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Abstract:  12 

The mid-Holocene period (MH) has long been an ideal target for the validation of Global 13 

Circulation Model (GCM) results against reconstructions gathered in global datasets. These 14 

studies aim to test the GCM sensitivity mainly to the seasonal changes induced by the orbital 15 

parameters (precession). Despite widespread agreement between model results and data on the 16 

MH climate, some important differences still exist. There is no consensus on the continental 17 

size of the MH thermal climate response, which makes regional quantitative reconstruction 18 

critical to obtain a comprehensive understanding of the MH climate patterns. Here, we compare 19 

the annual and seasonal outputs from the most recent Paleoclimate Modelling Intercomparison 20 

Projects Phase 3 (PMIP3) models with an updated synthesis of climate reconstruction over 21 

China, including, for the first time, a seasonal cycle of temperature and precipitation. Our 22 

results indicate that the main discrepancies between model and data for the MH climate are the 23 

annual and winter mean temperature. A warmer-than-present climate condition is derived from 24 

pollen data for both annual mean temperature (~0.7 K on average) and winter mean temperature 25 
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(~1 K on average), while most of the models provide both colder-than-present annual and 26 

winter mean temperature and a relatively warmer summer, showing linear response driven by 27 

the seasonal forcing. By conducting simulations in BIOME4 and CESM, we show that the 28 

surface processes are the key factors drawing the uncertainties between models and data. These 29 

results pinpoint the crucial importance of including the non-linear responses of the surface 30 

water and energy balance to vegetation changes. 31 
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1.  Introduction 36 

   Much attention of paleoclimate study has been focused on the current interglacial (the 37 

Holocene), especially the mid-Holocene (MH, 6±0.5 ka). The major difference in the 38 

experimental configuration between the MH and pre-Industrial (PI) arises from the orbital 39 

parameters which brings about an increase in the amplitude of the seasonal cycle of insolation 40 

of the Northern Hemisphere and a decrease in the Southern Hemisphere (Berger, 1978). Thus, 41 

the MH provides an excellent case study on which to base an evaluation of the climate response 42 

to changes in the distribution of insolation. Great efforts are devoted by the modeling 43 

community to the design of the MH common experiments using similar boundary conditions 44 

(Joussaume and Taylor., 1995; Harrison et al., 2002; Braconnot et al., 2007a, b). In addition, 45 

much work has been done to reconstruct the paleoclimate change based on different proxies at 46 

global and continental scale (Guiot et al., 1993; Kohfeld and Harrison, 2000; Prentice et al., 47 

2000; Bartlein et al., 2011). The greatest progress in understanding the MH climate change and 48 
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variability has consistently been made by comparing large-scale analyses of data with 49 

simulations from global climate models (Joussaume et al., 1999; Liu et al., 2004; Harrison et al., 50 

2014).  51 

However, the source of discrepancies between model and data is still an open and stimulating 52 

question. Two types of inconsistencies have been identified: 1) where the model and data show 53 

opposite signs, for instance, paleoclimate evidence from data-records indicates an increase of 54 

about 0.5 K in global annual mean temperature during the MH compared with PI (Shakun et al.. 55 

2012; Marcott et al., 2013), while there is a cooling trend in model simulations (Liu et al., 2014). 56 

2) where the same trend is displayed by both model and data but with different magnitudes. 57 

Previous studies have shown that while climate models can successfully reproduce the direction 58 

and large-scale patterns of past climate changes, they tend to consistently underestimate the 59 

magnitude of change in the monsoons of the Northern Hemisphere as well as the amount of the 60 

MH precipitation over northern Africa (Braconnot et al., 2012; Harrison et al., 2015). Moreover, 61 

significant spatial variability has been noted in both observations and simulations (Peyron et al., 62 

2000; Davis et al., 2003; Braconnot et al., 2007a; Wu et al., 2007; Bartlein et al., 2011), which 63 

makes regional quantitative reconstruction (Davis et al., 2003; Mauri et al., 2015) essential to 64 

obtain a comprehensive understanding of the MH climate patterns, and to act as a benchmark to 65 

evaluate climate models (Fischer and Jungclaus, 2011; Harrison et al., 2014;). 66 

China offers two advantages in respect to these issues. The sheer expanse of the country 67 

means that the continental response to insolation changes over a large region can be 68 

investigated. Moreover, the quantitative reconstruction of seasonal climate changes during the 69 

MH, based on the new pollen dataset, provides a unique opportunity to compare the seasonal 70 

cycles for models and data. Previous studies indicate that warmer and wetter than present 71 

conditions prevailed over China during the MH and that the magnitude of the annual 72 

temperature increases varied from 2.4-5.8 K spatially, with an annual precipitation increase in 73 
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the range of 34-267 mm (e.g., Sun et al., 1996; Jiang et al., 2010; Lu et al., 2012; Chen et al., 74 

2015). However, Jiang et al. (2012) clearly show a mismatch between multi-proxy 75 

reconstructions and model simulations. In terms of climate anomalies (MH-PI), besides the ~1 76 

K increase in summer temperature, 35 out of 36 Paleoclimate Modelling Intercomparison 77 

Projects (PMIP) models reproduce annual (~0.4 K) and winter temperatures (~1.4 K) that are 78 

colder than the baseline, and a drier-than-baseline climate in some western and middle regions 79 

over China is depicted in models (Jiang et al., 2013). Jiang et al. (2012) point out the 80 

model-data discrepancy over China during the MH, but the lack of seasonal reconstructions in 81 

their study limits comparisons with simulations.   82 

  An important issue raised by Liu et al. (2014) is that the discrepancy at the annual level could 83 

be due to incorrect reconstructions of the seasonal cycle, a key objective in our paper. Moreover, 84 

it has been suggested that the vegetation change can strengthen the temperature response in 85 

high latitudes (O’Ishi et al., 2009; Otto et al., 2009), as well as alter the hydrological conditions 86 

in the tropics (Liu et al., 2007). However, compared to the substantial land cover changes in the 87 

MH derived from pollen datasets (Ni et al., 2010; Yu et al., 2000), the changes in vegetation 88 

have not yet been fully quantified and discussed in PMIP3 (Taylor et al., 2012).  89 

  In this study, for the reconstruction, we firstly used the quantitative method of biomization to 90 

reconstruct vegetation types during the MH based on a new synthesis of pollen datasets, and 91 

then used the Inverse Vegetation Model (Guiot et al., 2000; Wu et al., 2007) to obtain the 92 

annual, the mean temperature of the warmest month (MTWA) and the mean temperature of the 93 

coldest month (MTCO) climate features over China for the MH. In the case of PMIP3 models, 94 

we present a comprehensive evaluation of the PMIP3 simulations made with state-of-art 95 

climate models using reconstructions of temperature and precipitation. This is the first time that 96 

such progress towards a quantitative seasonal climate comparison for the MH over China has 97 

been made. This point is crucial because the MH PMIP3 experiment is essentially one that 98 
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looks at the response of the models to changes in the seasonality of insolation, and the attempt 99 

to derive reconstructions of both summer and winter climate to compare with the simulations 100 

will thus be able to answer the question posed by Liu et al. (2014) on the importance of seasonal 101 

reconstruction.   102 

2.  Data and Methodology 103 

2.1 Data 104 

In this study, we collected 159 pollen records, covering most of China, for the MH period 105 

(6000±500 14C yr BP) (Fig. 1). Of these, 65 were from the Chinese Quaternary Pollen Database 106 

(CQPD, 2000), three were original datasets obtained in our study, and the others were digitized 107 

from pollen diagrams in published papers with a recalculation of pollen percentages based on 108 

the total number of terrestrial pollen types. These digitized 91 pollen records were selected 109 

according to three criteria: (1) clearly readable pollen diagrams with a reliable chronology with 110 

the minimum of three independent age control points since the LGM; (2) including the pollen 111 

taxa during 6000±500 14C yr BP period with a minimum sampling resolution of 1000 years per 112 

sample; (3) abandon the pollen records if the published paper mentions the influence of human 113 

activity. Based on the digitized pollen assemblages, we use biomization to get the biome scores 114 

and biome types. For age control, different dating methods are utilized in the collected pollen 115 

records, we applied the CalPal 2007 (Weninger et al., 2007) to correct 14C age into calendar 116 

age so that they can be contrasted with each other. For lacustrine records, if the specific 117 

carbon pool age is mentioned in the literature, the calendar age is corrected after deducting the 118 

carbon pool. Otherwise, the influence of carbon pool is not considered. The age-depth model 119 

for the pollen records was estimated by linear interpolation between adjacent available dates 120 

or by regression. Using ranking schemes from the Cooperative Holocene Mapping Project, 121 

the quality of dating control for the mid-Holocene was assessed by assigning a rank from 1 to 122 
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7. And 70% of the records used in our study fell into the first and second classes (see Table 1 123 

for detailed information) according to the Webb 1-7 standards (Webb, III T., 1985). 124 

Vegetation type was quantitatively reconstructed using biomization (Prentice et al., 1996), 125 

following the classification of plant functional types (PFTs) and biome assignment in China by 126 

the Members of China Quaternary Pollen Data (CQPD, 2000), which has been widely tested in 127 

surface sediment. The new sites (91 digitized data and three original data) added to our database 128 

improved the spatial coverage of pollen records, especially in the northwest, the Tibetan 129 

Plateau, the Loess Plateau and southern regions, where the data in the previous databases are 130 

very limited. 131 

Modern monthly mean climate variables, including temperature, precipitation and 132 

cloudiness (total cloud fraction), applied in this study, have been collected for each modern 133 

pollen site based on the datasets (1951-2001) from 657 meteorological observation stations 134 

over China (China Climate Bureau, China Ground Meteorological Record Monthly Report, 135 

1951-2001). The MH soil properties and characteristics used in inverse vegetation model were 136 

kept the same with PI conditions, which are derived from the digital world soil map produced 137 

by the Food and Agricultural organization (FAO) (FAO, 1995). Atmospheric CO2 138 

concentration for the MH was taken from ice core records (EPICA community members 2004), 139 

and was set at 270 ppmv. 140 

A 3-layer back-propagation (BP) artificial neural network technique (ANN) was used for 141 

interpolation on each pollen site (Caudill and Butler, 1992). Five input variables (latitude, 142 

longitude, elevation, annual precipitation, annual temperature) and one output variable (biome 143 

scores) have been chosen in ANN for the modern vegetation. The ANN has been calibrated on 144 

the training set, and its performance has been evaluated on the verification set (20%, randomly 145 

extracted from the total sets). After a series of training run, the lowest verification error is 146 

obtained with 5 neurons in the hidden layer after 10000 iterations. The anomalies between past 147 
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(6 ka) and modern vegetation indices (biome scores) was then interpolated to the 0.2×0.2° grid 148 

resolution by applying the ANN. After that, the modern grid values are added to the values of 149 

the grid of palaeo-anomalies to provide gridded paleo-biome indices. Finally, the biome with 150 

the highest index is attributed to each grid point. This ANN method is more efficient than many 151 

other techniques on condition that the results are validated by independent data sets, and 152 

therefore, it has been widely applied in paleoclimatology (Guiot et al., 1996; Peyron et al., 153 

1998).  154 

2.2 Climate models   155 

    PMIP, a long-standing initiative, is a climate-model evaluation project which provides an 156 

efficient mechanism for using global climate models to simulate climate anomalies in the past 157 

periods and to understand the role of climate feedback. In its third phase (PMIP3), the models 158 

were identical to those used in the Climate Modelling Intercomparison Project 5 (CMIP5) 159 

experiments. The experimental set-up for the mid-Holocene simulations in PMIP3 followed the 160 

PMIP protocol (Braconnot et al., 2007a, b, 2012). The main forcing between the MH and PI in 161 

PMIP3 are the orbital configuration and CH4 concentration. More precisely, the orbital 162 

configuration in the MH climate has an increased summer insolation and a decreased winter 163 

insolation in the Northern Hemisphere compared to the PI climate (Berger, 1978). Meantime, 164 

the CH4 concentration is prescribed at 650 ppbv in the MH, while it is set at 760 ppbv in PI 165 

(Table 2).  166 

    All 13 models (Table 3) from PMIP3 that have the MH simulation have been included in 167 

our study, including eight ocean-atmosphere (OA) models and five 168 

ocean-atmosphere-vegetation (OAV) models. Means for the last 30 years were calculated from 169 

the archived time-series data on individual model grids for climate variables: near surface 170 

temperature and precipitation flux, which were bi-linearly interpolated to a uniform 2.5° grid, 171 
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in order to get the bioclimatic variables (e.g. MAT, MAP, MTWM, MTCO, July precipitation) 172 

onto a common grid for comparison with the reconstruction results.  173 

2.3 Vegetation model  174 

The vegetation model, BIOME4 is a coupled bio-geography and biogeochemistry model 175 

developed by Kaplan et al. (2003). Monthly mean temperature, precipitation, sunshine 176 

percentage (an inverse measure of cloud area fraction), absolute minimum temperature, 177 

atmospheric CO2 concentration and subsidiary information about the soil’s physical properties 178 

like water retention capacity and percolation rates are the main input variables for the models. It 179 

incorporates 13 plant functional types (PFTs), which have different bioclimatic limits.  The 180 

PFTs are based on physiological attributes and bioclimatic tolerance limits such as heat, 181 

moisture and chilling requirements and resistance of plants to cold. These limits determine the 182 

areas where the PFTs could grow in a given climate. A viable combination of these PFTs 183 

defines a particular biome among 28 potential options. These 28 biomes can be further 184 

classified into 8 megabiomes (Table S1). BIOME4 has been widely utilized to analyze the past, 185 

present and potential future vegetation patterns (e.g. Bigelow et al., 2003; Diffenbaugh et al., 186 

2003; Song et al., 2005). In this study, we conducted 13 PI and the MH biome simulations using 187 

PIMP3 climate fields (temperature, precipitation and sunshine) as inputs. The climate fields, 188 

obtained from PMIP3, are the monthly mean data of the last 30 model years.  189 

2.4 Statistics and interpolation for vegetation distribution 190 

    To quantify the differences between simulated (by the climate-model output) and 191 

reconstructed (from pollen) between megabiomes, a map-based statistic (point-to-point 192 

comparison with observations) called ∆V (Sykes et al., 1999; Ni et al., 2000) was applied to 193 

our study. ∆V is based on the relative abundance of different plant life forms (e.g. trees, grass, 194 

bare ground) and a series of attributes (e. g. evergreen, needle-leaf, tropical, boreal) for each 195 
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vegetation class. The definitions and attributes of each plant form follow naturally from the 196 

BIOME4 structure and the vegetation attribute values in the ∆V computation were defined for 197 

BIOME4 in the same way as for BIOME1 (Sykes et al., 1999). The abundance and attribute 198 

values are given in Table 4 and Table 5, which describe the typical floristic composition of the 199 

biomes. Weighting the attributes is subjective because there is no obvious theoretical basis for 200 

assigning relative significance. Transitions between highly dissimilar megabiomes have a 201 

weighting of close to 1, whereas transitions between less dissimilar megabiomes are assigned 202 

smaller values. The overall dissimilarity between model and data megabiome maps was 203 

calculated by averaging the ∆V for the grids with pollen data, while the value was set at 0 for 204 

any grid without data. ΔV values < 0.15 can be considered to point to very good agreement 205 

between simulated and actual distributions, 0.15-0.30 is good, 0.30-0.45 is fair, 0.45-0.60 is 206 

poor, and > 0.80 is very poor (adjusted from Zhang et al., 2010). For spatial pattern comparison, 207 

we compared the simulated vegetation distribution from BIOME4 from each model with the 208 

interpolated pattern of reconstruction. 209 

2.5 Inverse vegetation model 210 

Inverse Vegetation Model (Guiot et al., 2000; Wu et al., 2007), highly dependent on the 211 

BIOME4 model, is applied to our reconstruction. The key concept of this model can be 212 

summarized in two points: firstly, a set of transfer functions able to transform the model output 213 

into values directly comparable with pollen data is defined. There is not full compatibility 214 

between the biome typology of BIOME4 and the biome typology of pollen data. A transfer 215 

matrix (Table S2) was defined in our study where each BIOME4 vegetation type is assigned a 216 

vector of values, one of each pollen vegetation type, ranging from 0 (representing an 217 

incompatibility between BIOME4 type and pollen biome type) to 15 (corresponding to a 218 

maximum compatibility). Secondly, using an iterative approach, a representative set of climate 219 

scenarios compatible with the vegetation records is identified among the climate space, 220 



 

10 
 

constructed by systematically perturbing the input variables (e.g. ΔT, ΔP) of the model (Table 221 

S3).  222 

Inverse Vegetation Model (IVM) provides a possibility, for the first time, to reconstruct both 223 

annual and seasonal climates for the MH over China. Moreover, it offers a way to consider the 224 

impact of CO2 concentration on competition between PFTs as well as on the relative abundance 225 

of taxa, and thus make reconstruction from pollen records more reliable. More detailed 226 

information about IVM can be found in Wu et al. (2007).  227 

We applied the inverse model to modern pollen samples to validate the approach by 228 

reconstructing the modern climate at each site and comparing it with the observed values. The 229 

high correlation coefficients (R=0.75–0.95), intercepts close to 0 (except for the mean 230 

temperature of the warmest month), and slopes close to 1 (except for the July precipitation) 231 

demonstrated that the inversion method worked well for most variables in China (see Table 6). 232 

3.  Results 233 

3.1 Comparison of annual and seasonal climate changes at the MH  234 

In this study, we collected 159 pollen records, broadly covering the whole of China (Fig. 1). 235 

To check the reliability of the collected data, we first categorized our pollen records into 236 

megabiomes in line with the standard tables developed for the BIOME6000 (Table S1), and 237 

compared them with the BIOME6000 dataset (Fig.2). The match between collected data and 238 

the BIOME6000 is more than 90% (145 out of 159 sites) for both the MH and PI.  239 

Based on pollen records, the spatial pattern of climate changes over China during the MH, 240 

deduced from IVM, are presented in Fig. 3 (left panel, points), alongside the results from 241 

PMIP3 models (shaded in Fig. 3). For temperature, a warmer-than-present annual climate 242 

condition (~0.7 K on average) is derived from pollen data (the points in Fig. 3a), with the 243 



 

11 
 

largest increase occurring in the northeast (3-5 K) and a decrease in the northwest and on 244 

Tibetan Plateau. On the other hand, the results from a multi-model ensemble (MME) indicate a 245 

colder annual temperature generally (~-0.4 K on average), with significant cooling in the south 246 

and slight warming in the northeast (shaded in Fig. 3a). Of the 13 models, 11 simulate a cooler 247 

annual temperature compared with PI as MME. However, two models (HadeGEM2-ES and 248 

CNRM-CM5) present the same warmer condition as was found in the reconstruction (Fig. 3d). 249 

Compared to the reconstruction, the annual mean temperature during the MH is largely 250 

underestimated by most PMIP3 models, which depict an anomaly ranging from ~-1 to ~0.5 K. 251 

Concerning seasonal change, during the MH, MTWA from the data is ~0.5 K higher than PI, 252 

with the largest increase in the northeast and a decrease in the northwest. From model outputs, 253 

an average increase of ~1.2 K is reproduced by MME, with a more pronounced warming at high 254 

latitudes which is consistent with the insolation change (Berger, 1978). Fig. 3e shows that all 13 255 

models reproduce the same warmer summer temperatures as the data, and that HadGEM2-ES 256 

and CNRM-CM5, reproduce the largest increases among the models. Although the warmer 257 

MTWA is consistent between the models and data, there is a discrepancy between them on 258 

MTCO. In Fig. 3c, the data show an overall increase of ~1 K, with the largest increase occurring 259 

in the northeast and a decrease of opposite magnitude on the Tibetan Plateau. Inversely, MME 260 

reproduces a decreased MTCO with an average amplitude of ~-1.3 K, the coolest areas being 261 

the southeast, the Loess Plateau and the northwest. Similarly to the MME, all 13 models 262 

simulate a colder-than-present climate with amplitudes ranging from ~-2.0 K (CCSM4 and 263 

FGOALS-g2) to ~-0.7 K (HadGEM2-ES and CNRM-CM5).  264 

Concerning annual change in precipitation, the reconstruction shows wetter conditions 265 

during the MH across almost the whole of China with the exception of part of the northwest. 266 

The southeast presents the largest increase in annual precipitation. All but 2 models 267 

(MIROC-ESM and FGOALS-g2) depict wetter conditions with an amplitude of ~10 mm to ~50 268 
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mm. The reconstruction and MME results also indicate an increased annual precipitation during 269 

MH (Fig.4a), with a much larger magnitude visible in the reconstruction (~30 mm, ~230 mm 270 

respectively). The main discrepancy in annual precipitation between simulations and 271 

reconstruction occurs in the northeast, which is depicted as drier by the models and wetter by 272 

the data. With regard to seasonal change, the reconstruction shows an overall increase in July 273 

rainfall (~50 mm on average), with a decrease in the northwestern regions and East Monsoon 274 

region at Yangtze River valley. In line with the reconstruction, the MME also shows an overall 275 

increase in rainfall (~7 mm on average), with a decrease in the northwest for July (Fig.4b).  276 

Notably, a much larger increase is simulated for the south and the Tibetan Plateau by the 277 

models, while the opposite pattern emerges along the eastern margin from both models and data. 278 

For January precipitation, the reconstruction shows an overall increase in most region (~15 279 

mm), except for the northwestern region, while MME indicates a slight decrease (~3 mm on 280 

average). More detailed information about the geographic distribution of simulated temperature 281 

and precipitation for each model can be found in Fig. S1-S6. 282 

Table S4 provides the biome score from IVM for pollen data collected from published papers. 283 

The reconstructed climate change derived from IVM at each pollen site can be found in Table 284 

S5, in which the columns show the median and the 90% interval (5th to 95th percentage) for 285 

feasible climate values produced with the IVM approach. The simulated values for each of the 286 

climate variables as shown in the boxplots (Figure 3 and Figure 4) are given in the Table S6 287 

and Table S7. 288 

 289 

3.2 Comparison of vegetation change at the MH 290 

The use of the PMIP3 database is clearly limited by the different vegetation inputs among the 291 

models for the MH period (Table S8). Only HadGEM2-ES and HadGEM2-CC use a dynamic 292 

vegetation for the MH, and the other 11 models are prescribed to PI with or without interactive 293 
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LAI, which would introduce a bias to the role of vegetation-atmosphere interaction in the MH 294 

climates. To evaluate the model results against the reconstruction for the MH vegetation, we 295 

conducted 13 biome simulations in BIOME4 using PIMP3 climate fields, and the megabiome 296 

distribution for each model during the MH is displayed in Fig. 5 (see Fig. S7 for PI vegetation 297 

comparison). To quantify the model-data dissimilarity between megabiomes, a map-based 298 

statistic called ∆V (Sykes et al., 1999; Ni et al., 2000) was applied here (detailed information is 299 

in the methodology section).  300 

Fig. S8 shows the dissimilarity between simulations and observations for megabiomes 301 

during the MH, with the overall values for ∆V ranging from 0.43 (HadGEM2-ES) to 0.55 302 

(IPSL-CM5A-LR). According to the classification of ∆V (see in the methodology section) for 303 

the 13 models, 12 (all except HadGEM2-ES) showed poor agreement with the observed 304 

vegetation distribution. Most models poorly simulate the desert, grassland and tropical forest 305 

areas for both periods, but perform better for warm mixed forest, tundra and temperate forest. 306 

However, this statistic is based on a point-to-point comparison and so the ∆V calculated here 307 

cannot represent an estimation of full vegetation simulation due to the uneven distribution of 308 

pollen data and the potentially huge difference in area of each megabiome. For instance, tundra 309 

in our data for PI is represented by only 4 points, which counts for a small contribution to the 310 

∆V since we averaged it over a total of 159 points, but this calculation could induce a 311 

significant bias if these 4 points cover a large area of China. 312 

So, we used the biome scores based on the artificial neural network technique as described by 313 

Guiot et al. (1996) for interpolation (the plots in red rectangle in Fig. 5), and compared the 314 

simulated vegetation distribution from BIOME4 for each model with the interpolated pattern. 315 

During the MH, most models are able to capture the tundra on the Tibetan Plateau as well as the 316 

combination of warm mixed forest and temperate forest in the southeast. However, all models 317 

fail to simulate or underestimate the desert area in the northwest compared to reconstructed data. 318 
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The main model-data inconsistency in the MH vegetation distribution occurs in the northeast, 319 

where data show a mix of grassland and temperate forest, and the models show a mix of 320 

grassland and boreal forest.  321 

The area statistic carried out for simulated vegetation changes (Fig. 6) reveals that the main 322 

difference during the MH, compared with PI, is that grassland replaced boreal forest in large 323 

tracts of the northeast (Fig. 5, Fig. S7). No other significant difference in vegetation distribution 324 

between the two periods was derived from models. Unlike in models, three main changes in 325 

megabiomes during the MH are depicted by the data. Firstly, the megabiomes converted from 326 

grassland to temperate forest in the northeast. Secondly, a large area of temperate forest was 327 

replaced in the southeast by a northward expansion of warm mixed forest. Thirdly, in the 328 

northwest and at the northern margin of the Tibetan Plateau, part of the desert area changed into 329 

grassland. However, none of the models succeed in capturing these features, especially the 330 

transition from grassland into forest in the northeast during the MH. Therefore, this failure to 331 

capture vegetation changes between the two periods will lead to a cumulating inconsistency in 332 

the model-data comparison for climate anomalies because of the vegetation-climate feedbacks.  333 

4.  Discussion  334 

4.1 Validation and uncertainties for reconstruction 335 

To investigate the discrepancy between model-data for the MH climate change over China, 336 

the reliability of our reconstruction should be firstly considered. For the cross-proxy validation, 337 

we compared our reconstruction with previous studies concerning the MH climate change over 338 

China based on multiple proxies (including pollen, lake core, palaeosol, ice core, peat and 339 

stalagmite), the related references and detailed information are listed in Supplementary 340 

Information (Table S9 and Table S10). In comparison with PI condition, most reconstructions 341 

reproduced warmer and wetter annual condition during the MH (Fig. 7), same as our study. In 342 
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other words, this discrepancy between model-data for climate change over China during the 343 

MH is common and robust in reconstructions derived from different proxies. Our study just 344 

reinforces the picture given by the discrepancies between PMIP simulation and pollen data 345 

derived from a synthesis of the literature.   346 

However, there are still some bias in the reconstruction. Estimated climates for the present 347 

day from IVM were compared with observed climates (Table 6), the slopes and intercepts show 348 

slightly bias for annual and January precipitation, while there is considerable bias between IVM 349 

reconstruction and observation for temperature and July precipitation. For the uncertainties on 350 

data reconstruction, IVM relies heavily on BIOME4, and since BIOME4 is a global vegetation 351 

model, it is possible that the spatial robustness of regional reconstruction could be less than that 352 

of global reconstruction due to the failure in simulating local features (Bartlein et al., 2011). 353 

Moreover, the output of the model is not directly compared to the pollen data, the conversion 354 

of BIOME4 biomes to pollen biomes by the transfer matrix may add the source of uncertainty 355 

in reconstruction. All these bias in reconstruction should be considered in the discrepancy 356 

between model-data for climate change during the MH over China. 357 

4.2 Uncertainties for simulation 358 

Besides the qualitative consistency among models, caused by the protocol of PMIP3 359 

experiments (Table 2), a variability in the magnitude of anomalies between models is clearly 360 

illustrated by the boxplots (Fig.3 and Fig.4). These disparities in value or even pattern among 361 

models reflect the obvious differences in the response by the climate models to the MH forcing 362 

which raises on the question of the magnitude of feedbacks among models.  363 

As positive feedbacks between climate and vegetation are important to explain regional 364 

climate changes, the failure to capture or the underestimation of the amplitude and pattern of 365 

the observed vegetation differences among models (see Section 3.2) could amplify and partly 366 
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account for the model-data disparities in climate change, mainly due to variations in the albedo. 367 

Because the HadGEM2-ES and HadGEM2-CC are the only two models in PMIP3 with 368 

dynamic vegetation simulation for the MH, we thus focused on them to examine the variations 369 

in vegetation fraction in the simulations. The main vegetation changes during the MH 370 

demonstrated by HadGEM2-ES are increased tree coverage (~15%) and a decreased bare soil 371 

fraction (~6%), while HadGEM2-CC depicts a ~3% decrease in tree fraction and a ~1% 372 

increase in bare soil (Fig. S9). We made a rough calculation of albedo variance caused solely by 373 

vegetation change for both two models and for our reconstruction, based on the area fraction 374 

and albedo value of each vegetation type (Betts, 2000; Bonfils et al., 2001; Oguntunde et al., 375 

2006; Bonan, 2008).  376 

The overall albedo change from the vegetation reconstruction during the MH shows a ~1.8% 377 

decrease when snow-free, with a much larger impact (~4.2% decrease) when snow-covered. 378 

The results from HadGEM2-ES are highly consistent with the albedo changes from the 379 

reconstruction, featuring a ~1.4% (~6.5%) decrease without (with) snow, while HadGEM2-CC 380 

produces an increased albedo value during the MH (~0.22% for snow-free, ~1.9% with 381 

snow-cover), depending on its vegetation simulation. Two ideas could be inferred from this 382 

calculation, 1) HadGEM2-ES is much better in simulating the MH vegetation changes than 383 

HadGEM2-CC. 2) the failure by models to capture these vegetation changes will result in a 384 

much larger impact on winter albedo (with snow) than summer albedo (without snow).  385 

These surface albedo changes due to vegetation changes could have a cumulative effect on 386 

the regional climate by modifying the radiative fluxes. For instance, the spread of trees into the 387 

grassland biome in the northeast during the MH, revealed by the reconstruction in our study, 388 

should act as a positive feedback to climate warming by increasing the surface net shortwave 389 

radiation associated with reductions in albedo due to taller and darker canopies (Chapin et al., 390 

2005). Previous studies show that cloud and surface albedo feedbacks on radiation are major 391 
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drivers of differences between model outputs for past climates. Moreover, the land surface 392 

feedback shows large disparities among models (Braconnot and Kageyama, 2015).  393 

  We used a simplified approach (Taylor et al., 2007) to quantify the feedbacks and to compare 394 

model behavior for the MH, thus justifying the focus on surface albedo and atmospheric 395 

scattering (mainly accounting for cloud change). Surface albedo and cloud change are 396 

calculated using the simulated incoming and outgoing radiative fluxes at the Earth’s surface 397 

and at the top of atmosphere (TOA), based on data for the last 30 years averaged from all 398 

models. Using this framework, we quantified the effect of changes in albedo on the net 399 

shortwave flux at TOA (Braconnot and Kageyama, 2015), and further investigated the 400 

relationship between these changes and temperature change. Fig.8 shows that most models 401 

produced a negative cloud cover and surface albedo feedback on the annual mean shortwave 402 

radiative forcing. Concerning seasonal change, the shortwave cloud and surface feedback in 403 

most models tend to counteract the insolation forcing during the boreal summer, while they 404 

enhance the solar forcing during winter. A strong positive correlation between albedo feedback 405 

and temperature change is depicted, with a large spread in the models owing to the difference in 406 

albedo in the 13 models. In particular, CNRM-CM5 and HadGEM2-ES capture higher values 407 

of cloud and surface albedo feedback, which could be the reason for the reversal of the 408 

decreased annual temperature seen in other models (Fig. 3d). 409 

However, the vegetation patterns produced by BIOME4 in Figure 5 are not used in PMIP3 410 

experiment setup, it’s actually determined by the input variables from models. Previous study 411 

shows the GCMs from PMIP3 are reliable to simulate the geographical distribution of 412 

temperature and precipitation over China for present day without downscaling, but there is 413 

considerable bias between simulation and observation for precipitation (Jiang et al., 2016). 414 

Therefore, the disagreements of MH vegetation pattern possibly are inherited from the PI. To 415 

better quantify the vegetation-climate feedback, two experiments were conducted in CESM 416 
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version 1.0.5, including a mid-Holocene (MH) experiment (6 ka) with original vegetation 417 

setting (prescribed as PI vegetation for the MH) and a MH experiment with reconstructed 418 

vegetation (6 ka_VEG). Figure 9 shows the climate anomalies (6 ka_VEG minus 6 ka) 419 

between two simulations, for both annual and seasonal scale. For temperature, it's clear that 420 

the 6 ka_VEG simulation reproduces a warmer annual mean climate (~0.3 K on average) as 421 

well as an obviously warmer winter (~0.6 K on average). For precipitation, the reconstructed 422 

vegetation leads to more annual and seasonal precipitation, which can also reconcile the 423 

discrepancy of increase amplitude for precipitation during the MH between model-data (data 424 

reproduced larger amplitude than model, revealed by our study). So the mismatch between 425 

model-data in MH vegetation could partly account for the discrepancy of climate due to the 426 

interaction between vegetation and climate through radiative and hydrological forcing with 427 

albedo. These results pinpoint the value of building a new generation of models able to capture 428 

not only the atmosphere and ocean response, but also the non-linear responses of vegetation and 429 

hydrology to the climate change.  430 

5.  Conclusion 431 

In this study, we compare the annual and seasonal outputs from the PMIP3 models with an 432 

updated synthesis of climate reconstruction over China, including, for the first time, a seasonal 433 

cycle of temperature and precipitation. In response to the seasonal insolation change prescribed 434 

in PMIP3 for the MH, all models produce similar large-scale patterns for seasonal temperature 435 

and precipitation (higher than present July precipitation and MTWA, lower than present 436 

MTCO), with either an over- or underestimate of the climate changes when compared to the 437 

data. The main discrepancy emerging from the model-data comparison occurs in the annual and 438 

MTCO, where data show an increased value and most models simulate the opposite except 439 

CNRM-CM5 and HadGEM2-ES reproduced the higher-than-present annual temperature 440 
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during MH as data showed. By conducting simulations in BIOME4 and CESM, we show that 441 

the surface processes are the key factors drawing the uncertainties between models and data. 442 

These results pinpoint the crucial importance of including the non-linear responses of the 443 

surface water and energy balance to vegetation changes. Moreover, besides the vegetation 444 

influence, to which extent this model-data discrepancy is related to rough topography, soil type 445 

and other possible factors should be investigated in the future work.  446 

 447 
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Table 1. Basic information of the pollen dataset used in this study 1049 

Site Lat Lon Alt Webb 1-7 Source 

Sujiawan  35.54  104.52  1700  2 original data (Zou et al., 

2009) 

Xiaogou 36.10  104.90  1750  2 original data (Wu et al., 

2009) 

Dadiwan 35.01  105.91  1400  1 original data (Zou et al., 

2009) 

Sanjiaocheng 39.01  103.34  1320  1 Chen et al., 2006 

Chadianpo 36.10  114.40  65  2 Zhang et al., 2007 

Qindeli 48.08  133.25  60  2 Yang and Wang, 2003 

Fuyuanchuangye 47.35  133.03  56  3 Xia, 1988 

Jingbo Lake 43.83  128.50  350  2 Li et al., 2011 

Hani Lake 42.22  126.52  900  1 Cui et al., 2006 

Jinchuan 42.37  126.43  662  5 Jiang et al., 2008 

Maar Lake 42.30  126.37  724  1 Liu et al., 2009 

Maar Lake 42.30  126.37  724  1 Liu et al., 2008 

Xie Lake SO4 37.38  122.52  0  1 Zhou et al., 2008 

Nanhuiheming Core 31.05  121.58  7  2 Jia and Zhang, 2006 

Toushe 23.82  120.88  650  1 Liu et al., 2006 

Dongyuan Lake 22.17  120.83  415  2 Lee et al., 2010 

Yonglong CY 31.78  120.44  5  3 Zhang et al., 2004 

Hangzhou HZ3 30.30  120.33  6  4 Liu et al., 2007 

Xinhua XH1 32.93  119.83  2  3 Shu et al., 2008 

ZK01 31.77  119.80  6  2 Shu et al., 2007 

Chifeng 43.97  119.37  503  2 Xu et al., 2002 

SZK1 26.08  119.31  9  1 Zheng et al., 2002 

Gucheng 31.28  118.90  6  4 Yang et al., 1996 

Lulong 39.87  118.87  23  2 Kong et al., 2000 

Hulun Lake 48.92  117.42  545  1 Wen et al., 2010 

CH-1 31.56  117.39  5  2 Wang et al., 2008 

Sanyi profile 43.62  117.38  1598  4 Wang et al., 2005 

Xiaoniuchang 42.62  116.82  1411  1 Liu et al., 2002 

Haoluku 42.87  116.76  1333  2 Liu et al., 2002 

Liuzhouwan 42.71  116.68  1410  7 Liu et al., 2002 

Poyang Lake 103B 28.87  116.25  16  4 Jiang and Piperno, 1999 

Baiyangdian 38.92  115.84  8  2 Xu et al., 1988 

Bayanchagan 42.08  115.35  1355  1 Jiang et al., 2006 

Huangjiapu 40.57  115.15  614  7 Sun et al., 2001 

Dingnan 24.68  115.00  250  2 Xiao et al., 2007 

Guang1 36.02  114.53  56  1 Zhang et al., 2007 

Angulinao 41.33  114.35  1315  1 Wang et al., 2010 

Yangyuanxipu 40.12  114.22  921  6 Wang et al., 2003 
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Shenzhen Sx07 22.75  113.78  2  2 Zhang and Yu, 1999 

GZ-2 22.71  113.51  1  7 Wang et al., 2010 

Daihai99a 40.55  112.66  1221  2 Xiao et al., 2004 

Daihai 40.55  112.66  1221  2 Sun et al., 2006 

Sihenan profile 34.80  112.40  251  1 Sun and Xia, 2005 

Diaojiaohaizi 41.30  112.35  2015  1 Yang et al., 2001 

Ganhaizi 39.00  112.30  1854  3 Meng et al., 2007 

Jiangling profile 30.35  112.18  37  1 Xie et al., 2006 

Helingeer 40.38  111.82  1162  3 Li et al., 2011 

Shennongjia2 31.75  110.67  1700  1 Liu et al., 2001 

Huguangyan Maar Lake 

B 

21.15  110.28  59  2 Wang et al., 2007 

Yaoxian 35.93  110.17  1556  2 Li et al., 2003 

Jixian 36.00  110.06  1005  6 Xia et al., 2002 

Shennongjia Dajiu Lake 31.49  110.00  1760  2 Zhu et al., 2006 

Qigai nuur 39.50  109.85  1300  1 Sun and Feng, 2013 

Beizhuangcun 34.35  109.53  519  1 Xue et al., 2010 

Lantian 34.15  109.33  523  1 Li and Sun, 2005 

Bahanniao 39.32  109.27  1278  1 Guo et al., 2007 

Midiwan 37.65  108.62  1400  1 Li et al., 2003 

Jinbian 37.50  108.33  1688  2 Cheng, 2011 

Xindian 34.38  107.80  608  1 Xue et al., 2010 

Nanguanzhuang 34.43  107.75  702  1 Zhao et al., 2003 

Xifeng 35.65  107.68  1400  3 Xu, 2006 

Jiyuan 37.13  107.40  1765  3 Li et al., 2011 

Jiacunyuan 34.27  106.97  1497  2 Gong, 2006 

Dadiwan 35.01  105.91  1400  1 Zou et al., 2009 

Maying 35.34  104.99  1800  1 Tang and An, 2007 

Huiningxiaogou 36.10  104.90  1750  2 Wu et al., 2009 

Sujiawan 35.54  104.52  1700  2 Zou et al., 2009 

QTH02 39.07  103.61  1302  1 Yu et al., 2009 

Laotanfang 26.10  103.20  3579  2 Zhang et al., 2007 

Hongshui River2 38.17  102.76  1511  1 Ma et al., 2003, 

Ruoergai 33.77  102.55  3480  1 Cai, 2008 

Hongyuan 32.78  102.52  3500  2 Wang et al., 2006 

Dahaizi 27.50  102.33  3660  1 Li et al., 1988 

Shayema Lake 28.58  102.22  2453  1 Tang and Shen, 1996 

Luanhaizi 37.59  101.35  3200  5 Herzschuh et al., 2006 

Lugu Lake 27.68  100.80  2692  1 Zheng et al., 2014 

Qinghai Lake 36.93  100.73  3200  2 Shen et al., 2004 

Dalianhai 36.25  100.41  2850  3 Cheng et al., 2010 

Erhai ES Core 25.78  100.19  1974  1 Shen et al., 2006 

Xianmachi profile 25.97  99.87  3820  7 Yang et al., 2004 
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TCK1 26.63  99.72  3898  1 Xiao et al., 2014 

Yidun Lake 30.30  99.55  4470  4 Shen et al., 2006 

Kuhai lake 35.30  99.20  4150  1 Wischnewski et al., 2011 

Koucha lake 34.00  97.20  4540  2 Herzschuh et al., 2009 

Hurleg 37.28  96.90  2817  2 Zhao et al., 2007 

Basu 30.72  96.67  4450  3 Tang et al., 1998 

Tuolekule 43.34  94.21  1890  1 An et al., 2011 

Balikun 43.62  92.77  1575  1 Tao et al., 2010 

Cuona 31.47  91.51  4515  3 Tang et al., 2009 

Dongdaohaizi2 44.64  87.58  402  1 Li et al., 2001 

Bositeng Lake 41.96  87.21  1050  1 Xu, 1998 

Cuoqin 31.00  85.00  4648  4 Luo, 2008 

Yili 43.86  81.97  928  2 Li et al., 2011 

Bangong Lake 33.75  78.67  4241  1 Huang et al., 1996 

Shengli 47.53  133.87  52  2 CQPD, 2000 

Qingdeli 48.05  133.17  52  1 CQPD, 2000 

Changbaishan 42.22  126.00  500  2 CQPD, 2000 

Liuhe 42.90  125.75  910  7 CQPD, 2000 

Shuangyang 43.27  125.75  215  1 CQPD, 2000 

Xiaonan 43.33  125.33  209  1 CQPD, 2000 

Tailai 46.40  123.43  146  5 CQPD, 2000 

Sheli 45.23  123.31  150  4 CQPD, 2000 

Tongtu 45.23  123.30  150  7 CQPD, 2000 

Yueyawan 37.98  120.71  5  1 CQPD, 2000 

Beiwangxu 37.75  120.61  6  1 CQPD, 2000 

East Tai Lake1 31.30  120.60  3  1 CQPD, 2000 

Suzhou 31.30  120.60  2  7 CQPD, 2000 

Sun-Moon Lake 23.51  120.54  726  2 CQPD, 2000 

West Tai Lake 31.30  119.80  1  1 CQPD, 2000 

Changzhou 31.43  119.41  5  1 CQPD, 2000 

Dazeyin 39.50  119.17  50  7 CQPD, 2000 

Hailaer 49.17  119.00  760  2 CQPD, 2000 

Cangumiao 39.97  118.60  70  1 CQPD, 2000 

Qianhuzhuang 40.00  118.58  80  6 CQPD, 2000 

Reshuitang 43.75  117.65  1200  1 CQPD, 2000 

Yangerzhuang 38.20  117.30  5  7 CQPD, 2000 

Mengcun 38.00  117.06  7  5 CQPD, 2000 

Hanjiang-CH2 23.48  116.80  5  2 CQPD, 2000 

Hanjiang-SH6 23.42  116.68  3  7 CQPD, 2000 

Hanjiang-SH5 23.45  116.67  8  2 CQPD, 2000 

Hulun Lake 48.90  116.50  650  1 CQPD, 2000 

Heitutang 40.38  113.74  1060  1 CQPD, 2000 

Zhujiang delta PK16 22.73  113.72  15  7 CQPD, 2000 
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Angulitun 41.30  113.70  1400  7 CQPD, 2000 

Bataigou 40.92  113.63  1357  1 CQPD, 2000 

Dahewan 40.87  113.57  1298  2 CQPD, 2000 

Yutubao 40.75  112.67  1254  7 CQPD, 2000 

Zhujiang delta K5 22.78  112.63  12  1 CQPD, 2000 

Da-7 40.52  112.62  1200  3 CQPD, 2000 

Hahai-1 40.17  112.50  1200  5 CQPD, 2000 

Wajianggou 40.50  112.50  1476  4 CQPD, 2000 

Shuidong Core A1 21.75  111.07  -8  2 CQPD, 2000 

Dajahu 31.50  110.33  1700  2 CQPD, 2000 

Tianshuigou 34.87  109.73  360  7 CQPD, 2000 

Mengjiawan 38.60  109.67  1190  7 CQPD, 2000 

Fuping BK13 34.70  109.25  422  7 CQPD, 2000 

Yaocun 34.70  109.22  405  2 CQPD, 2000 

Jinbian 37.80  108.60  1400  4 CQPD, 2000 

Dishaogou 37.83  108.45  1200  2 CQPD, 2000 

Shuidonggou 38.20  106.57  1200  5 CQPD, 2000 

Jiuzhoutai 35.90  104.80  2136  7 CQPD, 2000 

Luojishan 27.50  102.40  3800  1 CQPD, 2000 

RM-F 33.08  102.35  3400  2 CQPD, 2000 

Hongyuan 33.25  101.57  3492  1 CQPD, 2000 

Wasong 33.20  101.52  3490  1 CQPD, 2000 

Guhu Core 28 27.67  100.83  2780  7 CQPD, 2000 

Napahai Core 34 27.80  99.60  3260  2 CQPD, 2000 

Lop Nur 40.50  90.25  780  7 CQPD, 2000 

Chaiwobao1 43.55  87.78  1100  2 CQPD, 2000 

Chaiwobao2 43.33  87.47  1114  1 CQPD, 2000 

Manasi 45.97  84.83  257  2 CQPD, 2000 

Wuqia 43.20  83.50  1000  7 CQPD, 2000 

Madagou 37.00  80.70  1370  2 CQPD, 2000 

Tongyu 44.83  123.10  148  5 CQPD, 2000 

Nanjing 32.15  119.05  10  2 CQPD, 2000 

Banpo 34.27  109.03  395  1 CQPD, 2000 

QL-1 34.00  107.58  2200  7 CQPD, 2000 

Dalainu 43.20  116.60  1290  7 CQPD, 2000 

Qinghai 36.55  99.60  3196  2 CQPD, 2000 
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 1053 

 1054 
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Table 2. Earth’s orbital parameters and trace gases as recommended by the PMIP3 1055 

project 1056 

Simulation Orbital 

parameters 

  Trace gases   

 Eccentricity Obliquity(°) Angular precession(°) CO2(ppmv) CH4(ppbv) N2O(ppbv) 

PI 0,0167724 23,446 102,04 280 760 270 

MH 0,018682 24,105 0,87 280 650 270 

 1057 

 1058 

Table 3. PMIP3 model characteristics and references 1059 

Model Name Modelling centre Type Grid Reference 

BCC-CSM-1-1 BCC-CMA (China) AOVGCM Atm: 128×64×L26; Ocean: 

360×232×L40 

Xin et al. (2013) 

CCSM4 NCAR (USA) AOGCM Atm: 288 × 192×L26; Ocean: 

320×384×L60 

Gent et al. (2011) 

CNRM-CM5 CNRM&CERFACS 

(France) 

AOGCM Atm: 256 × 128×L31; Ocean: 

362×292×L42 

Voldoire et al. (2012) 

CSIRO-Mk3-6-0 QCCCE, Australia AOGCM Atm: 192 × 96×L18; Ocean: 

192×192×L31 

Jeffrey et al. (2013) 

FGOALS-g2 LASG-IAP (China) AOVGCM Atm: 128 × 60×L26; Ocean: 

360×180×L30 

Li et al. (2013) 

FGOALS-s2 LASG-IAP (China) AOVGCM Atm: 128 × 108×L26; Ocean: 

360×180×L30 

Bao et al. (2013) 

GISS-E2-R GISS (USA) AOGCM Atm: 144 × 90×L40; Ocean: 

288×180×L32 

Schmidt et al. (2014a,b) 

HadGEM2-CC Hadley Centre (UK) AOVGCM Atm: 192 × 145×L60; Ocean: 

360×216×L40 

Collins et al. (2011) 

HadGEM2-ES Hadley Centre (UK) AOVGCM Atm: 192 × 145×L38; Ocean: 

360×216×L40 

Collins et al. (2011) 

IPSL-CM5A-LR IPSL (France) AOVGCM Atm: 96 × 96×L39; Ocean: 

182×149×L31 

Dufresne et al. (2013) 

MIROC-ESM Utokyo&NIES (Japan) AOVGCM Atm: 128×64×L80; Ocean: 

256×192×L44 

Watanabe et al. (2011) 

MPI-ESM-P MPI (Germany) AOGCM Atm: 196×98×L47; Ocean: 

256×220×L40 

Giorgetta et al. (2013) 

MRI-CGCM3 MRI (Japan) AOGCM Atm: 320 × 160×L48; Ocean: 

364×368×L51 

Yukimoto et al. (2012) 
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Table 4. Important values for each plant life form used in the ∆V statistical calculation 1063 

as assigned to the megabiomes 1064 

Megabiomes Life form   

 Trees Grass/grass Bare ground 

Tropical forest 1   

Warm mixed forest 1   

Temperate forest 1   

Boreal forest 1   

Grassland and dry shrubland 0.25 0.75  

Savanna and dry woodland 0.5 0.5  

Desert  0.25 0.75 

Tundra  0.75 0.25 

 1065 

Table 5. Attribute values and the weights for plant life forms used by the ∆V statistic 1066 

Life form Attribute    

Trees Evergreen Needle-leaf Tropical Boreal 

Tropical forest 1 0 1 0 

Warm mixed forest 0.75 0.25 0 0 

Temperate forest 0.5 0.5 0 0.5 

Boreal forest 0.25 0.75 0 1 

Grassland and dry shrubland 0.75 0.25 0.75 0 

Savanna and dry woodland 0.25 0.75 0 0.5 

weights 0.2 0.2 0.3 0.3 

Grass/Shrub Warm Arctic/alpine   

Grassland and dry shrubland 1 0   

Savanna and dry woodland 0.75 0   

Desert 1 0   

Tundra 0 1   

weights 0.5 0.5   

Bare Ground Arctic/alpine    

Desert 0    

Tundra 1    

weight 1    

 1067 
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Table 6. Regression coefficients between the reconstructed climates by inverse 1068 

vegetation models and observed meteorogical values 1069 

Climate parameter Slope Intercept R ME RMSE 

MAT 0..82±0..02 0.92±0.18 0.89 0.16 3.25 

MTCO 0.81±0.01 -1.79±0.18 0.95 -0.17 3.19 

MTWA 0.75±0.03 4.57±0.60 0.75 -0.19 4.02 

MAP 1.15±0.02 32.90±18.41 0.94 138.01 263.88 

Pjan 1.01±0.02 0.32±0.47 0.94 0.52 8.89 

Pjul 1.30±0.03 -21.67±4.52 0.89 16.45 52.9 

The climatic parameters used for regression are the actual values (data source: China Climate 1070 

Bureau, China Ground Meteorological Record Monthly Report, 1951-2001). MAT annual 1071 

mean temperature, MTCO mean temperature of the coldest month, MTWA mean temperature 1072 

of the warmest month, MAP annual precipitation, RMSE the root-mean-square error of the 1073 

residuals, ME mean error of the residuals, Pjan: precipitation of January, Pjul: precipitation of 1074 

July, R is the correlation coefficient, ± stand error 1075 
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 1095 

 1096 

 1097 

 1098 

 1099 

Figure 1. Distribution of pollen sites during mid-Holocene period in China. Black circle is the 1100 

original China Quaternary Pollen Database, red circles are digitized ones from published 1101 

papers, green circles represent the three original pollen data used in this study. The area with 1102 

green color represents the Tibetan Plateau, yellow color for the Loess Plateau. 1103 
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 1137 

Figure 2. Comparison of megabiomes for PI (first row) and the MH (second row): (a,b) 1138 

BIOME6000, (c,d) pollen data collected in this study. 1139 
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 1146 

 1147 

Figure 3. Model-data comparison for annual and seasonal (MTWA and MTCO) temperature 1148 

(K). For the left panel (a-c), points represent the reconstruction from IVM, shades show the 1149 

last 30-year means simulation results of multi-model ensemble (MME) for 13 PMIP3 models. 1150 

The box-and-whisker plots (d-f) show the changes as shown by each PMIP3 model and the 1151 

reconstruction. (d) considers changes in annual temperature, (e) indicates changes in MTWA, 1152 

and (f) shows changes in MTCO. The lines in each box shows the median value from each set 1153 

of measurements, the box shows the 25%-75% range, and the whiskers show the 90% interval 1154 

(5th to 95th percentile).    1155 
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 1156 

Figure 4. Model-data comparison for annual, July and January precipitation (mm). For the 1157 

left panel (a,b), points represent the reconstruction from IVM, shades show the last 30-year 1158 

means simulation results of multi-model ensemble (MME) for 13 PMIP3 models. The 1159 

box-and-whisker plots (d-f) show the changes as shown by each PMIP3 model and the 1160 

reconstruction. (d) considers changes in annual precipitation, (e) indicates changes in July 1161 

precipitation, and (f) shows changes in January precipitation. The lines in each box shows the 1162 

median value from each set of measurements, the box shows the 25%-75% range, and the 1163 

whiskers show the 90% interval (5th to 95th percentile).  1164 
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 1166 

Figure 5. Comparison of interpolated megabiomes distribution (plot in red rectangle) with the 1167 

simulated spatial pattern from BIOME4 for each model during mid-Holocene. 1168 
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 1173 

Figure 6. Changes in the extent of each megabiome as a consequence of simulated climate 1174 

changes for each model, both expressed as change relative to the PI extent of same 1175 

megabiome.  1176 
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Figure 7. Comparison between the climate reconstruction and previous reconstruction over 1187 

China. (a) Previous temperature results. Diamond is the qualitative reconstruction, red is the 1188 

temperature increase and green is the temperature decrease; Circle is quantitative 1189 

reconstruction; (b) Mean annual temperature reconstruction in this study; (c) Previous 1190 

precipitation results, diamond is the qualitative reconstruction, red is the precipitation increase 1191 

and green is the precipitation decrease; Circle is the quantitative reconstruction; (d) Mean 1192 

annual precipitation reconstruction in this study. 1193 
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 1201 

Figure 8. Scatter plots showing temperature, cloud cover feedback and surface albedo 1202 

feedback changes during the MH. The values shown are the simulated 30-year mean anomaly 1203 

(MH-PI) for the 13 models. a, annual mean temperature relative to the annual mean cloud 1204 

cover feedback and d, annual surface albedo feedback. b, Summer (JJA) mean temperature 1205 

relative to the summer mean cloud cover feedback and e, Summer surface albedo feedback.  1206 

c, Winter (DJF) mean temperature relative to the summer mean cloud cover feedback and f, 1207 

Winter surface albedo feedback. The horizontal and vertical lines in plots represent the value 1208 

of 0. 1209 
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 1210 

 1211 

Figure 9. Climate anomalies between the two experiments (6 ka and 6 ka_VEG) conducted in 1212 

CESM version 1.0.5. The anomalies (6 ka_VEG-6 ka) of temperature and precipitation at 1213 

both annual and seasonal scale are presented, and all these climate variables are calculated as 1214 

the last 50-year means from two simulations. 1215 
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