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Abstract 8 

We review paleoceanographic and paleoclimatic records from the northern North Atlantic to assess 9 

the nature of climatic conditions at 4.2ka BP, which has been identified as a time of exceptional 10 

climatic anomalies in many parts of the world. The northern North Atlantic region experienced 11 

relatively warm conditions in from 6-8ka B.P., followed by a general decline in temperatures after 12 

~5ka B.P., which led to the onset of Neoglaciation. Over the last 5000 years, a series of multi-13 

decadal to century scale fluctuations occurred, superimposed on an overall decline in temperature.  14 

Although a few records do show a glacial advance around 4.2ka B.P., because they are not 15 

widespread we interpret them as local events -- simply one glacial advance of many that occurred 16 

in response to the overall climatic deterioration that characterized the late Holocene.  17 

 18 

1. Introduction 19 

The North Atlantic is a key area in the global climate system because changes in atmospheric and 20 

oceanographic conditions in this region can have widespread effects on global climate. It is the 21 

core region for ventilation of the North Atlantic which drives the Atlantic Meridional Overturning 22 

Circulation (AMOC), with global teleconnections through the conveyor belt system of ocean 23 

currents. Detailed studies of two sediment cores in the North Atlantic (at ~65° and ~54°N) by 24 

Bond et al (1997) revealed quasi-periodic variations in the percentage of hematite-stained grains 25 

and Icelandic glass during the Holocene, which were interpreted as evidence for pulses of ice-26 

rafting.  They argued that during these episodes, “cool, ice-bearing surface waters shifted across 27 

more than 5° of latitude, each time penetrating well into the core of the North Atlantic Current”.  28 

One of the 8 Holocene episodes (later dubbed “Bond events”) occurred at ~4.2ka calendar years 29 

B.P.  Given that this is the time at which exceptional climatic anomalies appear to have occurred 30 
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in many parts of the world (“the 4.2ka B.P. event”) (cf. Weiss, 2017) it is important to re-assess 31 

the evidence for disruption of the North Atlantic Current at that time.    32 

 Bond et al. (2001) argued that the colder episodes they had identified were driven by a 33 

reduction in solar insolation (cf. Wanner and Bütikofer, 2008; Wanner et al., 2011), 34 

notwithstanding the fact that total solar irradiance did not vary by more than ±0.15% over this 35 

period (Vieira et al., 2011; Roth and Joos, 2013; Wu et al. 2018).  Nevertheless, the literature is 36 

replete with studies that have tried to link diverse paleoclimatic records  from around the world to 37 

the timing of Bond events (e.g. Fleitmann et al., 2003; Gupta et al., 2003; Wang et al., 2005; 38 

Pèlachs et al., 2011), despite the fact that other paleoceanographic studies have been unable to 39 

reproduce the record of ice-rafting reported in Bond et al., (1997) (e.g. Andrews et al., 2014).  Here 40 

we review sedimentary records from the northern North Atlantic (north of 60°N) with a specific 41 

focus on whether there is evidence for an “event” around 4.2ka B.P. We do not focus on records 42 

from Iceland as these have been reviewed separately by Geirsdóttir et al. (2019). 43 

The North Atlantic has a very distinct pattern of sea surface temperatures, reflecting the ocean 44 

currents that traverse the region (Figure 1).  Warm sub-tropical water enters the region from the 45 

southwest via the Gulf Stream (North Atlantic Current) and this transfers heat to sub-polar latitudes 46 

north of Scandinavia by way of the Norwegian Atlantic and West Spitsbergen currents, as well as 47 

around the western and northwestern coast of Iceland via the Irminger current.  In contrast, cold 48 

polar water exits the Arctic Ocean via the East Greenland current, which extends to the southern 49 

tip of Greenland. The region between these water masses is where deepwater formation occurs, 50 

driving the large-scale Atlantic Meridional Overturning Circulation (AMOC). On the timescale of 51 

the Holocene, there have been significant changes in the characteristics and position of these major 52 

oceanographic features, as recorded by various paleoceanographic proxies.   53 

 54 

2. Paleoceanographic evidence 55 

First, we consider a transect of sediment cores that are aligned along the axis of the main influx of 56 

Atlantic water entering the North Atlantic, from west of the UK to Svalbard (Figure 1). We focus 57 

on those studies that have provided estimates of paleo sea-surface temperatures.  Effectively, this 58 

means only those that have analyzed alkenones and diatoms, which reflect conditions in the photic 59 

zone or mixed layer near the ocean surface. Figure 1 shows the location of all available Holocene 60 

alkenone-based paleotemperature estimates (Figure 2; see references in the caption). These 61 



 3 

indicate that SSTs were higher in the early Holocene, with the largest anomalies (relative to today) 62 

at high latitudes (that is, there was strong polar amplification of the warming) (Andersson et al., 63 

2010).  This early Holocene warming was a consequence of orbital forcing: June/July insolation 64 

was ~10% higher than today at the start of the Holocene in the northern parts of the region, but the 65 

peak warming was delayed due to the influence of the decaying Laurentide and Scandinavian Ice 66 

Sheets and associated icebergs and freshwater (Renssen et al., 2009, 2012; Zhang et al., 2016). 67 

Consequently, maximum temperatures were a few thousand years later than the peak insolation, 68 

punctuated by a short-lived cooling event around 8.2ka B.P. associated with the final major 69 

freshwater discharge event of the Laurentide Ice Sheet (Barber et al., 1999; Rohling and Pälike, 70 

2005). Thereafter, as insolation declined so sea surface temperatures declined steadily, or by some 71 

estimates, in a more step-like manner (e.g. Calvo et al., 2002; Risebrobakken et al., 2010).  For 72 

example, Birks and Koç (2002), Andersen et al. (2004) and Berner et al. (2011) all found that 73 

August SSTs at 67°N (core MD95-2011) were 4-5°C warmer than today from ~9000-6500 years 74 

B.P., then steadily declined. These analyses were based on diatoms, but similar results (albeit with 75 

a smaller change in temperature, ~2.5°C, perhaps reflecting a different seasonal bias) were 76 

obtained in a study of alkenones from the same core (Calvo et al., 2002). Studies further north, 77 

paint a similar picture (Sarnthein et al., 2003; Risebrobakken et al., 2003, 2010; Werner et al., 78 

2014). This pattern of maximum SSTs in the first half of the Holocene and cooling thereafter is 79 

seen throughout the eastern North Atlantic, in all proxies that are indicative of conditions in the 80 

photic zone (Rimbu et al., 2003; Leduc et al., 2010; Sejrup et al., 2016). The timing of the onset 81 

of cooling varies, but cooling was well underway by~5.5ka B.P., in what some refer to as a 82 

“transition period” that subsequently led to much cooler conditions in the late Holocene (after 83 

3.5ka B.P.) (e.g. Aagaard-Sorensen et al., 2014; Andersen et al., 2004; Leduc et al., 2010; Sejrup 84 

et al., 2016). Although there were short-lived cooling episodes superimposed on the overall first 85 

order pattern of temperature change (e.g. Werner et al., 2014), there is no evidence for quasi-86 

periodic cooling episodes disrupting the northward flux of Atlantic water, as described by Bond et 87 

al (1997).  Proxies of sub-surface conditions (below the mixed layer) – Mg/Ca ratios and oxygen 88 

isotopes in forams, as well as foram assemblage changes – generally do not show the same pattern 89 

of pan-Holocene cooling as the SST proxies, often indicating slight warming through the Holocene 90 

(e.g. Andersson et al., 2010; Sejrup et al., 2011).  But these records also do not show a pattern of 91 

quasi-periodic cooling events. Could this be because of low resolution in sampling, or poor 92 
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chronologies?  This seems very unlikely as many of these records are from high-deposition rate 93 

sites, providing high resolution records that are generally well-dated (e.g. Berner et al., 2011). 94 

Indeed, one exceptionally well-dated, high resolution sediment core from the Storegga Slide region 95 

(90 AMS 14C dates over 8000 calendar years) provides oxygen isotope data on planktonic forams 96 

at a resolution of ±20 years within the core of the Norwegian Atlantic Current at ~64°N (Sjejrup 97 

et al., 2011). This clearly shows multi-decadal to century-scale variability throughout the last 8000 98 

years, but none of the cold water flux episodes that one would expect to see, based on the work of 99 

Bond et al. (1997).  We therefore conclude that there is no signal of a 4.2ka B.P. event in 100 

paleoceanographic proxies from regions influenced by the flux of warm water from the sub-101 

tropical Atlantic into the Nordic Seas.  Cooling of the sea surface had set in more than a millennium 102 

earlier in this region.   103 

Next, we consider studies in the western part of the North Atlantic, north of Iceland on the 104 

Icelandic Shelf, and further to the west, near Denmark Strait.  Here, many studies have examined, 105 

inter alia, foraminiferal assemblages, coccoliths, dinoflagellate cysts and sea-ice biomarkers and 106 

ice-rafted debris (IRD) reflecting transport of material in the cold East Greenland Current (e.g. 107 

Andrews et al., 1997; Jennings et al., 2002; Giraudeau et al., 2004; Solignac et al., 2006; Sicre et 108 

al., 2008; Justwan et al., 2008; Perner et al., 2015; Moossen et al., 2015; Cabedo-Sanz et al., 2016; 109 

Kolling et al., 2017).  In this region, warmest conditions occurred around 6.0±1.5ka B.P. (the 110 

timing depending on location); these conditions were associated with minimal input of IRD, 111 

reflecting the recession of tidewater glaciers onto land along the eastern coast of Greenland, and a 112 

weak East Greenland Current, with minimal stratification of the water column at that time as the 113 

flux of warmer, more saline Irminger Current water increased (Justwan et al., 2008; Jennings et 114 

al., 2011; Werner et al., 2014; Telesinski et al., 2014; Perner et al., 2016). Conditions began to 115 

change by ~5.0±0.5ka B.P. (the timing varying geographically) when cold water diatoms and 116 

forams, sea-ice (as tracked by the biomarker index, IP25) and IRD started to increase, and the water 117 

column became more stratified as the East Greenland Current strengthened (Moros et al., 2006; 118 

Telesinski et al., 2014; Perner et al., 2016; Kristiansdottir et al., 2017). These changes correspond 119 

to the re-advance of glaciers in East Greenland, part of the much more widespread onset of 120 

neoglaciation that is well-documented in many regions around the North Atlantic (Solomina et al., 121 

2015). Warmer conditions (related to a strengthened Irminger Current) developed over the past 122 

2000 years, but this period is also characterized by a series of minor fluctuations in the extent of 123 
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ice in the region, with much colder conditions after ~1.0ka B.P. when the coldest conditions of the 124 

last 8000 years occurred, with abundant IRD and sea-ice in Denmark Strait and off the north coast 125 

of Iceland (Bendle and Rosell-Mele, 2007; Andresen et al., 2013; Cabedo-Sanz at al 2016; Kolling 126 

et al., 2017). None of these records show evidence of an unusual anomaly at 4.2ka B.P.; rather, the 127 

overall cooling of the late Holocene began 500-1000 years earlier (cf. Orme et al., 2018).   Similar 128 

variability is also seen further south and southwest of Iceland, at ~59°N (Farmer et al., 2008; Moros 129 

et al., 2012; Orme et al., 2018) though there is evidence from dinocysts for an anomaly in the 130 

seasonality of SSTs at ~4.5ka B.P., perhaps related to a westward shift in the Sub-Polar Gyre, 131 

allowing warmer Atlantic water to influence the site (van Nieuwenhove et al., 2018). 132 

This review of paleoceanographic studies extending from southern Greenland to Fram 133 

Strait, and from western Svalbard and the southern Barents Sea southward to 60°N, provides no 134 

evidence for a significant change in major oceanographic conditions that could be linked to the 135 

4.2ka B.P. climate anomaly seen elsewhere.  Rather, the evidence points to a more gradual change 136 

that was well under way by ~5ka B.P., from the relatively warm conditions of the early Holocene 137 

(driven by precessional forcing) to much colder conditions that have characterized the last 3 138 

millennia.   139 

 140 

3. Terrestrial records from around the North Atlantic (locations given in Figure 5) 141 

3.1 Eastern Greenland and the Greenland Ice sheet 142 

Lake sediment records from sites along the coast of eastern Greenland provide a record of 143 

Holocene environmental conditions that generally reinforce the paleoceanographic evidence 144 

discussed earlier.  A “Holocene Thermal Maximum” (characterized inter alia by longer ice-free 145 

conditions, higher levels of lacustrine productivity, increased evaporation, more tundra vegetation 146 

and higher levels of terrestrial plant material transferred to lakes) is clearly seen from ~8ka B.P. 147 

(or earlier) to ~5.0±0.5ka B.P (e.g. Kaplan et al., 2002; Andresen et al., 2004; Schmidt et al., 2011; 148 

Balascio et al., 2013; Wagner and Bennike, 2015; Axford et al., 2017; van der Bilt et al., 2018a).  149 

Thereafter, conditions became colder, often with a decline in vegetation cover, an increase in the 150 

flux of coarse-grained sediments, and a shift in the types of chironomids and diatoms present, 151 

towards species that thrive in cooler conditions.  At the same time, in glacierized watersheds, the 152 

growth of glaciers led to an increase in the flux of minerogenic material which is a diagnostic 153 

signal of the onset of late Holocene neoglaciation across the region.  In Kulusuk Lake (65°N on 154 
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the coast of southeastern Greenland) this change occurred at ~4.2ka B.P., when there was an abrupt 155 

increase in clastic sediments from glaciers that had probably disappeared during the mid-Holocene 156 

warm period (Balascio et al., 2015).  A similar transition is seen in sediments from nearby Ymer 157 

Lake, where a higher frequency of avalanches and a longer season with ice-cover is thought to 158 

have favored the transfer of coarser material into the lake after ~4ka B.P. (van der Bilt et al., 2018). 159 

At another site in the same region, the Holocene thermal maximum was identified (via the 160 

evaporative enrichment of dD in leaf wax n-alkanes) from 8.4 to 4.1ka B.P, followed by a decrease 161 

in evaporation as the open water season became shorter.  At the same time, there was an increase 162 

in the flux of clastic sediments and terrestrial organic material into the lake as river runoff increased 163 

(Balascio et al., 2013).  In all of these studies, it is clear that there was a fairly rapid transition from 164 

warm mid-Holocene conditions to the colder, wetter late Holocene that encompassed the 4.2ka 165 

B.P. interval of interest.  In some cases, there is evidence for a short-lived “event” at around that 166 

time (e.g., at Kulusuk Lake; Balascio et al., 2015) but this appears to be simply a part of the overall 167 

deterioration in climate that led to ice growth across the region.  There is currently no evidence for 168 

a more widespread glacial advance at 4.2ka B.P.  Given that cooling was persistent over the last 169 

5000 years, and the elevational threshold for glacierization is close to mountain tops across the 170 

region (declining in elevation poleward) it is understandable that different locations would have 171 

experienced the onset of neoglaciation at different times (cf. Geirsdottir et al., 2019).  However, 172 

as the ELA continued to lower over the last 3-4 millennia, glaciers that had greatly diminished in 173 

size, or disappeared entirely, during the warmest period of the Holocene were eventually 174 

regenerated, with the exact timing varying across the region. In the case of Kulusuk Lake, it seems 175 

reasonable to conclude that the steady decline in temperatures and the specific hypsography of that 176 

basin led to a short-lived positive mass balance, with early ice growth and associated sediment 177 

input to the lake around 4.2ka B.P.  This was the first of several advances within the Neoglacial 178 

period.  179 

 Ice cores from Greenland provide records of past climate variations from oxygen isotopes, 180 

glaciochemistry and physical characteristics, which are broadly consistent with those from coastal 181 

lake sediments. Alley and Anandakrishnan (1995) examined evidence for summer melting in the 182 

GISP2 ice core, as recorded by changes in the physical properties of the ice.  Their analysis was at 183 

a relatively low resolution, but they showed maximum Holocene summer temperatures from 184 

~7.5ka B.P., followed by a two-step transition to colder conditions, from ~6.5 to 5.5ka B.P., and 185 
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~4.5 to 4ka B.P., with persistently low summer temperatures (minimal melting) thereafter.  After 186 

adjusting for ice thickness changes, Vinther et al. (2009) also showed that there was an overall 187 

decline in temperature at the Summit of the Greenland Ice Sheet (73°N, 3210 masl) over the last 188 

~9,000 years (interpreted from changes in d18O in the GISP2 ice core).  The mean temperature of 189 

the warmest and coldest millennia (7-8ka and 0-1ka b2k, respectively) differ by ~2.35°C 190 

(assuming no change in the seasonality of snowfall on the ice sheet).  Superimposed on the long-191 

term temperature decline there were multidecadal anomalies on the order of ±1°C.  One of the 192 

largest of the negative anomalies after the well-known 8.2ka B.P. event began ~4400 b2k and 193 

reached a minimum at 4340 b2k, but by 4200 b2k, temperatures had sharply increased (Figure 3). 194 

In the Vinther et al. (2009) reconstruction (Figure 3a, which combines data from Renland and 195 

Agassiz Ice Caps), this appears to be driven mainly by the record from Agassiz Ice Cap on 196 

Ellesmere Island (Figure 3b); nothing comparable is seen in oxygen isotopic records from Summit 197 

or Renland (Figures 3b, 3c), or in the Summit temperature reconstruction of Kobashi et al. (2017), 198 

based on the differential diffusion of argon and nitrogen isotopes in firn prior to its densification 199 

into ice (Figure 3d).  However, d18O in chironomid head capsules from a lake in northwest 200 

Greenland also recorded the highest values of the last ~6000 years at ~4.2ka B.P. (Lasher et al., 201 

2017) and at Camp Century, there was a local isotopic maximum shortly before 4000 B.P. (Figure 202 

3b).  In Murray Lake (northeastern Ellesmere Island), relatively warm conditions at ~4.2ka B.P. 203 

were reconstructed from varve thickness (Cook et al.,2009).  Similarly, Gkinis et al. (2014) found 204 

an abrupt increase in temperature in the NorthGRIP ice core at ~4200 b2k after deconvolving the 205 

isotopic record to take into account diffusion effects that have smoothed the signal. However, this 206 

technique is very sensitive to the assumptions made about the past accumulation rate, as diffusion 207 

is a function of both past accumulation and temperature. For example, a 15% reduction in 208 

accumulation would reduce an apparent temperature anomaly from 5°C to 3.5°C (Gkinis, pers. 209 

comm.). Under the assumption of no changes in accumulation rate, Gkinis et al. (2014) identify a 210 

warm period in the North GRIP core at 4.2ka B.P. and refer to this as the “mid-Holocene optimum”. 211 

It will be interesting to see if this technique, when applied to other ice cores, reveals more details 212 

about short-term temperature fluctuations that may have been obscured by diffusion effects.  But 213 

for now, only 3 records, from northwest Greenland and northern Ellesmere Island, point to short-214 

lived warmer conditions at ~4.2ka B.P., in contrast to the majority of records that indicate 215 

temperatures were declining at that time.  216 
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 217 

3.2 Iceland 218 

Iceland is in a central location to experience major changes in the major oceanic and atmospheric 219 

circulation patterns of the North Atlantic. We did not undertake a review of the literature on the 220 

Holocene paleoclimatology of Iceland as that is well summarized by Geirsdóttir et al (2019). They 221 

conclude that Neoglaciation in Iceland had begun by 5ka B.P. but different topographic features 222 

and proximity to the ocean led to varying environmental effects across the island.  Several step-223 

like changes occurred during the last 5ka B.P., culminating in the most extensive glacier advances 224 

during the last millennium.  One of the step-like changes occurred at ~4.5-4.0ka B.P, and they 225 

conclude that this is indistinguishable from a “4.2ka B.P.  event”.  They note that the eruption of 226 

Hekla at 4.2ka deposited at ≥1cm of tephra over 80% of Iceland, so the direct effects on the 227 

landscape at that time complicate the detection of a signal that may be related to other forcing 228 

factors.  Of the two lakes in NE Iceland that did not have a tephra in the sediments, one (Skoravatn) 229 

shows an abrupt change at 4.2ka B.P., while the other (Tröllkonuvatn) does not, making it difficult 230 

to draw conclusions about the impact of the eruption on changes recorded at that time. 231 

 232 

 233 

3.3 Svalbard 234 

Lake sediment records from Svalbard record changes in climate at the northernmost limit of North 235 

Atlantic water (the West Spitsbergen Current).  All studies describe a warm early Holocene phase 236 

when many of the glaciers seen today were small or absent (Farnsworth, 2018). On Amsterdamoya, 237 

at the northwestern edge of Svalbard, warm and dry conditions spanned the interval from 7.7 to 238 

5ka B.P.; glaciers were small or absent by 8.4ka B.P., only re-forming in the late Holocene (Gjerde 239 

et al., 2018; de Wet et al., 2018).  To the south, on the Mitrahalvoya Peninsula, there is also 240 

evidence that glaciers reached their minimum size by the mid-Holocene, but subsequently re-241 

formed or re-advanced. Karlbreen began to grow around 3.5ka B.P. (Røthe et al., 2015) but in the 242 

neighboring watershed of Hajeren an abrupt increase in minerogenic sediments at 4.25 ka B.P. 243 

registered the onset of neoglaciation in that basin (van der Bilt et al., 2015).  Paleotemperature 244 

estimates (from alkenones) in the same record indicate this advance was triggered by an abrupt 245 

drop in temperature at that time; thereafter, temperatures remained low (van der Bilt et al., 2018b). 246 
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Other records from the region indicate that the first neoglacial advances of glaciers occurred 247 

around 4.6ka B.P. (e.g. Svendsen and Mangerud, 1997; Reusche et al., 2014). 248 

 249 

3.4  Scandinavia 250 

As most glaciers in Scandinavia had their largest areal extent during the “Little Ice Age” (~A.D. 251 

1400-1850), information about past glaciers in Norway during the late Holocene is based on 252 

reconstructions from indirect evidence, mainly sediments deposited in distal glacier-fed lakes (e.g. 253 

Nesje 2009, Bakke et al., 2010; 2013). After several large glacier advances in the earliest Holocene, 254 

the climate was generally warm during the early Holocene (8.5-6.5ka B.P.) and most glaciers 255 

melted away completely (Nesje 2009) (Figure 4). Around 6 ka B.P. glaciers start to re-grow mainly 256 

as a function of decreasing summer insolation over the Northern Hemisphere (Wanner et al. 2008). 257 

The regrowth of glaciers follows a pattern of gradual increases in glacier size interrupted by 258 

smaller glacier advances (Bakke et al, 2010, 2013; Vasskog et al., 2012). Along a coastal south-259 

north transect through Scandinavia, different locations have experienced the onset of neoglaciation 260 

at different times, mainly as a function of altitude (cf. Geirsdóttir et al., 2018). By 2ka B.P. many 261 

glaciers had reached present day size, but maximum glacier extent was in the 18th century, during 262 

the Little Ice Age (Nesje 2009). A review of more than 20 papers shows that none of them indicate 263 

any abrupt anomalous change in glacier extent connected to a perturbation of climate around 4.2 264 

ka. (Bakke et al., 2005a; 2005b; 2008; 2010; 2013; Dahl and Nesje; 1992; 1994; 1996; Lauritzen 265 

1996; Snowball and Sandgren, 1996; Seierstad et al., 2002; Lie et al., 2004; Nesje et al. 2009; 266 

Vasskog et al., 2011; 2012 Støren et al., 2008; Wittmeier et al., 2015; Shakesby et al., 2007; 267 

Kvisvik et al., 2015, Gjerde et al., 2016). Investigating this further, we examined other terrestrial 268 

evidence mainly pollen, macrofossil and diatom records derived from lake sediments (e.g. Bjune 269 

et al., 2005; Velle et al., 2005). They have a time resolution somewhat lower than the glacier 270 

reconstructions (typical 500 yr spacing) but they all reflect the general decrease in summer 271 

insolation over the northern hemisphere and no abrupt transition close to 4.2ka B.P. (Bjune, 2005; 272 

Bjune et al., 2004, 2006; Velle et al., 2005). The only terrestrial evidence from Scandinavia that 273 

shows a clear anomaly close to 4.2ka B.P. is a speleothem record of d18O from Northern Norway 274 

which records a short-lived temperature maximum (isotopic minimum) at ~4ka, before rapidly 275 

decreasing to much colder temperatures at ~3.7ka B.P. (Lauritzen and Lundberg 1999).  However, 276 
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a speleothem from a nearby cave (Okshola) does not show a comparable anomaly at this time 277 

(Linge et al., 2009). 278 

 279 

4. Conclusions 280 

A review of paleoceanographic and terrestrial paleoclimatic data from around the northern North 281 

Atlantic reveals no compelling evidence for a significant and widespread climatic anomaly at 282 

~4.2ka B.P. (i.e., an “event”) in most areas. In particular, there is no supporting evidence for “cool, 283 

ice-bearing surface waters… penetrating well into the core of the North Atlantic Current” at that 284 

time, as described by Bond et al., (2001). The region experienced relatively warm conditions from 285 

6-8ka B.P. followed by a general decline in temperatures after ~5ka B.P., signaling the onset of 286 

Neoglaciation. Over the last 5000 years, a series of multi-decadal to century scale fluctuations 287 

occurred, superimposed on an overall decline in temperature. Against this background of declining 288 

temperatures, three records in northwest Greenland and Ellesmere Island show an unusual warm 289 

anomaly around 4.2ka B.P., and a few others (in SE Greenland, Iceland and western Svalbard) 290 

show a cold anomaly, associated with a glacial advance. We interpret these as local events -- 291 

simply one glacial advance of many that occurred in response to the overall climatic deterioration 292 

that characterized the late Holocene.  Given that the northern North Atlantic is a key region for the 293 

formation of deepwater, which has consequences for the overall global oceanic circulation (the 294 

“conveyor belt”), the absence of a strong signal of an abrupt climatic event at 4.2ka B.P. suggests 295 

that—whatever the cause of changes seen elsewhere-- it is unlikely that the North Atlantic Ocean 296 

circulation played a driving role. If this conclusion is correct, it requires that the cause of the 4.2ka 297 

BP event be sought elsewhere, in terms of direct radiative forcing (possibly due to explosive 298 

volcanic events, or earth surface aerosols resulting from aridity or—[less likely]-- solar forcing).  299 

Currently, none of these possibilities provide a compelling argument.  The alternative is that the 300 

observed changes were a consequence of internal climate system variability, perhaps modulated 301 

by the overall decline in summer radiation across the northern hemisphere due to orbital changes, 302 

which are generally considered as the cause of neoglaciation in the late Holocene, the onset of 303 

which roughly corresponds to the 4.2ka event as described by Weiss (2017). 304 

 305 
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 609 

 610 
 611 
Figure 1.  Location of sediment cores used to obtain the alkenone-based paleo SST estimates 612 
shown in Figure 2. Site numbers correspond to those in Figure 2. 613 
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1. Black = Risebrobakken et al., 2010: core PSh-5159N, 71.35N, 22.63E 618 
2. Purple = Marchal et al., 2002: core M23258-2, 75N, 13.97E 619 
3. Dashed Purple = Rigual-Hernández et al 2017: core SV-04, 74.957, 13.899E  620 
4. Orange = Marchal et al., 2002: core MD95-2015, 58.76N, 25.958W 621 
5. Blue = Calvo et al., 2002: core MD95-2011, 66.97N, 7.633E 622 

 623 
 624 
 625 

 626 
 627 
Figure 2.  Alkenone-based paleo SST estimates from North Atlantic sites (shown in Figure 1). 628 

6. Red = Emeis et al., 2003: core IOW 22517, 57.67N, 7.091E 629 
7. Green = Emeis et al., 2003: core IOW 22514, 57.84N, 8.704E 630 
8. Dashed Blue= Kristiansdottir et al., 2017: core MD2269, 66.63N, 20.85W 631 

 632 
 633 
 634 
 635 
 636 
a) 637 
 638 

S.
D

. u
ni

ts
 re

la
tiv

e 
to

 la
st

 8
.5

ka
 B

.P
.

−2.5

−2.0

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Cal. years B.P.
0 1 2 3 4 5 6 7 8 9 10 11 12 13

−2

−1

0

1
4.0 4.5 5.0



 23 

 639 
b) 640 

 641 
c) 642 

 643 
d) 644 
 645 

20
yr

 m
ea

n 
te

m
pe

ra
tu

re
 d

ep
ar

tu
re

 fr
om

 m
od

er
n

−10

−8

−6

−4

−2

0

2

4

Years before 2000 C.E.
0 2,000 4,000 6,000 8,000 10,000 12,000

Agassiz/Renland Holocene temperature reconstruction

0

1

2

3

4000 4500

Renland Agassiz 84/87

Camp Century

de
lta

 O
-1

8

−40

−35

−30

−25

Cal. Years B.P.
0 2,000 4,000 6,000 8,000 10,000 12,000

−29

−28

−27

−26

−25

4000 4500

GRIP

GISP2O
xy

ge
n 

iso
to

pe
s 

de
l O

-1
8

−39

−38

−37

−36

−35

−34

−33

Cal years B.P.
0 2,000 4,000 6,000 8,000 10,000 12,000

Greenland Summit oxygen isotopes

−35.5

−35.0

−34.5

−34.0

4000 4500



 24 

 646 

 647 
 648 
Figure 3.  a) Temperature anomalies from the smoothed estimate of present temperatures in 649 
Greenland, based on oxygen isotope records from Renland Ice Cap (East Greenland) and Agassiz 650 
Ice Cap (Ellesmere Island).  Timescale is in years b2k (before A.D. 2000).  The interval around 651 
4.2ka BP is enlarged in the box (Data source: Vinther et al., 2009).  For locations, see Figure 5. 652 
b) Individual oxygen isotopic records from Renland and Agassiz Ice Caps (which were 653 
combined to create the record in Figure 3a), and from Camp Century  654 
c) Individual oxygen isotopic records from GRIP and GISP2 at Summit, Greenland Ice Sheet 655 
d) Paleotemperature estimates from argon and nitrogen isotopes (in blue) (from Kobashi et al., 656 
2017) and from the Renland/Agassiz joint record (in red) as shown in Figure 3a (from Vinther et 657 
al., 2009). 658 
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 666 
Figure 4. Summary of glacier extent in various regions of Scandinavia during the Holocene. 667 
4.2ka B.P. is highlighted by the red dashed line (after Nesje, 2009). 668 
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 672 
 673 
 674 
Figure 5.  Location of sites mentioned in the text and in figures 675 


