
Dear	David	Thornalley,	
	
along	with	this	document	we	submit	the	revised	version	of	our	manuscript	“Empirical	estimate	
of	the	signal	content	of	Holocene	temperature	proxy	records”.	
	
According	to	the	major	comments	of	the	reviewer	we	made	the	following	major	changes:	

- adding	a	method	section	3.2,	discussing	the	spatial	correlation	structure	in	the	models	
vs.	the	spatial	correlation	structure	in	reanalysis	data,		

- extending	the	discussion	section	5.1	by	adding	potential	model	shortcomings	that	may	
lead	to	an	overestimation	of	the	spatial	coherency	in	the	models,	and	

- adding	a	new	discussion	section	5.5	on	implications	and	future	steps	forward.	
More	details	on	these	changes	and	other	ones	according	to	the	minor	questions/comments	
are	described	in	the	response	to	the	reviewer	comments	attached	below.	As	a	few	changes	
are	slightly	different	to	the	originally	suggested	ones,	we	add	the	new	changes	to	the	original	
response	as	 set	 in	green	normal	 font.	The	marked-up	version	of	 the	 revised	manuscript	 is	
attached	to	the	end	of	this	document.	
	
Thank	you	again	for	considering	our	manuscript.	
	
Kind	regards,	
Maria	Reschke	
	
	
	
	
	 	



Dear	Oliver	Bothe,	
	
Thank	 you	 very	 much	 for	 taking	 the	 time	 to	 review	 our	 discussion	 paper	 and	 for	 your	
constructive	 and	 detailed	 comments.	 Below	 we	 respond	 to	 your	 comments.	 Referee	
comments	are	set	in	blue	italic	font	and	author	comments	in	black	normal	font.		
	
Response	to	Major	Comments:	
	
Your	results	and	how	much	we	can	infer	from	them	strongly	hinges	on	the	assumptions	
you	make.	You	state	those	clearly	and	discuss	them	already.	You	do	this	in	your	
discussion	section.	From	my	point	of	view	it	is	necessary	that	you	extend	on	these	
discussions	already	when	you	present	your	assumptions.	
I	understand	that	others	may	disagree	with	discussions	taking	place	in	the	methodssection.	
Indeed	it	may	be	that	in	a	follow	up	review	I	say,	I	was	wrong,	because	
the	manuscript	reads	better	in	this	version.	However	considering	this	version	of	the	
manuscript,	the	lack	of	a	discussion	of	your	assumptions’	appropriateness	in	the	
method	section	clouds	the	reading.	
	
1.	Section	3.1:	Let	me	extend	on	my	short	summary.	First,	I	think	your	assumptions	
are	reasonable	and	well	stated	and	do	not	invalidate	your	approach.	However,	they	
also	can	invite	strong	criticisms.	You	counter	these	mostly	later	in	the	manuscript,	but	I	
think	you	have	to	show	early	that	you	are	thinking	about	this	and	why	the	assumptions	
are	appropriate.	
A	number	of	questions	you	should	probably	deal	with	early	on	are,	for	example:	Aren’t	
models	thought	to	be	more	homogenous	than	observations?	Isn’t	it	unlikely	that	the	
proxies	really	recorded	the	same	4D-signal?	Less	important	is	possibly,	whether	you	
can	really	capture	the	uncertainty	about	the	signal	in	the	simple	estimates	you	take.	
	
We	 agree	 that	 it	may	 helpful	 to	 add	more	 information	 on	 the	 assumptions	 earlier	 in	 the	
method	section.	Our	study	does	not	assume	the	same	4D-signal,	but	only	assumes	that	the	
correlation	 structure	 in	 the	 models	 is	 realistic.	 We	 argue	 that	 simulating	 a	 reasonable	
correlation	structure	might	be	easier	than	simulating	the	right	phase	and	amplitudes	of	the	
climate	variability.	
As	we	agree	that	our	results	hinges	on	the	correlation	structure,	we	suggest	to	address	this	
point	 in	the	revised	version	early	on	by	1.)	adding	a	new	section	3.2,	discussing	the	spatial	
correlation	structure	in	the	models	vs.	the	spatial	correlation	structure	in	reanalysis	data,	and	
2.)	extending	the	discussion	section	to	include	a	list	of	potential	model	shortcomings	that	may	
lead	to	an	overestimation	of	the	spatial	coherency	in	the	models	(see	also	our	response	to	
your	specific	comments).	
We	suggest	to	leave	the	remaining	part	of	the	discussion	(assumption	of	additive	noise)	in	the	
discussion	section.		
	
Concerning	1.)	
To	check	the	realism	of	the	correlation	structure	in	the	model	simulations,	we	now	further	
analysed	the	correlation	structure	of	the	surface	temperature	field	in	the	20C3M	reanalysis	
product	(Compo	et	al.,	2006)	(Fig.R1).	Interestingly,	analysing	the	full	time-period	of	1871	to	
2011	results	 in	a	much	higher	decorrelation	 length	than	estimated	for	the	Holocene,	 likely	
caused	by	the	coherent	anthropogenic	forcing.	Removing	the	 last	decades	to	minimise	the	



human	influence,	e.g.,	analysing	1871-1950	results	in	a	correlation	structure	resembling	the	
spatial	correlation	of	MPI6k.		
As	 we	 expect	 that	 the	 climate	 does	 not	 get	 more	 localised	 on	 longer	 time	 scales,	 but	 if	
anything,	more	spatially	coherent	(e.g.,	Jones	et	al.,	1997;	Kim	and	North	1991)	this	suggests	
that	the	decorrelation	lengths	used	in	this	study	might	not	be	unrealistically	large.		
Thus,	 instead	of	relying	on	climate	model	simulations	one	could	even	obtain	similar	results	
based	on	the	reanalysis	correlation	structure	and	assuming	that	the	correlation	structure	is	
similar	on	longer	time	scales	than	on	the	time	scales	sampled	by	the	instrumental	data.	To	
make	this	point,	we	suggest	adding	the	reanalysis	correlation	structure	estimated	from	the	
proxy	positions	in	the	manuscript	Figure	3	(Fig.R2).		
One	could	still	argue	that	fine-scale	structures	(e.g.,	at	the	coast	or	at	shelves)	not	resolved	by	
the	models	 (as	well	 as	 by	 the	 reanalysis)	might	 lead	 to	 localised	 variations	 as	we	 already	
discuss	in	Section	5.1,	but	we	do	not	see	a	clear	evidence	for	this	on	inter-annual	and	longer	
time	scales	from	analysing	high-resolution	model	simulations	(e.g.,	the	AWI-FESOM	simulation	
in	an	eddy-permitting	resolution).	However,	as	this	latter	work	is	still	preliminary	we	would	
not	include	it	and	just	discuss	this	possibility.	
	
Concerning	2.)	
There	 are	 several	 shortcomings	 in	 present	 climate	 model	 simulations	 such	 as	 the	 two	
simulations	used	here	that	may	lead	to	an	overestimation	of	the	coherency	 in	the	models.		
Possibilities	 include	that	models	underestimate	 internal	climate	variability	 that	 is	generally	
more	 localised	 than	 externally	 forced	 climate	 variability	 (e.g.,	 Laepple	 and	Huybers,	 PNAS	
2014).	One	possibility	(Laepple	and	Huybers,	GRL	2014)	is	that	the	model	effective	horizontal	
diffusivity	 may	 be	 too	 large	 which	 would	 reduce	 internal	 variability	 and	 lead	 to	 larger	
correlation	 structures.	 Further,	 the	 low,	 non-eddy	 permitting	 resolution	 of	 the	 model	
simulations	used	here	might	suppress	small	scale	features	and	the	role	of	persistent	coastal	
currents.	
	



	
Fig.R1:	 Decorrelation	 length	 of	 reanalysis	 data	 and	 the	 6ky	 simulation	 of	 MPI6k.	 The	
decorrelation	 length	 is	 similar	 for	 the	 Holocene	 and	 reanalysis	 data	 from	 1871	 to	 1950	
indicating	that	the	Holocene	spatial	correlations	are	realistic.	
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Fig.R2:	 Spatial	 correlation	of	 reanalysis	 data	 for	 the	 time	window	 from	1871	 to	 1950	 (red	
lines).	As	the	correlation	over	distance	plots	for	the	reanalysis	data	are	very	similar	to	the	ones	
of	the	MPI6k	this	indicates	that	the	spatial	correlations	of	the	model	data	are	realistic.	
	
2.	Reference	to	Reschke	et	al.	(particularly	page	6,	line	2):	Please	provide	some	
information	in	the	methods	section	or	at	least	in	an	appendix	on	the	method	(not	least	
since	Reschke	et	al.	is	not	openly	accessible).	
We	will	add	more	information	in	the	method	section	on	the	reference	Reschke	et	al.	to	render	
the	manuscript	more	independent.	See	our	response	to	the	detailed	comments	below.	We	
further	 added	 an	 unformatted	 version	 of	 the	 manuscript	 in	 the	 publicly	 AWI	 publication	
database	and	Researchgate	website	to	allow	an	easier	access	to	this	reference.		
	
	
Response	to	Minor	Comments:	
	

General:		
	
Maybe	mention	your	focus	on	the	last	6kyr	already	in	the	title	or	at	least	in	the	abstract.	
We	will	add	this	in	the	abstract.	
	

Abstract:	
	
Suggestion:	Maybe	rethink	the	abstract	to	clarify	how	you	proceed	(e.g.,	page	1,	line	
17	and	following).	That	is,	state	which	simulations	you	use	before	mentioning	how	they	
influence	the	results,	or	don’t	mention	the	specific	models	at	all	but	just	highlight	the	
contrasting	results.	
We	will	mention	the	specific	models	in	the	abstract	before	explaining	the	results.	
	
Suggestion:	Mention	the	use	of	the	correlation	structure	before	discussing	its	influence.	
We	will	introduce	the	correlation	structure	in	the	first	half	of	the	abstract.	
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Introduction:	
	
Page	2,	line	9:	If	I	understand	your	point	correctly,	this	is	not	only	about	non-climatic	
influences	but	also	about	climatic	influences	different	from	the	specific	signal	we	are	
interested	in.	
Exactly,	 we	 consider	 everything	 except	 the	 specific	 signal	 of	 interest	 as	 noise	 (thus	 non-
climatic	signals	or	climate	signals	not	related	to	the	specific	signal	of	interest).	We	will	rewrite	
lines	4-10	to	make	this	clearer.	
	

Data:	
	
Page	3,	line	12:	You	possibly	should	introduce	the	abbreviation	for	Methylation	of	
Branched	Tetraether	-	or	simply	skip	mentioning	them.	
We	will	follow	your	suggestion	and	skip	the	naming	of	the	‘other’	proxies.	
	
Page	3,	line	24:	Please	discuss,	why	annual	temperature	is	an	appropriate	choice.	
We	will	add	the	explanation	of	our	annual	mean	temperature	choice.	The	reason	of	our	choice	
is	to	be	consistent	to	the	proxy	dataset	that	we	assume	to	record	annual	mean	temperatures	
following	 the	standard	 interpretation	of	 these	datasets.	The	annual	mean	 interpretation	 is	
often	chosen	because	of	the	lack	of	accurate	information	about	the	proxy	and	location-specific	
seasonality.		
	
Page	4,	line	3:	Are	all	the	mentioned	forcing	factors	really	continuously	transient	in	the	
simulation?	
Not	 all	 forcing	 factors	 are	 continuously	 transient	 for	 the	 entire	 T21k	 simulation.	With	 the	
disappearance	of	the	Eurasian	(~8ky	BP)	and	the	Laurentide	Ice	Sheet	(~6ky	BP)	the	transient	
continental	 ice	sheet	 forcing	ended	at	around	6ky.	As	 the	 retreat	of	 the	 ice	sheets	ended,	
there	is	also	no	meltwater	forcing	in	the	northern	hemisphere	since	6ky	BP.	The	meltwater	
fluxes	for	the	southern	hemisphere	ended	at	5ky	BP	(He,	2011).	Thus,	only	the	orbital	forcing	
and	 the	 greenhouse	 gas	 concentrations	 are	 remaining.	We	will	 include	 this	 in	 the	 revised	
manuscript.	
	

Method:	
	
Page	5,	line	8:	Can	you	please	provide	slightly	more	information	for	what	this	reference	
is	here?	I	do	not	directly	see	how	it	relates	to	the	sentence.	
This	reference	explains	the	method	used	for	filtering	but	as	we	describe	the	method	in	the	
next	paragraph,	we	will	remove	the	reference	here.	
	
Page	5,	line	13:	What	do	you	mean	by	resampled	in	this	context?	Further,	could	you	
give	more	details	on	your	block	averaging	(e.g.,	block	length).	
Our	aim	is	to	derive	a	time	series	from	the	annual	model	time	series	that	resembles	the	proxy	
time	series	in	having	the	same	number	and	ages	of	the	proxy	observations.	For	this,	we	apply	
block	 averaging.	 To	 get	 the	 observation	 for	 the	 observation	 time	 !" 	 we	 average	 all	
observations	between	half	the	difference	to	the	previous	observation	time	(!" − ∆!"/2)	and	
half	 the	difference	to	the	next	observation	time	(!" + ∆!"()/2).	We	chose	the	approach	of	
averaging	the	annual	time	series	instead	of	interpolating,	as	for	marine	records	samples	often	



include	adjacent	depths	or	the	sample	distance	is	smaller	than	the	typical	mixing	depth	in	the	
sediment	(Berger	and	Heath,	1968).	
We	will	rephrase	the	paragraph	and	include	the	details	of	the	block	averaging	in	the	revised	
version.		
	
Suggestion:	Page	5,	line	16,	“For	each:	:	:”:	I	am	not	sure	whether	this	description	gives	
the	reader	enough	information	to	redo	your	analyses.	But	I	am	neither	sure	that	it	does	
not.	Maybe	rethink	this.	
We	will	rewrite	this	sentence	to:	‘For	each	proxy	compilation	(M13,	LH14,	R18),	we	estimated	
the	time	scale	dependent	(*+,-., *0"11)	correlations	between	all	possible	proxy	record	pairs.	
We	further	estimated	the	time	scale	dependent	correlations	between	all	model	time	series	
pairs.’	We	further	plan	to	make	the	R	scripts	available	in	an	online	repository.	
	
Page	5,	line	20:	Please	give	some	more	details	here	on	what	your	reference	work	
describes	in	this	context.	
We	will	extend	this	description	to	make	it	more	independent.	
‘For	this	step,	the	irregularly	sampled	time	series	were	linearly	interpolated	onto	a	regular	grid	
(∆! = 105)	and	subjected	to	a	Gaussian	filter	with	cut-off	frequency	1/400y	(*+,-.)	or	1/1000y	
(*0"11).	This	approach	has	been	shown	to	deliver	good	results	 in	tests	using	surrogate	data	
with	the	sampling	properties	of	Holocene	marine	sediment	cores	for	the	estimation	of	time	
scale	dependent	correlations	(Reschke	et	al.,	2019).’	
We	slightly	changed	the	description:	‘For	this	step,	the	irregularly	sampled	time	series	were	
linearly	 interpolated	onto	a	regular	grid	(∆! = 105)	and	subjected	to	a	Gaussian	filter	with	
cut-off	frequency	1/400y	(*+,-.)	and	linear	detrending	or	alternatively	to	a	Gaussian	filter	with	
cut-off	frequency	1/1000y	(*0"11)	omitting	the	detrending	step.	This	approach	has	been	shown	
to	deliver	good	results	for	the	estimation	of	time	scale	dependent	correlations	in	tests	using	
surrogate	data	with	the	sampling	properties	of	Holocene	marine	sediment	cores	(Reschke	et	
al.,	2019).’	
	

Results:	
	
Suggestion:	Page	6,	line	25:	Would	you	be	willing	to	discuss	how	realistic	you	regard	
the	simulated	correlation	coefficients,	and,	possibly,	how	this	may	affect	the	relevance	
of	your	SNRs,	e.g.,	if	we	assume	the	simulated	correlation	coefficients	are	not	realistic.	
In	the	discussion	section	5.1	‘Spatial	correlation	structure	of	model	simulations’	we	already	
discuss	the	possibility	of	overestimating	model	correlations	and	their	role	for	the	SNRs	and	we	
add	an	additional	discussion	on	potential	shortcomings	of	the	climate	model	simulations.	We	
would	 like	 to	keep	this	structure	and	not	 to	discuss	 this	 in	 the	result	 section.	However,	as	
described	 in	 our	 first	 answer,	 we	 suggest	 to	 add	 a	 new	 section	 3.2	 in	 the	 method	 part,	
discussion	the	spatial	correlation	structure	in	the	models	vs.	the	spatial	correlation	structure	
in	reanalysis	data.	This	demonstrates	that	model	correlations	are	not	unrealistic	and	that	the	
main	conclusions	of	the	manuscript	could	be	obtained	without	the	use	of	climate	models,	just	
relying	on	the	(mainly	inter-annual)	instrumental	correlation	structure	and	assuming	that	on	
longer	time	scales	the	correlation	should	not	decrease.		
	
Page	7,	line	20:	Maybe	you	should	be	more	explicit	in	writing	about	the	results	for	T21k	
(see	also	short	technical	comment	below).	
We	will	rewrite	the	results	of	T21k-based	estimates	to	be	more	explicit	and	precise.		



	
Discussions:	

	
Suggestion:	I	think	it	would	be	interesting	to	be	more	specific	in	what	your	results	imply	
for	interpreting	the	proxy	records	and	derived	larger	scale	reconstructions.	And	what	it	
would	mean,	if	your	results	are	either	too	pessimistic	or	even	too	optimistic.	
We	agree	that	such	a	discussion	would	be	useful	and	will	add	a	new	discussion	section	on	
‘implications	and	 future	 steps	 forward’.	 First,	 care	 should	be	 taken	 in	maximising	 the	SNR	
when	creating	Holocene	climate	records.	This	includes	an	optimal	measurement	design	(e.g.,	
the	choice	of	the	sample	size)	for	example	supported	by	proxy	forward	modelling.	Second,	
Holocene	 studies	 relying	 on	 a	 small	 number	 of	 records	 might	 be	 associated	 with	 a	 large	
uncertainty	(except	if	these	records	have	a	higher	quality	than	the	average).	Third,	Holocene	
stacks	relying	on	a	large	number	of	records,	such	as	the	stack	in	Marcott	et	al.	(2013),	will	be	
robust	if	the	errors	are	independent	across	sites	but	it	will	be	very	difficult	to	extract	spatio-
temporal	patterns	from	these	datasets.	
If	our	results	are	too	pessimistic	(e.g.,	the	true	climate	is	more	regional	than	simulated	by	the	
used	model	simulations),	this	would	imply	that	individual	proxy	records	in	the	Holocene	can	
be	safely	interpreted	as	regionally	representative	climate	signal	as	it	is	currently	done	in	the	
literature.	On	the	other	hand,	if	our	SNR	estimates	are	too	optimistic,	the	value	of	singular	
proxy	reconstructions	without	additional	expert	knowledge	would	be	very	limited	and	stacks	
such	as	used	by	the	tree	ring	community	might	be	needed.		
	
Suggestion:	Page	8,	last	paragraph:	Are	there	potentially	other	reasons	that	may	result	
in	higher	correlations,	e.g.,	how	the	models	are	built.	Did	your	department’s	earlier	work	
hint	to	any	further	explanations,	or	did	the	PAGES	project	CVAS	come	up	with	some	
additional	explanations?	
We	agree	that	 it	would	be	useful	 for	 the	reader	 to	 include	a	discussion	on	possible	model	
shortcomings	that	could	lead	to	an	overestimation	of	spatial	correlations	(=	underestimation	
of	spatial	degrees	of	freedom).	
Possibilities	 include	that	models	underestimate	 internal	climate	variability	 that	 is	generally	
more	 localised	 than	 externally	 forced	 climate	 variability.	 One	 suggestion	 (Laepple	 and	
Huybers,	GRL	2014)	was	that	the	model	effective	horizontal	diffusivity	may	be	too	large	which	
would	reduce	internal	variability	and	lead	to	larger	correlation	structures.	Further,	the	low,	
non-eddy	resolving	resolution	of	the	models	might	suppress	small	scale	features	and	the	role	
of	persistent	coastal	currents.	We	will	add	a	discussion	of	these	points.	
	
Page	9,	line	7:	Do	I	miss	it,	or	do	you	omit	to	specify	“N”.	
We	actually	missed	to	specify	N	which	is	the	number	of	sites	ranging	from	3	to	50.	We	will	add	
this.	
	
Suggestion:	Page	9,	line	18:	Maybe	make	the	points	of	this	paragraph	already	stronger	
when	you	present	the	results.	
We	mention	this	already	 in	page	7,	 line	23.	 ‘An	analysis	of	 the	proxy-specific	SNRs	yielded	
higher	uncertainties	due	to	the	relatively	small	number	of	record	pairs	(see	Fig.	S6-S15	for	the	
complete	set	of	results)’	but	will	make	this	point	clearer	and	 link	 it	 to	the	sensitivity	study	
discussion.	
	
Suggestion:	Page	10,	line	1:	Can	you	discuss,	how	assuming	a	more	appropriate	



seasonal	and	depth	choice	would	influence	your	results?	
Currently,	we	interpret	all	records	from	proxy	types	as	annual	mean	surface	temperature.	As	
different	proxies	are	recording	different	parts	of	the	climate	component,	we	expect	that	the	
correlation	among	time	series	from	different	proxies	is	lower	than	for	time	series	of	the	same	
proxy	which	recorded	the	temperature	from	a	more	similar	climate	component.	This	is	already	
discussed	in	lines	3-8.			
However,	a	different	season	or	depth	might	also	have	a	different	correlation	structure	in	the	
model	which	will	influence	our	results.	Calculating	the	correlation	structure	of	summer	and	
winter	in	both	models	suggests	that	this	can	increase	or	decrease	the	correlation	and	seems	
to	be	model	dependent.	Thus,	the	net-effect	on	the	SNRs	is	not	clear.	
Finally,	even	for	one	proxy	type	and	proxy	carrier	(e.g.,	foraminifera),	the	recorded	season	and	
depth	is	location-specific	and	this	will	reduce	the	correlation	compared	to	the	correlation	of	
the	climate	sampled	at	any	globally	fixed	season	or	depth.	However,	this	reduction	in	the	SNR	
(that	is	defined	at	the	moment	for	annual	mean	temperatures,	but	could	be	changed	to	any	
globally	fixed	season	or	depth)	is	real.	
We	will	add	a	discussion	of	the	latter	two	points.	
	
Page	10,	line	1:	Isn’t	the	work	of	Jonkers	and	Kucera	and	further	of	their	colleagues	
relevant	here?	
This	is	right.	We	will	add	appropriate	reference	(e.g.,	Jonkers	and	Kucera,	2017).		
	
Page	10,	line	1:	I	may	be	wrong,	but	I	think,	the	work	of	Jessica	Tierney	and	colleagues	
on	TEX86	calibrations	is	relevant	here.	
Our	point	 is	 that	we	have	 seasonal	 and	depth-specific	differences	 in	 the	 recorded	 climate	
component.	 In	 case	 of	 TEX86	 it	 was	 suggested	 that	 this	 proxy	 records	 sub-surface	
temperatures.	We	will	additionally	add	Tierney	and	Tingley	(2015)	proposing	a	calibration	for	
the	upper	200m.	
	

Conclusion:	
	
Suggestion:	Page	11,	line	18:	I	think	you	could	be	more	explicit	about	the	relevance	of	
your	work.	
We	will	 add	a	new	 section	 in	 the	discussion	on	 ‘Implications	 and	 future	 steps	 forward’	 as	
described	 above	 and	 in	 the	 response	 to	 reviewer	 2.	 We	 will	 further	 extend/modify	 this	
conclusion	statement	to:	
Nevertheless,	our	SNR	estimates	are	still	relevant	for	synthesis	and	model	comparison	efforts	
(e.g.,	Marcott	et	al.,	2013),	that	usually	interpret	all	proxy	records	together.	While	in	the	ideal	
case,	most	errors	will	be	averaged	out	in	global	stacks	based	on	a	large	number	of	records,	
the	interpretation	of	spatio-temporal	patterns	will	be	very	uncertain.	
We	changed	 this	 statement	 slightly:	 ‘Nevertheless,	our	SNR	estimates	are	 still	 relevant	 for	
synthesis	and	model	comparison	efforts	(e.g.,	Marcott	et	al.,	2013),	that	usually	interpret	all	
proxy	 records	 together.	While	 in	 the	 ideal	 case	 global	 stacks	 based	 on	 a	 large	 number	 of	
records	will	average	out	most	of	the	error	contributions,	the	interpretation	of	spatio-temporal	
patterns	will	remain	uncertain.’	
	
Response	to	Technical	Comments:	
	
General:	I	don’t	mind	seeing	“years”	written	out	instead	of	abbreviated.	At	least	in	the	



abstract	I	think	it	would	be	better	to	write	“400	years”	instead	of	“400y”.	
We	agree	and	will	change	this	in	the	abstract.	
	
Page	1,	line	18:	Maybe	skip	“rather”	
We	agree.	
	
Page	1,	line	20:	If	I	understand	the	sentence	correctly,	the	second	“SNRs”	plus	its	
article	is	superfluous.	
We	agree.	
	
Page	1,	line	24:	I	don’t	think	the	first	sentence	of	the	paragraph	is	necessary.	
At	the	moment,	one	of	the	shortcoming	of	our	study	is	that	we	are	not	able	to	make	robust	
statements	about	specific	proxy	types	as	the	amount	of	proxy-specific	records	is	too	low	as	
shown	 in	our	sensitivity	 study.	 In	 this	 sense,	we	would	prefer	 to	keep	 the	sentence	 in	 the	
abstract.	
	
Page	4,	line	1:	If	I	understand	the	sentence	correctly,	it	is	incomplete.	
Thanks	for	spotting	this.	It	is	missing	an	‘and’	which	we	will	correct.	
	
Page	4,	line	7ff:	Does	this	sentence	and	the	next	refer	to	both	models	or	do	you	mean	
that	you	use	for	TraCE	all	three	mentioned	variables?	Please	clarify.	
This	refers	to	both	models.	We	will	clarify	this.	
	
Page	7,	line	19	“differ	..”:	Please	clarify:	do	you	mean	they	differ	between	the	two	
simulations?	
Yes.	We	will	rewrite	it	to:	‘For	all	three	proxy	compilations	(M13,	LH14,	R18)	the	SNRs	obtained	
for	mixed	proxy	types	depend	on	the	choice	of	the	model	simulation.’	
	
Page	7,	line	20	“consistent	with”:	Please	clarify:	Do	you	mean	they	are	consistent	with	
the	model	or	they	are	consistent	in	the	analyses	using	this	model.	
The	latter,	we	will	add	that	the	SNRs	estimated	for	the	three	datasets	M13,	LH14	and	R18	are	
more	similar	and	therefore	more	consistent	if	the	analysis	uses	the	T21k	simulation.	Based	on	
MPI6k	the	SNR	estimates	are	more	different	so	that	the	results	are	less	consistent	than	the	
estimates	based	on	T21k.	
	
	
Once	again,	thank	you	for	your	comments,	
Maria	Reschke	
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Dear	Reviewer,	
	
Thank	you	very	much	for	reviewing	our	discussion	paper	and	your	constructive	comments.	
Below	we	respond	to	your	comments	set	in	blue	italic	font.	The	author	comments	are	set	in	
black	normal	font.		
	
Substantial	Concerns:	
	

1. The	assumption	of	model	simulation	as	reality:	
	
o	Although	the	authors	are	upfront	regarding	their	underlying	assumptions	and	essentially	
state	that	they	are	taking	the	model	output	at	face	value,	I	strongly	recommend	
exploring	more	ways	in	which	the	model	simulations	might	be	oversimplifying	their	results.	
For	example,	in	their	Discussion	section,	the	authors	discuss	the	role	of	the	
“spatial	correlation	structure	of	model	simulations”	and	how	these	correlations	might	
be	overestimated.	The	authors	should	add	a	discussion	here	about	how	biases	in	the	
simulation	of	climate	variability	itself	in	these	transient	models	can	lead	to	biases	in	
correlation	distances.	
o	In	other	words,	if	a	(hypothesized)	transient	simulation	from	6	ka	to	present	showed	
the	same,	coherent	changes	across	the	entire	Northern	Hemisphere,	the	calculated	
SNE,	as	the	authors	propose,	would	be	exceedingly	low	-	however,	we	know	that	
such	a	transient	simulation	is	an	unlikely	representation	of	reality.	Thus,	I	feel	that	
the	manuscript	would	greatly	benefit	if	the	authors	included	text	on	how	typical	(and	
atypical)	shortcomings	of	MPI6k	and	T21k	are	influencing	their	results.	
We	agree	with	the	reviewer	that	 including	a	better	discussion	of	the	correlation	structure,	
possible	shortcomings	in	the	model	simulations	and	their	effect	of	our	results	would	be	useful.	
This	was	also	asked	by	Reviewer	1.	
We	 suggest	 to	 address	 this	 point	 in	 the	 revised	 version	 by	 1.)	 adding	 a	 new	 section	 3.2,	
discussing	the	spatial	correlation	structure	in	the	models	vs.	the	spatial	correlation	structure	
in	reanalysis	data,	and	2.)	extending	the	discussion	section	to	include	a	list	of	potential	model	
shortcomings	that	may	lead	to	an	overestimation	of	the	spatial	coherency	in	the	models.	
	
Concerning	1.)	
To	check	the	realism	of	the	correlation	structure	in	the	model	simulations,	we	further	analysed	
the	correlation	structure	of	the	surface	temperature	field	 in	the	20C3M	reanalysis	product	
(Compo	et	al.,	2006)	(Fig.R1).	Interestingly,	analysing	the	full	time-period	of	1871-2011	results	
in	a	much	higher	decorrelation	length	than	estimated	for	the	Holocene,	likely	caused	by	the	
coherent	anthropogenic	forcing.	Removing	the	last	decades	to	minimise	the	human	influence,	
e.g.,	analysing	1871-1950	results	in	a	correlation	structure	resembling	the	spatial	correlation	
of	MPI6k.		
As	 we	 expect	 that	 the	 climate	 does	 not	 get	 more	 localised	 on	 longer	 time	 scales,	 but	 if	
anything,	more	spatially	coherent	(e.g.,	Jones	et	al.,	1997;	Kim	and	North,	1991)	this	suggests	
that	the	decorrelation	lengths	used	in	this	study	might	not	be	unrealistically	large.		
Thus,	 instead	of	relying	on	climate	model	simulations	one	could	even	obtain	similar	results	
based	on	the	reanalysis	correlation	structure	and	assuming	that	the	correlation	structure	is	
similar	on	longer	time	scales	than	on	the	time	scales	sampled	by	the	instrumental	data.	To	
make	this	point,	we	suggest	adding	the	reanalysis	correlation	structure	estimated	from	the	
proxy	positions	in	the	manuscript	Figure	3	(Fig.R2).		



One	could	still	argue	that	fine-scale	structures	(e.g.,	at	the	coast	or	at	shelves)	not	resolved	by	
the	models	 (as	well	 as	 by	 the	 reanalysis)	might	 lead	 to	 localised	 variations	 as	we	 already	
discuss	in	Section	5.1,	but	we	do	not	see	a	clear	evidence	for	this	on	inter-annual	and	longer	
time	scales	from	analysing	high-resolution	model	simulations	(e.g.,	the	AWI-FESOM	simulation	
in	an	eddy-permitting	resolution).	However,	as	this	latter	work	is	still	preliminary	we	would	
not	include	it	and	just	discuss	this	possibility.	
	
Concerning	2.)	
There	 are	 several	 shortcomings	 in	 present	 climate	 model	 simulations	 such	 as	 the	 two	
simulations	used	here	that	may	lead	to	an	overestimation	of	the	coherency	 in	the	models.		
Possibilities	 include	that	models	underestimate	 internal	climate	variability	 that	 is	generally	
more	 localised	 than	 externally	 forced	 climate	 variability	 (e.g.,	 Laepple	 and	Huybers,	 PNAS	
2014).	One	possibility	(Laepple	and	Huybers,	GRL	2014)	is	that	the	model	effective	horizontal	
diffusivity	 may	 be	 too	 large	 which	 would	 reduce	 internal	 variability	 and	 lead	 to	 larger	
correlation	 structures.	 Further,	 the	 low,	 non-eddy	 permitting	 resolution	 of	 the	 model	
simulations	used	here	might	suppress	small	scale	features	and	the	role	of	persistent	coastal	
currents.	
	
	



	
Fig.R1:	 Decorrelation	 length	 of	 reanalysis	 data	 and	 the	 6ky	 simulation	 of	 MPI6k.	 The	
decorrelation	 length	 is	 similar	 for	 the	 Holocene	 and	 reanalysis	 data	 from	 1871	 to	 1950	
indicating	that	the	Holocene	spatial	correlations	are	realistic.	
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Fig.R2:	 Spatial	 correlation	of	 reanalysis	 data	 for	 the	 time	window	 from	1871	 to	 1950	 (red	
lines).	As	the	correlation	over	distance	plots	for	the	reanalysis	data	are	very	similar	to	the	ones	
of	the	MPI6k	this	indicates	that	the	spatial	correlations	of	the	model	data	are	realistic.	
	

2.	Clarity	on	the	separation	of	“multi-proxy	syntheses”	versus	individual	paleoclimate	
datasets	and	suggestions	for	improvement:	

	
o	In	their	abstract,	the	authors	state	that	“The	estimated	low	signal	content	of	Holocene	
temperature	records	should	caution	against	over-interpretation	of	these	kinds	of	
datasets	until	further	studies	are	able	to	facilitate	a	better	characterisation	of	the	signal	
content	in	paleoclimate	records.”	Here	(and	later	on	in	their	manuscript)	the	authors	
need	to	be	very	clear	about	what	“these	kind	of	datasets”	mean.	If	they	are	implying	
that	a	broad-brush	collation	of	datasets	such	as	R18	or	M13	is	over-interpreted,	I	might	
agree	with	them	that	their	analysis	tends	to	demonstrate	this	aspect.	However,	this	is	
untrue	for	a	myriad	of	individual	paleoclimate	datasets	(many	of	which	are	subsamples	
of	aforementioned	synthesis	data	sets)	that	are	carefully	vetted	with	high	sensitivity	
to	temperature	and/or	other	variables	such	as	precipitation,	vegetation,	salinity,	productivity,	
etc.	and	more	so,	to	seasonality	-	both	aspects	put	together	which	are	not	
addressed	in	this	paper	at	all.	I	strongly	recommend	rewriting	the	above	statement	
in	the	abstract	as	well	as	the	final	statement	in	the	introduction	(“more	reliable	interpretations	
of	proxy	records”;	amongst	other	places)	as	it	unnecessarily	detracts	from	
what	the	authors	are	proposing.		
We	agree	with	the	reviewer	and	will	be	clearer	in	the	abstract	and	conclusions	to	separate	
between	 multi-proxy	 datasets	 and	 individual	 paleoclimate	 datasets.	 Specifically,	 we	 will	
precise	that	‘these	kind	of	data’	are	large	multi-proxy	and	multi-site	data	compilations.		
	
Such	statements	are	also	arguably	misleading	(e.g.,	modern	monitoring	and	culturing	will	lead	
to	far	better	interpretations	of	proxy	datasets	compared	to	estimates	of	SNR	with	a	climate	
model)	especially	considering	the	point	above	that	their	analyses	hinge	on	taking	model	output	
at	face	value.	
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We	 would	 argue	 that	 both	 methods,	 case	 studies	 such	 as	 modern	 monitoring,	 culturing,	
sediment	traps,	etc.	as	well	as	global	statistical	approaches	such	as	used	in	this	study,	will	lead	
to	complementary	information	about	the	signal	contained	in	the	proxy	records.		
Case	studies	will	be	much	more	precise	on	 the	aspects	 they	are	analysing,	but	might	omit	
other	effects	which	are	also	present	in	the	down-core	record.	Global	statistical	approaches	
include	all	effects	influencing	the	down-core	record,	but	suffer	from	the	need	to	make	(strong)	
assumptions.	
Ideally,	both	methods	converge	to	the	same	results	giving	credibility	that	the	proxy	system	
and	its	limitations	are	completely	understood.	
	
o	The	authors’	work	is	a	significant	advance	concerning	model-data	comparison.	In	
its	current	version,	suggestions	on	how	model	simulations	or	proxy	development	or	the	
comparison	of	the	two	might	be	improved	for	better	comparative	metrics	are	lacking.	I	
feel	that	some	discussion	on	how	their	analyses	might	be	developed	further	could	be	
helpful.	
We	 agree	 that	 this	 discussion	 would	 be	 useful	 and	 will	 add	 a	 new	 discussion	 section	 on	
implications	and	future	steps	forward.	
Recent	progress	in	computing	power	has	enabled	climate	models	to	perform	high	resolution,	
often	 eddy	 permitting	 model	 simulations	 (e.g.,	 HighResMIP	 project)	 and	 long	 simulations	
(>1000	year)	are	getting	in	reach.	This	is	an	important	step	to	resolve	the	spatial	scales	and	
regions	(mainly	shelf	areas	and	coasts)	sampled	by	the	proxies.	Confronting	these	results	with	
(replicated)	sediment	records,	 ideally	accounting	for	seasonal/depth	habitat	using	heuristic	
(Jonkers	and	Kucera,	2017)	or	complex	ecological	models	 (PLAFOM)	would	allow	to	better	
constrain	 the	 centennial	 spatial	 structures	 and	 climate	 variability	 as	 well	 as	 to	 refine	 the	
estimates	of	the	proxy	signal	content	shown	in	this	study.	
While	our	assumption	of	ignoring	variations	in	the	seasonal	and	depth	habitat	of	the	proxy	
recorders	 and	 the	 potential	 shortcoming	 in	 the	 current	model	 correlation	 structure	might	
have	led	to	pessimistic	SNR	estimates,	our	results	still	underline	the	challenge	of	resolving	the	
small	Holocene	temperature	variations	with	current	marine	proxy	records.	Further	improving	
our	understanding	of	 the	proxy	systems	using	modern	monitoring,	 culturing	and	sediment	
traps	and	 implementing	 this	 knowledge	 into	ecological	models	 (Jonkers	and	Kucera,	2017;	
PLAFOM)	and	proxy	system	models	(Dolman	and	Laepple,	2018)	is	needed.	Forward	modelling	
the	proxy	records	allows	to	better	estimate	the	signal	content	and	to	optimise	the	sampling	
(e.g.,	 replication	 of	 cores)	 and	 measurement	 process	 (e.g.,	 sample	 size,	 number	 of	
foraminiferal	tests).	Although	labour	intensive,	replicate	records	would	allow	to	separate	local	
climate	variability	from	non-climate	variability	and	thus	provide	an	important	step	forward	in	
understanding	the	proxy	and	climate	variability.	
	
Minor	questions	and	comments:	
	
-	Perhaps	I	missed	it,	but	why	are	there	no	counterpart	plots	to	the	T-cent	in	Fig.	1d-e	
shown	in	the	main	text	for	T-mill?	
We	agree	that	the	naming	of	the	figures	was	misleading.	The	aim	of	these	figures	is	to	provide	
a	visual	impression	of	the	decorrelation	lengths	based	on	MPI6k	and	T21k.	To	only	show	one	
set	of	maps,	we	combined	here	both	time	scales	(time	scales	larger	than	400y,	no	detrending).	
The	effect	of	the	two	time	scales	can	be	seen	in	Figure	3.	We	will	change	the	nomenclature	
and	describe	this	more	clearly.	
	



-	Why	does	the	correlation	in	T-mill	with	T21k	(Fig.	3e)	as	well	as	with	Uk’37	and	Mg/Ca	
(Fig.	4b)	show	an	uptick	after	15000	KM	distance?	
This	uptick	is	likely	the	result	of	the	orbital	forcing	that	is	partly	symmetric	(effect	of	obliquity)	
and	antisymmetric	(precession)	between	the	hemispheres.	For	the	LH14	dataset	(manuscript	
Fig.3e),	 the	 positive	 correlations	 at	 distances	 >15000km	 are	 between	 the	 tropics	 and	 the	
northern	or	southern	hemisphere	temperate	zone	as	well	as	between	sites	of	the	northern	
and	southern	hemisphere	temperate	zone.	There	is	only	one	time	series	pair	with	negative	
correlation.	
	
-	What	are	spatially	important	regions	for	proxy	record	development?	Considering	that	
the	authors’	work	is	specifically	geared	towards	correlation	distances,	do	their	analyses	
pinpoint	which	regions	are	particularly	data-deficient	(e.g.,	Indian	Ocean,	South	
Atlantic,	etc.)	and	would	assist	in	their	comparative	metric?	
There	are	some	regions	with	a	low	number	of	sites	such	as	the	Southern	Oceans.	However,	
for	this	kind	of	study,	more	important	than	reducing	the	lack	of	single	site	data	in	these	regions	
would	be	enhancing	the	number	of	replicate	cores	(=	cores	from	nearby	deployments	that	
were	subject	to	the	same	climate	signal).	This	would	allow	to	improve	estimations	of	the	signal	
content	of	proxy	records	and	to	test	our	understanding	of	proxy	formation	processes.	This	is	
shortly	mentioned	in	5.1,	but	we	suggest	to	add	this	in	the	new	section	on	implications	and	
future	steps	forward.	
	
-	Is	there	any	particular	reason	that	the	authors	have	not	performed	a	similar	analysis	
with	the	combined	multiproxy	datasets	of	R18,	LH14,	and	M13?	
The	datasets	were	collected	with	a	different	focus	(M13:	reconstruction	global	temperature;	
LH14	and	R18:	temperature	variability	analysis)	and	currently	use	self-consistent,	but	different	
calibration	and	age-modelling	approaches.	Thus,	we	use	them	to	test	the	sensitivity	of	the	
results	 on	 the	 choice	 of	 the	 dataset,	 but	 combining	 all	 datasets	 would	 necessitate	
recalibrations	which	is	beyond	our	study.	
	
-	Again,	I	would	suggest	adding	up	front	in	the	discussion	that	their	analysis	explicitly	
discounts	the	seasonality	of	proxies.	
We	 will	 add	 that	 we	 neglected	 in	 our	 study	 the	 proxy-specific	 recording	 and	 especially	
seasonality.	 We	 will	 further	 discuss	 the	 effect	 of	 ignoring	 seasonality	 in	 more	 detail	 as	
suggested	by	Reviewer	1.	
	
-	Section	5.1:	Is	there	a	reference	for	anthropogenic	forcing	strongly	increasing	correlation	
decay	length?	Why	necessarily,	should	this	be	the	case?	I	feel	there	ought	to	be	
a	statement	explaining	this	here.	
The	correlation	decay	length	observed	in	instrumental	data	(ignoring	the	last	decades)	and	
unforced	models	is	largely	consistent	with	a	diffusive	energy	balance	model	(Kim	and	North,	
1991)	with	increasing	correlation	lengths	related	to	longer	time	scales	(=	more	time	to	diffuse).	
In	contrast,	forced	variability	has	a	correlation	length	dominated	by	the	spatial	pattern	of	the	
forcing.	For	example,	for	a	global	forcing	such	as	increasing	greenhouse	gases	this	leads	to	a	
globally	coherent	signal	overlaying	the	internal	climate	variability.	
This	has	been	noted	by	Jones	et	al.	(1997)	and	to	some	extend	by	Sutton	et	al.	(2015),	but	to	
our	knowledge	there	 is	no	separate	publication	on	this.	However,	 it	 is	clearly	visible	when	
analysing	 the	 decorrelation	 length	 of	 the	 surface	 temperature	 field	 in	 the	 reanalysis	 data	
(Compo	et	al.,	2006)	(Fig.R1).	Focussing	on	the	entire	reanalysis	time	period	results	in	a	mean	



decorrelation	length	of	~9150km.	Contrary,	analysing	the	time	window	from	1871-1950	the	
mean	 decorrelation	 length	 is	 ~3020km	 (Fig.R1),	 a	 finding	 consistent	 to	 the	 role	 of	
anthropogenic	forcing.	
We	will	add	a	short	explanation	and	reference	to	Jones	et	al.	(1997)	in	the	revised	manuscript.	
	
-	Although	the	Reschke	et	al.	in	review	citation	is	provided,	is	there	any	reason	for	the	
1/400y	cut-off	for	the	centennial	time	scale	as	opposed	to	something	else?	
Given	a	set	of	time	series	and	their	sampling	resolution,	the	optimal	cut-off	frequency	is	the	
highest	frequency	that	can	be	still	resolved	by	the	sampling	without	introducing	a	strong	bias	
in	the	metric	of	interest,	here	the	correlation.	
Simulating	surrogate	records	with	the	same	sampling	properties	as	the	true	records,	Reschke	
et	al.	(2019)	found	that	1/400y	is	the	optimal	cut-off	for	a	reasonably	large	subset	of	the	data	
used	in	this	study.	Due	to	the	Nyquist	theorem,	one	needs	at	least	2	observations	per	period,	
and	for	typical	non-equidistant	paleo-data,	four	times	the	mean	sampling	frequency	seems	to	
be	a	rule	of	thumb	appearing	from	several	studies	(Laepple	and	Huybers,	PNAS	2014;	Reschke	
et	 al.,	 2019)	 although	 this	 will	 depend	 on	 the	 sampling	 properties	 and	 thus	 testing	 this	
individually	using	Monte	Carlo	experiments	is	the	safest	option.	
	
	
Once	again,	thank	you	for	your	comments,	
Maria	Reschke	
	
	
References:		
	
Compo,	G.	P.,	Whitaker,	 J.	 S.,	 and	Sardeshmukh,	P.	D.:	 Feasibility	of	a	100-Year	Reanalysis	

Using	Only	Surface	Pressure	Data,	Bull.	Amer.	Met.	Soc.,	87,	175-190,	2006.	
Dolman,	A.	M.,	 and	Laepple,	T.:	 Sedproxy:	a	 forward	model	 for	 sediment-archived	climate	

proxies,	Clim.	Past,	14,	1851-1868,	doi:10.5194/cp-14-1851-2018,	2018.	
Jones,	 P.	 D.,	 Osborn,	 T.	 J.,	 and	 Briffa,	 K.	 R.:	 Estimating	 Sampling	 Errors	 in	 Large-Scale	

Temperature	Averages,	J.	Climate,	10,	2548-2568,	1997.	
Jonkers,	L.,	and	Kucera,	M.:	Quantifying	the	effect	of	seasonal	and	vertical	habitat	tracking	on	

planktonic	 foraminifera	 proxies,	 Clim.	 Past,	 13,	 573-586,	 doi:10.5194/cp-13-573-2017,	
2017.	

Kim,	K.-Y.,	and	North,	G.	R.:	Surface	Temperature	Fluctuations	in	a	Stochastic	Climate	Model,	
J.	Geophys.	Res.,	96(D10),	18573-18580,	doi:10.1029/91JD01959,	1991.	

Laepple,	T.,	and	Huybers,	P.:	Global	and	Regional	Variability	in	Marine	Surface	Temperatures,	
Geophys.	Res.	Lett.,	41(7),	2528-2534,	doi:10.1002/2014GL059345,	2014.	

Laepple,	 T.,	 and	 Huybers,	 P.:	 Ocean	 Surface	 Temperature	 Variability:	 Large	 Model-Data	
Differences	at	Decadal	and	Longer	Periods,	P.	Natl.	Acad.	Sci.	USA,	111(47),	16682-16687,	
doi:10.1073/pnas.1412077111,	2014.	

Reschke,	M.,	Kunz,	T.,	and	Laepple,	T.:	Comparing	methods	for	analysing	time	scale	dependent	
correlations	 in	 irregularly	 sampled	 time	 series	 data,	 Comp.	 Geosci.,	 123,	 65-72,	
doi:10.1016/j.cageo.2018.11.009,	2019.	

Sutton,	R.,	Suckling,	E.,	and	Hawkins,	E.:	What	Does	Global	Mean	Temperature	Tell	Us	about	
Local	Climate?,	Phil.	Trans.	R.	Soc.	A,	373(2054),	20140426,	doi:10.1098/rsta.2014.0426,	
2015. 

	



1 
 

Empirical estimate of the signal content of Holocene temperature 
proxy records 
Maria Reschke1,2, Kira Rehfeld1,3, Thomas Laepple1 
1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Telegrafenberg A45, 14473 Potsdam, Germany 
2Institute of Earth and Environmental Sciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, 5 
Germany 
3Institut für Umweltphysik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany 
 

Correspondence: M. Reschke (mreschke@awi.de) 

Abstract. Proxy records from climate archives provide evidence about past climate changes, but the recorded signal is 10 

affected by non-climate related effects as well as time uncertainty. As proxy based climate reconstructions are frequently 

used to test climate models and to quantitatively infer past climate, we need to improve our understanding of the proxy 

records’ signal content as well as the uncertainties involved. 

In this study, we empirically estimate signal-to-noise ratios (SNRs) of temperature proxy records used in global compilations 

of the mid to late Holocene (last 6000 years). This is achieved through a comparison of the correlation of proxy time series 15 

from close-by sites of three compilations and model time series extracted at the proxy sites from two transient climate model 

simulations, a Holocene simulation of the ECHAM5/MPI-OM model and the Holocene part of the TraCE-21ka simulation. 

In all comparisons, we found the mean correlations of the proxy time series on centennial to millennial time scales to be low 

(R < 0.2), even for nearby sites, which resulted in low SNR estimates. The estimated SNRs depend on the assumed time 

uncertainty of the proxy records, the time scale analysed, and the model simulation used. Using the spatial correlation 20 

structure of the ECHAM5/MPI-OM simulation, the estimated SNRs on centennial time scales ranged from 0.05 - assuming 

no time uncertainty - to 0.5, for a time uncertainty of 400 years. On millennial time scales, the estimated SNRs were 

generally higher. Use of the TraCE-21ka correlation structure resulted generally in lower SNR estimates than for 

ECHAM5/MPI-OM. 

As the number of available high-resolution proxy records continues to grow, a more detailed analysis of the signal content of 25 

specific proxy types should become feasible in the near future. The estimated low signal content of Holocene temperature 

compilations should caution against over-interpretation of these multi-proxy and multi-site syntheses until further studies are 

able to facilitate a better characterisation of the signal content in paleoclimate records. 
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1 Introduction 

Improving our understanding of the climate systems and its variability requires knowledge about the climate of the pre-

instrumental period. Proxy records from different climate archives are available for determining past climate conditions (e.g., 

Bartlein et al., 2011; Huguet et al., 2006; Johnsen et al., 2001; Li et al., 2006; Luckman et al., 1997). However, as any 

observational estimate, paleoclimate proxies are affected by uncertainties (e.g., Breitenbach et al., 2012; Lohmann et al., 5 

2013). 

The signal that can be retrieved from paleoclimate archives record depends on various temporal (seasonal recording, dating), 

geological (mixing, transport, sorting), biological (life-time of organisms, habitat depth, bioturbation), and chemical 

(preservation and dissolution) processes (e.g., Bard, 2001; Berger and Heath, 1968; Goreau, 1980; Leduc et al., 2010; 

Lohmann et al., 2013; Mollenhauer et al., 2003; Ohkouchi et al., 2002; Rehfeld et al., 2016; Rosell-Melé and Prahl, 2013; 10 

Schneider et al., 2010; Telford et al., 2004; van Sebille et al., 2015). 

Therefore, the proxy variations do not only contain the climate signal of interest (e.g., annual mean temperature), but also 

other climatic influences as well as non-climate variability. This poses a challenge to the interpretation of proxy signals, 

especially in systematic model-data comparisons and quantitative data synthesis efforts. Different approaches have been 

proposed in an effort to alleviate this problem and improve analyses:  15 

(i) obtain a better statistical or mechanistic understanding of how and what a proxy actually records (e.g., Fisher et 

al., 1985; Grauel et al., 2013; Ho and Laepple, 2016; Münch et al., 2016, 2017; Richey et al., 2011; Rosén et 

al., 2003; Thirumalai et al., 2013);  

(ii) modelling of the proxy signal (e.g., Dee et al., 2011, 2015; Dolman and Laepple, 2018; Evans et al., 2013; 

Roche et al., 2018); and 20 

(iii) through a detailed, expertise-driven analyses of single sites (e.g., Stebich et al., 2015). 

In this study, we use a comparison of proxy records and model simulations to improve the characterisation of proxy 

uncertainties through empirical estimates of the signal-to-noise ratio (SNR) in temperature-related proxies. At present, 

studies on SNRs in proxies are rare and mainly focussed on the instrumental period (e.g., Mann et al., 2007, 2008; Smerdon, 

2012, Münch and Laepple, 2018). In contrast, the present study focusses on the pre-instrumental Holocene period which has 25 

received considerable attention in the community (e.g., Bakker et al., 2017; Gajewski, 2015; Mangerud and Svendsen, 2018; 

Marcott et al., 2013; Mischel et al., 2017; Moossen et al., 2015; Sejrup et al., 2016; Thibodeau et al., 2018; Wanner et al., 

2015; Zhang et al., 2017). In particular, we focus on estimating SNRs in temperature-sensitive proxy records to improve 

analyses of Holocene temperature evolution and variability. A better understanding of Holocene proxy time series SNRs will 

lead to improved and more reliable interpretation of proxy records in multi-proxy and multi-site data compilations and 30 

should raise awareness for the need of careful and critical evaluations of paleoclimate reconstructions. 
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2 Data 

This study builds on existing compilations of recalibrated high-resolution Holocene temperature-sensitive proxy records to 

facilitate intercomparison of multiple time series. The analysis is based on three proxy datasets and two model simulations to 

test the robustness of our results and the sensitivity to the choice of a particular climate model. 

2.1 Proxy records 5 

We focus on globally distributed multi-archive and multi-proxy compilations of the Holocene temperature evolution from a 

wide variety of locations (Fig. 1a-c, Tab. 1; Tab. S1-S3), namely 

(1) M13: the compilation of Marcott et al. (2013) that was used to reconstruct the global and regional temperature 

evolution of the past 11.3ky; 

(2) LH14: Uk37 and Mg/Ca proxy data compiled in the extended dataset of Laepple and Huybers (2014a) that was used 10 

to reconstruct regional temperature variability and builds on the compilation of Leduc et al. (2010);  

(3) R18: the Holocene part of the compilation of Rehfeld et al. (2018) that was used to compare Glacial and Holocene 

temperature variability. 

The datasets mostly originated from marine sediment cores and the proxy types include Uk37, planktonic foraminifera 

Mg/Ca, TEX$%, terrestrial bio-indicators (fossil pollen modern analogue technique, fossil chironomid transfer function), ice-15 

core stable isotopes (δ'$O, δ*H) and several others. As the early Holocene was influenced by deglaciation following the Last 

Glacial Maximum (e.g., Kaplan and Wolfe, 2006), we restricted the time series to the last 6ky (6ky BP to present day, where 

BP denotes years before 1950). We only analysed time series containing climate information on at least centennial to 

millennial time scales (i.e., a mean inter-observation time step of ∆t < 500y). Due to the limited number of available high-

resolution time series, the datasets overlap (Tab. 1) to some degree and are thus not independent. 20 

2.2 Climate model simulations 

We analysed surface air temperature data from simulations of two coupled atmosphere-ocean general circulation models: A 

6ky transient Holocene simulation from ECHAM5/MPI-OM (henceforth abbreviated as MPI6k) (Fischer and Jungclaus, 

2011) and the TraCE-21ka (T21k) (Liu et al., 2009) simulation from the CCSM3 model, both of which have been used 

frequently in recent studies (e.g., Gregoire et al., 2016; Heinemann et al., 2009; Koldunov et al., 2010; Lu et al., 2018; Matei 25 

et al., 2012; May, 2008; Müller and Roeckner, 2008; Pausata and Löfverström, 2015; Werner et al., 2016). For the present 

study, annual means of temperatures of both model simulations were extracted at the nearest grid-box related to the proxy 

record locations of M13, LH14 and R18. Our choice of annual means is consistent with the standard interpretation of these 

multi-proxy datasets to represent annual mean temperatures (Marcott et al., 2013). This interpretation is a pragmatic choice 

motivated by the lack of accurate information about the proxy and location-specific seasonality across all records forming 30 

such a multi-proxy dataset. 
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MPI6k (Fischer and Jungclaus, 2011) is a 6ky transient run using ECHAM5/MPI-OM (Jungclaus et al., 2006) which consists 

of the atmosphere component ECHAM5 (Roeckner et al., 2003), the ocean component MPI-OM (Marsland et al., 2003), and 

the land surface model JSBACH (Raddatz et al., 2007) with dynamic vegetation module (Brovkin et al., 2009). The model 

outputs atmospheric variables on a regular longitude/latitude model grid with 96 by 48 horizontal grid-boxes (T31 resolution 

corresponding to 3.75° in latitude/longitude). The simulation is forced only orbitally with greenhouse gas concentrations set 5 

to pre-industrial values. We extracted annual mean surface temperatures at an elevation of 2m from this model (model 

variable temp2). 

The TraCE-21ka dataset (Liu et al., 2009) is originated from a simulation of the transient climate between 22ky BP and 1990 

CE and based on a fully-coupled CCSM3 simulation with an atmospheric resolution of T31_gx3 (96 by 48 horizontal grid 

corresponding to 3.75° in latitude/longitude). Transient forcing factors in the time-period analysed here (last 6ky BP) are 10 

changes in the orbitally driven insolation, greenhouse gas concentrations and the meltwater fluxes for the southern 

hemisphere in the period earlier than 5ky BP.  

Our analysis is independent of the absolute changes and only relies on the simulated spatial correlation structure. For the 

time scales analysed and the proxy positions of our compilations, this correlation structure is not sensitive to the particular 

choice of temperature variable (sea surface temperature versus surface temperature or near surface air temperature) in either 15 

model.  

3 Method 

3.1 Approach and assumptions 

SNRs can be estimated by comparing proxy records that experienced the same or very similar climate signals, e.g., different 

proxies from the same site or the same proxy from different sites in close spatial proximity. If a pair of records contains the 20 

same signal, an independent local noise component, and no time uncertainty, the SNR is given as R/(1 − R) where R is the 

correlation between both time series (Fisher et al., 1985). Ideally, SNRs would be estimated from local replicates. This is 

often difficult, or impossible, due to the limited availability of replicated datasets. To increase the number of records and thus 

improve the robustness of estimates, we extended this approach to also include records from locations that are further apart. 

This increased spatial separation between sites requires knowledge of the signal covariance (as the climate signal will have 25 

been slightly different at each location) and we rely on climate models to provide this information.  

The underlying assumptions are thus: (1) when relying on model data, we must assume correctness of the model-based 

correlation structure; (2) when using different proxies, we must assume that all proxies recorded the same temporal (and 

spatial) variability of the climate signal (more specifically: annual mean surface temperature); (3) we must assume that 

differences in the spatial correlation structure between models and proxy observations are due solely to a site-independent 30 

additive noise and time uncertainty. With assumption (2) we discount the seasonality of proxies in this study, but discuss the 

effects of this strong assumption in section 5.3. 
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Based on these assumptions, we can estimate the SNR by matching the spatial correlation of proxy records and model time 

series while accounting for time uncertainty and additive noise which can both lead to a deterioration in the spatial 

correlation. E.g., low correlations among time series can be caused by both: a low time uncertainty in combination with a 

high noise level and a high time uncertainty in combination with a high SNR (low noise level). Due to this relationship, we 

quantify SNR estimates as a function of time uncertainty.  5 

Sites that are very far apart only share a weak climate signal which does not represent any constraint on the SNR as both the 

climate and proxy correlations will be close to zero. For our SNR estimate, we therefore only included proxy pairs with 

spatial separations of up to 5000 km, which we found to be a typical decorrelation distance on centennial time scales in the 

model simulations as we later show.  

As climate variability is a function of time scale, we expect that both the spatial correlation structure and SNR will also be 10 

time scale dependent. However, the limited number of records and samples in each record prevents a more thorough time 

scale dependent estimate which could be carried out using a spectral approach for instance (Münch and Laepple, 2018). In 

order to balance accounting for time scale and estimate robustness, we distinguish between a centennial time scale T89:; 

(with a cut-off frequency of 1/400y and by removing the linear trend of the time series) and a centennial to millennial time 

scale T<=>> (using a cut-off frequency of 1/1000y and including the trend). To estimate T89:;, we only used records with a 15 

mean sampling interval of less than 200y while all records were included for estimating T<=>>.  

3.2 Spatial correlation structure of model vs. reanalysis data   

As our study depends on the model-based correlation structure, we first analyse this correlation structure at the grid cell level 

by fitting an exponential, R = eAB >C, to the decay of correlations R as a function of site separation x for time scales larger 

than 400y with included trend (Fig. 1d, e). We further compare the simulated spatial correlation structure with the spatial 20 

correlation structure estimated from reanalysis data using the same method. For this aim, we analyse the annual mean surface 

temperature field of the 20C3M reanalysis (Compo et al., 2006) (Fig. 1f). 

Analysing the entire reanalysis period from 1871 to 2011 results in a high estimate of the mean correlation decay length lF 

(~9150 km) that is considerably larger than the correlation decay length found in the MPI6k Holocene model simulation 

(~2240 km) when analysing the same time scale (unfiltered annual data) as for the reanalysis data. Reducing the human 25 

influence (i.e., anthropogenic forcing) by analysing 1871 to 1950 reduces the correlation decay length and results in a similar 

estimate (~3020 km) than the annual estimate from the MPI6k Holocene simulation (Fig. S1). This result indicates that the 

model correlation decay lengths used in this study are not unrealistically large and the larger centennial (Fig. 1) than 

interannual (Fig. S1) decay lengths are consistent with the expectation that temperature fields on longer time scales are more 

spatially coherent (e.g., Jones et al., 1997; Kim and North, 1991). The general similarity between the model correlations and 30 

the correlations in the reanalysis data also holds when we only compare the correlation between the proxy sites (Fig. 3), 

suggesting that similar conclusions could be also drawn when using the reanalysis correlation structure instead of the model 

simulations. 
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3.3 Processing steps 

3.3.1 Estimation of the spatial correlation structure 

From the MPI6k and T21k model time series we extracted annual mean temperatures at those grid cells that contain the 

location of the proxy record site. As our aim is deriving a time series from the annual model time series that resembles the 

proxy time series in having the same number and ages of the proxy observations, we apply block averaging. To get a data 5 

point for the observation time t= we average all observations between half the difference to the previous observation time 

(t= − ∆t= 2) and half the difference to the next observation time (t= + ∆t=I' 2). We chose to use averages rather than 

interpolation because sediment and ice samples, in particular, often include adjacent depths or have a sample distance that is 

smaller than the typical mixing depth in the sediment (Berger and Heath, 1968) or diffusion length in ice-cores. For each 

proxy compilation (M13, LH14, R18), we estimated the time scale dependent (T89:;, T<=>>) correlations between all possible 10 

proxy record pairs. We further estimated the time scale dependent correlations between all model time series pairs. For this 

step, the irregularly sampled time series were linearly interpolated onto a regular grid (∆J = 10K) and subjected to a 

Gaussian filter with cut-off frequency 1/400y (T89:;) and linear detrending or alternatively to a Gaussian filter with cut-off 

frequency 1/1000y (T<=>>) omitting the detrending step. This approach has been shown to deliver good results for the 

estimation of time scale dependent correlations in tests using surrogate data with the sampling properties of Holocene marine 15 

sediment cores (Reschke et al., 2019).  

The spatial separation between two sites was used to place the pair into 2000 km-sized bins (thus containing separations of 

0-2000km, 2000-4000km, etc.) and averaging the correlations from proxy/model site pairs contained within the same bin. An 

overview of the processing steps is given in Fig. 2. 

We performed a significance test of the spatial correlation structure based on spatially uncorrelated surrogate time series 20 

with a temporal power-law scaling of β = 1, which is a typical value for Holocene sediment records (Laepple and Huybers, 

2014a). In a Monte Carlo procedure with 1000 repetitions, we generated annual surrogate records that were analysed using 

the same procedure as the true proxy observations, using the 90% quantile of the binned correlations of the surrogate time 

series as confidence intervals. 

3.3.2 Estimation of the SNRs 25 

The SNR estimate was obtained from a Monte Carlo simulation with 1000 repetitions. Through block averaging, we 

resampled the annual model data at the same resolution as the corresponding proxy records. We then added time 

uncertainties (between 0 and 400y) and noise levels (0.01 < SNR < 100), before estimating the mean correlation using the 

interpolation method of Reschke et al. (2019). We estimated the SNRs as a function of the time uncertainty by minimising 

the absolute difference of the mean correlations of proxy records and modified model simulations. 30 

We generated the modified model data by separately distorting the time axis and adding noise to the observations of the 

resampled model time series. As a simple heuristic to simulate time uncertainty, we defined four time control points at the 
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ages of 1y, 2ky, 4ky, and 6ky and randomly shifted these points by adding a random value from a normal distribution (mean 

µ = 0, standard deviation σ = time uncertainty [y]) except for the value of 1y. The new time axis was then created by 

linearly interpolating between the time control points. Noisy observations were generated by adding normally distributed 

noise, ε (with ε~N, mean µ = 0 and variance σ* as 
TUVCWX,YWZ[U\XWC
]

^_`
), to the resampled model time series. Fig. 2 gives an 

overview of the processing steps. 5 

4 Results 

4.1 Spatial correlation structure and correlation decay length 

The correlation analysis using all proxy types and locations yielded, unsurprisingly, a general decrease in correlation for 

larger spatial separations between proxy sites (Fig. 3). Both model simulations exhibit statistically significant spatial 

correlations at both analysed time scales (T89:; and T<=>>) and for most inter-site separation distances. Throughout all datasets 10 

and separation distances, T21k yielded higher correlations than MPI6k, which is consistent with the generally higher 

correlation decay lengths lF for T21k, estimated at grid cell level (Fig. 1d, e). 

While for T89:; the correlation of both model simulations decreases with increasing site separation (Fig. 3a-c), the T<=>> 

estimate (Fig. 3d-f) shows a more complex pattern that includes a partial increase in correlation for separation distances 

larger than 8000 km. This is likely related to variations in orbital forcing affecting the temperature trend that is partly 15 

symmetric (effect of obliquity) and antisymmetric (precession) between both hemispheres. Especially for MPI6k, the 

correlation is weak for separation distances from 4000 to 6000 km.  

The spatial correlations obtained from the proxy records differ systematically from those obtained from model simulation 

data. The mean correlation for close proxy site pairs (separation <5000 km) was 0.004 to 0.014 for T89:; and 0.101 to 0.186 

for T<=>> and thus lower than for model data (MPI6k: 0.303 to 0.338 for T89:;, 0.202 to 0.461 for T<=>>; T21k: 0.634 to 0.719 20 

for T89:;, 0.674 to 0.710 for T<=>>). For T89:;, none of the proxy based correlations is statistically significant and no clear 

pattern emerges with regard to separation distance. All three datasets yielded a statistically significant correlation at T<=>> for 

smaller separation distances, although visibly decreasing for longer separation distances (e.g., 6000-8000 km; cf. Fig. 3d, f). 

Comparisons of temperature estimates from different proxy types face the additional challenge that the actual recorded 

variable (e.g., summer atmospheric temperature vs. mixed layer winter temperature) may depend on the proxy type. We 25 

therefore also analysed the proxy-specific results (Fig. 4, Tab. 2). By performing separate analyses for each proxy type 

(instead of analysing all proxies together) we obtained in all three datasets a higher mean correlation on the T<=>> time scale 

for sites within a 5000 km range. For T<=>>, the proxy-specific mean correlations across all datasets and proxies are between 

0.149 and 0.357 compared to 0.101 to 0.186 when correlating sites across proxy types. For T89:;, most correlations are 

indistinguishable from zero and we observed no consistent increase when analysing proxy-specific correlations (Tab. 2). 30 

Unfortunately, restricting the analysis to a single proxy type greatly reduces the number of available proxy pairs at any given 
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distance and thus leads to less robust correlation estimates and rather large confidence intervals. We therefore only provide 

results for the most data-abundant proxy types Uk37 and Mg/Ca and one dataset (LH14) as example in the main manuscript 

(Fig. 4). The remaining data are shown in the Supplement (Fig. S2-S5). For LH14, both Mg/Ca and Uk37 show a decrease in 

correlation with increasing separation distance for both time scales. The correlations in this proxy-specific analysis are 

stronger than the analysis across proxy types (Fig. 3). They are, however, only statistically significant for Uk37 on T<=>> with 5 

separation distances smaller than 5000 km and for a single distance bin (2000-4000km) for Mg/Ca. 

4.2 SNR estimates 

The estimated SNRs of proxy records are a function of time uncertainty because correlations deteriorate due to both, time 

uncertainty and noise. In general, we found that low (high) SNRs were related to low (high) time uncertainties (Fig. 5). In 

most cases, the estimated signal content for Holocene temperature-sensitive proxy records was quite low (<0.5). 10 

By using the spatial correlation structure of MPI6k and assuming a time uncertainty (1 sd) of 220y (mean uncertainty in 

M13) we obtain an estimated SNR of between 0.05 and 0.2 for the T89:; time scale and 0.2 for the M13 and R18 datasets on 

the T<=>> time scale. The LH14 dataset yielded a SNR of 10 at the T<=>> time scale. 

For all three proxy compilations (M13, LH14, R18) the SNRs obtained for mixed proxy types depend on the choice of the 

model simulation. Using the T21k simulation generally leads to lower SNR estimates (T89:;: SNRa*'b,acWde <0.05; T<=>>: 0.05 15 

< SNRa*'b,aUfXX  < 0.2) than using MPI6k as the correlation of spatially close (separation <5000 km) time series pairs is 

generally higher in T21k. Interestingly, the SNRs estimated using T21k are more similar between the three proxy 

compilations and thus more consistent than using MPI6k (Fig. S6). 

An analysis of proxy-specific SNRs yielded higher uncertainties due to the relatively small number of record pairs and 

potentially caused statistically non-robust estimates for some proxy types (see Fig. S7-S16 for the complete set of results and 20 

section 5.2 for a sensitivity test of SNR estimates on the number of record pairs). The dependence of SNR estimates on time 

uncertainty is very sensitive to how the proxies are compiled and the type of model simulation. However, the overview of all 

proxy-specific SNR estimates (Fig. 6) suggests some proxy-specific tendencies. On T89:; ice-cores show the highest SNR. 

Mg/Ca shows a high SNR for the LH14 dataset but a low SNR in the two other compilations. Uk37 and terrestrial bio-

indicators have the lowest SNR estimate on this time scale. In contrast analysing the T<=>> time scale that also includes trends 25 

in the dataset leads to different results; Uk37 shows the highest SNRs whereas the other proxy types only show a small 

increase compared to the T89:; analysis. 

5 Discussion 

High-resolution temperature-sensitive proxy records for the Holocene are sparse, irregularly distributed, and from different 

proxy types. Thus, estimating the SNR in such datasets requires some simplifying assumptions. We assumed that: (1) the 30 

spatial correlation of the climate model simulations was realistic, (2) all proxy types were recording the same climate 
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variable, and (3) any non-climatic components of the proxy signal can be fully accounted for through a combination of time 

uncertainty and additive noise. As we analysed large multi-proxy and multi-site datasets, in our study we neglected the 

proxy-specific effects such as seasonality in the recording. 

The SNRs we estimated, based on these assumptions, generally suggest a low signal content of Holocene temperature 

records on centennial time scales (T89:;). We found a higher signal content on millennial time scales (T<=>>), but the results 5 

were rather sensitive to the choice of the proxy compilation and model simulation. We now discuss the role of the different 

assumptions on the results. 

5.1 Spatial correlation structure of model simulations 

Our SNR estimates critically depend on the model-based temperature correlation structure as lower spatial temperature 

correlations in the models would lead to higher SNR estimates for the proxies and vice versa. In most regions, the model 10 

simulation MPI6k shows correlation decay lengths of 1295 to 6030 km (mean decay length: 3995 km) and the correlation 

decay length of T21k is generally in the range of 2130 and 8705 km (mean decay length: 5920 km) for time scales larger 

than 400y with included trend (Fig. 1d, e). This is higher than previous estimates of correlation decay lengths from 

instrumental datasets in the range of 1000 to 3000 km (e.g., Hansen and Lebedeff, 1987; Jones et al., 1997; Madden et al., 

1993). However, such a difference is plausible as an increase with time scale is to be expected. For example, Jones et al. 15 

(1997) found lower correlation decay lengths related to annual (2100 km) than to decadal (3800 km) time scales. Indeed, 

when calculating the correlation decay length for MPI6k on unfiltered annual data, it is consistent to the decay length from 

instrumental data (Jones et al., 1997) as well as from reanalysis data (Fig. S1). 

Nevertheless, spatial correlation could be overestimated in the model simulations for two reasons. Firstly, the spatial 

correlation of instrumental datasets always includes the anthropogenic forcing which strongly increases the correlation decay 20 

length (see Fig. S1 and Jones et al., 1997). This effect is not or only weakly present in the 6ky time-period of our analysis. 

Instrumental records from the industrial period and pre-industrial model simulations might thus be in agreement for the 

wrong reasons. Secondly, the grid cell size of the models was on the order of several hundred kilometres whereas the records 

might be representative of a smaller spatial area. Hence, it is possible that proxy based correlations are lower compared to 

those obtained from the model due to the former being influenced by subgrid-scale temperature variations. Thirdly, there are 25 

several shortcomings in present climate model simulations potentially causing an overestimation of the coherency in the two 

simulations used in this study. One possibility is that models underestimate internal climate variability that is generally more 

localised than externally forced climate variability (Laepple and Huybers, 2014a). One mechanism could be a too large 

effective horizontal diffusivity in the models that would reduce internal variability (Laepple and Huybers, 2014b) and cause 

larger spatial correlation structures. Further, small scale features and the role of persistent coastal currents might be 30 

suppressed by the relatively low, non-eddy permitting resolution of the models used in this study. 

We also found that T21k yielded higher spatial correlations compared to MPI6k (Fig. 1d, e) which in turn resulted in lower 

SNR estimates if relying on this particular model simulation (Fig. S6). This difference might be related to the presence of 
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transient greenhouse gas forcing in T21k (Timm and Timmermann, 2007), although the changes in forcing were small 

during the analysed time period.  

Thus, there remains the possibility that the true temperature variations are more localised than suggested by the model 

simulations. In this case our estimates of the proxy signal content would be pessimistic. Ultimately, more replicate proxy 

records are needed to distinguish between these hypotheses. 5 

5.2 Finite number of proxy records 

Despite the strong overlap among records, we found our estimates of the spatial correlation structure and SNRs to be 

sensitive to the choice of proxy compilation (Tab. 2), which suggests that the number of records N may have been limiting 

the robustness of our estimates. To test this, we performed a sensitivity analysis using different numbers N of surrogate time 

series ranging from 3 to 50. N 6ky annual surrogate time series were generated from the sum of a common pseudo climate 10 

time series modelled as a random process that follows a power-law (β = 1) scaling and a separate non-climate component 

that is simulated as uncorrelated white noise. The noise amplitude is chosen to yield SNR = 0.15. Irregular sampling times 

were used to mimic the observed sampling times of the M13 records. Surrogate inter-observation time steps were drawn 

from a gamma distribution (shape = rate = 2.25), rescaled with a mean inter-observation time step of 108.56y (cf., Reschke 

et al., 2019). The final, pseudo proxy time series were then obtained by block averaging the annual time series to the 15 

irregular sampling times. The SNR of the surrogate time series were then calculated following the same method as the proxy 

records in the main study and repeated for different sites using a Monte Carlo-based procedure with 2000 repetitions.  

We found that the uncertainty of SNR estimates that are based on a small number of records can be high (Fig. 7). For a low 

number of only 15 records (105 correlation pairs), for instance, the uncertainty range of SNRs (90% quantiles of 0.08 to 

0.26) is higher than the true SNR value of 0.15. Although we used more than 15 sites per compilation in our analysis (Fig. 20 

7), there were often fewer than 15 time series per proxy type (Tab. 1) which might explain the strong scatter in the proxy-

type-specific SNR estimates. 

To improve the robustness of SNR estimates, it is unavoidable to significantly increase the number of records that are 

collected not too far apart from one another (distances <5000 km). Additionally, a better global coverage of site locations 

would likely lead to more robust results. Since we sampled the models at the locations of the proxy sites our results should 25 

be independent of the spatial sampling distribution if the models were perfect. In reality, however, spatial differences and 

shifts in the simulated correlation structure are likely and can be overcome by sampling from a wide variety of sites from all 

over the globe.  

5.3 Proxy-specific recording of climate variables 

All proxy types used in this study have been reported in the literature as temperature-sensitive and are usually calibrated to 30 

the mean annual surface air or surface water temperature. However, this is a gross oversimplification as the true climate 

variable influencing the recorded signal is proxy-specific and generally more complex. For example, signals reconstructed 
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from marine organism-based proxies such as Mg/Ca, Uk37, and TEX$%  are affected by the seasonal and depth-specific 

preferred habitat of the organism (Ho and Laepple, 2016; Jonkers and Kucera, 2017; Leduc et al., 2010; Lohmann et al., 

2013; Tierney and Tingley, 2015). As we currently interpret all records from different proxy types as annual mean surface 

temperatures, this might influence our results in various ways. Analysing different proxy types with different recording 

preferences likely leads to an underestimation of the spatial temperature correlations. Indeed, in our study we found the 5 

spatial correlations related to records of the same proxy type for T<=>> to be higher compared to those for all types (Tab. 2). 

To gain a better understanding of proxies and their effect on the analyses, we suggested to use proxy-specific SNR estimates 

instead. However, this is currently hampered by the low number of records in close proximity to one another (Tab. 1; Tab. 

S4). For many proxy types, this leads to statistically non-significant correlations and unreliable SNR estimates (Fig. S7-S16). 

Additionally, even for one proxy type and proxy carrier (e.g., foraminifera) we expect a site-specific season and depth 10 

habitat. Such differences would reduce the correlation compared to the correlation of the climate component sampled at any 

globally fixed season or depth and would thus bias the SNR estimates low. 

Assuming annual mean sea surface temperatures instead of one specific season or depth also influences the correlation 

structure derived from the models. Calculating the correlation structure of summer and winter in both models (not shown) 

suggests an increase or decrease of the correlation depending on the choice of the model so that the net-effect on the SNRs is 15 

not clear. 

Finally, analysing the spatial correlation among records of the same proxy type can also lead to overly optimistic results as 

the correlation among records of the same proxy type could also stem from spatially correlated proxy-specific non-climatic 

components. A case in point would be the dissolution of foraminiferal shells (Lea, 2003) which could generate spatially 

correlated noise as the preferential dissolution of carbonate depends on the water depth (Brown and Elderfield, 1996; Dekens 20 

et al., 2002), the carbonate ion concentration, and the salinity of the surrounding seawater (Huguet et al., 2006; Lea, 2003; 

Spero et al., 1997). 

5.4 Time uncertainty and non-climatic components of the proxy signal 

Our SNR estimates depend on the assumed time uncertainty of the records. While we assumed a mean time uncertainty of 

220y (as provided in the M13 dataset), the true time uncertainty for marine records might be considerably higher due to 25 

spatially varying reservoir effects (Ascough et al., 2005). This would imply that our SNR estimates are conservative, 

especially on centennial time scales. On the other hand, using one mean uncertainty value will clearly be too pessimistic for 

ice-core data that is only subject to much smaller dating uncertainties. Using more sophisticated models to account for time 

uncertainty (e.g., Blaauw, 2010; Blockley et al., 2007; Telford et al., 2004) and the proxy- and site-specific information on 

the chronologies would allow to obtain more precise SNR estimates. 30 

We modelled the transfer function between the temperature time series and the calibrated proxy records as a combination of 

time uncertainty and additive temporally uncorrelated noise. Our approach thus neglects other distortions of the signal and 

non-additive parts of noise. Multiplicative noise can arise from aliasing due to subsampling that leads to errors that are 
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proportional to short-term climate variability (Laepple and Huybers, 2013). Variable sedimentation rates, bioturbation and/or 

bioturbation depths varying over time have a low-pass filtering effect that is similar to irregular sampling. Proxy archive 

accumulation processes undergo temporal changes due to changes in bioturbation depths and advection (Mollenhauer et al., 

2003) or spatial changes in ocean currents (van Sebille et al., 2015) that could introduce additional non-additive noise in the 

obtained proxy records. Finally, even for a single proxy type, the data quality (i.e., the signal content) is site specific and will 5 

depend on the sampling and measurement protocol. For example, the SNR estimates using the LH14 dataset that is mainly 

based on very high-resolution records (mean sample distance <100y), are higher than estimates based on the two larger 

proxy compilations. Thirumalai et al. (2018) showed that foraminiferal records based on a large number (70-100) of 

foraminiferal tests per sample were consistent between cores collected in close proximity to one another leading to much 

higher correlations compared to our study. As we rely on datasets of opportunity that consist of proxy records measured by 10 

various labs over a period of two decades, it seems conceivable that a small number of records could be of a relatively lower 

quality which would reduce our mean correlation and thus the SNR estimate. New studies, especially when based on a 

careful design (Thirumalai et al., 2018), could help alleviate this situation. 

5.5 Implications and future steps forward 

Our results underline the challenge of resolving the small Holocene climatic variations in current climate archives, but also 15 

challenge the strong spatial coherency of centennial to millennial temperature variations simulated in current climate models. 

On the proxy side a continuation of the work on understanding the proxy systems is warranted. Examples are the use of 

modern monitoring systems, sediment traps and culturing studies. Implementing these findings into ecological models of 

various complexity (e.g., Jonkers and Kucera, 2017; Kretschmer et al., 2018) and proxy system models (e.g., Dolman and 

Laepple, 2018) is needed to generalise the knowledge and make it usable in global studies. Forward modelling of proxy 20 

records will allow estimates of the signal content complementing the empirical estimates provided here. Finally, a better 

proxy understanding implemented in proxy system models will also allow to optimise the sampling (e.g., sampling and 

replication strategy) and measurement process (e.g., number of foraminiferal tests). Finally, although labour intensive, a 

more frequent generation and analysis of replicate records would allow to separate local and climate and non-climate 

variability and thus provide a key step in understanding the proxy and climate variability as well as the proxy formation 25 

process. 

Progress in climate modelling is needed to resolve the spatial scales and regions such as shelf areas and coasts sampled by 

the proxies. Due to the increase in computing power, climate models will be able to perform long (>1000y) and high 

resolution, often eddy permitting model simulations (e.g., Haarsma et al., 2016). Confronting these simulations with 

(replicated) sediment records, ideally accounting for the seasonal and depth habitat of the proxy carriers would allow to 30 

better constrain the spatial structures of climate variability as well as refining the estimates of the proxy signal content. If our 

SNR estimates are realistic, Holocene studies relying on a small number of records might be associated with large 

uncertainties, except if the quality of the analysed records is considerably higher than the average of the records analysed 
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here. Holocene stacks relying on a large number of records such as used in Marcott et al. (2013) would be robust if the errors 

are independent across sites. However, extracting spatio-temporal patterns from such datasets will be difficult. If our results 

are actually too pessimistic, e.g., as the true climate is more regional than simulated by the used model simulation, this 

would support the current interpretation of individual Holocene proxy records as a regionally representative climate signal. 

Otherwise, in case of too optimistic SNR estimates, the value of singular Holocene proxy reconstructions without additional 5 

expert knowledge would be limited and regional stacks might be needed to extract regional Holocene signals in analogue to 

the strategy used by the tree ring community. 

6 Conclusion 

In this study, we estimated SNRs of Holocene temperature-sensitive proxy records by comparing proxy- and model-based 

spatial correlations. We found that spatial correlations between proxy records were significantly lower than those computed 10 

for temperature time series extracted from climate models. Simply put, the proxy records varied more independently from 

site to site, whereas the model simulations suggested spatially coherent temperature variations. This in turn led to low SNR 

estimates in multi-proxy-type analyses if we assume that the correlation structure that we obtained from the model 

simulations is reasonable.  

The low SNRs of Holocene proxy records are likely the result of processes occurring during the formation, preservation and 15 

measurement of the proxy signal. For the Holocene, even small uncertainties in the process chain between the climate signal 

and the climate reconstruction play an important role compared to the small temperature variations. In addition, as evidenced 

by the difference when comparing results between proxy types and within one proxy type, the proxy-specific recording of 

different temporal and spatial parts of the temperature (for example summer vs. winter) also affects the SNR of multi-proxy 

datasets. Nevertheless, our SNR estimates are still relevant for synthesis and model comparison efforts (e.g., Marcott et al., 20 

2013), that usually interpret all proxy records together. While in the ideal case global stacks based on a large number of 

records will average out most of the error contributions, the interpretation of spatio-temporal patterns will remain uncertain. 

The precision of the SNR estimates is strongly dependent on the number of available proxy records. Due to the small number 

of spatially close records of the same proxy type, the uncertainty in our proxy-type-specific SNR estimates was very high.  

Our SNR estimates implicitly depend on the expected time uncertainty, as well as on the model choice. However, for both 25 

tested models the multi-proxy-type estimates on centennial time scales ( T89:; ) were smaller ( SNRghi%b,acWde  <0.5; 

SNRa*'b,acWde <0.05) than on longer time scales T<=>> (SNRghi%b,aUfXX » 0.2; 0.05 < SNRa*'b,aUfXX < 0.2).  

Our results of the low signal content of multi-proxy and multi-site datasets, especially on centennial time scales, suggests 

that caution and a critical evaluation are in order when analysing and interpreting such large datasets. Furthermore, 

optimising the sampling and measurement procedure is likely needed to faithfully reconstruct small climate variations over 30 

the Holocene. As the number of high-resolution proxy records continues to grow, a more detailed analysis of the signal 
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content of specific proxy types and a model-independent estimate of the spatial correlation structure of climate variations 

will get feasible and will enable and improve prospects for the interpretation and reconstruction of past climate changes. 
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Figure 1: Overview of proxy and model datasets. Site locations of the proxy compilations (a) M13: Marcott et al. (2013), (b) LH14: 
Laepple and Huybers (2014a), and (c) R18: Rehfeld et al. (2018) used in this study. Proxy types are indicated by symbols and the mean 
inter-observation time step by colours. Correlation decay length of (d) the T21k and (e) the MPI6k simulations estimated on time scales 
larger than 400y with included trend, and (f) reanalysis data from 1871 to 1950 estimated from annual data. The spatial correlation decay 5 
length is generally higher for T21k than for MPI6k. For a comparison of the model and reanalysis correlation structure on the same time 
scale, see Fig. S1.  
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Figure 2: Processing steps for the proxy and model time series. Blue paths illustrate the analysis of the spatial correlation structure. Red 
paths represent the estimation of SNRs of proxy records as a function of time uncertainty.  
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Figure 3: Spatial correlation structure of Holocene temperature proxy records and simulated surface temperatures based on three 
multi-proxy datasets and related to (a-c) centennial jklmn and (d-f) centennial to millennial time scales jopqq. In each panel, the upper 
part shows the mean correlation of the model simulation (for 2000 km sized bins as a function of the separation distance between record 
pairs) and reanalysis data (1871-1950) evaluated at the proxy locations (dotted/dashed line) and the proxy dataset (continuous line). The 5 
grey polygon represents the 90%-quantile of mean correlations of uncorrelated surrogate time series with a power-law scaling of r = s. 
The lower parts of the panels show the number of record pairs used in each estimate. The spatial correlation structure of the model time 
series is generally higher than of proxy records which are only statistically significant on jopqq  at neighboured sites. The highest 
correlations belong to sites with separation distances less than 4000-6000 km.  

0

1
M13(a)

Tcent

co
rre

la
tio

n

0 10000 20000
distance [km]

0

200

nu
m

be
r o

f r
ec

or
d 

pa
irs

0

1
M13(d)

Tmill

co
rre

la
tio

n

0 10000 20000
distance [km]

0

400

nu
m

be
r o

f r
ec

or
d 

pa
irs

proxy records
MPI6k

0

1
LH14(b)

co
rre

la
tio

n

0 10000 20000
distance [km]

0

100

nu
m

be
r o

f r
ec

or
d 

pa
irs

0

1
LH14(e)

co
rre

la
tio

n

0 10000 20000
distance [km]

0

100

nu
m

be
r o

f r
ec

or
d 

pa
irs

T21k
Reanalysis

0

1
R18(c)

co
rre

la
tio

n

0 10000 20000
distance [km]

0

800

nu
m

be
r o

f r
ec

or
d 

pa
irs

0

1
R18(f)

co
rre

la
tio

n

0 10000 20000
distance [km]

0

800

nu
m

be
r o

f r
ec

or
d 

pa
irs

90%−quantile

Gelöscht: 10 

0

1
M13(a)

Tcent

co
rre

la
tio

n

0 10000 20000
distance [km]

0

200

nu
m

be
r o

f r
ec

or
d 

pa
irs

0

1
M13(d)

Tmill

co
rre

la
tio

n

0 10000 20000
distance [km]

0

400

nu
m

be
r o

f r
ec

or
d 

pa
irs

proxy records
MPI6k

0

1
LH14(b)

co
rre

la
tio

n

0 10000 20000
distance [km]

0

100

nu
m

be
r o

f r
ec

or
d 

pa
irs

0

1
LH14(e)

co
rre

la
tio

n

0 10000 20000
distance [km]

0

100

nu
m

be
r o

f r
ec

or
d 

pa
irs

T21k
90%−quantile

0

1
R18(c)

co
rre

la
tio

n

0 10000 20000
distance [km]

0

800

nu
m

be
r o

f r
ec

or
d 

pa
irs

0

1
R18(f)

co
rre

la
tio

n

0 10000 20000
distance [km]

0

800

nu
m

be
r o

f r
ec

or
d 

pa
irs



24 
 

 
Figure 4: Proxy-type-specific (Uk37, Mg/Ca) spatial correlation structure related to (a) centennial jklmn and (b) centennial to 
millennial time scales jopqq based on the LH14 dataset. The upper parts of the panels show mean correlations of 2000 km sized bins as a 
function of the separation distance between record pairs in the proxy dataset (continuous line) and model simulations evaluated at proxy 
locations (dotted/dashed line). Polygons represent the 90%-quantiles of mean correlations of uncorrelated surrogate time series with a 5 
power-law scaling of r = s. The lower parts of the panels show the number of record pairs used for each estimate. The spatial correlation 
structure of proxy records is non-significant for individual proxy types, except for close (separation <6000 km) sites of Uk37 temperature 
records at jopqq.  
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Figure 5: tuvwxyz{ estimates of proxy records as a function of time uncertainty related to centennial jklmn and millennial time 
scales jopqq. Colour coating and contour lines in each panel show the mismatch between mean correlations of close-by (separation <5000 
km) proxy records and time series extracted from the MPI6k simulation at proxy locations as a function of time uncertainty (vertical axis) 
and SNR (horizontal axis). Areas with the lowest mismatch are represented by the darkest colours and mark suitable combinations of 5 
tuvwxyz{ estimates and time uncertainties. The red dots illustrate SNR estimates for a time uncertainty of 220y.  
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Figure 6: Overview of proxy-specific SNR estimates on (a) centennial jklmn  and (b) millennial time scales jopqq . The symbols 
represent the SNRs estimated from the different proxy compilations using the simulations of MPI6k and T21k. Upper panels show the 
results for an assumed time uncertainty of 200y and lower panels for 400y. The SNRs are proxy-type-specific different, but generally 
higher on the T<=>> than on the T89:; time scale.  5 
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Figure 7: Sensitivity of the SNR estimates on the number of sites/record pairs based on surrogate time series. The time series were 
generated with a predefined SNR = 0.15 (horizontal line). SNR estimates with standard deviations based on 2000 repetitions are shown as 
dots with error bars. The uncertainties in the SNR are illustrated as polygons showing the 90%-quantiles of the estimates. The uncertainty 5 
of SNR estimates is high when only considering a small number of sites. Vertical lines show the numbers of selected sites/record pairs 
contained in each data compilation. This indicates that for single proxy type analysis the uncertainties in the SNR estimates are high.  
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Table 1: Numbers of records and their overlap in the proxy compilations used in this study. The total number of time series is 
separated by proxy type for each proxy compilation (upper part). jopqq refers to the number of time series with a mean inter-observation 
time step of ∆n <500y and jklmn counts time series with ∆n <200y. The overlap is shown for each pair and for all compilations (lower part).  

 Sum of 
records Uk37 Mg/Ca j|}~z Terrestrial 

bio-indicator 
Ice-core stable 

isotopes other 

M13 – �ÄÅÇÇ 
M13 – �ÉÑÖÜ 

70  
49 

28  
18 

19  
14 

4  
1 

8  
8 

5  
4 

6  
4 

LH14 – �ÄÅÇÇ 
LH14 – �ÉÑÖÜ 

31  
31 

21  
21 

10  
10 

- 
- 

- 
- 

- 
- 

- 
- 

R18 – �ÄÅÇÇ 
R18 – �ÉÑÖÜ 

88  
81 

27  
26 

19  
17 

4  
2 

11  
10 

18  
18 

9  
8 

M13 ∩ LH14 20 13 7 - - - - 
M13 ∩ R18 45 16 14 3 6 4 2 
LH14 ∩ R18 22 16 6 - - - - 
M13 ∩ LH14 ∩ R18 19 13 6 - - - - 
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Table 2: Mean correlations of proxy time series with separation distances <5000 km for different proxy types. For each dataset, the 
mean correlation was estimated for millennial time scales T<=>> and proxy time series with a mean inter-observation time step of ∆t <500y 
and related to centennial time scales T89:; for proxy time series with ∆t <200y. Mixed proxy types contain all combinations of time series 
pairs independent of the proxy type. The mean of single proxy types summarises the proxy-type-specific mean correlations weighted by 
the number of record pairs of each proxy type. Correlations in brackets are not statistically significant (p = 0.1). 5 

 Mixed 
proxy 
types 

Mean of 
single proxy 

types 

Uk37 Mg/Ca j|}~z Terrestrial 
bio-

indicator 

Ice-core 
stable 

isotopes 

other 

M13 – �ÄÅÇÇ 
M13 – �ÉÑÖÜ 

0.101  
0.004 

0.149  
-0.009 

0.211  
(-0.003) 

(0.068)  
(-0.006) 

(-0.105)  
- 

(0.095)  
(-0.09) 

0.414  
(0.244) 

(-0.14)  
(-0.388) 

LH14 – �ÄÅÇÇ 
LH14 – �ÉÑÖÜ 

0.12  
0.012 

0.357  
0.031 

0.365  
(0.013) 

0.304  
0.151 

- 
- 

- 
- 

- 
- 

- 
- 

R18 – �ÄÅÇÇ 
R18 – �ÉÑÖÜ 

0.184  
0.014 

0.208  
0.009 

0.347  
(-0.017) 

(0.034)  
(-0.024) 

(-0.188)  
(0.148) 

0.17  
(-0.057) 

0.23  
0.1 

(0.107)  
(0.05) 
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he consequence is a temporal and spatial averaging of the climate signal.  

Thus, a 
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