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Abstract. Proxy records from climate archives provide evidence about past climate changes, but the recorded signal is 10 

affected by non-climate related effects as well as time uncertainty. As proxy based climate reconstructions are frequently 

used to test climate models and to quantitatively infer past climate, we need to improve our understanding of the proxy 

records’ signal content as well as the uncertainties involved. 

In this study, we empirically estimate signal-to-noise ratios (SNRs) of temperature proxy records used in global compilations 

of the mid to late Holocene. This is achieved through a comparison of proxy time series from close-by sites of three 15 

compilations and model time series data at the proxy sites from two transient Holocene climate model simulations. 

In all comparisons, we found the mean correlations of the proxy time series on centennial to millennial time scales to be 

rather low (R < 0.2), even for nearby sites, which resulted in low SNR estimates. The estimated SNRs depend on the 

assumed time uncertainty of the proxy records, the time scale analysed, and the model simulation used. Using the correlation 

structure of the ECHAM5/MPI-OM simulation, the estimated SNRs on centennial time scales the SNRs ranged from 0.05 -20 

assuming no time uncertainty - to 0.5, for a time uncertainty of 400y. On millennial time scales, the estimated SNRs were 

generally higher. Use of the TraCE-21ka model simulation correlation structure resulted generally in lower SNR estimates 

than for ECHAM5/MPI-OM. 

As the number of available high-resolution proxy records continues to grow, a more detailed analysis of the signal content of 

specific proxy types should become feasible in the near future. The estimated low signal content of Holocene temperature 25 

records should caution against over-interpretation of these kinds of datasets until further studies are able to facilitate a better 

characterisation of the signal content in paleoclimate records. 

1 Introduction 

Improving our understanding of the climate systems and its variability requires knowledge about the climate of the pre-

instrumental period. Proxy records from different climate archives are available for determining past climate conditions (e.g., 30 
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Bartlein et al., 2011; Huguet et al., 2006; Johnsen et al., 2001; Li et al., 2006; Luckman et al., 1997). However, as any 

observational estimate, paleoclimate proxies are affected by uncertainties (e.g., Breitenbach et al., 2012; Lohmann et al., 

2013). 

Paleoclimate proxies record very specific climate information that depends on temporal (seasonal recording, dating), 

geological (mixing, transport, sorting), biological (life-time of organisms, habitat depth, bioturbation), and chemical 5 

(preservation and dissolution) processes (e.g., Bard, 2001; Berger and Heath, 1968; Goreau, 1980; Leduc et al., 2010; 

Lohmann et al., 2013; Mollenhauer et al., 2003; Ohkouchi et al., 2002; Rehfeld et al., 2016; Rosell-Melé and Prahl, 2013; 

Schneider et al., 2010; Telford et al., 2004; van Sebille et al., 2015). 

In addition, the information of interest can be obscured by co-recorded non-climatic components which represents one 

possible cause for misinterpretation of proxy signals, especially in systematic model-data comparisons and quantitative data 10 

synthesis efforts. Different approaches have been proposed in an effort to alleviate this problem and improve analyses:  

(i) obtain a better statistical or mechanistic understanding of how and what a proxy actually records (e.g., Fisher et 

al., 1985; Grauel et al., 2013; Ho and Laepple, 2016; Münch et al., 2016, 2017; Richey et al., 2011; Rosén et 

al., 2003; Thirumalai et al., 2013);  

(ii) modelling of the proxy signal (e.g., Dee et al., 2011, 2015; Dolman and Laepple, 2018; Evans et al., 2013; 15 

Roche et al., 2018); and 

(iii) through a detailed, expertise-driven analyses of single sites (e.g., Stebich et al., 2015). 

In this study, we use a comparison of proxy records and model simulations to improve the characterisation of proxy 

uncertainties through empirical estimates of the signal-to-noise ratio (SNR) in temperature-related proxies. At present, 

studies on SNRs in proxies are rare and mainly focussed on the instrumental period (e.g., Mann et al., 2007, 2008; Smerdon, 20 

2012, Münch and Laepple, 2018). In contrast, the present study focusses on the pre-instrumental Holocene period which has 

received considerable attention in the community (e.g., Bakker et al., 2017; Gajewski, 2015; Mangerud and Svendsen, 2018; 

Marcott et al., 2013; Mischel et al., 2017; Moossen et al., 2015; Sejrup et al., 2016; Thibodeau et al., 2018; Wanner et al., 

2015; Zhang et al., 2017). In particular, we focus on estimating SNRs in temperature-sensitive proxy records to improve 

analyses of Holocene temperature evolution and variability. A better understanding of Holocene proxy time series SNRs will 25 

lead to improved and more reliable interpretations of proxy records and should raise awareness for the need of careful and 

critical evaluations of paleoclimate reconstructions. 

2 Data 

This study builds on existing compilations of recalibrated high-resolution Holocene temperature-sensitive proxy records to 

facilitate intercomparisons of multiple time series. The analysis is based on three proxy datasets and two model simulations 30 

to test the robustness of our results and the sensitivity to the choice of a particular climate model. 
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2.1 Proxy records 

We focus on globally distributed multi-archive and multi-proxy compilations of the Holocene temperature evolution from a 

wide variety of locations (Fig. 1a-c, Tab. 1; Tab. S1-S3), namely 

(1) M13: the compilation of Marcott et al. (2013) that was used to reconstruct the global and regional temperature 

evolution of the past 11.3ky; 5 

(2) LH14: Uk37 and Mg/Ca proxy data compiled in the extended dataset of Laepple and Huybers (2014) that was used 

to reconstruct regional temperature variability and builds on the compilation of Leduc et al. (2010);  

(3) R18: the Holocene part of the compilation of Rehfeld et al. (2018) that was used to compare Glacial and Holocene 

temperature variability. 

The datasets mostly originated from marine sediment cores and the proxy types include Uk37, planktonic foraminifera 10 

Mg/Ca, TEX$%, terrestrial bio-indicators (fossil pollen modern analogue technique, fossil chironomid transfer function), ice-

core stable isotopes (δ'$O, δ*H) and several others (microfossil assemblages, MBT, tree ring width). As the early Holocene 

was influenced by deglaciation following the Last Glacial Maximum (e.g., Kaplan and Wolfe, 2006), we restricted the time 

series to the last 6ky (6ky BP to present day, where BP denotes years before 1950). We only analysed time series containing 

climate information on at least centennial to millennial time scales (i.e., a mean inter-observation time step of ∆t < 500y). 15 

Due to the limited number of available high-resolution time series, all datasets overlap (Tab. 1) to some degree and are thus 

not independent. 

2.2 Climate model simulations 

We analysed surface air temperature data from simulations of two coupled atmosphere-ocean general circulation models: A 

6ky transient Holocene simulation from ECHAM5/MPI-OM (henceforth abbreviated as MPI6k) (Fischer and Jungclaus, 20 

2011) and the TraCE-21ka (T21k) (Liu et al., 2009) simulation from the CCSM4 model, both of which have been used 

frequently in recent studies (e.g., Gregoire et al., 2016; Heinemann et al., 2009; Koldunov et al., 2010; Lu et al., 2018; Matei 

et al., 2012; May, 2008; Müller and Roeckner, 2008; Pausata and Löfverström, 2015; Werner et al., 2016). For the present 

study, annual means of temperatures of both model simulations were extracted at the nearest grid-box related to the proxy 

record locations of M13, LH14 and R18. 25 

MPI6k (Fischer and Jungclaus, 2011) is a 6ky transient run using ECHAM5/MPI-OM (Jungclaus et al., 2006) which consists 

of the atmosphere component ECHAM5 (Roeckner et al., 2003), the ocean component MPI-OM (Marsland et al., 2003), and 

the land surface model JSBACH (Raddatz et al., 2007) with dynamic vegetation module (Brovkin et al., 2009). The model 

outputs atmospheric variables on a regular longitude/latitude model grid with 96 by 48 horizontal grid-boxes (T31 resolution 

corresponding to 3.75° in latitude/longitude). The simulation is forced only orbitally with greenhouse gas concentrations set 30 

to pre-industrial values. We extracted annual mean surface temperatures at an elevation of 2m from this model (temp2). 
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The TraCE-21ka dataset (Liu et al., 2009) originated from a simulation of the transient climate between 22ky BP and 1990 

CE is based on a fully-coupled CCSM3 simulation with an atmospheric resolution of T31_gx3 (96 by 48 horizontal grid 

corresponding to 3.75° in latitude/longitude). Transient forcing factors included changes in the orbitally driven insolation, 

greenhouse gas concentrations, continental ice sheets and coastlines, and meltwater fluxes across the North Atlantic and Gulf 

of Mexico. For the 6ky BP period, the changes in orbital insolation and changes in the greenhouse gas concentrations 5 

represent the most important forcings while changing continental ice sheets and meltwater fluxes are only of minor 

importance. Our analysis of the variability of annual surface temperatures is independent of the absolute changes and only 

relies on the simulated spatial correlation structure. For the time scales analysed and the proxy positions of our compilations, 

this correlation structure is not sensitive to the particular choice of temperature variable (sea surface temperature versus 

surface temperature or near surface air temperature).  10 

3 Method 

3.1 Approach and assumptions 

SNRs can be estimated by comparing proxy records that experienced the same or very similar climate signals, e.g., different 

proxies from the same site or the same proxy from different sites in close spatial proximity. If a pair of records contains the 

same signal, an independent local noise component, and no time uncertainty, the SNR is given as R/(1 − R) where R is the 15 

correlation between both time series (Fisher et al., 1985). Ideally, SNRs would be estimated from local replicates. This is 

often difficult, or impossible, due to the limited availability of replicated datasets. To increase the number of records and thus 

improve the robustness of estimates, we extended this approach to also include records from locations that are further apart. 

This increased spatial separation between sites requires knowledge of the signal covariance (as the climate signal will have 

been slightly different at each location) and we rely on climate models to provide this information.  20 

The underlying assumptions are thus: (1) when relying on model data, we must assume correctness of the model-based 

correlation structure; (2) when using different proxies, we must assume that all proxies recorded the same temporal (and 

spatial) variability of the climate signal (more specifically: annual mean surface temperature); (3) we must assume that 

differences in the spatial correlation structure between models and proxy observations are due solely to a site-independent 

additive noise and time uncertainty.  25 

Based on these assumptions, we can estimate the SNR by matching the spatial correlation of proxy records and model time 

series while accounting for time uncertainty and additive noise which can both lead to a deterioration in the spatial 

correlation. E.g., low correlations among time series can be caused by both: a low time uncertainty in combination with a 

high noise level and a high time uncertainty in combination with a high SNR (low noise level). Due to their relationship, we 

quantify SNR estimates as a function of time uncertainty.  30 

Sites that are very far apart only share a weak climate signal which does not represent any constraint on the SNR as both the 

climate and proxy correlations will be close to zero. For our SNR estimate, we therefore only included proxy pairs with 
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spatial separations of up to 5000 km, which we found to be a typical decorrelation distance on centennial time scales in the 

model simulations as we later show.  

As climate variability is a function of time scale, we expect that both the spatial correlation structure and SNR will also be 

time scale dependent. However, the limited number of records and samples in each record prevents a more thorough time 

scale dependent estimate which could be carried out using a spectral approach for instance (Münch and Laepple, 2018). In 5 

order to balance accounting for time scale and estimate robustness, we distinguish between a centennial time scale T89:; 

(with a cut-off frequency of 1/400y and by removing the linear trend of the time series) and a centennial to millennial time 

scale T<=>> (using a cut-off frequency of 1/1000y and including the trend) (cf., Reschke et al., in review). To estimate T89:;, 

we only used records with a mean sampling interval of less than 200y while all records were included for estimating T<=>>.  

3.2 Processing steps 10 

3.2.1 Estimation of the spatial correlation structure 

From the MPI6k and T21k model time series we extracted annual mean temperatures at those grid cells that contain the 

location of the proxy record site. Through block averaging, data were then resampled at the same ages as in the 

corresponding proxy records. We chose to use averages rather than interpolation because sediment and ice samples, in 

particular, often include adjacent depths or have a sample distance that is smaller than the typical mixing depth in the 15 

sediment or diffusion length in ice-cores. For each dataset (M13, LH14, R18), we estimated the time scale dependent (T89:;, 

T<=>> ) correlations between all possible proxy record pairs and between all model time series pairs. For this step, the 

irregularly sampled time series were linearly interpolated onto a more regular grid and subjected to a Gaussian filter. This 

approach has been shown to deliver good results for an irregularly sampled dataset with regard to time scale dependent 

correlations (Reschke et al., in review).  20 

The spatial separation between two sites was used to place the pair into 2000 km-sized bins (thus containing separations of 

0-2000km, 2000-4000km, etc.) and averaging the correlations from proxy/model site pairs contained within the same bin. An 

overview of the processing steps is given in Fig. 2. 

We performed a significance test of the spatial correlation structure based on spatially uncorrelated surrogate time series 

with a temporal power-law scaling of β = 1, which is a typical value for Holocene sediment records (Laepple and Huybers, 25 

2014). In a Monte Carlo procedure with 1000 repetitions, we generated annual surrogate records that were analysed using the 

same procedure as the true proxy observations, using the 90% quantile of the binned correlations of the surrogate time series 

as confidence intervals. 

3.2.2 Estimation of the SNRs 

The SNR estimate was obtained from a Monte Carlo simulation with 1000 repetitions. Through block averaging, we 30 

resampled the annual model data at the same resolution as the corresponding proxy records. We then added time 
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uncertainties (between 0 and 400y) and noise levels (0.01 < SNR < 100), before estimating the mean correlation using the 

interpolation method of Reschke et al. (in review). We estimated the SNRs as a function of the time uncertainty by 

minimising the absolute difference of the mean correlations of proxy records and modified model simulations. 

We generated the modified model data by separately distorting the time axis and adding noise to the observations of the 

resampled model time series. As a simple heuristic to simulate time uncertainty, we defined four time control points at the 5 

ages of 1y, 2ky, 4ky, and 6ky and randomly shifted these points by adding a random value from a normal distribution (mean 

µ = 0, standard deviation σ = time uncertainty [y]) except for the value of 1y. The new time axis was then created by 

linearly interpolating between the time control points. Noisy observations were generated by adding normally distributed 

noise, ε (with ε~N, mean µ = 0 and variance σ* as 
HIJKLM,NLOPIQMLK
R

STU
), to the resampled model time series. Fig. 2 gives an 

overview of the processing steps. 10 

4 Results 

4.1 Spatial correlation structure and correlation decay length 

The correlation analysis using all proxy types and locations yielded, unsurprisingly, a general decrease in correlation for 

larger spatial separations between proxy sites (Fig. 3). Both model simulations exhibit statistically significant spatial 

correlations at both analysed time scales (T89:; and T<=>>) and for most inter-site separation distances. Throughout all datasets 15 

and separation distances, T21k yielded higher correlations than MPI6k, which is consistent with the generally higher 

correlation decay lengths lW for T21k, estimated at grid cell level by fitting an exponential, R = eYZ >K , to the decay of 

correlations R as a function of site separation x (Fig. 1d, e). 

While for T89:; the correlation of both model simulations decreases with increasing site separation (Fig. 3a-c), the T<=>> 

estimate (Fig. 3d-f) shows a more complex pattern that includes a partial increase in correlation for separation distances 20 

larger than 8000 km. This is likely related to variations in orbital forcing affecting the temperature trend that is symmetric 

between both hemispheres. Especially for MPI6k, the correlation is weak for separation distances from 4000 to 6000 km.  

The spatial correlations obtained from the proxy records differ systematically from those obtained from model simulation 

data. The mean correlation for close proxy site pairs (separation <5000 km) was 0.004 to 0.014 for T89:; and 0.101 to 0.186 

for T<=>> and thus lower than for model data (MPI6k: 0.303 to 0.338 for T89:;, 0.202 to 0.461 for T<=>>; T21k: 0.634 to 0.719 25 

for T89:;, 0.674 to 0.710 for T<=>>). For T89:;, none of the proxy based correlations is statistically significant and no clear 

pattern emerges with regard to separation distance. All three datasets yielded a statistically significant correlation at T<=>> for 

smaller separation distances, although visibly decreasing for longer separation distances (e.g., 6000-8000 km; cf. Fig. 3d, f). 

Comparisons of temperature estimates from different proxy types are faced with the additional challenge that the actual 

recorded variable (e.g., summer atmospheric temperature vs. mixed layer winter temperature) may depend on the proxy type. 30 

We therefore also analysed the proxy-specific results (Fig. 4, Tab. 2). By performing separate analyses for each proxy type 
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(instead of analysing all proxies together) we obtained in all three datasets a higher mean correlation on the T<=>> time scale 

for sites within a 5000 km range. For T<=>>, the proxy-specific mean correlations across all datasets and proxies are between 

0.149 and 0.357 compared to 0.101 to 0.186 when correlating sites across proxy types. For T89:;, most correlations are 

indistinguishable from zero and we observed no consistent increase when analysing proxy-specific correlations (Tab. 2). 

Unfortunately, restricting the analysis to a single proxy type greatly reduces the number of available proxy pairs at any given 5 

distance and thus leads to less robust correlation estimates and rather large confidence intervals. We therefore only provide 

results for the most data-abundant proxy types Uk37 and Mg/Ca and one dataset (LH14) as example in the main manuscript 

(Fig. 4). The remaining data are shown in the Supplement (Fig. S1-S4). For LH14, both Mg/Ca and Uk37 show a decrease in 

correlation with increasing separation distance for both time scales. The correlations in this proxy-specific analysis are 

stronger than the analysis across proxy types (Fig. 3). They are, however, only statistically significant for Uk37 on T<=>> with 10 

separation distances smaller than 5000 km and for a single distance bin (2000-4000km) for Mg/Ca. 

4.2 SNR estimates 

The estimated SNRs of proxy records are a function of time uncertainty because correlations deteriorate due to both, time 

uncertainty and noise. In general, we found that low (high) SNRs were related to low (high) time uncertainties (Fig. 5). In 

most cases, the estimated signal content for Holocene temperature-sensitive proxy records was quite low (<0.5). 15 

By using the spatial correlation structure of MPI6k and assuming a time uncertainty (1 sd) of 220y (mean uncertainty in 

M13) we obtain an estimated SNR of between 0.05 and 0.2 for the T89:; time scale and 0.2 for the M13 and R18 datasets on 

the T<=>> time scale. The LH14 dataset yielded a SNR of 10 at the T<=>> time scale. 

The M13, LH14 and R18 SNRs obtained for mixed proxy types differ for the simulation data. Generally, the SNRs were 

more consistent with T21k compared to MPI6k, although lower due to higher correlations of spatially close (separation 20 

<5000 km) pairs (Fig. S5). In addition, the SNRs are lower for T89:;  (SNR\*'],\^L_`  <0.05) compared to T<=>>  (0.05 < 

SNR\*'],\IaMM < 0.2). 

An analysis of proxy-specific SNRs yielded higher uncertainties due to the relatively small number of record pairs (see Fig. 

S6-S15 for the complete set of results). The dependence of SNR estimates on time uncertainty is very sensitive to how the 

proxies are compiled and the type of model simulation. However, the overview of all proxy-specific SNR estimates (Fig. 6) 25 

suggests some proxy-specific tendencies. On T89:; ice-cores show the highest SNR. Mg/Ca shows a high SNR for the LH14 

dataset but a low SNR in the two other compilations. Uk37 and terrestrial bio-indicators have the lowest SNR estimate on 

this time scale. In contrast analysing the T<=>> time scale that also includes trends in the dataset leads to different results; 

Uk37 shows the highest SNRs whereas the other proxy types only show a small increase compared to the T89:; analysis. 
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5 Discussion 

High-resolution temperature-sensitive proxy records for the Holocene are sparse, irregularly distributed, and rely on different 

proxy types. Thus, estimating the SNR in such datasets requires some simplifying assumptions. We assumed that: (1) the 

spatial correlation of the climate model simulations was realistic, (2) all proxy types were recording the same climate 

variable, and (3) any non-climatic components of the proxy signal can be fully accounted for through a combination of time 5 

uncertainty and additive noise.  

The SNRs we estimated, based on these assumptions, generally suggest a low signal content of Holocene temperature 

records on centennial time scales (T89:;). We found a higher signal content on millennial time scales (T<=>>), but the results 

were rather sensitive to the choice of the proxy compilation and model simulation. We now discuss the role of the different 

assumptions on the results. 10 

5.1 Spatial correlation structure of model simulations 

Our SNR estimates critically depend on the model-based temperature correlation structure as lower spatial temperature 

correlations in the models would lead to higher SNR estimates for the proxies and vice versa. In most regions, the model 

simulation MPI6k shows correlation decay lengths of 1295 to 6030 km (mean decay length: 3995 km) and the correlation 

decay length of T21k is generally in the range of 2130 and 8705 km (mean decay length: 5920 km) for the T89:; time scale 15 

(Fig. 1d, e). This is higher than previous estimates of correlation decay lengths from instrumental datasets in the range of 

1000 to 3000 km (e.g., Hansen and Lebedeff, 1987; Jones et al., 1997; Madden et al., 1993), but plausible as an increase with 

time scale is to be expected. For example, Jones et al. (1997) found lower correlation decay lengths related to annual (2100 

km) than to decadal (3800 km) time scales.  

Nevertheless, spatial correlation could be overestimated in the model simulations for two reasons. Firstly, the spatial 20 

correlation of instrumental datasets always includes the anthropogenic forcing which strongly increases the correlation decay 

length. This effect is not or only weakly present in the 6ky time-period of our analysis. Instrumental records from the 

industrial period and pre-industrial model simulations might thus be in agreement for the wrong reasons. Secondly, the grid 

cell size of the models was on the order of several hundred kilometres whereas the records might be representative of a 

smaller spatial area. Hence, it is possible that proxy based correlations are lower compared to those obtained from the model 25 

due to the former being influenced by subgrid-scale temperature variations.  

We also found that T21k yielded higher spatial correlations compared to MPI6k (Fig. 1d, e) which in turn resulted in lower 

SNR estimates if relying on this particular model simulation (Fig. S5). This difference might be related to the presence of 

transient greenhouse gas forcing in T21k (Timm and Timmermann, 2007), although the changes in forcing were small 

during the analysed time period.  30 
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Thus, there remain the possibility that the true temperature variations are more localised than suggested by the model 

simulations. In this case our estimates of the proxy signal content would be pessimistic. Ultimately, more replicate proxy 

records are needed to distinguish between these hypotheses. 

5.2 Finite number of proxy records 

Despite the strong overlap among records, we found our estimates of the spatial correlation structure and SNRs to be 5 

sensitive to the choice of proxy compilation (Tab. 2), which suggests that the number of records may have been limiting the 

robustness of our estimates. To test this hypothesis, we performed a sensitivity analysis using surrogate time series. N 6ky 

annual surrogate time series were generated from the sum of a common pseudo climate time series modelled as a random 

process that follows a power-law (β = 1) scaling and a separate non-climate component that is simulated as uncorrelated 

white noise. The noise amplitude is chosen to yield SNR = 0.15. Irregular sampling times were used to mimic the observed 10 

sampling times of the M13 records. Surrogate inter-observation time steps were drawn from a gamma distribution (shape = 

rate = 2.25), rescaled with a mean inter-observation time step of 108.56y (cf., Reschke et al., in review). The final, pseudo 

proxy time series were then obtained by block averaging the annual time series to the irregular sampling times. The SNR of 

the surrogate time series were then calculated following the same method as the proxy records in the main study and 

repeated for different sites using a Monte Carlo-based procedure with 2000 repetitions.  15 

We found that the uncertainty of SNR estimates that are based on a small number of records can be high (Fig. 7). For a low 

number of only 15 records (105 correlation pairs), for instance, the uncertainty range of SNRs (90% quantiles of 0.08 to 

0.26) is higher than the true SNR value of 0.15. Although we used more than 15 sites per compilation in our analysis (Fig. 

7), there were often fewer than 15 time series per proxy type (Tab. 1) which might explain the strong scatter in the proxy-

type-specific SNR estimates. 20 

To improve the robustness of SNR estimates, it is unavoidable to significantly increase the number of records that are 

collected not too far apart from one another (distances <5000 km). Additionally, a better global coverage of sites locations 

would likely lead to more robust results. Since we sampled the models at the locations of the proxy sites our results should 

be independent of the spatial sampling distribution if the models were perfect. In reality, however, spatial differences and 

shifts in the simulated correlation structure are likely and can be overcome by sampling from a wide variety of sites from all 25 

over the globe.  

5.3 Proxy-specific recording of climate variables 

All proxy types used in this study have been reported in the literature as temperature-sensitive and are usually calibrated to 

the mean annual surface air or surface water temperature. However, this is a gross oversimplification as the true climate 

variable influencing the recorded signal is proxy-specific and generally more complex. For example, signals reconstructed 30 

from marine organism-based proxies such as Mg/Ca, Uk37, and TEX$%  are affected by the seasonal and depth-specific 
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preferred habitat of the organism (Ho and Laepple, 2016; Leduc et al., 2010; Lohmann et al., 2013). The consequence is a 

temporal and spatial averaging of the climate signal.  

Thus, analysing different proxy types likely leads to an underestimation of the spatial temperature correlations. Indeed, in 

our study we found the spatial correlations related to records of the same proxy type for T<=>> to be higher compared to those 

for all types (Tab. 2). To gain a better understanding of proxies and their effect on the analyses, we suggested to use proxy-5 

specific SNR estimates instead. However, this is hampered by the low number of records in close proximity to one another 

(Tab. 1; Tab. S4). For many proxy types, this leads to statistically non-significant correlations and unreliable SNR estimates 

(Fig. S6-S15).  

On the other hand, analysing the spatial correlation among records of the same proxy type can also lead to overly optimistic 

results as the correlation among records of the same proxy type could also stem from spatially correlated proxy-specific non-10 

climatic components. A case in point would be the dissolution of foraminiferal shells (Lea, 2003) which could generate 

spatially correlated noise as the preferential dissolution of carbonate depends on the water depth (Brown and Elderfield, 

1996; Dekens et al., 2002), the carbonate ion concentration, and the salinity of the surrounding seawater (Huguet et al., 2006; 

Lea, 2003; Spero et al., 1997). 

5.4 Time uncertainty and non-climatic components of the proxy signal 15 

Our SNR estimates depend on the assumed time uncertainty of the records. While we assumed a mean time uncertainty of 

220y (as provided in the M13 dataset), the true time uncertainty for marine records might be considerably higher due to 

spatially varying reservoir effects (Ascough et al., 2005). This would imply that our SNR estimates are conservative, 

especially on centennial time scales. On the other hand, using one mean uncertainty value will clearly be too pessimistic for 

ice-core data that is only subject to much smaller dating uncertainties. Using more sophisticated models to account for time 20 

uncertainty (e.g., Blaauw, 2010; Blockley et al., 2007; Telford et al., 2004) and the proxy- and site-specific information on 

the chronologies would allow to obtain more precise SNR estimates. 

We modelled the transfer function between the temperature time series and the calibrated proxy records as a combination of 

time uncertainty and additive temporally uncorrelated noise. Our approach thus neglects other distortions of the signal and 

non-additive parts of noise. Multiplicative noise can arise from aliasing due to subsampling that leads to errors that are 25 

proportional to short-term climate variability (Laepple and Huybers, 2013). Variable sedimentation rates, bioturbation and/or 

bioturbation depths varying over time have a low-pass filtering effect that is similar to irregular sampling. Proxy archive 

accumulation processes undergo temporal changes due to changes in bioturbation depths and advection (Mollenhauer et al., 

2003) or spatial changes in ocean currents (van Sebille et al., 2015) that could introduce additional non-additive noise in the 

obtained proxy records. Finally, even for a single proxy type, the data quality (i.e., the signal content) is site specific and will 30 

depend on the sampling and measurement protocol. For example, the SNR estimates using the LH14 dataset that is mainly 

based on very high-resolution records (mean sample distance <100y), are higher than estimates based on the two larger 

proxy compilations. Thirumalai et al. (2018) showed that foraminiferal records based on a large number (70-100) of 
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foraminiferal tests per sample were consistent between cores collected in close proximity to one another leading to much 

higher correlations compared to our study. As we rely on datasets of opportunity that consist of proxy records measured by 

various labs over a period of two decades, it seems conceivable that a small number of records could be of a relatively lower 

quality which would reduce our mean correlation and thus the SNR estimate. New studies, especially when based on a 

careful design (Thirumalai et al., 2018), could help alleviate this situation. 5 

6 Conclusion 

In this study, we estimated SNRs of Holocene temperature-sensitive proxy records by comparing proxy- and model-based 

spatial correlations. We found that spatial correlations between proxy records were significantly lower than those computed 

for temperature time series extracted from climate models. Simply put, the proxy records varied more independently from 

site to site, whereas the model simulations suggested spatially coherent temperature variations. This in turn led to low SNR 10 

estimates in multi-proxy-type analyses if we assume that the correlation structure that we obtained from the model 

simulations is reasonable.  

The low SNRs of Holocene proxy records are likely the result of processes occurring during the formation, preservation and 

measurement of the proxy signal. For Holocene, even small uncertainties in the process chain between the climate signal and 

the climate reconstruction play an important role compared to the small temperature variations. In addition, as evidenced by 15 

the difference when comparing results between proxy types and within one proxy type, the proxy-specific recording of 

different temporal and spatial parts of the temperature (for example summer vs. winter) also affects the SNR of multi-proxy 

datasets. Nevertheless, our SNR estimates are still relevant for synthesis and model comparison efforts (e.g. Marcott et al., 

2013), that usually interpret all proxy records together.  

The precision of the SNR estimates is strongly dependent on the number of available proxy records. Due to the small number 20 

of spatially close records of the same proxy type, the uncertainty in our proxy-type-specific SNR estimates was very high.  

Our SNR estimates implicitly depend on the expected time uncertainty, as well as on the model choice. However, for both 

tested models the multi-proxy-type estimates on centennial time scales ( T89:; ) were smaller ( SNRbcd%],\^L_`  <0.5; 

SNR\*'],\^L_` <0.05) than on longer time scales T<=>> (SNRbcd%],\IaMM » 0.2; 0.05 < SNR\*'],\IaMM < 0.2).  

Our results of the low signal content of multi-proxy datasets, especially on centennial time scales, suggests that caution and a 25 

critical evaluation are in order when analysing and interpreting these datasets. Furthermore, optimising the sampling and 

measurement procedure is likely needed to faithfully reconstruct small climate variations over the Holocene. As the number 

of high-resolution proxy records continues to grow, a more detailed analysis of the signal content of specific proxy types and 

a model-independent estimate of the spatial correlation structure of climate variations will get feasible and will enable and 

improve prospects for the interpretation and reconstruction of past climate changes. 30 
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Figure 1: Overview of proxy and model datasets. Site locations of the proxy compilations (a) M13: Marcott et al. (2013), (b) LH14: 
Laepple and Huybers (2014), and (c) R18: Rehfeld et al. (2018) used in this study. Proxy types are indicated by symbols and the mean 
inter-observation time step by colours. Correlation decay length of (d) the T21k and (e) the MPI6k simulations estimated on centennial 5 
time scales (T89:;; not detrended). The spatial correlation decay length is generally higher for T21k than for MPI6k.  
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Figure 2: Processing steps for the proxy and model time series. Blue paths illustrate the analysis of the spatial correlation structure. Red 
paths represent the estimation of SNRs of proxy records as a function of time uncertainty.  
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Figure 3: Spatial correlation structure of Holocene temperature proxy records and simulated surface temperatures based on three 
multi-proxy datasets and related to (a-c) centennial 𝐓𝐜𝐞𝐧𝐭 and (d-f) centennial to millennial time scales 𝐓𝐦𝐢𝐥𝐥. In each panel, the upper 
part shows the mean correlation of the model simulation (for 2000 km sized bins as a function of the separation distance between record 
pairs) evaluated at the proxy locations (dotted/dashed line) and the proxy dataset (continuous line). The grey polygon represents the 90%-5 
quantile of mean correlations of uncorrelated surrogate time series with a power-law scaling of β = 1. The lower parts of the panels show 
the number of record pairs used in each estimate. The spatial correlation structure of the model time series is generally higher than of 
proxy records which are only statistically significant on T<=>> at neighboured sites. The highest correlations belong to sites with separation 
distances less than 4000-6000 km.  
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Figure 4: Proxy-type-specific (Uk37, Mg/Ca) spatial correlation structure related to (a) centennial 𝐓𝐜𝐞𝐧𝐭 and (b) centennial to 
millennial time scales 𝐓𝐦𝐢𝐥𝐥 based on the LH14 dataset. The upper parts of the panels show mean correlations of 2000 km sized bins as a 
function of the separation distance between record pairs in the proxy dataset (continuous line) and model simulations evaluated at proxy 
locations (dotted/dashed line). Polygons represent the 90%-quantiles of mean correlations of uncorrelated surrogate time series with a 5 
power-law scaling of β = 1. The lower parts of the panels show the number of record pairs used for each estimate. The spatial correlation 
structure of proxy records is non-significant for individual proxy types, except for close (separation <6000 km) sites of Uk37 temperature 
records at T<=>>.  
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Figure 5: 𝐒𝐍𝐑𝐌𝐏𝐈𝟔𝐤 estimates of proxy records as a function of time uncertainty related to centennial 𝐓𝐜𝐞𝐧𝐭 and millennial time 
scales 𝐓𝐦𝐢𝐥𝐥. Colour coating and contour lines in each panel show the mismatch between mean correlations of close-by (separation <5000 
km) proxy records and time series extracted from the MPI6k simulation at proxy locations as a function of time uncertainty (vertical axis) 
and SNR (horizontal axis). Areas with the lowest mismatch are represented by the darkest colours and mark suitable combinations of 5 
SNRbcd%] estimates and time uncertainties. The red dots illustrate SNR estimates for a time uncertainty of 220y.  
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Figure 6: Overview of proxy-specific SNR estimates on (a) centennial 𝐓𝐜𝐞𝐧𝐭  and (b) millennial time scales 𝐓𝐦𝐢𝐥𝐥 . The symbols 
represent the SNRs estimated from the different proxy compilations using the simulations of MPI6k and T21k. Upper panels show the 
results for an assumed time uncertainty of 200y and lower panels for 400y. The SNRs are proxy-type-specific different, but generally 
higher on the T<=>> than on the T89:; time scale.  5 
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Figure 7: Sensitivity of the SNR estimates on the number of sites/record pairs based on surrogate time series. The time series were 
generated with a predefined SNR = 0.15 (horizontal line). SNR estimates with standard deviations based on 2000 repetitions are shown as 
dots with error bars. The uncertainties in the SNR are illustrated as polygons showing the 90%-quantiles of the estimates. The uncertainty 5 
of SNR estimates is high when only considering a small number of sites. Vertical lines show the numbers of selected sites/record pairs 
contained in each data compilation. This indicates that for single proxy type analysis the uncertainties in the SNR estimates are high.  
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Table 1: Numbers of records and their overlap in the proxy compilations used in this study. The total number of time series is 
separated by proxy type for each proxy compilation (upper part). 𝐓𝐦𝐢𝐥𝐥 refers to the number of time series with a mean inter-observation 
time step of ∆𝐭 <500y and 𝐓𝐜𝐞𝐧𝐭 counts time series with ∆𝐭 <200y. The overlap is shown for each pair and for all compilations (lower part).  

 Sum of 
records Uk37 Mg/Ca 𝐓𝐄𝐗𝟖𝟔 Terrestrial 

bio-indicator 
Ice-core stable 

isotopes other 

M13 – 𝑇yz{{ 
M13 – 𝑇|}~� 

70  
49 

28  
18 

19  
14 

4  
1 

8  
8 

5  
4 

6  
4 

LH14 – 𝑇yz{{ 
LH14 – 𝑇|}~� 

31  
31 

21  
21 

10  
10 

- 
- 

- 
- 

- 
- 

- 
- 

R18 – 𝑇yz{{ 
R18 – 𝑇|}~� 

88  
81 

27  
26 

19  
17 

4  
2 

11  
10 

18  
18 

9  
8 

M13 ∩ LH14 20 13 7 - - - - 
M13 ∩ R18 45 16 14 3 6 4 2 
LH14 ∩ R18 22 16 6 - - - - 
M13 ∩ LH14 ∩ R18 19 13 6 - - - - 
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Table 2: Mean correlations of proxy time series with separation distances <5000 km for different proxy types. For each dataset, the 
mean correlation was estimated for millennial time scales T<=>> and proxy time series with a mean inter-observation time step of ∆t <500y 
and related to centennial time scales T89:; for proxy time series with ∆t <200y. Mixed proxy types contain all combinations of time series 
pairs independent of the proxy type. The mean of single proxy types summarises the proxy-type-specific mean correlations weighted by 
the number of record pairs of each proxy type. Correlations in brackets are not statistically significant (p = 0.1). 5 

 Mixed 
proxy 
types 

Mean of 
single proxy 

types 

Uk37 Mg/Ca 𝐓𝐄𝐗𝟖𝟔 Terrestrial 
bio-

indicator 

Ice-core 
stable 

isotopes 

other 

M13 – 𝑇yz{{ 
M13 – 𝑇|}~� 

0.101  
0.004 

0.149  
-0.009 

0.211  
(-0.003) 

(0.068)  
(-0.006) 

(-0.105)  
- 

(0.095)  
(-0.09) 

0.414  
(0.244) 

(-0.14)  
(-0.388) 

LH14 – 𝑇yz{{ 
LH14 – 𝑇|}~� 

0.12  
0.012 

0.357  
0.031 

0.365  
(0.013) 

0.304  
0.151 

- 
- 

- 
- 

- 
- 

- 
- 

R18 – 𝑇yz{{ 
R18 – 𝑇|}~� 

0.184  
0.014 

0.208  
0.009 

0.347  
(-0.017) 

(0.034)  
(-0.024) 

(-0.188)  
(0.148) 

0.17  
(-0.057) 

0.23  
0.1 

(0.107)  
(0.05) 
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