstructions between the multidecadal variability of surface
temperature in East Asia and two extratropical modes of variability: the Atlantic Multidecadal Oscillation (AMO) and the
Pacific Decadal oscillation (PDO). We analyze the spatial, temporal and spectral characteristics of the climate modes in Last
Millennium, Historical and pre-industrial control simulations of threeseven CMIP5/PMIP3 GCMs, to assess the relative
influences of external forcing and unforced variability. These models produce PDO and AMO variability with realistic spatial
patterns and-theirbut widely varying spectral characteristics. AMO internal variability stronghysignificantly influences East
Asia temperature in ene-medel{bee-esmi-1five models (MPI, HadCM3, MRI, IPSL and CSIRQ), but has a weak influence in
the other two (BCC and CCSM4-and-MPI-ESM-P). In althreemost models, external forcing greatly strengthens these
statistical associations and hence the apparent teleconnection with the AMO. PDO internal variability strongly influences East

Asian temperature in two out of the-threeseven models, but external forcing makes this apparent teleconnection much weaker.
This indicates that the AMO-East Asian temperature relationship is partly driven by external forcing whereas the PDO-
temperature relationship is largely drivenbyfrom internal variability—External within the climate system. Our findings suggest

that external forcing confounds attempts to diagnose the teleconnections of internal multidecadal variability. Using AMO and
PDO indices that represent internal variability more closely and minimising the influence of external forcing on East Asia
temperature can partly ameliorate this confounding effect. Nevertheless, these approaches still yield differences between the
forced and control simulations and they cannot always be applied to paleoclimate reconstructions, so we recommend caution
when interpreting internal variability teleconnections diagnosed from reconstructions that contain both forced and internal

variations.

1 Introduction

Coupled ocean-atmosphere processes cause climate variations on interannual to multidecadal timescales (Dai et al., 2015 and
Steinman et al., 2015), resulting in persistent temperature and hydroclimate anomalies over both adjacent continents and

remote regions (Wangetal. 2017; Coats and Smerdon, 2017), potentially having both immediate and long lasting consequences
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for society (Buntgen et al., 2011). Assessing teleconnections between ocean and land can be done using a number of methods,
each of which have their limitations. The useful ness of the observational record for understanding multidecadal teleconnections
is limited by its length. Paleoclimate reconstructions can provide information on longer time scales, and can also place the
current climate regime in a long-term perspective. Several reconstructions of modes of climatic variability such as the Atlantic
Multidecadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO) have been attempted using networks of proxy
data, including tree-ringrings, ice cores, speleothems, coral growth, lake sediments, and documentary evidence (e.g.
MacDonald and Case, 2005, Mann et al, 2009, Wang et al, 2017, Fang et al. 204852018, Wang et al. 2018). However,
limitations in the geographic and temporal coverage of the proxy records, including terrestrial and marine locations, and
differing climatic and seasonal sensitivities, affect the ability of these reconstructions to fully represent decadal to centennial
variability (Jones et al, 2009; Christiansen and Ljungqgvist, 2017; Smerdon and Pollack, 2016; Jones and Mann, 2004; Frank
etal., 2010).

Global climate model (GCM) simulations can offer complementary long-term perspectives on the behaviour of important
modes of climate variability (Atwood et al, 2016; Fleming and Anchukaitis, 2016; Landrum et al, 2013). Such models canalso
be used to identify the extent of large scale teleconnections between these modes and regional climate (Coats et al., 2013).
GCMs also provide a means of separating changes associated with external forcing from those arising by internal variability
since they can be run using differing boundary conditions (Schurer et al., 2013, 2014). Atmosphere-ocean coupled GCMs with
more extensive representation of processes within the climate system compenents-also permit more detailed examination of

spatial and temporal variations during the last millennium._However, similar to proxy based records, there are also limitations

in paleoclimate simulations. Laepple and Huybers (2014) found potential deficiencies in Coupled Model Intercomparison

Project Phase 5 (CMIP5) SST variability, with model simulations diverging from a multiproxy estimate of SST variability

(that is consistent between proxy types and with instrumental estimates) toward longer timescales. Parsons et al. (2017) found

very different pictures (in terms of the magnitude and spatial consistency) of natural variability between the CMIP5 models,

including in the North Atlantic, and between models and paleoclimate data in the tropics.

The focus of our study is on the annual mean temperature of East Asia on multidecadal and longer timescales. On these
timescales, variability associated with the AMO (Schlesinger and Ramankutty, 1994; Kerr, 2000; Delworth and Mann, 2000;
Wang et al. 2017) and the PDO (Mantua et al. 1997; Newman et al., 2016; Buckley et al., 2019) can exert an important
influence on the climate over Asia (Qianetal. 2014; Wang et al. 2013;-Bong-2016, 2018; Li etal. 2017; Fang et al. 2018a2019).

Our aims are to: (1) identify the key teleconnections between the AMO, PDO and East Asian temperature in climate models;

(2) to determine hewto what extent external forcings affect these simulated teleconnections; (3) contrast the simulated and

reconstructed behaviour of East Asian temperatures on multidecadal timescales; (4) develop recommendations for making
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unbiased comparisons between model dataoutput and paleoclimate reconstructions. We also provide insight into the long-term

simulated behaviour of these modes of climate variability with respect to the-external forcing and internal variability.

The rest of the article is organised as follows: Section 2 describes the climate models and paleoclimate data used in this study,
and the methods to calculate the climate indices. Section 3 describes the results associated with AMO and its teleconnection
with East Asian surface temperature and Section 4 discusses the results associated with the relationship between PDO and East
Asian surface temperature. The role of volcanic forcing on these aspects of climate variability is demonstrated in Section 5.
In Section 6, further results are discussed and conclusions are summarised.

2 Data and Methods

2.1 Climate model simulations

We select models from the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al. 2012) that had provided
output for all three experiments considered here: (i) pre-industrial control (RCPI) run with constant external forcing, (ii) Last
Millennium (LM) and (iii) Historical experiments (sHSH-with external forcings. Of the sixten GCMs that met this criterion,
three models (MIROC, FGOALS, GISS) were excluded because they show a strong drift in the tastmiHenriumLM or eontrolPl
simulations (ArtweedAtwood et al. 2016, Fleming and Anchukaitis, 2016; Bothe et al., 2013). Atwood et al (2016) and Bothe

et al (2013) found long-term drift in global mean surface air temperature in some Pl simulations, while Fleming and

Anchukaitis (2016) found drift in some LM simulations during the initial several centuries and excluded these from their PDO

analysis. Details of the remaining threeseven GCMs are summarised in Table 1 including the volcanic and solar forcings used.

The forcing and boundary conditions for the LM simulations follow the protocols of Paleoclimate Model Intercomparison
Project Phase 3 (PMIP3) as discussed by Schmidt et al. (2011) and Schmidt et al. (2012). The forcings are composed of

volcanic aerosols, solar radiation, orbital variations, greenhouse gas (CHa4, CO2, and N2Q) concentrations, and anthropogenic

land-use changes over the period 850-1849. The HHSTHistorical simulations are forced with natural and anthropogenic forcing
over the period 1850-20052000.The comparison of these ‘forced” simulations with ‘unforced’ control simulations provide a
means of assessing what portion of the variability is attributed to external forcing and what portion reflects purely internal

variability. Also, these simulations are useful in providing a longer term perspective for detection and attribution studies.

We interpolate output from the BCC-and-MPlall the models to the CCSM4 grid resolution to facilitate intercomparison. We
note that the available model simulations were not necessarily continuous from their LM simulations into their HHSTHistorical
simulations, so modes of variability cannot be calculated across 1850. Each model version was the same across the-all the
simulations. Since our focus is on natural variability arising frominternal and external causes, we have minimised the influence

of any residual long-term drift or of anthropogenic transient forcings in-the-GCM-simulatiens-by first detrending (removing
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the linear trend) aeress-the Last-MillenniumLM (850-1849) and historicalHistorical (1850-2000) time series separately and

then merging them into a continuous detrended timeseries for the period 850-2000 (LMH hereafter)._Our results are not

sensitive to the linear detrending of the Historical simulations (see Supplement Figs S1 and S2).

2.2 Diagnosing Atlantic and Pacific variability

The AMO and PDO timeseries are diagnosed using the same methods for both the model simulations and the instrumental
observations. For the latter we used HadISST (Rayner et al, 2003) and ERSST (Smith and Reynolds, 2004) for the periods
1871-2000 and 1854-2000, respectively.

The AMO index is calculated from the area-weighted North Atlantic (80\W—0%/480- 0-65N°W, 0-65°N) monthly mean SST
anomaly for the LMH and PCPI simulations. When the value of the index is positive (negative), itis known as the warm (cold)
phase of the AMO. We have considered here two sets of AMO indices, both with (hereafter, AMOremAMOr) and without
(hereafter, AMOnoremAMONr) first subtracting the global mean SST anomaly time series (Trenberth and Shea, 2006) from

the spatially averaged (North Atlantic) time series anomalies at each time interval. Atlantic SST will exhibit both internal

variability and the response to external forcings: (Wang et al. 2017): by subtracting the global-mean SST anomaly, the

AMOremAMOr index will reflect more closely the variability that is focussed on the North Atlantic region and not the signal

of external forcing present in the global SST pattern. The annual mean of the AMO indices generated by the above two methods

are regressed over the North Atlantic annual mean SSTs (Fig. 1) whichto shows the spatial pattern of the AMO--; they closely

agree with the observations (Fig 1, bottom panel).

The PDO index is calculated as the leading mode from an empirical orthogonal function (EOF) analysis of menthly
residualannual SST anomalies in the north Pacific region 20-65°N and 110°E-110°W, which are calculated by first removing
the long-term monthly means-and, then subtracting the monthly mean global SST anomaly at each time interval-_and then

forming annual means. The EOF analysis yields spatial patterns (loadings) and temporal scores (time series). In its
warm/positive (eeolnegative) phase, SSTs are above (below) normal along the west coast of North America and below (above)
average in the central north Pacific (Fig. 2). We-don’tsee-much-differences The simulated PDO patterns agree well with each
other and with the observed pattern (Fig. 2, bottom panel), in the-EOFterms of the position of strength of the loading ameng
the-three-modelsbut-there-ismaxima and main loading gradients. There are considerable differences in their time series,

however, which are discussed later.
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The model simulated AMO and PDO indices are generated using monthly mean SSTs for the LMH (850-2000) and PCPI

simulations, and then converted into annual mean (January-December) values for our analysis. FerSimilarly, for the time series

analysis for the temperature over East Asia (TAS), wethe annual mean (January-December) value is calculated over the land

grid points only and area averaged over the region 60-150°E and 10-55°N. We also consider warm (April-September) and cold

(October-March) season averages.

2.3 Paleoclimate and veleanic-forcing reconstructions

The BCC-and-CCSM4-GCMs used volcanic forcing from either Gao et al. {2008-hereafter GRA)}-and-MPl-used-velcanic
forcing-from(200) or Crowley et al. (2008, hereafter CEA) in their last millennium simulations (Table 1). Accordingly, we
compare the model and reconstructed data with GRA and CEA, as well as awith the newer volcanic forcing reconstruction
from Sigl et al. 2015 (hereafter, SIG)._Table 1 also lists the solar forcing reconstructions used to drive the GCMs (hereafter
VSK, DB and SBF) and we use these to identify the solar signal in the data.

We used proxy-based reconstructions for the AMO, PDO and surface temperature over East Asia (TAS) as summarised in

Table 2. We selected these reconstructions instead of alternatives because of the availability of the data for a period that covers

at least 1000 years of our main analysis period 850-2000.

_Two AMO reconstructions are used in this study. Mann et al (2009) reconstructed near-global fields of surface temperature
using a diverse mix of annual and decadal resolution tree-ring, coral, ice core and sediments records from across the globe.
Their AMO series (hereafter AMNO09) was computed from the North Atlantic SST grid cells of their reconstructed fields and
extends for the period 500-2006 with 10-year low-pass filters. The annually resolved AMO by Wang et al (2017) is based on
tree ring, ice core, historical records only from circum-Atlantic land regions and is available for the period 800-2010. Wang et
al. (2017) first reconstruct Atlantic Multidecadal Variability (hereafter WN17V) and then subtract an esti mate of the externally-
forced component to obtain a series that represents mostly internal variability, denoted the Atlantic Multidecadal Oscillation
(hereafter WN170). The two AMO-reconstructions {AMNO09 and WN17Vj} provide estimates of the full (both external and
internal) variability of the North Atlantic SST. Although Mann et al. (2009) reconstructed near-global SST fields, we have not
subtracted the global-mean SST fromthe Atlantic-mean SST to isolate the internal AMO variability (cf. the ‘AMOres> AMOTI”
series from the models) because prior to 1600 their reconstruction is a linear combination of only two spatial patterns which
gives limited information about the Atlantic—global SST difference. Wang et al (2017) did attempt to isolate the internal

variability by regressing against solar and volcanic forcing reconstructions, to yield the WN170 series also considered here.

One annual mean PDO reconstruction is based on Mann et al (2009) as described above and hereafter denoted as PMNQ9. This
series is an average of SST grid cells over the central north Pacific region (22.5°N5-57.5°N5°N, 152.5°E5°E-132.5%W/5°W):
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since this region has mostly negative loadings in our EOF-based PDO index (Fig. 2), we multiply PMNQ9 by minus one to
make it comparable to the other PDO indices. Another annually resolved PDO index is from MacDonald and Case (2005;
hereafter, MD05) who used only tree ring records from Pinus flexilis in California and Alberta to reconstruct PDO for the
period 993-1996. The PDO reconstructions, unlike the EOF-based definition in modeled and observed SST datasetdatasets,

might also contain some signal of external forcing because the proxy records—used-in-reconstructions—targehy-suffer from
influence-of externalforeing are influenced by externally-forced variability.

The East Asian temperature reconstruction for the warm season is from Wang et al. (2018, hereafter WN18), which uses the
mean of seven published reconstructions and is available for the period 850-1999. See Wang et al. (2018) for a discussion of

the underlying reconstructions and their similarity/differences._We repeat some of our analyses with three of the individual

reconstructions used in the WN18 composite (see Supplement Fig. S3).

It should be noted that the time sequences of the reconstructed and simulated data are not directly comparable because each
will have its own realisation of internal variability. They should, however, be internally consistent so that their teleconnections
can be compared on multidecadal time scales, along with any contribution that is externally forced (to the extent that the

external forcing matches between the datasets).

2.4 Analysis methods

Since our focus is to understand climate variability on multidecadal timescales, all the time series are passed through a 30-year
low pass filter using the Lanczos filter. The correlation analyses are tested for statistical significance using the two-tailed
student’s t-test. The number of degrees of freedom are the number of 30-year long segments minus 2, i.e if low pass filtered
1000-year long time series has 33 mdependent samples (1000/30) and 31 degrees of freedom. Fhe-corresponding-critical

- The null hypothesis (that the correlation is

zero) is rejected if the correlation value is greater than the eritical-correlationvaluecorresponding critical value: we test the

statistical significance at the 95% level for area-means but lower this to 90% at the grid-cell level because additional noise

increases the risk of a type |l error.

Spectral analysis te-identifyrthe-spectral-shape-and-any-majer-periodicities-of AMO and PDO indices is performed via the Fast

Fourier Transform (FFT). Fheln undertaking spectral analysis, we are interested in the overall shape of the spectra, their

redness and broad multi-decadal power, and whether these are similar between models, with/without forcing, and between
AMO index definitions. We are less interested in the apparent statistical significance of thespeetrawas%estedﬂagamstl ndividual

periodicities so we do not apply such a red-nei

scales-thatare-sighificantat- 90%-level are-emphasized-statistical test. In order to isolate the near-internal variability from the
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LMH model runs,_in some analyses we regress out the influence of volcanic forcing fromthe TAS, AMO and PDO timeseries
by calculating the regression coefficient of the GRA or CEA volcanic global forcing timeseries against the TAS, AMO and

PDO time series, respectively.

3. Influences of Atlantic Multidecadal Oscillation

Figure 3 shows the correlation between the AMO index and multidecadal variations in surface temperature in the LMH and
PCPI simulations. The correlation with area-averaged East Asia surface temperature (TAS) is also calculated (Fig. 4). In the
PCPI simulations with neconstant external radiative forcing, internal climate variability alone results in correlations between
the AMOAMOnr and East Asian temperature that are generally positive (Fig. 3a—b-¢)—theugh-only-the- MPHmedel-shows
widespread-statistically-significance-on-a-point-by-point-basis(Fig—43, column 1) — i.e. a warmer North Atlantic Ocean is

associated with warmer East Asian temperatures. There is only widespread statistical significance on a grid-cell basis for four

models (MPI, HadCM3, IPSL and CSIRO; Fig. 3, column 1), though correlations with area-averaged TAS are quite strong

(multi-model mean > 0.5) and statistically significant for all models except BCC and CCSMA4. The strength of the correlation

is very sensitive to the presence of external forcing, becoming more strongly positive both spatially (Fig. 3g, h, i) and on an
area-averaged basis (Fig. 4) in the LMH run &e—mereamg#eﬁ%z—g%gfor all GCMs (all are significant and 8-71fer-the

hree-multi-model model

correlation reaches 0.75). In many models, the strong positive correlation eceursoccur mostly because natural external (e.g.,

volcanic eruptions) forcings cause concurrent warming or cooling in both the Atlantic and East Asian regions (Fig. A-7).

Indeed, including external forcings changes CCSM4 from having the weakest (and non-significant) correlation to having the

strongest (0.84) correlation between the AMOnr and E Asian temperature.

When we remove the global SST anomaly before calculating the AMO index, its association with TAS becomes much weaker;.
The reduction in correlation is especially large for LMH runs, as-shewn-ia-both on a grid-cell basis (Fig. 3-Gy&-}, column 3 vs
g-hr+. 4), and for area-averaged TAS (Fig. 4-AMOrem, AMOr vs AMOnrerem-AMONr). This is because much of the external
forcing influence on N Atlantic SST also drives global SST, so subtraction of the global-mean SST anomaly prior to the

calculation of the AMO removes this externally-forced variability from the AMO. However, because TAS has a different

sensitivity to global forcings-sueh-as-voleanic-eruptions—the-, its correlation with AMOr is decreased;ratherthan-fating-to
msgnmean{—vaIHeS—Fer but remains significant for some models (MPI, MRI and CSIRO). Comparing the correlations with

esAMOr index, we see that is

ive-the correlation

21



10

15

20

25

30

tsis notably weaker in the LMH run than in the RCP1 run for the MPl-medel., HadCM3 and IPSL models (Figs. 3 and 4). This
is because the forcings generate a response in the TAS but not in the AMOGAMOTr (any response is mostly removed because
global SST is subtracted from Atlantic SST), weakening their correlation. Fhis-behaviouris-not-seen-in-the-other-two-models

ecause-the AMOrem-index-has-tittlecorrelation with- FTAS-even-in-theirunforced-PGrunsMRI and CSIRO are notable in that

their TAS correlations with AMOr are stronger in the LMH run than in the PI run; this could arise if the amplitude of SST

response is greater in the Atlantic than in their global mean, so that AMOTr still retains an external forcing signal that then

correlates with the external forcing signal in E Asian TAS.

In summary, four models show a clear association between the AMO and East Asian temperatures (especially in the northern

half of the region considered here) that arises from internal variability (i.e. in the Pl run) that remains significant even if the

global SST anomaly is subtracted. This suggests that this mode of internal variability only partly projects onto global-mean

SST anomalies. Furthermore, the correlations for all models are strongly affected (increased) by the inclusion of external

forcing unless the AMO is defined by subtracting the global-mean SST from the Atlantic SST.

These dependencies of the model correlations on the presence of external forcing and on the calculation of the AMO index are
important in the context of interpreting reconstructed data. Suppose we wish to use reconstructed data to answer the question
“does the AMO, as a mode of internal variability, influence E Asian temperatures on multidecadal timescales?” The
reconstructions represent the real world (a situation with external forcings) and some AMO reconstructions (e.g. AMNO09 and
WN17V) have not isolated internal variability of the N Atlantic SST from externally-forced signals (because, for instance,
global-mean SST cannot be subtracted before calculating the AMO if global SST has not been independently reconstructed).
This situation is equivalent to column 3 of Fig. 3g—h—3 (LMH runs with AMOneremAMOnr indices) and a strong positive
correlation might be found between the AMO and E Asian temperatures — but this would not establish that the AMO, as a
mode of internal climate variability, was strongly influencing E Asian temperatures on multidecadal timescales.

The WN18 E Asian reconstruction represents warm-season temperature, so we repeated our model analysis but using both
warmand cold season temperatures and obtained results that are closely consistent with those using annual-mean temperatures.
The reconstructed AMO series all show positive correlations with the WN18 E Asian temperature reconstruction (Fig. 4).
Those representing full AMO variability (WN17V and AMNQ9) have correlations around 0.4, while the correlation with E
Asian temperature falls tewardsto 0.24 (which is not significant) for the WN170 series representing only internal AMO

variability.

_None of the reconstructed AMO or E Asian surface temperature series correlate significantly with the equivalent simulated
series from the LMH runs, indicating that internal variability and any errors in reconstructed climate and forcings dominate

the influence of external forcing, or that model response to forcings is unrealistic.
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4. Influences of Pacific Decadal Oscillation

Similar to the AMO analysis, Figs 5 and 6 show the correlation between PDO and TAS. The PDO is mest#y—negatlvely
correlated with TAS except-for-a-small-region-in
correlation-being-strongest-in-the-north-east-of the region-(Fig-—5)—Fhis-isJapan, as expected because cooler SSTs lie adjacent
to this region when the PDO index is positive (Fig. 2—TFhe-correlation-between-the PDO-and-TAS-is-therefore2). These

negative_correlations extend from Japan across large parts of the north east of our region in four (BCC, CCSM4, IPSL and

CSIRO) out of seven models, though varyingthey vary widely in strength and significance between the-models-especiatyfor

the-PC, and are mostly weakened by the inclusion of external forcing (LMH cf. Pl in Fig. 5). Most models (for both the Pl

and LMH runs—{see-) show a dipole with mainly negative correlations in the north or centre of our region and positive

correlations in the south (e.g. parts of India and Southeast Asia). The predominance of negative correlations across the spatial

field means that six out of seven models simulate a negative correlation between area-averaged TAS and PDO, though few are

significant because we are averaging across regions with opposite correlations (Fig. 6). FheseThere are two key differences

between the results with and without external forcing. First, the correlations weaken when external forcing is applied to the
models (except for the MPI model where it was already weak);-suggestingthatexternal). Second, the spread in results is much
wider in the absence of forcing (with significant negative correlations for BCC and CCSM4). Together, these results suggest

that the internal-variability teleconnection between PDO and E Asian temperature is very model dependent but that external

forcing consistently weakens the association. The weakening is likely because the forcing drives additional variability in East

Asian temperatures but not in the PDO (because we subtract the global-mean SST anomaly prior to calculating it, and use an
EOF definition that depends on SST spatial differences rather than mean SST across the North Pacific, Fig. 2). Using this
definition (rather than a simple area-mean SST), the model PDOs do not have strong or consistent responses to forcing in the
LMH simulations, in agreement with Landrum et al. (2013) and Fleming and Anchukaitis (2016).

We have also compared the reconstructed PDO and TAS time series (Fig. 6). The correlations are also negative: MD05-WN18
and PMNO09-WN18 are -0.10 and -0.41, respectively, andbut only the latter is significant. The weak correlation with MD05
might be partly related to the fact that this reconstruction is based on only two tree-ring records of North America, suggesting
a-pessiblemore uncertainty if teleconnection patterns it retiedrelies on change through time. The simulated PDO series show
very weak correlations with the reconstructed PDO series: as with the AMO, this implies that an external forcing influence is
weak compared with internal variability and reconstruction errors, or that models’ PDO response to forcings is unrealistic. For
the simulated PDO indices, any external forcing influence may be weak if the PDO calculation (an EOF analysis with the
global-mean SST removed) effectively removes a forcing signal. As before, we repeated our model analysis using both warm

and cold season E Asian temperatures and found very similar results to the annual temperatures.
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5. Effectofvolcanic andsolar forcing

The behaviour of the AMO and PDO timeseries and their correlation with E Asian temperature are clearly sensitive to the
presence of external forcing (e.g. LMH versus PCPI differences), so we now consider the effect of volcanic and solar forcings.
Volcanic forcing-_is the largest external influence within the Last-MiHenniumLM runs (Atwood et al. 2016)—Previous-studies
indicated-that) and is a key driver of the Little Ice Age and other cooling periods during the last millennium are-targehy-driven
by-velecanic-forcing-(Briffa et al. 1998; Ammann et al. 2007; Atwood et al. 2016). AHHowever, Wang et al. (2018) showed
that their E Asian temperature reconstruction has significant multidecadal correlations with solar forcing reconstructions. So,

we have compared the_model simulations and reconstructions to both volcanic (GRA, SEA and SIG; Fig. 7a) and solar forcing
(VSK, DB and SBF; Fig. 7b). All three volcanic forcing timeseries (GRA, CEA and SIG) are closely correlated with each
other but are by no means identical (Fig. 7a). For the period A.D. 850-2000, their correlations arerange from 0.75 {to 0.82 (for
pairs of GRA-ahd, CEA}-0-8L{GRA and SIG) volcanic forcing) and from 0.80 to 0.91 (for pairs of VSK, DB and 8:82(CEA
and-SIGSBF solar forcing), highlighting the value in considering multiple forcing histories.

TFhe-Visually, it is clear to see that the simulated E Asian temperatures and AMOnr timeseries for-CCSM4-and-MPldisplay a

strorgmultidecadal association betweenwith volcanic forcmg while AMOr and medel—sm&tated#AS—and—AM@—(PDO
timeseries do not (Fig. 7 i ifi ). The colder climate

over East Asia inresponse-to-volcanicforcing-compared-to-BCCwhichand the Atlantic (i.e. AMONr) is especially evident
during the three perlods contalnlng strong eruptlons (}25#8—1458#912505 1450s and 4:815)—'Fhe—ease—+s—same—fer—the

1810s). Potential

influences of streng-solar forcing are harder to identify because the forcing is weaker and shows less distinct episodic behaviour

than the volcanic forcing. Turning to correlations (Fig. 8) some key behaviours are clear.

First, simulated E Asian temperature is positively correlated with volcanic eruptions—with-high-correlationsfor CCSM4-and
MPranging-from-0.49-to-0-73-with-forcing (significant for all models except BCC) but this is not the case for reconstructed
temperatures (on these multidecadal timescales at least; WN18 also report that the volcanic signal is small compared with

other influences). We tested to see if the latter result was due to our use of the Wangetal. (2018) composite of reconstructions

rather some individual reconstructions that might better resolve the response to volcanoes, but obtained similar results

(Supplement Fig. S3). E Asian temperatures are also positively correlated with solar forcing but these are weaker than with

volcanic forcing and are either insignificant or marginally significant for all models and reconstructions.

Second, simulated AMOnr_timeseries are more strongly (positively) correlated with external forcings than are the AMOr

timeseries. With volcanic forcing, the AMOnr correlations are significant for all models except BCC (mean correlations
between 0.4 and 0.5 with all three volcanic forcing datasets—Simiarhy-the-correlation), while with solar forcing the model
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correlations are typically between velecanicforcing-and-TFAS-are-high-(0.58-10-0-79)for-the-CCSM4-and-MPLThese-strong

and 0.3. Removing the global-mean SST prior to calculating the AMO (i.e. AMOr) reduces the correlations with both volcanic

and solar forcing (Fig. 8). The reconstructed WN170 series is not expected to correlate with external forcings because Wang

etal. (2017) removed a regression estimate of the forced signal in reconstructed Atlantic SST to obtain this series. The other

two reconstructions (WN17V and AMNO9), however, also show only weak correlations with the external forcings.

Third, the simulated and reconstructed PDO timeseries do not correlate significantly with either volcanic or solar forcing (with

a couple of exceptions that might be expected by chance — the IPSL model with volcanic forcing and the PMNO9 reconstruction

with SBF solar forcing). The means of the model correlations are close to zero.

These results explain some of the earlier findings concerning influences on E Asian temperature, specifically that external

forcing strengthens its positive relationship with the AMO but weakens its (generally negative) relationship with PDO. Strong

positive correlations demonstrate that natural external forcings—targely cause concurrent warming or cooling in both the
Atlantic and East Asian regions, contributing to the strengthening of positive correlations feund—eartier—between
AMOperemAMONr and TAS in these-modelsthe LMH simulations compared with the PI runs (Fig. 3¢-h-3 and 4). Removing
the global SST anomaly first to obtain the AMOremAMOr index renders the correlations with volcanic forcing insignificant
(Fig. 8) and the AMOrem-time-seriesAMOTr timeseries (Fig. 7d7e) do not show any cooling with corresponding volcanic
forcing eruptions. This contributes to the much-reduced correlations with TAS when the AMOremAMOr series are used (Fig.
3and 4).

terms of Pacific variability, the PDO is not strongly correlated with external forcing (as expected because it is diagnosed as an

EOF of SST anomalies having first subtracted the global-mean SST). Therefore, adding external forcing does not greatly

affect the PDO but it does cause additional variability in E Asian temperature, thus weakening the negative PDO-TAS

relationship (Fig. 5 and 6; correlation measures the relative strength of their common variability). We might expect this effect

to be particularly noticeable in those models that simulate a strong positive correlation between East Asian TAS and volcanic

forcing (Fig. 8e). This is the case for CCSM4 (strong volcanic signal in TAS, adding the external forcing greatly weakens the
PDO-TAS relationship) but not for MPI (strong volcanic signal in TAS but the PDO-TAS relationship is stronger in LMH

than in PI, probably because this model has a negative PDO-volcanic correlation) nor BCC (the PDO-TAS relationship is

weaker in LMH than in P1 despite their being little influence of volcanic and solar forcings on E Asian temperature in this

model).

25



10

15

20

25

30

Since we can diagnose AMO and PDO timeseries that are not significantly correlated with volcanic forcing (Fig. 8:
AMOremAMOTr and the EOF-based PDO), we further tried factoring out the volcanic influence from the TAS time series to
see if we could reproduce the behaviour of the control runs (RS)-we-enly-hadPl) using data from the forced runs (LMH).
This is akin to trying to identify the behaviour of internal variability in the real Earth system (Steinman et al., 2015; Dai et al.,
2015). We regressed volcanic forcing (GRA-forBCCand-CCSM4—and-CEA-for-MPl-hereusing the series for each model —

Table 1) on the TAS data, and removed it to yield a TAS series without the linear influence of the volcanic forcing (Seesee
section 2.4-for-detail). Factoring out volcanic forcing from TAS did weaken the correlations with the si mulated AMO LMH
series (Fig. 4; AMOremAMOnNr vs AMOremAMOnNr vo)-especiatly for CCSM4-and-MPLFer-example—LMH) so that the
mean of the model correlations {Fig—4)is very close to that found during the PI runs. However the TAS-AMOnr correlations
for most individual models differ between AMOnoeremPl and the LMH with volcanic influenced factored out. Similar results

are found using the AMOTr index: there is agreement between Pl and FASHaH-from-0.62-0-85-(AMOneorem)-to-0-44-0.59

AMOnorem—\o nd—-from-0 0-36 (AMOrem)-to-0 0 AMOrem-\o he-corre on-didn> e much-for B

{Fig—4+-AMOrem-vs-AMOrem-vo)-because-it-simulatesLMH correlations for the mean of the model correlations but not for
the individual models (e.g. of the four models that show significant positive correlations in the P1 runs, only a-weaktwo are
significant in the LMH runs with volcanic influence on E-Asian-temperature.TAS factored out). Despite factoring out the
influence of the dominant forcing and using-a-definition-{AMOrem)-thatyields an AMO index that is not strongly correlated
with forcing, we still find very different behaviour in the REPI simulation than in the LMH simulation-fer-the-MPlmeodel—in

smat-than-the-latter.. For the-othertwo models; (BCC and CCSM4), we-an correctly infer the small role of AMO internal
variability on E Asian TAS from the LMH run-previded; for two models (MPI and CSIRO), we factor-out-the-influence-of
externalforeingscorrectly infer a significant AMO role (though underestimating its importance for MPI); for two models
(HadCM3 and IPSL) we fail to find the significant AMO role; and for MR1 we find a significant AMO role despite its Pl run
showing no significant AMO role on E Asian TAS.
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correlation)—Factoring out the volcanic signal from-TAS-hardly changes the relationshipsimulated relationships between E

Asian TAS and the PDO (LMHPDO vo; Fig. 6). Fhis-indicates-thatfor-twoFor some models{BCC-and-CCSM4),, therefore
we are not able to determine the internal variability teleconnection between PDO and TAS -when external forcings are present

even-bydespite using a PDO definition that is insensitive to external forcing and by—factoringregressing out the volcanic

influence on TAS.

respectively—Thisisin-contrast-to-the WN1I8-TAStreconstruction—which-shows nestrong, significant eerrelation-with-the

between PDO and E Asian TAS but correlations are weak and insignificant in their LMH runs.

In the BCC model the relationship between volcanic forcing and both AMO and E Asian TAS is notably weaker than the other

models (Fig. 8). This behaviour is the same if we use warm or cold-season TAS (not shown) rather than annual-mean TAS.

TFofurtherThe smaller influence of volcanic forcing for BCC partly explains why it has the weakest correlation between TAS

and AMOnr during the LMH simulations. To explore this weak BCC response to volcanic eruptions we analyse net incoming

shortwave radiation anomalies composited for the three largest volcanic eruption events in all models (Fig. 9). This shows that

the decrease in net incoming shortwave radiation following these eruptions in BCC is less than 25% of the response in both

CCSM4 and MPI. The other four models lie between BCC and MPI. We also have analysed the same for the major volcanic

events during the historical period for BCC, CCSM4 and MPI but did not find such a weak BCC response compared to the

other two models. The weak volcanic forcing and response in BCC may be an artefact of how they implemented volcanic

forcing in their last millennium simulation.

To assess the role of external forcing_further, the power spectra of the AMO and PDO indices are analysed (Fig.10 and 11,

respectively) forthe-PCusing the annual mean data (i.e. the data have not been low pass filtered before spectral estimation) for
the Pl and LMH experiments:, reconstructions and instrumental data. All medels-displayAMO timeseries have red spectra with

pronounced-multidecadal-variabiity(Fig. 10) at short timescales (up to 20 years) but they-differin-their-peakfrequencies—F
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indexat multidecadal timescales the redness, the absolute power and the

presence of enhanced power across a broad range of frequencies all depend on the model, the presence/absence of forcing and

the choice of AMO index. For the AMOnr index, the inclusion of external forcing (LMH runs) greatly strengthens the redness

and-multidecadal power of the variability-for-the CCSM4-and-MP1-medels; the increase is more moderate for BCC- (see earlier

alse-at=20runs. Some models (BCC, HadCM3 and IPSL) show enhanced power at about 20 years, and there is prominent
power around 30 years in the EMH-run—The-MP}has-the reddest AMOIPSL forced simulation (LMH) that is partly reduced

using the AMOF index. In the reconstructions, the spectra in-aH-cases-with-somerunsidefinitionsshowingpeakpowerat=~have

steep gradients over the 40 to 60 year timescales, with elevated power above 60 years. In most models, variability around 60-

80 years, often considered typical for the AMO, is quite strong but only for MPI is it notably elevated above the background

red spectrum (CCSM4 has elevated power around 40-50 years. The AMO reconstructed spectra aHews-usprovide a comparison
(Fig. 10a) —net-of-the-periodicity-but-of the overall spectral shape. CESM4MPI, HadCM3 and MPHIPSL models have the
reddest spectra and for AMOnreremAMONr LMH these are qualitatively similar to the spectra of the WN17V and AMNO09

reconstructions, while the BCC-medel-shewsother models show much less multi-decadal power.

In the case of the PDO, all three models show red spectra with enhanced power at ~15-20 years for both RCP1 and LMH
simulations, indicating that the Pacific variability arises mostly by internal variability. Landrum et al. (2013) found the same
frequency for both control and last millennium simulations. The enhanced PDO power at ~15-20 years is filtered out by the

30-year smoothing used for the majority of analyses reported here, which might weaken the PDO-TAS correlation.
6. Discussion and Conclusions

The instrumental record is too short to clearly distinguish the-contributions from natural internal variability, natural_external
forcings and anthropogenic forcings at multidecadal timescales. Zhang et al. (2018) and Wang et al. (2018) have explored this
issue using paleoclimate reconstructions of temperatures over a large region in E Asia. Here, we complement these studies by
using the dynamical information provided by three climate models (Table 1), with and without the influence of external

forcings over the last millennium. Our key findings are:

1. The models simulate multidecadal modes of variability in the extratropical oceans (AMO and PDO) with spatial
patterns similar to those previously identified in the observations and proxy-based reconstructions. Using commonly

applied methods to diagnose their time series (area-averaged NNorth Atlantic SST for the AMO and the leading EOF

of NNorth Pacific SST for the PDO) we find that they have red spectra with enhanced multi-decadal variability similar
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to those found in observation and reconstructions. FheHowever, the shape and amplitude of their spectra and-the
i tgnifi differ between the models and withdepend on

the presence or absence of external forcing.

These multidecadal modes of variability, along with variations in volcanic forcing, are found to influence E Asian
temperature in the models. In most cases, E Asia temperature is positively correlated with the AMO and volcanic
forcing, and negatively correlated with the PDO. The correlations are not spatially uniform, with PDO correlations
strongest in the parts of the E Asian region that are closest to the extratropical NNorth Pacific Ocean, and the AMO

influence showing some latitudinal differencesstructure in most models.

The presence of external forcing strongly affects the apparent teleconnections between these multidecadal modes of
variability and E Asia temperature. The effect depends on how the modes of variability are diagnosed and whether
the forcings add common variability to both series (e.g., in the case of AMO) or add distinct variance to E Asia

temperature but not to the mode of variability-_(e.q., in the case of PDO).

If the AMO is defined simply as the mean N Atlantic SST then external forcing strengthens the AMO-E Asia
temperature correlation by causing concurrent warming or cooling in both the Atlantic and E Asian regions. For all
threeseven models, the correlations between E Asian temperature and the AMO are stronger in the last millennium

forced simulation than in their corresponding control runs when the AMO is defined this way.

Defining the AMO as the difference between N Atlantic and global-mean SST reduces but-dees—noet-completely
remeve-this-effeetthis effect but does not yield correlations between E Asian temperature and the AMO that match
those present in the model control runs, because much but not all of the external forcing influence on N Atlantic SST

also drives global SST in these models. The-AMO-E-Asian-temperature-correlation-is-then-much-weaker—in-these
models,—and-—regressing_Despite factoring out the influence of the dominant forcing (volcanic) frem-E-Asian

temperaturefurther-modifies-this-correlationon E Asian temperature and using an AMO index that is not strongly

correlated with forcing, we still find different behaviour in the Pl simulation than in the LMH simulation.

The PDO definition used here (the leading EOF of Pacific SST minus global-mean SST) yields an index that has only
weak correlations with veoleanicexternal forcing. Despite this, the multidecadal correlation between the PDO and E
Asia temperature (which is negative) is still sensitive to the presence of external forcing. In this case, external forcing
weakens the apparent teleconnection in two of the models. This partly arises because external forcing (especially

volcanic forcing) generates a response in E Asia temperature but notin the PDO index, thus weakening the correlation
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between them. Regressing out the influence of volcanic forcing on E Asia temperature has—relatively limited effect

on the correlation, which remains much weaker than in the control run for two of the models.

These results have significant implications for attempts to determine the influence of the AMO and the PDO strictly as modes
of internal variability on E Asia temperatures. With models, we can simply analyse their control runs. For the real world, we
do not have that option: we can analyse only reconstructions froma real world in which natural external forcings are present.
In this case, we recommend, on the basis of our results, that careful consideration be given to separating out the influence of
external forcings on both the indices of modes of variability and on the E Asia temperature series before determining the

internal variability teleconnections.

There are a number of ways to attempt this, each with is-ewn-limitations. The modes of variability might be defined using the
difference between regional and global SST-heweverin-many-cases-a-separate. For example, the Last Millennium Reanalysis
(Tardiff et al., 2019) provides globally-complete temperature fields that could be used (though these are not independent of

the CCSMA4 climate model or the forcings used). In many cases an independent reconstruction of global SST may not be

available. Mann et al. (2009) reconstructed a global field of SST but prior to 1600 their reconstruction is a linear combination
of only two spatial patterns which gives limited information about the Atlantic—global SST difference. Another approach is to
identify and remove the influence of external forcing, e.g. by regression against forcing histories -in reconstructions (Wang et
al., 2017, 2018), by a method combining observations with ensemble of coupled climate model simulations (Dai et al., 2015
and Steinman et al., 2015),_or using more sophisticated detection and attribution methods (e.g. Hegerl and Zwiers, 2011).
These approaches require accurate forcing histories. A further approach is to use an EOF-based definition of the index where
the spatial pattern has regions with loadings of opposite sign. External forcing tends to project similarly onto regions with
opposite signs, cancelling out much of its influence on the resulting index. This is appropriate for the PDO, as used here, but
less so for the AMO because the associated SST pattern is dominated by anomalies of the same sign (Fig. 1). Regression
against forcing histories can also be used to remove the influence of external forcing on the target region (E Asian temperature
for this study), prior to identifying the influence of AMO and PDO variability (Wang et al., 2018).

Even if these approaches are taken, it may still be impossible to determine the influence of multidecadal internal variability by
analysing data that has been subject to external forcings. Despite factoring out the influence of the volcanic forcing in the
AMO index, we still find very-different behaviour in the forced simulation than in the control run for the-MPlmedel-tn-some
models. For example, in the forced run_of the MP1 model, the apparent AMO teleconnection on E Asian temperature is rather
weak{AMOremonly 0.4 (AMOr_vo in Fig. 4);) whereas in the control run it is strong-_(> 0.7 for AMOnr). For the ether
tweBCC and CCSM4 models, we can correctly infer from the forced run that-the AMO internal variability has only a small
influence on E Asia temperature from-theforced-run-provided we factordefine the AMO as the difference between Atlantic
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and global SST (just factoring out the influence of external forcings-_from E Asia temperature in insufficient). Similar

limitations were found regarding the PDO teleconnection: for two models (BCC and CCSM4), we are not able to determine
its strongly negative correlation with E Asia temperature internal variability from a simulation with external forcings. We note
the possibility that external forcing may have modified the dynamical behaviour of the internal variability in these cases,
confounding the notion that we can clearly separate forced change from internal variability.

Finally, we found only partial agreement between the behaviours shown by the reconstructions and models. The correlations
between E Asia temperature and the AMO and PDO showed the same signs in the models and the data, but the correlation
values had a wide range. The strong influence of volcanic forcing in tasesix of the models was not found in the reconstructions
(Wang et al. 2018). We need to be careful while interpreting the results of the CMIP5-PMIP3 last millennium simulations in
light of the paleoclimate record, because there-exists—a-large uncertainties_exist in the characterization of volcanic forcing,
reconstruction of aerosol loading, optical depth and aerosol effective radius as a function of time, latitude, and height in the

atmosphere, all of which exert important controls on the climate system (Atwood et al. 2016).
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Table 1: Summary of the CMIP5-PMIP3 climate models considered in this study and the volcanic forcingapplied in their Last

Millennium simulations. The simulation length of last millennium and Historical simulations together for all the three models

are 1151 years (850-2000).-Fhe-simulatio

1050-and-1150-years-respectively-
Resolution Forcing
Volcan
Atmospheri ic
Model Institution, Count Reference M reseluneocean o foreing Volcanic®  Solar?
(abbr.) e resolution/A Pl
tmosphere length
(vears)
Gao-et
bce-csml-1 Beijing Climate Xinetal. 128x64 360x232  ak GEA VSK+
enter, China 500!
(BCC) C Chi (2013) L26 L40 500020 WLS
08)
. 10506
CCsM4 ﬁﬁrtr']g;‘a'h;?é‘ter for  andrumet  288x192  320x384 acet GEA sk
(CCSM4) Resear‘gh UeA al. (2013) L26 L60 ak.
E— (2008)
. 1150G¢
MPI-ESM-P If\élfmlznir;crlgllonstltute Giorgetta et 196x98 256x220  owley CEA VSK+
(MPI) German 9y. al. (2013) L47 L40 etal. WLS
~ermany (2008)
HadCM3 Met Office Hadley Schurer etal.  96x73 288x144 1100 CEA SBF+
(HadCM3) Centre, UK (2013) L19 L20 - WLS
i -
MRI-CGCM3 Meteorological Yukimotoet ~ 320x160  364x368 DB+
MRI Research Institute, al (2012 L48 151 500 GEA WLS
Japan al (2012) I = —
IPSL-CM5A-LR Institut Pierre Simon  Dufresne et 96x95 182x149 1000 GEA VSK+
IPSL Laplace, France al. (2013) L39 L31 _ . WLS
CSIRO MK3L v1.2 ggllj\t/r?r\j\l/z;sf NeW  phippsetal.  64x56 128112 1000 cga <aF
CSIRO Australia 2011, 2012 L18 L21 E— — —

"Volcanic forcings: GAO = Gao et al. (2008); CEA = Crowley et al. (2008)




'Solar forcings: VSK = Vieira etal. (2011): DB = Delaygue and Bard (2011): SBF = Steinhilber et al. (2009); WLS = Wang
etal (2005)
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Table 2: Summary of the paleepaleoclimate reconstructions considered in this study

Reconstruction

(abbr.) Reference Variable Time span Datasource
AMO (AMNO9) '(\gggg)et al. N Atlantic average SST 500-2006 gg?ﬂg%gg" ice &

AMO (WN17V  Wangetal.
and WN170) (2017)

Tree ring, ice core,

N Atlantic_(0-70°N) average SST  800-2010 documentary

Mannetal. N Pacific (22.5-57.5°N, 152.5°E- Tree ring, coral, ice&
PDO (PMNO9) (2009) 132.5°W) average SST 500-2006 sediment cores

MacDonald & N Pacific (north of 20°N) .
PDO (MD05) Case (2005) principal component of SST 993-19%6  Treering

Wang et al. . . Mean of 7 available
TAS (WNL18) (2018) E Asia land air temperature 850-1999 reconstructions
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Figure 1: Fhe-AMO spatial-patte rns—Regressien- defined by regression of annual mean SST on the AMO index for the
three CMHP-modekeach GCM for the EMHPI (1t and PC2™ column) and LMH (3" and 4™ columns) experime nts—a;
bc)}-and{gh—) compared with HadISST and ERSST obse rvation (bottom row). 1t and 3" columns use the AMO
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index calculated without subtracting the global SST anomaly (AMOnr) while {&-e-£2" and (k4" columns use the
AMO index after subtracting the global SST anomaly- (AMOT).
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Figure 2: Fhe-PDO spatial-pattern—The-leadingSST patterns defined by the first EOF of Nerth-Pacificannual mean

SST—anemalies for the—three CMHP-meodelsPC{a—b;ceach GCM for the Pl (1st column) and LMH (d—e—5
simulations-2nd column) experiments compared with the HadISST and ERSST obse rvations (bottom row).
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Fig 1. Correlation values significant at 90% levek using two-tailed Student’s t-test are contoured.
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Flgure 6: Correlations ofEannuaI mean East AS|an reglonal average surface te mpe rature agamst PDO fe#medles-and

each GCM (cwcles) for Pl and LM H experime nts compared W|th reconstructlons (trlanqles) The mean correlations

for the 7 GCMs are marked with black circles connected by a solid line; ‘vo’ indicates that the volcanic influence on
East Asian te mpe rature has been removed by linear regression in the LMH expe riments. The thick circles and triangles
show values significant at 95% level using a two-tailed student t-test.

52



The reconstruction correlations are between the WN18 E Asian te mpe rature and the two PDO reconstructions (Table

2).
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Figure 7: Timeseries of (a) volcanic forcing, (b) solar forcing, (c) surface temperature over East Asia, (6)}-AMO-index
withoutsubtracting-the-global SST(d) AMO index without subtracting the global SST (AMOnr), () AMO index after
subtracting the global SST;_(AMOI), and (ef) PDO index, all are_annual mean values, passed through a 30-year low
pass filter and truncated to remove filter end effects. Medelsimulationresults-arealsoMode | simulations in (c)—(f) are
given as the mean (red line) and spread (pink shading) of the 7 GCMs. Model simulations for surface temperature,
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AMO and PDO are compared with the available reconstructed data-—MD05-PDO-reconstructed-data-begins—in-993;

oceur- (black and blue lines).
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Figure 8: The correlations of (a)annual mean AMO, {b)}-PDO and {¢)-TAS with volcanic forcing (medelka, c, e) and
reconstructions)solar forcing (b, d, f) for each GCM (triangles) and reconstruction (circle, square and diamond). The
threshold values for the individual correlations significant at 95% level using a two-tailed student t-test are marked as
dashed lines. The means ofthe 7 model correlations are shown by black triangles connected by black lines.
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Figure 9: Annual mean composite anomaly of net shortwave (SW) radiation at the top of the atmosphere for three large
volcanic e ruption events (1257-1458-andforeach GCM . Individual GCM results are aligned so that their peak negative

SW anomalies occur atvear+1 (i.e. 1258,1452, 1815)4he—zem¥emeal4m&54heyeaweleamee¥upnemeeewreaand
ig and-a e-event: for BCC, CCSM4, IPSL ; 1258, 1452, 1816 for

alalllalNTaalaYaWaadll fa) ang a ake fthe vears before

MRI; 1258, 1456, 1816 for MPI, HadCM3, CSIRO).
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(a) AMO Recon & Observ
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Figure 10: Spectra of AMO index of reconstructions and instrumental data (a) and three-medelseach of 7 GCMs for
PCPI (b and ed) and LMH (dc and e) experiments, AMOnr and alseAMOr are_the two definitions of AMO index with

. ine);not shown for timescales that the powerfor-periods
underlying data cannot adequately represent (not for < 30 years is-zero-and-sheuld-be-igheredfor WN170 and not for
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<10 years for AMNO9 because enlbythese reconstructions use 30-year and 10-year low-pass filtered data were-available
and-heneerespectively; not for > 30 vears for HadISST because the dashedine-forconfidenceleveHs-notpresented(a).

instrume ntal data is too short to dete rmine power on longer timescales).
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(a) PDO Recon & Observ
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Figure 11: Spectra of PDO index of three-medelsreconstructions and instrumental data (a) and GCMs for RSPI (b)
and LMH (c) experiments. Fhe-solidlinesSpectra are spectra-and-dashed-lines-are-confidence-at 90%levelofperiod

underlying data cannot adequately represent (not for < 10 years for PMNO9 because this reconstruction uses 10-year
low-pass filtered data; not for > 30 vears for HadISST because the instrumental data is too short to determine power

on longer timescales).
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