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Abstract. Heinrich events are among the dominant modes of glacial climate variability. During these events, massive iceberg

armadas were released by the Laurentide Ice Sheet, sailed across the Atlantic, and caused large-scale climate changes. We

study these events in a fully coupled complex ice sheet–climate model with synchronous coupling between ice sheets and

oceans. The ice discharges occur as internal variability of the model with a recurrence period of 5 kyr, an event duration of

1–1.5 kyr, and a peak discharge rate of about 50 mSv, roughly consistent with reconstructions. The climate response shows a5

two-stage behavior, with freshwater release effects dominating the surge phase and ice-sheet elevation effects dominating in

the post-surge phase. As a direct response to the freshwater discharge during the surge phase, the deepwater formation in the

North Atlantic decreases and the North Atlantic deepwater cell weakens by 3.5 Sv. With the reduced oceanic heat transport,

the surface temperatures across the North Atlantic decrease, and the associated reduction in evaporation causes a drying in

Europe. The ice discharge lowers the surface elevation in the Hudson Bay area and thus leads to increased precipitation and10

accelerated ice sheet regrowth in the post-surge phase. Furthermore, the jet stream widens to the north and becomes more

zonal. This contributes to a weakening of the subpolar gyre, and a continued cooling over Europe even after the ice discharge.

This two-stage behavior can explain previously contradicting model results and understandings of Heinrich Events.

1 Introduction

While the climate of the last millenia has been comparatively stable, proxy records from the last glacial show large-scale rapid15

climate fluctuations. The two most prominent of these are Dansgaard-Oeschger (Dansgaard et al., 1984) and Heinrich events

(Heinrich, 1988). Both of them are associated with a reorganization of the North Atlantic Ocean circulation (see Clement and

Peterson, 2008, for a review). Here we focus on Heinrich events. In these events, that fall into the Dansgaard-Oeschger cold

periods (Bond et al., 1992), iceberg armadas spread detritus from the Hudson Strait area across the North Atlantic seafloor

and caused large-scale climate changes. During the last glacial, six Heinrich events occurred at 16 800, 24 000, 31 000, 38 000,20

45 000, and 60 000 years before present (Hemming, 2004). Thus, these events are considered quasi-periodic with a recurrence

period of about 7 000 years.

The periodic ice rafting during Heinrich events can be explained by buildup–collapse (binge-purge) cycles of the Laurentide

Ice Sheet (MacAyeal, 1993). In the multi-millenial buildup phase, the ice sheet grows until it becomes unstable and then

surges into the ocean. As possible triggers, sea level, or cold air temperatures were suggested (Bond and Lotti, 1995). Calov25
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et al. (2002) were able to obtain Laurentide Ice Sheet oscillations in simulations with the three-dimensional ice sheet model

SICOPOLIS. They furthermore showed that, the timing of these events could be phase-locked to a 1500 year cycle resembling

the Dansgaard-Oeschger cycles by perturbing the ice sheet at the mouth of Hudson Strait. While Calov et al. (2002) published

their findings, a decoupling of cooling surface and warming sub-surface temperatures prior to the Heinrich events was found in

North Atlantic sediment cores and enhanced oceanic melt was suggested as trigger for the ice discharges (Moros et al., 2002).5

This mechanism was reproduced in the three-dimensional ice sheet model GRISLI, where the outflow of a continuously active

Hudson Strait Ice Stream was modulated by an ice shelf repeatedly blocking the Labrador Sea (Álvarez-Solas et al., 2011).

In climate models, the effects of such discharge events are commonly studied in freshwater perturbation (hosing) experi-

ments (e. g. Maier-Reimer and Mikolajewicz, 1989; Schiller et al., 1997; Stouffer et al., 2006; Kageyama et al., 2013). These

experiments can generally explain the large-scale cooling and the drying in Eurasia that are commonly observed in proxies.10

So far, there has only been one study investigating Heinrich events in a fully coupled ice sheet – climate model. In this study,

Roberts et al. (2014b) used a 1:100 year asynchronous coupling between the Atmosphere-Ocean General Circulation Model

(AOGCM) FAMOUS and the ice sheet model GLIMMER. Thus, while a Heinrich event lasted 1000 to 2000 years in the ice

sheet model, it only lasted 10-20 years for the climate model. In these simulations the topography was the most important

factor for determining the climate response and outweighed the freshwater signal in the ocean. However, hosing experiments15

have shown that the ocean needs several decades to fully respond to a freshwater forcing (e. g. Stouffer et al., 2006; Otto-

Bliesner and Brady, 2010). Thus, the asynchronous coupling, which shortened the discharge from 1-2 kyr to 10-20 years, likely

suppressed part of the ocean response. Here, we present the first results from coupled ice sheet model (ISM) – atmosphere-

ocean-vegetation general circulation model (AOVGCM) Heinrich event simulations with synchronous coupling between the

ice sheets and the ocean. Thus the full response of the ocean circulation can unfold and we can study the different phases of20

the climate response.

We investigated the characteristic properties of Heinrich events in general. To obtain an archetypal event, we performed

a composite analysis of four Heinrich events obtained from three transient experiments. We first describe the setup and the

experiments, then detail on the two-stage structure we observe in the composite and finally discuss how this unifies the results

of freshwater hosing experiments with those of Roberts et al. (2014b).25

2 Model and setup

2.1 Model and coupling

The simulations were performed with a coarse resolution (T31/GR30) setup of the CMIP3 Max Planck Institute climate model

ECHAM5/MPIOM/LPJ (Mikolajewicz et al., 2007b) coupled with a 20 km Northern Hemisphere setup of the modified Parallel

Ice Sheet Model (mPISM) version 0.3 (Bueler and Brown, 2009; Winkelmann et al., 2011 for PISM). In this setup, the models30

are coupled bidirectionally without flux correction or other anomaly methods. mPISM and a similar setup are described in

Ziemen et al. (2014). The main characteristics of the setup, and the differences to Ziemen et al. (2014) are outlined in the

following.
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In all simulations used for the analysis, a configuration was used where atmosphere and ocean are coupled with a periodic-

synchronous 1:10 coupling (Voss and Sausen, 1996; Mikolajewicz et al., 2007a). This means that the atmosphere model is

only run for one out of ten years. This reduces the computational expense drastically and speeds up the simulations by a factor

of three (wallclock time). After each fully coupled year, the ocean is forced for nine years with atmospheric fields, that are

obtained by cycling through the previous five fully coupled years. While this coupling introduces a lag of up to 50 years in5

the atmosphere-ocean system, the average lag of about 25 years is less than 10% of the 300-year averaging window used

throughout most of the analysis. Furthermore, most of the changes in the ice sheets driving the atmosphere-ocean system occur

on a longer time scale, so the lag can be neglected in the analysis. Parallel to the climate model, the ice sheet model is run

for ten years, so ice sheets and ocean are on the same time scale. In the analysis of atmosphere and ocean fields, only the

fully coupled years are used. These are also used to obtain the fields for forcing the ice sheet model. Thus, when we speak10

of a 300 year mean of the ocean 2D (3D) fields, actually only 30 years of data with a 10-year spacing are used. This should

yield comparable results to the full data as long as there are no signals with periods of exact multiples of 10 years are involved

(aliasing).

The surface mass balance is computed using downscaled precipitation and temperatures in a Positive Degree Day (PDD)

scheme in the ice sheet model. Shelf basal melt is computed from ocean temperature and salinity using the three-equation15

model of Holland and Jenkins (1999). Ice sheet elevation, fresh water fluxes, and ice-ocean heat fluxes are fed back to the

climate model. As in Ziemen et al. (2014), the temperature standard deviation for the PDD scheme is computed from the

6-hourly atmosphere model output. Extending this method, a minimum sub-monthly standard deviation of 4 K is prescribed.

This prevents the standard deviation from falling too low in areas, where ECHAM5 simulates melt and limits the surface

temperature to 0◦C.20

In contrast to Ziemen et al. (2014), iceberg calving and shelf basal melt are limited to grid cells that are connected to the

open ocean at least via a channel with a minimum width of one grid cell and a minimum depth of 400 m. Such channels may

be covered by a floating ice shelf. As another improvement over the setup of Ziemen et al. (2014), the river routing directions

in the hydrology scheme are computed interactively to account for ice sheet changes and isostatic rebound. The direct ice

discharge into the ocean is modeled as freshwater input with an associated negative heat input that turns the fresh water flux25

into an ice flux. If the ocean is at the freezing point, this leads to immediate sea ice formation. Under pre-industrial conditions,

this parametrization already captures most of the climatic effects of Northern Hemisphere icebergs (Bügelmayer et al., 2015) .

2.2 Experiments

We analyze a composite of four Heinrich events from three experiments (Fig. 1a, Tab. 1, Section 2.3 for details on the composite

analysis). These are one long experiment (ExA in the following, see video supplement) starting at 42 kyr BP and two shorter30

experiments (ExB and ExC) starting at 23 kyr BP. From ExA, we discard the first 10 kyrs as final phase of the spin-up and obtain

two events starting at 31 kyr BP (A1), and 25.7 kyr BP (A2). From ExB and ExC, we obtain two Heinrich events starting at

22.4 kyr BP: B1 and C1. Later Heinrich events show an interference of the deglaciation and are discarded. All experiments were

forced with transient insolation and greenhouse gas concentrations from reconstructions (Berger, 1978; Spahni and Stocker,
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2006a, b; Lüthi et al., 2008). The Antarctic Ice Sheet and the bedrock topography outside the ice sheet domain were prescribed

based on the ICE-5G 21 ka topography (Peltier, 2004). The topography is corrected for a global uniform sea level change

computed from the modeled ice volume. In ExA, and ExB, the dynamic river discharge scheme routes the Nile into the Red

Sea during the glacial. In ExC this scheme is improved and the Nile always feeds into the Mediterranean. The technical

differences between the three experiments are small enough to consider them as comparable.5

The common spinup of all experiments began with a LGM steady state experiment (Ziemen et al., 2014) exhibiting a large

spurious ice sheet over Siberia that connected to the Cordilleran part of the Laurentide Ice Sheet via Alaska. This ice sheet

partly is an artifact of steady-state LGM simulations (Heinemann et al., 2014) and is common in coupled ice-climate modeling

(e. g. Bauer and Ganopolski, 2017). Its growth can be reduced by modeling the effect of dust (Krinner et al., 2011). During the

first phase of the spinup, the ice sheet was removed by setting the ice thickness between 90 ◦E and 140 ◦W to zero and relaxing10

the bedrock in this region. The model was then equilibrated with fixed surface mass balance forcing and constant removal of

all ice between 90 ◦E and 140 ◦W for 5000 years. This yielded ice sheets with smooth margins that did not extent into Eastern

Siberia or Alaska. ExA was started from this state by setting the time to 42 kyr BP and using transient orbital and greenhouse

gas forcing. ExB and ExC were initialized at 23 kyr BP from an experiment that was started parallel to ExA and covered the

time between 42 kyr BP and 23 kyr BP with 1:10 asynchronous coupling between the climate model and the ice sheet model.15

While the ice sheet in Siberia was removed in the first phase spin-up, in the following phase, it formed again (Fig. 2).

2.3 Composite analysis

We perform all further analysis on a composite of all four events. This creates an archetypal event that has the characteristics

that are common to all events. To create the composite, we align the events on a common time scale. We base this alignment

on the freshwater discharge at the mouth of Hudson Strait to extract the peak discharge phase. The duration of the start phase20

of the surge varies from event to event, so aligning for the same start time of the surge would smear out the peak discharge.

However, the rising flank of the discharge signal is steep in all events (Fig. 1b), and closely precedes the peak discharge. Hence,

all events are aligned so they cross 30 mSv Hudson Strait discharge in year 250, and the first surge (C1) starts in year 0. This

leads to a relatively sharp peak in the discharge in years 300–600.

As the Heinrich events are part of the internal variability of the model, there is no control run without the effect of Heinrich25

events. Therefore, we use a composite of the 400 years (40 years in the atmosphere) before the events (here referred to as

pre-surge phase) as reference state. We define two further time windows for the analysis: the surge phase (years 300–600),

which covers the peak discharge, and the post-surge phase (years 1100–1400), which covers the minimal ice sheet volume at

the end of the surge. During the surge phase, the climate is maximally affected by the freshwater discharge while the height of

the ice sheet is slowly decreasing. In the post-surge phase, the ice discharge returns to its background level, while the ice sheet30

height loss peaks and its signal becomes dominant. As all averages are taken across the four events, they cover a total of 1600

years for the pre-surge phase, and 1200 years for the surge and post-surge phases.

4

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-16
Manuscript under review for journal Clim. Past
Discussion started: 21 March 2018
c© Author(s) 2018. CC BY 4.0 License.



ID Experiment Surge start Surge Start Surge End Duration Max flux Mean flux

composite year years BP years BP years mSv mSv

A1 ExA 110 31060 29610 1450 53 29

A2 ExA 70 25680 24350 1330 53 34

B1 ExB 35 22420 21270 1150 47 30

C1 ExC 0 22420 21560 860 55 28
Table 1. Events investigated. The surge start is defined by the surge branching off the Ungava Bay ice stream and propagating towards

Hudson Bay. Its time is given in years BP and as the year in the composite. The end of the surge is defined as the time when there is no more

surging in Hudson Strait. The maximum flux is defined as the maximum of 30-year running means, matching Fig. 1b.

3 Results

3.1 The climate in the pre-surge phase

The climate in the pre-surge phase is a mean of different times before the Last Glacial Maximum (Tab. 1). Therefore, it is

representative of the cold phase of the last glacial, but not specifically of the Last Glacial Maximum, which is used in most

steady-state glacial climate studies. The global mean near-surface air temperature in the pre-surge phase is 3.2 K below the5

temperature in a pre-industrial experiment with the same model. The cooling is strongest over the ice sheets (Figs. 2–4). The

North Atlantic Deepwater (NADW) is mainly formed south of Greenland and in the Nordic Seas (Fig. 5c, d). The NADW cell

of the Atlantic Meridional Overturning Circulation (AMOC) has a maximum strength of 19 Sv at 30◦N and reaches down to

about 2900 m. For pre-industrial conditions, the modeled AMOC has the same depth and a strength of 15.8 Sv.

The Laurentide ice sheet is split into a Cordilleran and a Hudson Bay part (Fig. 4). The Hudson Bay part is connected10

to the Greenland Ice Sheet, which has grown to fill the entire Greenlandic shelf. Similarly, Iceland is covered in ice. The

Fennoscandian Ice Sheet extends over large parts of Scandinavia as well as the Barents and Kara Sea shelves. In Eastern

Siberia, a spurious ice sheet has formed (Section 2.2).

3.2 The ice dynamics

A large part of the ice discharge into the ocean is channeled in ice streams. Some of them are constantly active (Fig. 2), while15

most of them, such as the Hudson Strait Ice Stream (24 in Fig. 2), perform surge cycles alternating between active and inactive

states (see video supplement). The ice discharge at the mouth of Hudson Strait strongly varies (Fig. 1). When the Hudson Strait

Ice Stream and the Ungava Bay Ice Stream (16 in Fig. 2) are quiescent, only 1 mSv of freshwater is discharged. Much of the

time, the Ungava Bay Ice stream delivers about 5 mSv. At intervals of about 5 000 years, the Hudson Strait Ice Stream surges

for a period of about 1000–1500 years with a peak discharge of about 50 mSv (Fig. 1).20

All surges start with low discharge rates, while the surge is propagating inland in Hudson Strait (Figs. 1, 2). Between years

150 and 250 of the composite, the surges in all events reach Hudson Bay (not shown). This causes the steep increase in the
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discharge signal, that we use to align the events. Around year 450 the northern part of Hudson Bay is surging in all four events.

The exact shape of the surging area varies between the experiments. In A2 and B1 a second pulse in the discharge results from

a delayed propagation of the surge the into southern part of Hudson Bay. In A1, this region is reached in the early stage of the

surge. As the propagation of the surge varies from event to event, so does the duration with surge termination in C1 after 860

years and in A1 after 1450 years (Table 1). The surge drains ice from the Hudson Bay area and the surface elevation decreases5

by up to 900 m (Fig. 4). The strongest decrease in surface elevation is located in Hudson Strait. The losses tail off towards the

interior of Hudson Bay. The eastern part of the Laurentide Ice Sheet reaches its minimum volume around year 1200 of the

composite. The ice loss of 0.8 Mio Gt, from 16.2 Mio Gt (year 50) to 15.4 Mio Gt (year 1200), corresponds to a sea level rise

of about 2.3 m. This is followed by a slow recovery of the ice sheet, which takes more than 3000 years (Fig. 1). All other ice

sheets show no significant deviations from the background behavior with growth of the Eastern Siberian Ice sheet in ExA and10

onset of the deglaciation in the late recovery phases of events B1 and C1.

3.3 The ocean response

Our coupling scheme represents iceberg calving and sub-shelf melt as a freshwater flux with an associated negative latent heat

flux to the ocean. Thus, when the ice from the Hudson Strait Ice Stream enters the ocean, sea ice forms in the ocean model.

During the surge phase (years 300–600), most of the additional sea ice follows the Labrador Current out of the Labrador Sea and15

melts in the open North Atlantic (Fig. 6a). On its way, the sea ice shields the ocean from the atmosphere and thus contributes

to a reduction in ocean heat release (Fig. 8), especially in winter, when the decrease in heat release reaches 70 W m−2 in parts

of the Labrador Basin (not shown) and the near surface air temperature decreases by up to 4 K (Fig. 5e for the annual mean). In

summer, the increased sea-ice cover increases the albedo and reduces the net shortwave absorption with a maximum decrease

of 20 W m−2 at the mouth of Hudson Strait (not shown). When the sea ice melts, the surface water freshens (Fig. 5a) and the20

stratification stabilizes (see below). In the post-surge phase (years 1100–1400), the sea-ice concentration in the Labrador Sea

partially returns to pre-surge levels. In the Irminger Basin, the sea-ice margin advances, and the sea-ice cover in the Nordic

Seas grows (Fig. 6a). The increased ice cover matches with a weaker subpolar gyre (see below; Fig. 7a) and a following slight

expansion of the East Greenland Current indicated by a cooling and freshening at the eastern Margin of the current (Fig. 5b, d).

In the Nordic Seas, the additional sea ice reduces the winter ocean heat release by up to 50 W m−2 (not shown), exceeding the25

regional reductions during the surge-phase.

During the surge phase, the freshwater released from the melting ice takes a strongly zonal path, and spreads across the

whole Atlantic between 40◦N and 50◦N (Fig. 5a). Most of it passes south of the deep water formation areas (Fig. 5a; Fig. 5c

for the pre-surge phase mixed layer depth). Still, some of it reaches the deep water formation areas, and the SSS in the areas

with a time maximum winter mixed layer depth of more than 1000 m decreases by 0.35 g kg−1. The convection depth in all30

deep water formation areas is reduced (Fig. 5a, c) and the 300 year running mean of the maximum winter mixed layer volume

in the Atlantic north of 40◦N, the Nordic Seas and the Arctic Ocean shrinks from 6.4 Mio km3 in the pre-surge phase to 4.7

Mio km3 (−27%) during the surge phase. As a result, the NADW cell weakens from 18.3 Sv to 14.8 Sv (-19 %) in the same

period (Fig. 8). The Arctic Ocean SSS also decreases (Fig. 5a). This is mostly due to a 4 mSv surge of the Amundsen Gulf Ice
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Stream (18 in Fig. 2), 10% of the Hudson Strait flux. The freshening in the Arctic Ocean is limited by the halocline depth (not

shown), so the total volume affected is much smaller than in the case of the Hudson Strait surge. In the post-surge phase, the

sea-surface salinity in the North Atlantic largely recovers, but remains below its pre-surge levels. The SSS in the deep water

formation areas remains about 0.25 g kg−1 below pre-surge levels. It reaches the pre-surge values after year 1500, when the

mixed layer volume also recovers (not shown). The winter mixed layer depth in the central North Atlantic and the Nordic Seas5

remains decreased, while it recovers off the coasts of Ireland and Scotland (Fig. 5b, d). The still reduced mixed layer depth

could be the reason why the salinity remains decreased even after the termination of the surge. Less deep mixing can be caused

by a freshwater lid, on the other hand, it also means that less mid-depth high salinity water is brought to the surface. The

NADW cell has mostly recovered (Fig. 8b).

The increase in sea-ice cover and the reduction in the deep water formation caused by the ice discharge during the surge10

phase lead to lower sea surface temperatures in the North Atlantic (Fig. 5c). In the Labrador Sea, and along the sea-ice margin,

this cooling can be at least partly attributed to the increased sea-ice cover (Fig. 6a). The cooling is strongest in the open North

Atlantic. With the slowdown of the meridional overturning circulation (Fig. 8b) less heat is brought into the subpolar gyre and

the entire water column cools (not shown) and the heat release to the atmosphere is reduced on a large scale (Fig. 8c for the time

series). In the post-surge phase, the meridional overturning circulation and the sea-surface temperatures largely recover. The15

remaining cooling signal is strongest at the sea ice margin (Figs. 5d, 6b). Along the margin between subtropical and subpolar

gyre, a slight northward shift of the gyre front leads to a surface warming (Fig. 5d) that contrasts with generally cool sea surface

temperatures. This warming is more expressed at intermediate depth and reaches down to 1500 m (not shown).

During the surge phase, the fresh water released from the melting ice is drawn down in the deep water formation areas

and follows the NADW cell. Because of the NADW’s reduced density, the Atlantic Antarctic Bottom Water (AABW) cell20

can expand slightly, decreasing the temperatures in the transition zone between NADW and AABW at a depth of about 3 km

(not shown). The Atlantic subpolar gyre strengthens and reaches up to 55 Sv. This strengthening occurs despite a reduced

wind driven component (Fig. 7). It is caused by an increase in the cross-gyre density gradient (not shown). The convection

brings fresher, but also colder water down in the core of the subpolar gyre. The temperature effect in the core partially offsets

the salinity effect. At the same time, the margins of the gyre freshen without significant temperature change, and the density25

contrast between core and margins of the gyre grows. In the post-surge phase, temperature and salinity begin to recover. The

in-situ density in the core of the gyre remains reduced, while it recovers faster in the margins. In combination with a still

reduced wind driven component, this weakens the gyre to 42 Sv. The gyre reaches its pre-surge strength around year 1500,

with strong multi-centennial variability that matches the wind stress forcing (Fig. 7).

3.4 The atmosphere response30

Heinrich events affect the atmosphere in two ways, here called the direct and the indirect effect. During the surge-phase, the

indirect effect via freshwater-release induced changes in sea-ice concentration, and ocean heat transport and release (see above,

Fig. 8c) dominates. In the post-surge phase, the freshwater release ceases, and the direct effect takes over: The decreasing ice

sheet height (Fig. 4, overlays in 5e,f) directly influences the large-scale circulation. This effect already appears in the surge
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phase and is strengthened in the post-surge phase. It leads to a northward shift of the jet stream over the west Atlantic (Fig. 9).

Further, the jet stream becomes more zonal. The zonalization brings cold air into Europe (Fig. 5) and reduces the wind-driven

transport in the Atlantic subpolar gyre (see above, Fig. 7).

During the surge phase, reductions in near-surface air temperatures (Fig. 5e) can be observed along the path of the sea-ice

out of the Hudson bay, and over the southern part of the subpolar gyre, where the decreases in sea surface temperature are5

largest. The reduced ocean heat release (Fig. 8c) shows that the ocean is causing this cooling, which then is spread across

the high latitudes by the winds. Due to the smaller ice sheet, the temperatures in the Hudson Bay area rise (see below). In

the post-surge phase (Fig. 5f), the cooling is strongest along the sea-ice margin (Fig. 6b), where the sea-surface temperature

changes are amplified by the effects of the increased ice cover. In these areas the ocean heat loss still is reduced, while over

the open North Atlantic the picture is less clear with areas of increased and decreased ocean heat release. Here the effects10

of the zonalization of the jet stream and the changes in ocean circulation intermingle. The warming over the Hudson bay is

strengthened (see below).

Due to the reduced ocean heat transport and the consequential cooling of the North Atlantic sector during the surge phase,

(Fig. 5c–f), the evaporation decreases by 10% (North Atlantic and all connected basins north of 45◦N, not shown). Over

Europe, this results in a decrease in precipitation by 4–5% (Figs. 10b, 11c) that spreads far into Siberia. A northwest-southeast15

dipole pattern in the precipitation over the tropical Atlantic indicates a southeastward shift of the ITCZ. This pattern extends

into Africa, with a southward shift of the tropical rain belt leading to a dipole pattern with drying in the Sahel Zone and an

increase in the precipitation over southern Africa. In the post-surge phase, the evaporation over the North Atlantic partially

recovers (not shown) and so does the precipitation in Europe (Fig. 10c, 11d). A slight large-scale reduction in evaporation

remains in the tropical Atlantic, and the Sahel region (not shown). The dipole precipitation pattern in the Atlantic ITCZ turns20

into a monopole with a slight precipitation increase (Fig. 10c). The dipole pattern over Africa is slightly weakened but remains

intact.

In the Hudson Bay area, the surface air temperature rises throughout the surge. This is in part due to the lapse-rate effect

of the reduced surface elevation resulting from the surge. However, a closer look reveals that in both, the surge phase and the

post-surge phase, the warming is more zonal and centered further to the south than expected from the lapse-rate effect alone25

(Fig. 5e, f). In the following, we describe the changes in the Hudson Bay area during the post-surge phase, as the basic behavior

during the surge-phase is identical, just with a lower amplitude. We find an increase in total heat transport convergence in the

southern Hudson Bay area by about 3 W m−2 (not shown). The eastern half of the area of depression experiences an increase

in cloud cover (Fig. 11a, b). It is associated with an increase in surface net longwave radiation by 5-6 W m−2, while the net

shortwave radiation remains constant (not shown). The increase in cloud cover brings an increase in precipitation, locally30

reaching 50 mm yr−1 (+50%) (Fig. 11). The increased precipitation decreases the mass loss of the ice sheet during the surge

and accelerates its regrowth.

8

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-16
Manuscript under review for journal Clim. Past
Discussion started: 21 March 2018
c© Author(s) 2018. CC BY 4.0 License.



4 Discussion

The surges in our ice sheet model are based on an internal oscillation of the ice sheet, as described analytically by MacAyeal

(1993) and first modeled in a three-dimensional ice sheet model by Calov et al. (2002). While the occurrence and properties of

these oscillations are highly model-dependent (Calov et al., 2010), they are a robust feature of our ice sheet model in coupled

as well as stand-alone setups (not shown) and have also been observed by other groups using PISM (Van Pelt and Oerlemans,5

2012; Feldmann and Levermann, 2017). For modeling surges in our model with the Shallow Shelf Equation stress balance

controlling the sliding, a horizontal resolution that properly resolves Hudson Strait proved necessary. In our simulations, the

Hudson Strait Ice Steam was constantly active at 40 km model resolution (not shown); doubling the resolution to 20 km yielded

the surge cycles.

The surge intensity and period are model dependent and affected by the surface temperature, the surface mass balance, as10

well as by the basal friction law (Calov et al., 2010). The slightly too short period in our model of 5 kyr instead of the 7 kyr

derived from proxy records can be due to any combination of these factors. Since this kind of experiment takes a very long time

on the supercomputer, we could not fine-tune the surge interval. However, the peak discharge rate of about 50 mSv agrees with

the result obtained by Roberts et al. (2014a, b, 2016). Our surges with a duration of –1.5 kyr are shorter than the 3 kyr surges

in their experiments, and with a cycle duration of 5 kyr, they are more frequent compared to 11 kyr cycles in their experiments.15

The surges in our study show an average loss of 0.96 Mio km3 of ice, as compared to 2.5 Mio km3 in their experiments.

Jongma et al. (2013) model HE1 as a 300 year 0.235 Sv discharge under LGM conditions. When including iceberg freshwater

and latent heat fluxes, they simulate the strongest surface freshening in the frontal zone of the Newfoundland Basin, with a

strong decrease of the freshening towards the east. They show that the feedback of the latent heat flux from iceberg melt on

the ocean drastically reduces the iceberg melt in the Labrador sea as compared to modeling the freshwater flux only, and that20

it leads to an increased formation of sea ice. By modeling the calving as sea ice, we over-represent this effect. The melt is

much more concentrated on the sea-ice edge, as the sea ice is not able to cross the open North Atlantic. All in all, the surface

freshening is more zonal during the main discharge phase in our experiments than in Jongma et al. (2013). The icebergs in their

model are not strictly tied to the ocean circulation and can more easily cross gyre fronts. This allows for a wider spread of the

freshwater signal.25

The comparison to climate proxy reconstructions is somewhat complicated, as Heinrich events generally fall into the

Dansgaard-Oeschger stadials which are missing in our model. Climate proxies, therefore contain a combined signal of the

stadial and the Heinrich events. While most Heinrich event studies focus on HE1, which fell into the deglaciation and is as-

sociated with a collapse of the AMOC (Stanford et al., 2011, e. g.), Lynch-Stieglitz et al. (2014) showed that there was little

change of the Gulf Stream in the Florida Strait during HE2 and HE3, which fall into the same period as the events we study.30

Nonetheless, we can compare our results to the main features found in climate proxy reconstructions and single-forcing climate

model experiments.

During the surge phase, the freshwater discharge is the dominant forcing in our model. This can be seen from the timing of

the strong cooling and reduction in ocean heat release over the North Atlantic that strictly follows the freshwater input and SSS
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changes (Figs. 1, 5, 8). The large-scale cooling, the decrease in NADW formation, and the southeastward shift of the ITCZ are

consistent with proxy reconstructions (see the review of Clement and Peterson, 2008), as well as freshwater hosing experiments,

where the surface elevation effect generally is not represented. In our experiments as well as in the freshwater hosing studies,

the freshening reduces the Atlantic heat transport and thus causes a dipole anomaly in the sea surface temperatures with cooling

in the North (Fig. 5c) and a slight warming in the South (not shown). This is generally associated with the southeast shift of5

the ITCZ (Stouffer et al., 2006, e. g.).

The decrease in the NADW cell strength by 19 % is on the weak end of freshwater hosing studies (Stouffer et al., 2006;

Kageyama et al., 2013; Otto-Bliesner and Brady, 2010). This is of little surprise, as the freshwater perturbation from the

surging ice sheet is weaker than the forcings prescribed in most of these studies, and the decrease of the NADW cell strength is

highly correlated to the strength of the freshwater forcing (e. g. Maier-Reimer and Mikolajewicz, 1989; Stouffer et al., 2006).10

Furthermore, the modeled discharge into the Labrador sea allows a large fraction of the freshwater to escape into the subtropical

gyre, while in most hosing experiments, the freshwater is spread more efficiently over the deepwater formation areas.

In the post-surge phase, we observe signals that are more consistent with the surface elevation effect described in Roberts

et al. (2014b), where the ocean dynamics response was weakened by the 1:100 asynchronous coupling, and thus mostly the

elevation signal remains. The jet stream becomes more zonal and the southward shift of the Atlantic ITCZ during the surge15

phase turns into a a precipitation increase in the post-surge phase, when the topographic changes are largest. This two-phase

behavior corresponds to two different experiments of Roberts et al. (2014b). They obtain the freshwater-related southward

ITCZ shift only for a high freshwater release, while the experiment with pure topography changes shows the increase in

precipitation that we obtain in the later phase.

Not all changes agree between our simulation and that of Roberts et al. (2014b). In our model, there is a west-east gradient in20

the precipitation change across Hudson Bay with increases on the eastern side (Figs. 10, 11). This contrasts with the results of

Roberts et al. (2014b), where the precipitation over Hudson Bay decreases while the strongest increases are evident southeast

of the bay. One factor contributing to such different behavior might be the different ice sheet shapes. We simulate a two-

part Laurentide Ice Sheet, Roberts et al. (2014b) simulate one contiguous Laurentide Ice Sheet with the main dome in the

southwest corner. As more coupled ice sheet–climate models are developed, further coupled studies will help distinguishing25

between model-specific and more robust effects.

5 Conclusions

By modeling Heinrich events as MacAyeal–style binge-purge cycles in a coupled ISM-AOVGCM system, we are able to

observe a two-step response of the climate system: first to the freshwater discharge, and later to the elevation decrease over

the Laurentide Ice Sheet. The freshwater discharge yields an increased stratification of the North Atlantic surface waters. The30

stronger stratification causes a reduction of deep water formation. This weakens the North Atlantic meridional overturning

circulation and reduces the heat loss to the atmosphere. The colder conditions over the North Atlantic affects the North-South

sea surface temperature gradient and thus shifts the Atlantic intertropical convergence zone southeastward. This behavior is
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also known from freshwater hosing experiments. Furthermore, the cooling over the North Atlantic reduces the evaporation and

thus precipitation in this region and downwind in Eurasia. In contrast to freshwater hosing experiments, we also see the effects

of the reduced surface elevation on the atmospheric circulation. The surface elevation effects reach their maximum when the

freshwater discharge ceases and the elevation of the Laurentide Ice Sheet is at its minumum. The lower elevation allows for

a northward expansion and zonalization of the jet stream. This weakens the subpolar gyre and reduces the heat transport into5

(northern) Europe. Furthermore the lowered surface elevation allows for more precipitation over the Hudson Bay area and thus

speeds up the regrowth of the Laurentide Ice Sheet.

Modeling ice sheets in fully coupled ISM-AOVGCM systems allows to study the full interactions between ice sheets and the

climate. Only by modeling using an ice sheet model, we could obtain a physically plausible and self-consistent set of freshwater

fluxes and ice sheet surface changes that led to the observed two-stage behavior, explaining the previous results from hosing10

experiments as well as elevation change experiments.

6 Data availability

The model output can be obtained from Florian Ziemen (florian.ziemen@mpimet.mpg.de) upon request.
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(a)

(b)

(c)

Figure 1. (a), (b) Hudson Strait Ice Stream discharge, (c) Ice volume of the eastern Part of the Laurentide Ice Sheet. (a) is averaged over 300

years, (b) over 30 years, (c) is plotted from instantaneous values. Line colors in (a) correspond to Heinrich events A2, B1, and C1, horizontal

bars mark the events selected for the composite analysis in the colors used throughout the time series analysis. The vertical gray bars in (b,c)

mark the pre-surge (years −400 to 0), surge (years 300 to 600), and post-surge (years 1100 to 1400) phases (Section 2.3). 1 Mio km3 of ice

corresponds to about 2.5 m of sea level.
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Figure 2. Colors from the color bar mark the fraction of time that a grid cell in the glacial part of ExA (41 ka–15.6 ka) is sliding or has

floating ice with a basal velocity exceeding 1 myr−1. Only the time when the grid cell is ice covered is taken into consideration; therefore,

ice shelves are considered to be constantly sliding. Only areas with a time-mean ice thickness in excess of 10 m are displayed. Brown marks

areas where where the ice is not permitted to slide due to the lack of sediments in the reconstruction of Laske and Masters (1997). Numbers

match the ice stream numbering in Stokes and Tarasov (2010), and are as follows: (16) Ungava Bay, (18) Amundsen Gulf, (19) M’Clure

Strait, (22) Lancaster Sound, (24) Hudson Strait, (25) Laurentian. Letters refer to present-day location names of modeled Greenland ice

streams: (A) Northeast Greenland Ice Stream, (B) Kejser Franz Joseph Fjord, (C) Scoresby Sund, (D) Kangerdlugssuaq, (E) Jakobshaven

Isbrae, (F) Kong Oscar Glacier. Greek letters (α,β,γ) mark Barents Shelf ice streams. In the Baltic Sea, the ice sheet retreats at the start of

the experiment, so there temporarily is an ice shelf.

m

Figure 3. Temperature difference pre-surge phase – pre-industrial experiment, overlay: topography increase from pre-industrial to pre-surge

glacial state (mostly ice sheets) as seen by ECHAM5 at multiples of 500 m. For a definition of the pre-surge phase see Fig. 1 and Section 2.3.
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m

Figure 4. Ice surface elevation change in composite year 1250 compared with composite year −50. Overlays mark ice sheet outline (gray)

and surface elevation (black) at 1000, 2000, 3000 m in the pre-surge phase. The Laurentide ice sheet barely misses 3000 m. The peak of

Greenland slightly exceeds this elevation.
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Figure 5. (a,b) Sea surface salinity, (c,d) sea surface temperature, and (e,f) surface air temperature changes compared to the pre-surge state

during (a,c,e) the surge phase and (b,d,f) the post-surge phase. The overlays show (a,b) maximum mixed layered depth during the respective

phases of the event at multiples of 500 m (maximum of the 300-year climatology), (c,d) maximum mixed layer depth in the pre-surge phase

(same scale), and (e,f) elevation changes in the respective phases of the event vs. the pre-surge phase (at multiples of 100 m, dashed lines

mark negative values, solid lines positive values). For a definition of the phases see Fig. 1 and Section 2.3.
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(b)(a)

%

Figure 6. Sea-ice concentration change compared to the pre-surge phase for (a) surge phase, and (b) post-surge phase. Overlays mark sea-ice

concentration in the pre-surge phase on levels of 1, 15, 50, and 95%. For a definition of the phases see Fig. 1 and Section 2.3.

(a)

(b)

Figure 7. Strength of the North Atlantic subpolar gyre and the windstress contribution (Sverdrup transport). (a) 300 year running mean, (b)

300 year block means. Colors as in Fig. 1. Vertical lines mark the centers of the intervals selected for the analysis. As this figure is using 300

year averaging, they indicate the average values corresponding to the time windows used in the analysis. Note the different scales for gyre

and Sverdrup transport.
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(a)

(b)

(c)

Figure 8. (a) North Atlantic Sea surface salinity, (b) NADW cell strength at 30◦N and (c) North Atlantic Heat loss. 300 year running means.

Colors as in Fig. 1, vertical lines as in Fig. 7.
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(a)

(b)

m s-1

Figure 9. DJF 200 hPa zonal wind speed anomalies compared to the pre-surge phase. Overlays show zonal wind speeds in the pre-surge

phase in ms−1. Dashed lines mark negative values. (a) surge phase, (b) post-surge phase. Note the projection with focus on the North Atlantic.

For a definition of the phases see Fig. 1 and Section 2.3.

(a)

(b)

(c)

mm yr-1

mm yr-1

Figure 10. (a) annual mean precipitation in the pre-surge phase, (b,c) precipitation changes in (b) the surge phase and (c) the post-surge

phase with pre-surge 1 m yr−1 isoline overlain to allow for an easier identification of the ITCZ. For a definition of the phases see Fig. 1 and

Section 2.3.
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Figure 11. (a,b) Total cloud cover changes, and (c,d) relative changes in precipitation. (a,c) surge phase, (b,d) post-surge phase. Isolines mark

the ice sheet elevation change at multiples of 100 m. Dashed lines mark negative values. All changes are relative to the pre-surge phase. For

a definition of the phases see Fig. 1 and Section 2.3.
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