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Abstract. 9 

Causal explanations for the 4.2 ka BP event are based on the amalgamation of seasonal and annual records of climate 10 

variability manifest across global regions dominated by different climatic regimes. However, instrumental and paleoclimate 11 

data indicate that seasonal climate variability is not always sequential in some regions. The present study investigates the 12 

spatial manifestation of the 4.2 ka BP event during the boreal winter season in Eurasia, where climate variability is a 13 

function of the spatio-temporal dynamics of the westerly winds. We present a multi-proxy reconstruction of winter climate 14 

conditions in Europe, west Asia and northern Africa between 4.3 and 3.8 ka BP. Our results show that, while winter 15 

temperatures were cold throughout the region, precipitation amounts had a heterogeneous distribution, with regionally 16 

significant low values in W Asia, SE and N Europe and local high values in the N Balkan Peninsula, the Carpathian 17 

Mountains, and E and NE Europe. Further, strong northerly winds were dominating in the Middle East, and E and NE 18 

Europe. Analyzing the relationships between these climatic conditions, we hypothesize that in the extratropical Northern 19 

Hemisphere, the 4.2 ka BP event was caused by the strengthening and expansion of the Siberian High, which effectively 20 

blocked the moisture-carrying westerlies from reaching W Asia, and enhanced outbreaks of cold and dry winds in that 21 

region. The behavior of the winter and summer monsoons suggests that when parts of Asia and Europe were experiencing 22 

winter droughts, SE Asia was experiencing similar summer droughts, resulting from failed and/or reduced monsoons. Thus, 23 

while in the extratropical regions of Eurasia the 4.2 ka BP event was a century-scale winter phenomenon, in the monsoon-24 

dominated regions it may have been a feature of summer climate conditions. 25 

1 Introduction 26 

The 4.2 ka BP climate event was a ca. two–three hundred year period of synchronous abrupt megadrought, cold temperatures 27 

and windiness manifest globally (Walker et al., 2018). Coincident societal collapses and habitat tracking, particularly in 28 

regions where archaeological data are both extensive and high–resolution, have attracted the attention of many 29 

paleoclimatologists and archaeologists since the event’s first observation (Gasse and van Campo, 1994; Weiss et al., 1993; 30 
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Dalfes et al., 1997). Numerous attempts, therefore, have been made to characterize and quantify the event’s nature and to 31 

identify its causes at several levels of explanation. These studies have first defined the spatial extent and variability of the 32 

event. Megadrought developed abruptly at ca. 4.2 ka cal BP across North America, Andean South America, the 33 

Mediterranean basin from Spain to Turkey (except for a few records from N Morocco and S Spain which indicate wetter 34 

conditions), Iran, India, Tibet, and north China and Australia (Booth et al., 2005; Staubwasser and Weiss, 2006; Arz et al., 35 

2006; Berkelhammer et al., 2013; Cheng et al., 2015; Weiss, 2016; Kathayat et al., 2018). In South Asia, failure of the 36 

monsoon (Wang et al., 2005) caused widespread droughts (Staubwasser et al., 2003; Berkelhammer et al., 2013). Abrupt 37 

cold conditions, however, appeared at ca. 4.2 ka cal BP in the north Atlantic (Geirsdottir et al., 2019), the mid–latitudes of 38 

the northern Eurasia (Hughes et al., 2000; Mayewski et al., 2004; Andresen and Björck, 2005; Mischke and Zhang, 2010; 39 

Larsen et al., 2012; Baker et al., 2017), and Antarctica (Peck et al., 2015) and surrounding oceans (Moros et al., 2009).  40 

These descriptive data have encouraged numerous causal hypotheses both at regional and, to a lesser extent, global level 41 

for the event’s spatio–temporal distribution and qualities. Possible thermohaline circulation weakening or shutdown due to 42 

freshwater release in the North Atlantic (similar to the 8.2 ka BP event (Alley et al., 1997)), changes in the loading the 43 

Earth’s atmosphere with aerosols or CO2 (Walker et al., 2012) and volcanic forcing (Kobashi et al., 2017) have been rejected 44 

as causes (Walker et al., 2012). At regional explanatory levels, cooling of the southern oceans (Moros et al., 2009) could 45 

have resulted in stronger and more frequent El Niño events that would have weakened (or lead to the failure of) the South 46 

Asian monsoons (Morill et al., 2003; Walker et al., 2012). 47 

The abrupt century–scale wet event recorded at very high resolution in North America, at Mt Logan, Yukon (Fisher et al., 48 

2008) suggests an interval of massive advection of tropical air to NW North America linked to El Niño emergence at ca. 4.2 49 

ka BP (Shulmeister and Lees, 1995). A southward shift of the Inter Tropical Convergence Zone (ITCZ) could result in the 50 

observed cooling at high latitudes and stronger westerlies in the Northern Hemisphere and widespread drought in the tropics 51 

(Gasse and Van Campo, 1994; Mayewski et al., 2004)). However, the widespread droughts both at the northern and southern 52 

margins of the ITCZ suggest that rather than migrating, the ITCZ was narrowing, resulting in megadrought affecting the 53 

tropics both south and north of the Equator (Weiss, 2016). Combining the above observations, it results that while some of 54 

the climate variability at ca. 4.2 ka cal BP can be attributed to regionally observable causes, explanations do not yet account 55 

for the global nature of the event, that is, disruption of the westerlies and reduction of moisture advection to continents. 56 

Hypothesized causal explanations for the 4.2 ka BP event are based on the amalgamation of winter, summer and annual 57 

records of climate variability manifest in regions dominated by different climatic regimes (e.g., westerly dominated vs. 58 

monsoon dominated). However, both instrumental (Balling et al., 1998) and paleoclimate data (Perșoiu et al., 2017) indicate 59 

that, on scales ranging from annual to millennial, seasonal climate variability was not always sequential, i.e., warm (cold) 60 

summers were not always followed by warm (cold) winters. To address this conundrum, we have investigated the spatial 61 

manifestation of the 4.2 ka BP event during winter in a region dominated by climate variability induced by the strength and 62 

dynamics of westerly winds. We present a reconstruction of winter climate conditions in Europe, the Near East and northern 63 

Africa, between 4.3 and 3.8 ka cal BP. From examination of the spatial distribution of temperature and precipitation 64 
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excursions during this period, we hypothesize that, in the regions around the Eurasian landmass, the 4.2 ka BP event was 65 

caused by strengthening and expansion of the Siberian High pressure cell centered over western Asia that caused widespread 66 

cooling at mid–latitudes in the Northern Hemisphere and arridification in the Middle East. We further discuss the possible 67 

causes and mechanisms leading to this phenomenon in a global perspective. 68 

2 Methods 69 

For our analysis, we have selected proxy records from Europe, the Middle East, northern Africa and the Atlantic Ocean that 70 

cumulatively fulfilled a set of five criteria on interpretation, chronology, resolution and nature of climatic variability. We 71 

have selected only records of winter climate variability, either precipitation amount (the vast majority) or air temperature, as 72 

indicated by the authors. Where no season was indicated we assumed that the proxy is recording annual climatic changes and 73 

we excluded it from our analysis. We have selected records with at least two absolute age determinations for the millennium 74 

encompassing the 4.2 ka BP event and for which measurement uncertainties were less than 50 years. A few high–resolution 75 

records from the fringes of the core study area (mainland continental Europe, the Middle East and the Mediterranean Basin) 76 

with age uncertainties up to 80 years were nevertheless used to refine the spatial interpretation of the results. To allow for 77 

chronological uncertainties, we have selected records that showed the onset of the local event within ±100 years of the 78 

accepted onset of the 4.2 ka BP event (Walker et al., 2018) and duration between 50 and 300 years. Further, we have 79 

considered only those records that showed both an abrupt onset and termination (arbitrary set to 15 % against the preceding 80 

100 years), matching the widely distributed 4.2 ka BP event onset, and for which at least 5 data points exists for the 4,300–81 

3800 BP interval. 82 

The response of European temperatures and precipitation to the variability of the Siberian High (SH) (Fig. 1) is based on 83 

the Climatic Research Unit Timeseries (CRU TS) 4.01 dataset (Harris et al., 2014). The relationship between the SH 84 

intensity, Sea Level Pressure (SLP), and 10 m wind has been analyzed within composite maps for the years when the SH 85 

index was greater (HIGH) and lower (LOW) than a value of one standard deviation. We have computed composite maps, 86 

instead of correlation maps, because the former considers the nonlinearities included in the analyzed data. The SH index has 87 

been obtained by averaging the SLP over the key regions between 40° N and 65° N and 80° E and 120° E (Panagiotopoulos 88 

et al., 2005). The SLP and 10 m zonal and meridional wind data were extracted from the ERA 20C dataset (Poli et al., 2016). 89 

Our analysis has shown that the results are not sensitive to the exact threshold value used for our composite analysis (i.e., 90 

varying the standard deviation between 0.5 and 1.5). To isolate the interannual variations, the linear trend has been removed 91 

prior to the analysis from the SH index as well as from the analyzed fields. 92 
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3 Results and discussions 93 

The list of records with information on type of proxy used and its climatic interpretation, chronology and resolution 94 

information is presented in Table 1 and plotted in Fig. 1. Of the 30 selected proxies, 11 register winter (or cold season) 95 

temperature, and 19 register winter precipitation amount. The temperature sensitive proxies are from central and northern 96 

Europe and SW Asia, while the precipitation sensitive proxies cover the entire study area (between 30° W and 80° E, and 97 

20° N and 78° N), with a concentration in Europe, the Middle East and northern Africa (Fig. 1). Both temperature and 98 

precipitation sensitive proxies were plotted against the map depicting the correlation between winter (December–January– 99 

February, DJF) climate (temperature and precipitation) and a stronger than usual Siberian High (Fig. 1). 100 

3.1 Cold Europe and southwest Asia 101 

 The 4.2 ka BP event appears generally as cold during winter throughout Europe, from the Urals to the Atlantic Ocean 102 

(Fig. 1a). The highest amplitude of cooling is seen in the Ural Mountains (Baker et al., 2017), at high altitude in the Alps 103 

(Fohlmeister et al., 2013), both recorded by speleothem δ18O; and in Central Asia (Wolff et al., 2017) recorded by 104 

speleothem δ13C. Other records show only a moderate to weak cooling (Daley et al., 2010; Nesje et al., 2001; Muschitiello et 105 

al., 2013). The general picture that emerges from the data is that of westward decreasing cooling with increased distance 106 

from Eastern Europe/Western Asia. We did not find winter temperature proxies for SW Europe and the Middle East to fulfill 107 

our selection criteria; the majority of the proxies from this region are usually sensitive to precipitation amount changes. 108 

 Cold winters in Europe are associated with either blocking conditions over Central Europe or westward expansion of the 109 

high pressure cell – the Siberian High – centered over Asia (Cohen et al., 2001; Rîmbu et al., 2014; Ionita et al., 2018). In the 110 

Northern Hemisphere (NH), during the winter season, three semi–permanent and quasi–stationary systems prevail over the 111 

mid to high–latitudes: the Icelandic Low (over the Atlantic Ocean), the Aleutian Low (over the Pacific Ocean) and the 112 

Siberian High (SH). The SH is a semi–permanent anticyclone centered over Eurasia and is associated with cold and dense air 113 

masses in the NH and extreme cold winters over Europe and Asia (Cohen et al., 2001). The composite maps of the SH index 114 

and SLP and 10 m wind are shown in Fig. 2. As expected, in the case of positive SH index (HIGH years, Fig. 2a) an 115 

extensive area of strong and positive SLP anomalies prevail over the whole Eurasian landmass, with the highest anomalies 116 

over Siberia. The positive anomalies in Fig. 2 were found to be statistically significant at 5% level using a two–sample t-test. 117 

This SLP structure is associated with enhanced easterlies and advection of cold air towards Europe (blue background in Fig. 118 

1a). For the years with a low index of the SH (Fig. 2b), negative SLP anomalies prevail over Siberia, while positive SLP 119 

anomalies are found over the central part of Europe. This kind of dipole–like structure in the SLP field associated with low 120 

SH years leads to the advection of warm air from the Atlantic Ocean basin towards the eastern part of Europe. 121 

The robust association between the instrumental–based response of European/Asia temperatures to a strong SH (base 122 

map in Fig. 1) and the proxy–based reconstructions of winter air temperatures (blue dots in Fig. 1a) supports the hypothesis 123 

that a strengthened SH was active at the time of the 4.2 ka BP event (the possible mechanisms are described below). The 124 



5 
 

seasonality of the SH implies its onset in mid–autumn, likely linked to diabatic heating anomalies initiated by snow cover 125 

development in NE Siberia (Foster et al., 1983; Cohen et al., 2001). The cooling resulting from the expanding snow cover 126 

leads to anomalously high SLP in NE Asia, which in turn, results in more snowfall and further strengthening of the SLP 127 

anomaly. The rapidly developing high pressure and cold anomaly extends westwards, being limited towards north and east 128 

by the warm ocean SSTs (Cohen et al., 2001). The end result of an enhanced SH is a westward rolling high pressure system 129 

that also brings cold air, heavy snowfall and strong winds, both towards Europe and central Asia (Ding and Krishnamurti, 130 

1987; Gong and Ho, 2002; Panagiotopoulos et al., 2005). The development of the SH also leads to strengthening of the 131 

subtropical jet stream over SE China (Panagiotopoulous et al., 2005), a characteristic feature of the East Asia Winter 132 

Monsoon (EAWM, Cheang, 1987) and instrumental data (Wu and Wang, 2002; Jhun and Lee, 2004) show that strengthening 133 

of the SH results in a stronger than average EAWM. Paleoclimate data from Asia further indicates the strengthening of the 134 

EAWM at 4.2 ka cal BP (e.g., Hao et al., 2017; Giosan et al., 2018), likely linked to stronger and more frequent outbreaks of 135 

cold air from the core of the SH. Similarly, paleoclimate records from the outer limits of the region impacted by the SH have 136 

documented significant increases in the strength of the local winds, frequently a local diagnostic signature of the 4.2 ka BP 137 

event. Various proxies in different sedimentary archives across West Asia have documented strong northerly winds at 4.2 ka 138 

cal BP: soil micromorphology at Tell Leilan (NE Syria, Weiss et al., 1993), detrital dolomite and calcite in Gulf of Oman 139 

(Cullen et al., 2000) and Red Sea (Arz et al., 2006) marine cores, high Ti counts in Lake Neor, Iranian plateau (Sharifi et al., 140 

2015) and S/Ti ratios in Lake Kinneret, Israel (Vossel et al 2018), lake bed sediments in the UAE (Parker et al., 2006). 141 

The strengthened EAWM and high windiness in SW Asia are consistent with the climatology of the SH, with strong 142 

clockwise flow of anomalously cold air from its center of action, located in north–central Asia (Fig. 2a). Paleoclimate 143 

records from Europe also document 4.2 ka BP–related increases in wind strength and or storminess, as at the raised bogs in 144 

SW Sweden (linked to cold temperatures and possible increased sea ice, Bjorck and Clemmensen, 2004), aeolian sand banks 145 

in coastal Denmark (Clemmensen et al., 2003; Goslin et al., 2018) and Gotland, Baltic Sea (Muschitello et al., 2013) (Fig. 3) 146 

where strong winter winds and high precipitation, the product of Baltic Sea moisture delivered by intense easterly winds 147 

indicate the reinforcement and westwards expansion of the Siberian High. These data suggest that a belt of strong winds 148 

extended around the core region of the SH, from East Asia through the West Asia and SE Europe up to the Baltic and North 149 

Seas (Fig. 3).  150 

Summarizing the above information, at ca. 4.2 ka BP a cold temperature anomaly settled over most of Europe, from the 151 

Ural Mountains to the Atlantic Ocean, including Scandinavia and extending to the region south and east of the Caspian Sea, 152 

likely the result of a deeper than average Siberian High. Further, anomalously high SLP over this region resulted in the 153 

strengthening of winter winds in east, south and southwestern Asia and eastern and northeastern Europe, linked to clockwise 154 

and outward movement of cold air from the core of the SH–impacted region. 155 

3.2 Inconsistent winter precipitation patterns across Europe and southwest Asia 156 
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Data from winter precipitation records at the time of the 4.2 ka BP event suggest a far more complex image of precipitation 157 

distribution across our study area (Fig. 1b), as compared with the simpler temperature distribution dipole (Fig. 1a). The SE 158 

Mediterranean and the wider Middle East were dry (Bini et al., 2018), with some of the droughts occurring rather abruptly 159 

(Cheng et al., 2015; Sharifi et al., 2015). In the wider Mediterranean Basin, winter drought was also recorded in S Greece 160 

(Finné et al., 2017), north–central Italy (Drysdale et al., 2006; Regattieri et al., 2014; Isola et al., 2018), N Algeria (Ruan et 161 

al., 2016) and central Spain (Smith et al., 2016), all records pointing towards an abrupt onset and a ca. 150–200 years 162 

duration. On this background of generalized drought in the Mediterranean, in two regions an increase in winter precipitation 163 

amounts was registered (Fig. 1b), most notably in NW Africa and SW Europe (Walczak et al., 2015; Wassenburg et al., 164 

2016; Zielhofer et al., 2017) and the Central Balkans and Carpathian Mountains (Zanchetta et al., 2012; Panait et al., 2017; 165 

Perșoiu et al., 2017). Multiple records and different proxies (speleothem and lake sediment δ18O, peatbog δ13C, cave ice d-166 

excess and growth rate) indicate similarly wet conditions, clearly underscoring the wet nature of climate at that time in these 167 

two regions. The high winter precipitation amounts registered by records in the Balkan Peninsula and the Carpathian 168 

Mountains (Fig. 1b) occurred during periods of intense cold (Fig. 1a). Winter precipitation in the Carpathian Mountains is 169 

the result of either eastward advection of wet air masses of Atlantic origin, or precipitation from northward travelling 170 

Mediterranean cyclones encountering the NE winds induced by a strong SH. The δ18O and d-excess records from Scărișoara 171 

Ice Cave (Perșoiu et al., 2017) indicate that at 4.3 ka cal BP, late autumn through early winters were cold and the moisture 172 

source was shifted to an area of high evaporation (as indicated by the high d-excess values). Modern monitoring of stable 173 

isotopes in precipitation in the region (Drăgușin et al., 2017; Ersek et al., 2018; Bădăluță et al., in press) indicates that high 174 

d-excess values occur when the source of moisture is either the Eastern Mediterranean Sea or the Black Sea. A Black Sea 175 

source for the moisture leading to high precipitation in the Carpathian Mountains is consistent with the information of 176 

prevailing northeasterly winds at 4.2 ka BP (see section 3.1. above), but it would not fully explain the possibly wet 177 

conditions on the Adriatic Coast at 4.3 ka cal BP (Fig. 1b, Zanchetta et al., 2012), where high winter precipitation is the 178 

result of moisture originating in the Adriatic Sea (Ulbrich et al., 2012). We note however, that the Adriatic coast could also 179 

have been dry at 4.2 ka BP, as suggested by a spike in the carbonate δ18O record of Shkodra Lake (Zanchetta et al., 2012). 180 

Interestingly, the response of present–day climatic conditions in Europe to a stronger than usual Siberian High is of low SLP 181 

in the Central Mediterranean Sea (centered on Italy, Fig. 2a), which in turns results in enhanced cyclogenesis in the area. 182 

Thus, in the case of strong SH conditions at 4.2 ka BP, enhanced cyclogenesis would have resulted in more frequent NW 183 

movement of moisture–bearing weather systems, further leading to higher than average precipitation on the Adriatic Coast 184 

and the Carpathian Mountains (Fig. 1b). Apart from the high d-excess in the Scărișoara Ice Cave record (Perșoiu et al., 2017) 185 

at 4.3 ka BP, indicative of Mediterranean moisture, the ice accumulation rate also reached a maximum at that time, 186 

suggesting high precipitation amounts and early onset of freezing conditions in the cave, both favorable for the rapid growth 187 

of ice (Perșoiu et al., 2011). 188 

Apart from the SW Europe, the Balkans and the Carpathian Mts., high precipitation at 4.2 ka BP in Europe was also 189 

registered in a lake at the foothills of the Alps (Cartier et al., 2019) and in Gotland, the Baltic Sea (Muschitielo et al., 2013). 190 
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In the Alps, high flooding activity at 4.2 ka BP was linked to increased autumn precipitation (Cartier et al., 2019), while in 193 

the Baltic, high winter precipitation is consistent with strong easterly winds picking–up local moisture form the Baltic Sea 194 

(Muschitielo et al., 2013, as well as the discussion in 3.1 above). 195 

The winter precipitation record in Europe and the Middle East can now be summarized as follows (Fig. 1b):  196 

1) regionally significant dry conditions occurred during winter in the Middle East, southern Europe (Italy and Greece), 197 

northern Africa, as well as on a band stretching from the Atlantic Ocean, through the north European plains, towards eastern 198 

Europe, including Scandinavia; 199 

2) regionally significant wet conditions occurred during winter around the Gibraltar Straight (northern Morocco and 200 

southern Spain) and in the northern Balkan Peninsula (including the Carpathian Mountains). 201 

The distribution of precipitation minima and maxima on the western (Atlantic) side of Europe is similar to that occurring 202 

during the negative phase of the North Atlantic Oscillation (NAO), one of the main modes of climate variability in Europe 203 

(Hurrell et al., 2013), mainly active during winter. The NAO is defined as the difference in atmospheric pressure between the 204 

Icelandic Low and the Azores High. A below average difference between the two pressure system (negative NAO, or NAO-) 205 

results in weaker than usual and southwards deflected westerly winds, carrying more moisture towards southern Europe. As 206 

precipitation amounts are negatively correlated with the NAO phase in the western Mediterranean (i.e., NAO- results in high 207 

precipitation, Lionello et al., 2006), the reconstructed distribution of precipitation at 4.2 ka BP (Fig. 1b), partly supports the 208 

hypothesis of prevailing NAO- conditions during the 4.2 ka BP event. Proxy–based reconstructions of the NAO index (Olsen 209 

et al., 2012) indicate a brief negative mode at 4.2 ka cal BP, but contradictory evidence from speleothem and pollen data 210 

from the Central Mediterranean region (e.g., Bini et al. (2018) and references therein) suggest that a combination of different 211 

mechanisms (including NAO- conditions) could have been responsible for the winter climatic conditions at 4.2 ka BP in 212 

Europe. 213 

3.3 The Siberian High in the global context at 4.2 ka 214 

The paleoclimate evidence we have compiled collectively suggests cold winter conditions in N Asia and Europe, likely 215 

induced by cold air outbreaks from high pressure fields located over Siberia, conditions that in modern climates are 216 

associated with a strong Siberian High. The sole reconstruction of the past behavior of the Siberian High is based on analysis 217 

of the continental–sourced nssK+ (non–seasalt potassium) in Greenland ice cores (Mayewski et al., 1994; O’Brien et al., 218 

1995). Meeker and Mayewski (2002) have shown that in years with high nssK+ deposits in Greenland, the SLP over N Asia 219 

in spring (indicator of the strength of the SH) is higher than average, thus providing a possible proxy for the strength of the 220 

Siberian High. The reconstructed values for the strength of the SH (using the original data of Mayewski et al. (1997) on the 221 

GICC05modelext timescale (Seierstad et al., 2014) shows a maximum at around 4.3 ka BP, in agreement within dating 222 

uncertainties with paleoclimate data presented in Fig. 1. 223 

 Previous studies, based on instrumental, tree ring and ice core impurity content have shown a clear link between strong 224 

SH and cold and dry climate in Europe (Meeker and Mayewski, 2002, D’Arrigo et al., 2005), and the close match between 225 
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the impact of the SH on temperature and precipitation amounts and the reconstructed climate (Fig. 1) suggest that at 4.2 ka 240 

BP a stronger than usual SH lead to cooling in Asia and Europe, disruption of the westerlies and drought in the Middle East 241 

(Fig. 3). The possible causes of this chain of events remains, however, elusive. Some possible forcings behind climate 242 

changes do not appear abruptly at 4.2 ka BP. Orbital forcing resulted in low winter insolation in the N Hemisphere and 243 

comparably high, but decreasing, summer insulation, while radiative forcing was going through a remarkably long state of 244 

stable, albeit high, values (Steinhilber et al., 2009). Volcanic and greenhouse forcing were both low and stable at 4.2 ka BP, 245 

with no abrupt changes (e.g., Wanner et al., 2011). The high contrast between summer and winter insolation would have 246 

resulted in a weak polar vortex (Orme et al., 2017) and thus more meridional polar vortex and associated southward 247 

displaced storm tracks in the Atlantic. The same meridional displaced polar vortex could have lead to cold air advection to N 248 

Asia and early onset of the winter, with earlier formation of the snow cover.  249 

The early presence and persistence of snow in NE Asia is one of the most important triggers of a strong SH (Cohen et al., 250 

2001; Wu and Wang, 2002). The causes and mechanisms by which snow accumulates in early winter in NE Asia are elusive, 251 

with possible causes being a positive feedback from the NAO, with NAO- conditions in late winter/early spring leading to 252 

early beginning of snow accumulation in the following winter and subsequent onset of a strong SH (Bojariu and Gimeno, 253 

2003). The NAO index (Olsen et al., 2012) shows a continuous change from NAO+ to NAO- conditions after 4.5 ka BP, 254 

with a distinct negative excursion at 4.2 ka BP. A weak/negative NAO would have resulted in low wind stress and associated 255 

enhancement of the salinity stratification in the North Atlantic, initiating the slowdown of the Atlantic Meridional 256 

Overturning Circulation (AMOC, Yang et al., 2016). Thornalley et al. (2009) have documented a rapid and abrupt reduction 257 

in salinity at 4.2 ka BP that could have triggered the weakening of the AMOC. Reduced strength of the AMOC could have 258 

further led to southward expansion of sea ice and thus further decrease in salinity and weakening of the AMOC (Yang et al., 259 

2016). Further, negative NAO conditions are also linked to a weakening of the subpolar gyre (Eden and Jung, 2001; 260 

Häkkinen and Rhines, 2004) and thereby reduced contribution of freshwater to the AMOC and further cooling in the Nordic 261 

Seas. Similarly, weak NAO conditions result in stronger northeastern winds and increase in the strength of the East 262 

Greenland current and associated sea ice export, further leading to the weakening of the thermohaline circulation (Orme et 263 

al., 2018) and subsequent cooling of the North Atlantic, as seen in both paleodata and models (e.g., Rîmbu et al., 2003; 264 

Renssen et al., 2005; Berner et al., 2008; Sejrup et al., 2016; Orme et al., 2018). In turn, these conditions led to reduced SLP 265 

around Iceland and reinforcement of the negative NAO. 266 

The above inferences suggest that at ca. 4.2 ka BP, orbital and solar forcing led to a chain of atmospheric changes, 267 

transmitted and amplified by ocean circulation, which caused abrupt cold and dry climatic conditions in northern Eurasia. 268 

These atmospheric changes included the weakening of the polar vortex and southward advection of cold air over N Asia. The 269 

enhanced meridional transport generated earlier and more persistent autumn snow cover. In turn, this led to the onset of a 270 

stronger than usual Siberian High that lowered Eurasian surface temperatures with strong outbreaks of cold and dry northerly 271 

winds in a belt stretching from eastern Asia through portions of west Asia and central and northern Europe. The above 272 

average SLP associated with the strengthened SH resulted in the blocking of the moisture–bearing westerlies in Europe. 273 
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Megadrought across the Mediterranean and west Asia may also have been enhanced by the weak and southward–displaced 274 

Atlantic storm track that resulted from lower than average NAO conditions. The conditions associated with a weak polar 275 

vortex strengthened sea ice towards the Nordic Seas, further contributing to the weakening of the thermohaline circulation 276 

and reduction in the strength of the NAO and of the westerlies. 277 

Conclusions 278 

We have gathered records of changes in winter temperature, precipitation amount and associated climatic conditions in the 279 

wider Eurasian region during the 4.2 ka BP event. The data show that 4200 years ago cold winter temperature anomalies 280 

dominated western Asia and most of Europe. The strength of winter winds in eastern and southern Asia was strongly 281 

enhanced, while those in western Europe weakened. Regionally significant droughts settled over the Middle East, southern 282 

and northern Europe and western Asia, while locally significant increases in precipitation were reconstructed in the Balkan 283 

Peninsula, the Carpathian Mountains, around the Baltic Sea and in NW Africa and southern Spain. 284 

We propose a multi–causal hypothesis of partially mutual reinforcing vectors and mechanisms to explain the regionally 285 

coherent north Eurasian and adjacent region 4.2 ka BP phenomena. Thus, we hypothesize that before and at 4.2 ka BP, the 286 

orbitally–induced high insolation gradient between summer and winter in the high–latitudes of the Northern Hemisphere led 287 

to a weakening of the polar vortex, resulting in a meandering jet that promoted an early onset of winter season in NE Siberia. 288 

In turn, this resulted in decreasing temperatures and an early and stronger Siberian High that expanded south and westwards, 289 

bringing cold and dry conditions across Eurasia. The same circulation pattern lead to more sea ice export in the North 290 

Atlantic and weakening of the subpolar gyre resulting in the slowdown of the thermohaline circulation and decrease of sea 291 

level pressure around Iceland, thus possibly leading to a shift towards a negative phase of the North Atlantic Oscillation. In 292 

turn, these changes resulted in weaker and southward displaced westerly winds across Europe. However, the high pressure 293 

systems in Europe effectively blocked these weakened westerlies, causing reduced winter precipitation and drought 294 

conditions across the eastern Mediterranean and western Asia. Clockwise circulation around the Asia–centered high pressure 295 

field induced strong northerly winds in southern and western Asia and in eastern Europe. Further, the strong thermal pressure 296 

gradient between central and northern Asia and the Indian and Pacific oceans determined the strengthening of the East Asian 297 

and Indian Winter Monsoons. However, given the drought in the source regions of the winter monsoon, these strengthened 298 

winds did not result in increased moisture advection. Nevertheless, several regions experienced a slight increase in winter 299 

precipitation due to strong winds picking up moisture from local sources (NW Africa, N Balkan Peninsula and the 300 

Carpathian Mountains, the Baltic region). 301 

In the context of the above data and description, we suggest that, in the extra tropical regions of Eurasia, the 4.2 ka BP 302 

event was a century–scale boreal winter phenomenon. While not the subject of our study, we note that a clear antiphase 303 

behavior of the winter and summer monsoons have been evidenced (Kang et al., 2018), suggesting that at the times when 304 

parts of Asia and Europe were experiencing winter droughts related to strong, dry, winter monsoons, SE Asia was 305 
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experiencing similar summer droughts, resulting from failed and/or reduced monsoons. Whether these were caused by the 306 

same orbitally induced changes and/or teleconnections transmitted via the weakened AMOC are questions to be investigated 307 

within future proxy–based and modeling studies. Especially important would be winter precipitation records from Western 308 

Asia and Eastern Europe, as well winter temperature records from southern Europe and the wider Middle East, where such 309 

data are scarce. Further, most of the winter records are of low resolution and/or with poor chronological control, such that 310 

improvements in these fields are required to further test our hypothesis. 311 
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 588 
Figure 1: Climatic conditions at 4.2 ka cal BP in Europe and Western Asia. The background map in (a) shows the correlation between the 589 

winter SH index and the winter mean temperature (December-January-February, DJF), with blue (red) shading indicating cold (warm) 590 
winters. The dots indicate winter climatic conditions at 4.2 ka cal BP. The background map in (b) shows the correlation between the 591 
winter SH index and winter precipitation (DJF), with green (brown) indicating wet (dry) winters. Green (brown) dots in (b) indicate 592 
wet (dry) conditions at 4.2 ka cal BP. The hatched areas in (a) and (b) indicate correlations significant at 95% significance level based 593 
on a Student t-test. The numbers in (a) and (b) correspond to the archives listed in Table 1. 594 
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 595 
 Figure 2: The composite map of the winter (DJF) sea level pressure (SLP) and wind at 10 m for the years when the SH index > 1 standard 596 

deviation (a) and the composite map of the winter (DJF) sea level pressure (SLP) and wind at 10 m for the years when the SH index < 597 
- 1 standard deviation (b). The hatching highlights significant SLP anomalies at a confidence level of 95% based on a Student t-test. 598 
The SLP units are in hectopascals (hPa). 599 
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 613 
Figure 3: Inferred winter climatic conditions between ~ 4.3 ka and 3.9 ka cal BP. The position of the polar vortex is only indicative. The 614 

base map shows the Earth’s surface conditions during November (Reto Stöckli, NASA Earth Observatory). 615 
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No Name Proxy Indicator of Proxy interpretation yrs/sample Reference 
1 Kinderlinskaya  Speleothem δ18O TW Low values = cold 12.5 Baker et al., 2017 
2 Spannagel Cave Speleothem δ18O TW High values = cold, NAO- 5 yrs Fohlmeister et al., 2013 

3 Scărișoara 
Ice δ18O TW Low values = cold 

10 Perșoiu et al., 2017 d-excess Msource 
High values = 

Mediterranean PP 

4 Asiul Cave Speleothem δ18O PPw Low values = high 
precipitation 1-28 Smith et al., 2016 

5 Gulf of Gaeta G. ruber δ18O PPw Low values = high water 
inflow  55 Di Rita et al., 2018 

Globigerinoides % Tw High values = cold 
6 Tăul Muced Sphagnum δ13C PPw High values = wet 8 Panait et al., 2017 
7 Mavri Trypa Speleothem δ18O PPw High values = dry 5 Finne et al., 2017 

8 Shkodra Lake Carbonate δ18O PPw High values = low 
precipitation <50 Zanchetta et al., 2012 

9 Lake Bjarstrask Gastropode δ18O+δ13C PPw High values = wet winters 80 Muschitiello et al., 2013 

10 Buca della 
Renella Speleothem δ18O PPw High values = dry 37 Drysdale et al., 2006 

11 Sidi Ali Lake 
CaCO3 content PPw Low values = high lake level 40  

Zielhofer et al., 2017 
Ostracod δ18O PPw Low values = high % of pp 130 

12 Grotte de Piste Speleothem δ18O PPw Low values  = wet 15 Wassenburg et al., 2016 

13 Walton Moss Sphagnum δ18O TW Low values = cold 80 Daley et al., 2010 
Multiproxy PPw Low values = dry 

14 Hyltemossen Minerogenic content Wind Low values = weak winds  Bjorck&Clemmensen, 2004 
15 Neor Lake Al, Zr, Ti, Si content Dryness High values = dry 3.6 Sharifi et al., 2015 
16 Uluu Cave Speleothem δ13C PPw Low values = wet/cold 38 Wolff et al., 2017 
17 Jostedalsbreen Grain size variations PPw Low values = dry winters 21 Nesje et al., 2001 
18 Refugio Stalagmite density PPw Low values = dry winters 5 Walczak et al., 2015 
19 Nattmasvatn Minerogenic input PPw Low values = dry - Janbu et al., 2011 

20 Nar Golu Lake Diatom δ18O PPw Low values=more winter 
rainfall 5 Dean et al., 2018 

21 Jeita Cave Speleothem δ18O PPw High values = dry 7 Cheng et al., 2015 
22 Bunker Cave Speleothem Mg/Ca PPw High values = dry - Wassenburg et al., 2016 
23 Nuudsaku Lake Carbonate δ18O PPw High values = dry winters 13 Stansell et al., 2017 
24 Gueldaman Cave Speleothem δ18O PPw High values = dry - Ruan et al., 2016 
25 Lake Petit Detrital input PPw High values = wet - Cartier et al., 2019 
 639 

Table 1. List of proxies used and their interpretation. Numbers in the first column corresponds to numbers in Fig. 1. 640 
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