
Long-term Surface Temperature (LoST) Database as a complement
for GCM preindustrial simulations
Francisco José Cuesta-Valero1,2, Almudena García-García1,2, Hugo Beltrami2, Eduardo Zorita3, and
Fernando Jaume-Santero2,4

1Environmental Sciences Program, Memorial University of Newfoundland, St. John’s, NL, Canada.
2Climate & Atmospheric Sciences Institute, St. Francis Xavier University, Antigonish, NS, Canada.
3Institute of Coastal Research, Hemlholtz-Zentrum Geesthacht, Germany.
4Departamento de Física de la Tierra y Astrofísica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040,
Madrid, Spain.

Correspondence: H. Beltrami, Climate & Atmospheric Sciences Institute, Department of Earth Sciences, St. Francis Xavier
University, 5009 Chapel Square, Antigonish, NS, B2G 2W5, Canada (hugo@stfx.ca).

Abstract. Estimates of climate sensitivity from General Circulation Model (GCM) simulations still present a large spread

despite the continued improvements in climate modeling since the 1970s. This variability is partially caused by the dependence

of several long-term feedback mechanisms on the reference climate state. Indeed, state-of-the-art GCMs present a large spread

of control climate states probably due to the lack of a suitable reference for constraining the climatology of preindustrial

simulations. We assemble a new gridded database of long-term ground surface temperatures (LoST database) obtained from5

geothermal data over North America, and we explore its use as a potential reference for the evaluation of GCM preindustrial

simulations. We compare the LoST database with observations from the CRU database, as well as with five past millennium

transient climate simulations and five preindustrial control simulations from the third phase of the Paleoclimate Modelling

Intercomparison Project (PMIP3) and the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The database

is consistent with meteorological observations as well as with both types of preindustrial simulations, which suggests that10

LoST temperatures can be employed as a reference to narrow down the spread of surface temperature climatologies on GCM

preindustrial control and past millennium simulations.

1 Introduction

General Circulation Model (GCM) simulations of the Earth’s climate are sophisticated tools that reproduce many physical

processes of the climate system, helping to understand and characterize the dynamics of the climate system both at global15

and regional scales, as well as from decadal to millennial timescales (Flato et al., 2013). Despite the large number of different

GCMs developed and maintained by modeling groups around the world, future projections of climate change still present a

large degree of uncertainty (Knutti and Sedláček, 2012), mainly due to the different climate sensitivity achieved by each model.

The Equilibrium Climate Sensitivity (ECS) is typically defined as the change in equilibrium temperature given a doubling of

atmospheric CO2 concentration (Gregory et al., 2002), and it is considered one of the most important metrics to understand20

the long-term evolution of the climate system. Numerous studies, nonetheless, have unsuccessfully tried to narrow the uncer-
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tainty range of ECS using observations, simulations and paleoreconstructions, the best estimates of ECS remaining between

1.5− 4.5 ◦C since the 1970s (Knutti et al., 2017).

The large uncertainty in ECS estimates is also present in state-of-the-art GCMs (Andrews et al., 2012; Flato et al., 2013;

Forster et al., 2013; Knutti et al., 2017), mainly as result of approximating the description of several climate phenomena, tuning

practices, and the spread in control climate states. Each GCM approximates and resolves the differential equations governing5

the evolution of the climate system using different numerical methods and algorithms, leading to a diverse representation of the

climate evolution within the array of models (Dommenget, 2016). Additionally, each GCM employs different parameterizations

for approximating processes that cannot be resolved due to the lack of spatial resolution or computational resources, such as

radiative transfer, convection or clouds (McFarlane, 2011; Sen Gupta et al., 2013). All these necessary approximations add

inconsistencies to simulations, affecting the simulated climate state and trajectory. Parameterizations of radiative forcing by10

CO2 in climate models are of special importance, being responsible for nearly 50% of the uncertainties in the estimated values

of ECS (Soden et al., 2018). Another practice related to parameterizations that affects the simulated ECS is model tuning

(Mauritsen et al., 2012; Hourdin et al., 2017; Schmidt et al., 2017). Tuning practices consist in varying model parameters,

whose values are poorly constrained by theory or observations or not constrained at all, to obtain a simulated climate evolution

compatible with observations. Thereby, this parameter adjustment affects the representation of feedback mechanisms and other15

physical processes within the model, altering the response to external forcings (Mauritsen et al., 2012; Schmidt et al., 2017).

Furthermore, the magnitude of some important long-term feedback mechanisms depends on the mean climate state - i.e., the

model response to external forcings is itself mean state dependent (Dommenget, 2016; Hu et al., 2017, and references therein).

Ice-albedo and water vapor feedbacks are two important processes affected by the control climate state (Hu et al., 2017). The

strength of both feedbacks is associated with simulated absolute values of surface temperature, since absolute temperature20

is the main factor governing water phase changes on the Earth. Permafrost stability, and thus permafrost carbon feedback,

also depends on the reference climatology and the simulated climate trajectory (Slater and Lawrence, 2013). Although many

GCMs are still in the process of implementing permafrost modules in their code, several studies have suggested that the

impact of the permafrost carbon feedback on climate evolution would be important (e.g., Koven et al., 2011; MacDougall

et al., 2012). Therefore, a constrained preindustrial control simulation may improve the representation of those feedbacks in25

transient climate experiments, reducing the uncertainty of ECS estimates from model simulations, as well as reducing the

spread in projections of future climate change (Dommenget, 2016; Hu et al., 2017). At this point, estimates of preindustrial

long-term surface temperatures from geothermal data may be an useful reference for assessing wether the simulated surface

temperature climatology is realistic enough in preindustrial climate simulations. Additionally, such preindustrial long-term

absolute temperatures may be employed to define a preindustrial baseline from which to evaluate the temperature change due30

to the anthropogenic influence on climate (Hawkins et al., 2017).

Borehole Temperature Profile (BTP) measurements have been employed to estimate both global and regional past trends

of surface temperature (e.g., Huang et al., 2000; Harris and Chapman, 2001; Beltrami, 2002; Beltrami and Bourlon, 2004)

and surface flux histories over the last centuries (e.g., Beltrami, 2002; Beltrami et al., 2002, 2006). Several studies have

validated the borehole methodology using past millennium simulations from the ECHO-G GCM (González-Rouco et al.,35
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2006; González-Rouco et al., 2009) and the PMIP3/CMIP5 GCMs (García-García et al., 2016), reinforcing results retrieved

from subsurface temperature. Reconstructions of surface temperature and surface flux from borehole measurements have been

compared with ECHO-G millennial simulations (Stevens et al., 2008; MacDougall et al., 2010), as well as with estimates of

continental heat storage from CMIP5 GCM simulations (Cuesta-Valero et al., 2016). All these direct comparisons between BTP

estimates and GCM simulations have revealed several strengths and weaknesses of GCM simulations, and have contributed to5

the improvement of the represented physical processes relevant for the climate evolution within land surface model components

(e.g., Alexeev et al., 2007; MacDougall and Beltrami, 2017).

Here, we propose the use of long-term surface temperatures estimated from BTP measurements as an additional tool to

better evaluate the realism of surface temperature climatology within GCM preindustrial simulations, and thereby to help to

improve the representation of mean state dependent feedbacks. These long-term surface temperatures are retrieved from the10

quasi-equilibrium state of the subsurface thermal regime at the location of each BTP measurement. This is estimated from the

deepest section of the temperature profile, which is the part least affected by the recent changes in the surface energy balance.

The subsurface temperature at the bottom part of each temperature profile depends linearly on depth, and the extrapolation of

this linear behavior to the surface is interpreted as the long-term mean surface temperature at each borehole site (e.g. Huang

et al., 2000; Harris and Chapman, 2001; Beltrami, 2002). We present here a gridded Long-term Surface Temperature (LoST)15

database for most of continental North America and three Caribbean islands (Cuba, Hispaniola and Puerto Rico) using 514

BTP measurements. This database is freely available for the scientific community at (Add link to download LoST database).

The database is compared with five past millennium and five preindustrial control simulations from the PMIP3/CMIP5 archive

to assess the realism of the simulated preindustrial equilibrium state by the current generation of global climate models.

2 Data20

2.1 Meteorological data: Climate Research Unit (CRU) data

We employ surface air temperatures from the University of East Anglia Climatic Research Unit’s (CRU) TS4.01 gridded

dataset (Harris et al., 2014) for evaluation purposes. This dataset consists in a gridded set of climate variables derived from

meteorological observations worldwide. Sources of meteorological data include several national meteorological services, CRU

archives, the World Meteorological Organization (WMO) and the National Oceanic and Atmospheric Administration (NOAA).25

Surface air temperature are supplied on a monthly resolution for continental areas except for Antarctica from 1901 to 2016 of

the Common Era (CE).

2.2 GCM data

We use five Past Millennium (PM) and five preindustrial control (piControl) GCM simulations (see Table 1 for references) from

the third phase of the Paleoclimate Modelling Intercomparison Project and the fifth phase of the Coupled Model Intercompari-30

son Project (PMIP3/CMIP5) (Braconnot et al., 2012; Taylor et al., 2011) to test the LoST database. PM simulations (Past1000
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experiment in the PMIP3/CMIP5 database) simulate the climate response to prescribed external forcings from Schmidt et al.

(2011) for the period 850-1850 CE, including orbital variations, changes in solar activity, greenhouse gas concentrations,

volcanic eruptions and changes in land use and land cover. Each PMIP3/CMIP5 GCM also performs a piControl simulation

forced with agreed preindustrial forcings to provide a baseline from which to start transient climate experiments. For more

details about the PMIP3/CMIP5 control simulations and initialization procedures see Sen Gupta et al. (2013) and Séférian5

et al. (2016).

2.3 Borehole data

Here, we use estimates of long-term surface temperatures from 514 BTP measurements over North America (Jaume-Santero

et al., 2016). The standard methodology to retrieve past temperature and flux histories from geothermal data assumes that

each borehole temperature profile results from the superposition of a transient perturbation due to the changes in the surface10

energy balance with time and the quasi steady-state of the subsurface thermal regime (e.g. Huang et al., 2000; Harris and

Chapman, 2001; Beltrami, 2002). Therefore, considering the subsurface as a homogeneous half space without heat production

from radioactive decay or advection, the solution of the heat diffusion equation for a temperature profile can be approximated

as (e.g., Carslaw and Jaeger, 1959; Jaume-Santero et al., 2016):

T (z) = T0 + Γ · z+Tt (t) , (1)15

where Tt is the surface transient perturbation, T0 is the long-term surface temperature (T0 temperature hereafter) and Γ is

the subsurface thermal gradient at equilibrium. The recorded surface transient perturbation (Tt) can be retrieved from each

temperature profile, once the subsurface thermal equilibrium is estimated (for more details about the borehole methodology,

see Mareschal and Beltrami 1992; Bodri and Cermak 2007; Jaume-Santero et al. 2016). As the heat flux from the Earth’s

interior remains stable at time scales of millions of years and the deepest part of a BTP is the least affected by the recent20

changes in the surface energy balance, the quasi-equilibrium state of the subsurface thermal regime can be estimated from

the deepest temperatures of each borehole profile (see scheme in Fig. 1). Once vertical variations in thermal properties of the

subsurface rocks are taken into account, temperature depends linearly on depth at the bottom part of the temperature profile,

allowing to approximate the subsurface thermal equilibrium by a linear least-squares regression. The extrapolation of this linear

behavior to the surface can be interpreted as the long-term mean surface temperature at each borehole location (T0 temperature25

in Eq. 1 and Fig. 1). Depending on the profile’s depth, the T0 temperatures represent the long-term ground surface temperature

for a determined period of time. Due to the nature of heat diffusion through the ground, the recorded temperature at a depth z

can be related to an estimate of time (t) following the equation (Carslaw and Jaeger, 1959; Pickler et al., 2016):

t≈ z2

4κ
, (2)

where κ is the thermal diffusivity of the subsurface. We consider κ= 1× 10−6 m2s−1 for all BTP measurements (Cermak30

and Rybach, 1982). In this study, all BTPs are truncated at the same depth (300 m) to ensure that all T0 temperatures are

estimated for the same temporal period. We use the last hundred meters of each BTP to estimate the subsurface thermal
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equilibrium, obtaining an estimated temporal period that approximately ranges from ∼ 1300 CE (z = 300 m) to ∼ 1700 CE

(z = 200 m). Thereby, this period of time provides a baseline to compare with long-term temperatures from the PMIP3/CMIP5

PM simulations. However, the estimated temporal period is not homogeneous as result of the non-linear relationship between

time and depth (Beltrami and Mareschal, 1995), and thus estimates of recent years (i.e., 1700 CE) are better determined than

estimates of past years (1300 CE).5

3 The LoST database

In order to provide with a gridded dataset over continental North America, T0 temperatures from BTP measurements are spa-

tially interpolated to a 0.5◦× 0.5◦ grid using the Gradient plus Inverse Distance Squared (GIDS) technique. The GIDS method

(Nalder and Wein, 1998) relies on the multiple linear regression of observed climate variables to retrieve longitudinal, latitu-

dinal and altitudinal gradients that are employed to estimate values for gridded nodes. The contribution of each measurement10

is inverse-weighted by their squared distance to the target node, while the coefficients from the regression analysis allow to

correct for the location of each measurement:

V0 =
∑N

i=1 [Vi + (lat0− lati)Clat + (lon0− loni)Clon + (z0− zi)Cz]d−2
i∑N

i=1 d
−2
i

, (3)

where V0 is the predicted variable at the target node, Vi, lati, loni and zi represent the variable, latitude, longitude and

altitude of the ith measurement respectively, lat0, lon0 and z0 represent the latitude, longitude and altitude of the target node15

respectively, Clat, Clon and Cz are the coefficients from the regression analysis, and di is the distance from the ith measurement

to the target node. The propagation of known errors in the GIDS algorithm is described in Section S1. The GIDS technique

has been used to interpolate surface temperature, precipitation, evapotranspiration and other climate variables in several zones

of the world including North America (e.g., Price et al., 2000; Mardikis et al., 2005). Furthermore, the GIDS method performs

well in comparison with other broadly used interpolation techniques like co-kriging or smoothing splines (ANUSPLIN suite)20

(Nalder and Wein, 1998; Price et al., 2000; Li and Heap, 2011), and it has been previously employed to downscale CMIP5

simulations (McCullough et al., 2016).

Since the T0 dataset employed here provides latitudes and longitudes for each temperature profile, we expand the database

estimating the altitude above sea level for each BTP measurement from the second version of the 2-minute Gridded Global

Relief Data (ETOPO2) of the National Oceanic and Atmospheric Administration (National Geophysical Data Center, 2006.25

Two-minute Gridded Global Relief Data (ETOPO2) v2. National Geophysical Data Center, NOAA. doi:10.7289/V5J1012Q

[last accessed on July 7th, 2017]). For this study, the regression analysis of T0 temperatures considering latitude, longitude and

altitude yields robust results, with a R2 value of 0.865 and a p-Value� 0.05. The distance from the measurements to the nodes

is computed using the Vincenty’s formula for an ellipsoid with different major and minor axes (Vincenty, 1975), and therefore

the altitude of both measurements and grid nodes are not considered in our distance calculations.30

We performed a pseudo-proxy experiment (e.g., Smerdon, 2012) to determine which is the maximum appropriate distance

from a grid node to a BTP measurement to interpolate the T0 temperatures. That is, we use the long-term mean ground
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surface temperatures for the period 1300-1700 CE from the five PMIP3/CMIP5 PM simulations as surrogate realities, and

apply the interpolation methodology employed to create the LoST database. Thereby, these GCM simulations were regridded

to a 0.5◦× 0.5◦ grid, considering grid cells containing BTP measurements as reference for applying Eq. 3 to the rest of grid

cells. Then, Root-Mean Squared Errors (RMSEs) between the interpolated data and the remapped simulations were computed

(Fig. S1). We set 650 km as maximum distance criterion since this is the maximum distance at which the RMSE is lower5

than 1.0 ◦C for the five simulations. Such distance criterion, nevertheless, produces results for three grid cells in the Yucatan

peninsula (Mexico), which we consider unjustifiable as there are no BTP measurements in or near that part of Mexico. Those

grid cells are therefore masked out from our analysis.

4 Results

The distribution of LoST temperatures at grid cells containing BTP measurements reproduces the shape of the distribution10

of raw T0 temperatures (Fig. 2a), indicating that the GIDS interpolation does not substantially modify the shape of the orig-

inal distribution of temperatures retrieved from BTP measurements. However, the distribution of the entire LoST database

resembles the distribution of CRU temperatures, differing from the distribution of the raw T0 temperatures. This change in the

temperature distribution after the spatial interpolation may be related to the inclusion of interpolated temperatures at higher and

lower latitudes than the raw T0 temperatures, as the majority of BTP measurements cover from 35 ◦N to 60 ◦N. Nonetheless,15

the latitudinal mean temperatures from the LoST database are consistent with T0 temperatures from BTP measurements, either

considering only grid cells with BTP measurements or the entire LoST database (Fig. 2b). The latitudinal mean temperatures

from the LoST database reach higher values than the CRU database at latitudes higher than ∼ 50 ◦N, while both datasets

achieve similar mean temperatures at lower latitudes (Fig. 2b). Previous studies have found warmer ground temperatures than

air temperatures in meteorological observations over North America, probably due to the insulating effect of snow cover dur-20

ing winter (e.g., Beltrami and Kellman, 2003; Smerdon et al., 2003). That is, warmer temperatures should be expected for the

LoST database than for the CRU database, as our results show (Fig. 2a and 2b). It should be noted, nevertheless, that the CRU

database covers a period with a marked global temperature increase (Hartmann et al., 2013). Therefore, estimates of long-term

surface temperatures from CRU data reflect such temperature increase, hindering the direct comparison between both datasets.

Despite this difference in the climatology of both databases, the long-term surface temperature from the LoST dataset repro-25

duces the expected spatial pattern of temperatures for North America (Figs. 2c and 2d), in agreement with long-term surface

temperatures estimated from BTP measurements and with long-term surface temperatures from CRU data.

The LoST temperatures were also compared with long-term surface temperature estimates from five Past Millennium (PM)

and five piControl simulations (Table 1) included in the PMIP3/CMIP5 archive to test the realism of forced and control GCM

simulations in reproducing estimates of long-term surface temperatures. Long-term surface temperatures from the PM simu-30

lations are estimated as the mean surface air temperature for the period 1300-1700 CE (SAT0) and the mean ground surface

temperature linearly interpolated at 1.0 m depth for the same period (GST0), in order to be consistent with the estimated

temporal range for T0 temperatures in Section 2.3. The PMIP3/CMIP5 simulations are interpolated onto the grid of the LoST
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database; SAT0 and GST0 values are estimated only at grid cells containing LoST temperatures. SAT0 and GST0 values are

also estimated for piControl simulations following the same method, but averaging over each entire control simulation.

Surface temperatures from PMIP3/CMIP5 PM and piControl simulations show similar latitudinal patterns to that from the

LoST database, with lower temperatures at northern latitudes and higher temperatures at southern latitudes (Figs. S2 and S3).

SAT0 estimates from the CCSM4, the MRI-CGCM3 and the BCC-CSM1.1 models show generally lower values than LoST5

temperatures for both piControl and PM simulations, while GST0 estimates show higher values than LoST temperatures at

high latitudes for the same GCM simulations (Figs. S4 and S5). Such result is in agreement with previous analyses of air and

ground temperature relationship within GCM simulations (González-Rouco et al., 2003, 2006; Stieglitz and Smerdon, 2007;

Koven et al., 2013; García-García et al., 2016) and meteorological observations over North America (e.g., Smerdon et al., 2003;

Beltrami and Kellman, 2003). In contrast, MPI-ESM-P and GISS-E2-R simulations present lower SAT0 and GST0 values than10

LoST temperatures, indicating lower long-term ground surface temperatures than the rest of the models (Table 1 and Figs. S4

and S5). The comparison of the mean LoST temperature over North America with the simulated temperature evolution by each

GCM shows three different behaviors within the PMIP3/CMIP5 ensemble. The CCSM4 and the BCC-CSM1.1 simulations

present lower mean air temperatures and higher mean ground temperatures than the mean LoST temperature (Fig. 3 and Table

1). The similar GST0 and mean ground surface temperatures for the CCSM4 and the BCC-CSM1.1 GCMs in both PM and15

piControl simulations were expected since these models use a similar land surface model component (Wu et al., 2014) and

the simulated ground temperatures by CMIP5 models are highly dependent on the employed land surface model component

(Slater and Lawrence, 2013, García-García et al., submitted to Journal of Geophysical Research - Atmospheres). In contrast,

the GISS-E2-R and the MPI-ESM-P models produce lower mean GST0 values than the mean LoST temperature and the rest of

models, while simulating similar SAT0 values to those from the rest of the PMIP3/CMIP5 GCMs. Previous results have shown20

that the MPI-ESM-P PM simulation yields a high air-ground temperature coupling (García-García et al., 2016), probably due

to the omission of latent heat of fusion in soil water (Koven et al., 2013). This could cause the low ground surface temperature

simulated by the MPI-ESM-P model in both PM and piControl simulations in comparison with the mean LoST temperature

(Fig 3). A strong air-ground coupling may also cause the low ground surface temperature in the GISS-E2-R simulations, since

the magnitude of the difference between GST0 and SAT0 is similar to that from the MPI-ESM-P simulations (Table 1). Finally,25

the MRI-CGCM3 PM simulation yields GST0 values below the LoST climatology, but only by 0.3 ◦C (0.1 ◦C if considering

the 2σ range of the LoST climatology, Fig. S6), which are relatively small in comparison with the differences between the

LoST climatology and the GST0 values from MPI-ESM-P and GISS-E2-R simulations (> 2.0 ◦C, Table 1). Thus, we can

consider that three of the five PMIP3/CMIP5 GCMs (the CCSM4, the MRI-CGCM3 and the BCC-CSM1.1) simulate a surface

temperature climatology, in the PM (1300-1700 CE) and piControl simulations, comparable to that from the LoST dataset,30

which is an unexpected result as none of the PMIP3/CMIP5 GCM simulations studied here were specifically tuned to match

this climatology.
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5 Discussion

Our results demonstrate that LoST temperatures can be used as reference for assessing the represented climatology in both PM

and piControl simulations. There are, however, two main limitations at this stage of the study: the supplied variable and the

regional character of the database. The LoST database is constituted by estimates of long-term ground surface temperatures,

while GCM simulations are typically evaluated against observations of surface air temperature (SAT) (e.g., Mauritsen et al.,5

2012; Flato et al., 2013; Séférian et al., 2016; Schmidt et al., 2017). We can provide a reference for simulated long-term

SAT by accounting for the offset between simulated air and ground temperatures and using the LoST temperatures. As an

example, SAT references are estimated for the five PM and five piControl simulations employed in this study (dashed blue line

in Fig. 3). SAT references for PM simulations are estimated from the offset between air and ground temperatures in piControl

simulations, while SAT references for piControl simulations are estimated from the offset between air and ground temperatures10

in PM simulations. Such offsets show a constant behaviour in both simulations (Fig. S7). GCM simulations in disagreement

with the estimated SAT reference (the MPI-ESM-P and the GISS-E2-R simulations) may be representing a strong air-ground

coupling, as discussed in Section 4. Therefore, although the LoST database contains estimates of ground surface temperatures,

it may be also used to assess simulated long-term surface air temperatures on a first order approach.

The regional character of the presented LoST database poses some caveats for analyzing the global climatology of prein-15

dustrial simulations. Indeed, results of the simulated regional climatology cannot be globally extrapolated since the magnitude

of the potential spurious drifts in control simulations varies markedly at regional scales and these regional drifts could be

larger than the global-averaged drift (Sen Gupta et al., 2012, 2013). Further work would consist in generating a global LoST

database from the existing global network of BTP measurements, helping to minimize the effect of possible regional drifts on

the simulated climatology. However, BTP measurements are scarce in the Southern Hemisphere, a potential burden that needs20

to be considered for assembling such global version of this database. Additionally, the temperature profiles employed in this

study to estimate T0 temperatures were truncated to 300 m of depth, which determines the temporal period of reference for the

comparison with PM simulations. Deeper BTP measurements can retrieve the climatology of previous time periods, although

the global BTP network contains fewer temperature profiles deeper than 300 m (see Fig. 1 in Beltrami et al., 2015).

Despite the regional character of the LoST temperatures, the northern BTPs contained in this database allow to evaluate the25

long-term stability of permafrost over North America. That is, the northern temperatures in this database can be compared with

regional and global simulations as a reference to the preindustrial permafrost stability (Jaume-Santero et al., in preparation).

Furthermore, previous studies have found that the CMIP5 GCM simulations have difficulties to properly represent permafrost

evolution (Koven et al., 2013; Slater and Lawrence, 2013), partially due to the broad range of simulated climate trajectories

by each GCM and the differences between the employed land surface model components (Slater and Lawrence, 2013). Us-30

ing LoST temperatures to improve the surface temperature climatology of global and regional simulations may enhance the

simulated long-term preindustrial 0 ◦C isotherm, which is important to correctly represent permafrost evolution.
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6 Conclusions

A gridded database of past long-term surface temperatures over most part of continental North America has been assembled

from geothermal measurements. Our results show that this database can be used as reference to evaluate the realism of GCM

preindustrial control and past millennium simulations and possibly to improve the reference climate state by adjusting key

parameters or preindustrial forcings in control experiments. Thereby, spread in ECS estimates by GCM simulations may be5

reduced given the relationship between control temperature climatology and three long-term powerful feedbacks as the ice-

albedo feedback, the water vapor feedback and the permafrost carbon feedback. Future work would consist in generating a

global version of the LoST database using the rest of the global network of borehole temperature profile measurements and

following the described methodology, as well as generating new versions of this global database including future temperature

profile measurements.10
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Table 1. Model name, SAT0 estimates, GST0 estimates, SAT0 and GST0 differences with the mean LoST temperatures and references for

each PMIP3/CMIP5 GCM simulation. All results in ◦C. Ground temperatures for MRI-CGCM3 piControl simulation could not be retrieved

from the PMIP3/CMIP5 data servers. Temperature average of the LoST database is 5.2 ◦C, with a 95% confidence interval between 5.0 and

5.4 ◦C.
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Figure 1. Synthetic borehole temperature profile (black dots) using data from the CCSM4 PM simulation (inset) and linear fit of the last

100 m of the profile (red line). The synthetic temperature profile is generated using the simulated global ground temperature anomaly at

1.0 m depth for the period 1300-1700 CE as transient perturbation (Tt), mean ground temperature as long-term surface temperature (T0)

and a typical thermal gradient (Γ) of 0.01 Km−1 (Jaume-Santero et al., 2016). The equivalence between depth (z) and time (t) is given by

Eq. 2. Thermal diffusivity is considered as κ= 1 · 10−6 m2 s−1 (Cermak and Rybach, 1982).
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Figure 2. Histogram (a) and latitudinal mean temperatures (b) from BTP measurements (gray), LoST temperatures at grid cells containing

BTP measurements (black), LoST temperatures (red) and mean surface air temperature from the CRU database (blue). LoST temperatures

(∼1300-1700 CE) (c) in comparison with mean surface air temperature from CRU data (1901-2015 CE) (d). White stars in (c) indicate the

location of the 514 BTP measurements.
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Figure 3. Surface air temperature evolution (gray solid line), ground surface temperature evolution (black solid line), SAT0 (gray horizontal

line) and GST0 (black horizontal line) for (a) PMIP3/CMIP5 PM and (b) PMIP3/CMIP5 piControl simulations. Solid red lines represent

the mean LoST temperature and the red shadow represents the 95% confidence interval (Section S1, Fig. S6). Dashed blue lines represent

estimated references for long-term surface air temperatures from the LoST climatology and the simulated air-ground temperature offset

in (a) piControl and (b) PM simulations. Ground temperatures for the MRI-CGCM3 piControl simulation could not be retrieved from the

PMIP3/CMIP5 data servers. 19
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