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Abstract. Estimates of climate sensitivity from General Circulation Model (GCM) simulations still present a large spread

despite the continued improvements in climate modeling since the 1970s. This variability is partially caused by the dependence

of several long-term feedback mechanisms on the reference climate state. Indeed, state-of-the-art GCMs present a large spread

of control climate states probably due to the lack of a suitable reference for constraining the climatology of preindustrial

simulations. We assemble a new gridded database of long-term ground surface temperatures (LoST database) obtained from5

geothermal data over North America, and we explore its use as a potential reference for the evaluation of GCM preindustrial

simulations. We compare the LoST database with observations from the CRU database, as well as with five past millennium

transient climate simulations and five preindustrial control simulations from the third phase of the Paleoclimate Modelling

Intercomparison Project (PMIP3) and the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The database

is consistent with meteorological observations as well as with both types of preindustrial simulations, which suggests that10

LoST temperatures can be employed as a reference to narrow down the spread of surface temperature climatologies on GCM

preindustrial control and past millennium simulations.

1 Introduction

General Circulation Model (GCM) simulations of the Earth’s climate are sophisticated tools that reproduce many physical

processes of the climate system, helping to understand and characterize the dynamics of the climate system both at global15

and regional scales, as well as from decadal to millennial timescales (Flato et al., 2013). Despite the large number of different

GCMs developed and maintained by modeling groups around the world, future projections of climate change still present a

large degree of uncertainty (Knutti and Sedláček, 2012), mainly due to the different climate sensitivity achieved by each model.

The Equilibrium Climate Sensitivity (ECS) is typically defined as the change in equilibrium temperature given a doubling of

atmospheric CO2 concentration (Gregory et al., 2002), and it is considered one of the most important metrics to understand20

the long-term evolution of the climate system. Numerous studies, nonetheless, have unsuccessfully tried to narrow the uncer-
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tainty range of ECS using observations, simulations and paleoreconstructions, the best estimates of ECS remaining between

1.5− 4.5 ◦C since the 1970s (Knutti et al., 2017).

The large uncertainty in ECS estimates is also present in state-of-the-art GCMs (Andrews et al., 2012; Flato et al., 2013;

Forster et al., 2013; Knutti et al., 2017), mainly as result of approximating the description of several climate phenomena, tuning5

practices, and the spread in control climate states. Each GCM approximates and resolves the differential equations governing

the evolution of the climate system using different numerical methods and algorithms, leading to a diverse representation of the

climate evolution within the array of models (Dommenget, 2016). Additionally, each GCM employs different parameterizations

for approximating processes that cannot be resolved due to the lack of spatial resolution or computational resources, such as

radiative transfer, convection or clouds (McFarlane, 2011; Sen Gupta et al., 2013). All these necessary approximations add10

inconsistencies to simulations, affecting the simulated climate state and trajectory. Parameterizations of radiative forcing by

CO2 in climate models are of special importance, being responsible for nearly 50% of the uncertainties in the estimated values

of ECS (Soden et al., 2018). Another practice related to parameterizations that affects the simulated ECS is model tuning

(Mauritsen et al., 2012; Hourdin et al., 2017; Schmidt et al., 2017). Tuning practices consist in varying model parameters,

whose values are poorly constrained by theory or observations or not constrained at all, to obtain a simulated climate evolution15

compatible with observations. Thereby, this parameter adjustment affects the representation of feedback mechanisms and other

physical processes within the model, altering the response to external forcings (Mauritsen et al., 2012; Schmidt et al., 2017).

Furthermore, the magnitude of some important long-term feedback mechanisms depends on the mean climate state - i.e., the

model response to external forcings is itself mean state dependent (Dommenget, 2016; Hu et al., 2017, and references therein).

Ice-albedo and water vapor feedbacks are two important processes affected by the control climate state (Hu et al., 2017). The20

strength of both feedbacks is associated with simulated absolute values of surface temperature, since absolute temperature

is the main factor governing water phase changes on the Earth. Permafrost stability, and thus permafrost carbon feedback,

also depends on the reference climatology and the simulated climate trajectory (Slater and Lawrence, 2013). Although many

GCMs are still in the process of implementing permafrost modules in their code, several studies have suggested that the

impact of the permafrost carbon feedback on climate evolution would be important (e.g., Koven et al., 2011; MacDougall25

et al., 2012). Therefore, a constrained preindustrial control simulation may improve the representation of those feedbacks in

transient climate experiments, reducing the uncertainty of ECS estimates from model simulations, as well as reducing the

spread in projections of future climate change (Dommenget, 2016; Hu et al., 2017). At this point, estimates of preindustrial

long-term surface temperatures from geothermal data may be a useful reference for assessing wether the simulated surface

temperature climatology is realistic enough in preindustrial climate simulations. Additionally, such preindustrial long-term30

absolute temperatures may be employed to define a preindustrial baseline from which to evaluate the temperature change due

to the anthropogenic influence on climate (Hawkins et al., 2017).

Borehole Temperature Profile (BTP) measurements have been employed to estimate both global and regional past trends

of surface temperature (e.g., Vasseur et al., 1983; Huang et al., 2000; Harris and Chapman, 2001; Beltrami, 2002; Beltrami

and Bourlon, 2004) and surface flux histories over the last centuries (e.g., Wang and Bras, 1999; Beltrami, 2002; Beltrami35

et al., 2002, 2006; Demezhko and Gornostaeva, 2015a, b). Several studies have validated the borehole methodology using
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past millennium simulations from the ECHO-G GCM (González-Rouco et al., 2006, 2009) and the PMIP3/CMIP5 GCMs

(García-García et al., 2016), reinforcing results retrieved from subsurface temperature. Reconstructions of surface temperature

and surface flux from borehole measurements have been compared with ECHO-G millennial simulations (Stevens et al., 2008;

MacDougall et al., 2010), as well as with estimates of continental heat storage from CMIP5 GCM simulations (Cuesta-Valero5

et al., 2016). All these direct comparisons between BTP estimates and GCM simulations have revealed several strengths and

weaknesses of GCM simulations, and have contributed to the improvement of the represented physical processes relevant for

the climate evolution within land surface model components (e.g., Alexeev et al., 2007; MacDougall and Beltrami, 2017).

Here, we propose the use of long-term surface temperatures estimated from BTP measurements as an additional tool to

better evaluate the realism of surface temperature climatology within GCM preindustrial simulations, and thereby to help to10

improve the representation of mean state dependent feedbacks. These long-term surface temperatures are retrieved from the

quasi-equilibrium state of the subsurface thermal regime at the location of each BTP measurement. This is estimated from the

deepest section of the temperature profile, which is the part least affected by the recent changes in the surface energy balance.

The subsurface temperature at the bottom part of each temperature profile depends linearly on depth, and the extrapolation of

this linear behavior to the surface is interpreted as the long-term mean surface temperature at each borehole site (e.g. Huang15

et al., 2000; Harris and Chapman, 2001; Beltrami, 2002). We present here a gridded Long-term Surface Temperature (LoST)

database for most of continental North America and three Caribbean islands (Cuba, Hispaniola and Puerto Rico) using 514 BTP

measurements. This database is freely available for the scientific community at https://figshare.com/s/f20d6002a57cf3279a1c.

The database is compared with five past millennium and five preindustrial control simulations from the PMIP3/CMIP5 archive

to assess the realism of the simulated preindustrial equilibrium state by the current generation of global climate models.20

2 Data

2.1 Meteorological data: Climate Research Unit (CRU) data

We employ surface air temperatures from the University of East Anglia Climatic Research Unit’s (CRU) TS4.01 gridded

dataset (Harris et al., 2014) for evaluation purposes. This dataset consists in a gridded set of climate variables derived from

meteorological observations worldwide. Sources of meteorological data include several national meteorological services, CRU25

archives, the World Meteorological Organization (WMO) and the National Oceanic and Atmospheric Administration (NOAA).

Surface air temperatures are supplied on a monthly resolution for continental areas except for Antarctica from 1901 to 2016 of

the Common Era (CE).

2.2 GCM data

We use five Past Millennium (PM) and five preindustrial control (piControl) GCM simulations (see Table 1 for references) from30

the third phase of the Paleoclimate Modelling Intercomparison Project and the fifth phase of the Coupled Model Intercompari-

son Project (PMIP3/CMIP5) (Braconnot et al., 2012; Taylor et al., 2011) to test the LoST database. PM simulations (Past1000
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experiment in the PMIP3/CMIP5 database) simulate the climate response to prescribed external forcings from Schmidt et al.

(2011) for the period 850-1850 CE, including orbital variations, changes in solar activity, greenhouse gas concentrations,

volcanic eruptions and changes in land use and land cover. Each PMIP3/CMIP5 GCM also performs a piControl simulation

forced with agreed preindustrial forcings to provide a baseline from which to start transient climate experiments. For more5

details about the PMIP3/CMIP5 control simulations and initialization procedures see Sen Gupta et al. (2013) and Séférian

et al. (2016).

2.3 Borehole data

Here, we use estimates of long-term surface temperatures from the database described in Jaume-Santero et al. (2016). The BTP

measurements of this database have been previously filtered excluding profiles with non-climatic signals and artifacts, thus10

providing 514 BTPs suitable for climate studies over North America. The standard methodology to retrieve past temperature

and flux histories from geothermal data assumes that each borehole temperature profile results from the superposition of a

transient perturbation due to the changes in the surface energy balance with time and the quasi steady-state of the subsurface

thermal regime (e.g. Huang et al., 2000; Harris and Chapman, 2001; Beltrami, 2002). Therefore, considering the subsurface

as a half space without heat production from radioactive decay or advection, the solution of the heat diffusion equation for a15

temperature profile can be approximated as (e.g., Jaume-Santero et al., 2016):

T (z) = T0 + q0 ·R (z) +Tt (t) , (1)

where Tt is the surface transient perturbation, T0 is the long-term surface temperature (T0 temperature hereafter), q0 is the

subsurface flux at equilibrium and R (z) is the thermal resistance (Bullard and Schonland, 1939). Estimates of thermal resis-

tance require measurements of thermal conductivity through the subsurface profile, but the majority of available BTPs does20

not present such conductivity data. Thus, the thermal conductivity is assumed to be constant and Eq. (1) is rewritten as

T (z) = T0 + Γ · z+Tt (t) , (2)

where Γ is the subsurface thermal gradient at equilibrium. The recorded surface transient perturbation (Tt) can be retrieved

from each temperature profile, once the subsurface thermal equilibrium is estimated (for more details about the borehole

methodology, see Mareschal and Beltrami 1992; Bodri and Cermak 2007; Jaume-Santero et al. 2016). As the heat flux from25

the Earth’s interior remains stable at time scales of millions of years and the deepest part of a BTP is the least affected by the

recent changes in the surface energy balance, the quasi-equilibrium state of the subsurface thermal regime can be estimated

from the deepest temperatures of each borehole profile (see scheme in Fig. 1). Once vertical variations in thermal properties of

the subsurface rocks are taken into account, temperature depends linearly on depth at the bottom part of the temperature profile,

allowing to approximate the subsurface thermal equilibrium by a linear least-squares regression. The extrapolation of this linear30

behavior to the surface can be interpreted as the long-term mean surface temperature at each borehole location (T0 temperature

in Eq. 2 and Fig. 1, see Pickler et al. 2016 for further details). Depending on the profile’s depth, the T0 temperatures represent

the long-term ground surface temperature for a determined period of time. Due to the nature of heat diffusion through the
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ground, the required time (t) for a change in the surface energy balance to reach a certain depth (z) is given by (Carslaw and

Jaeger, 1959; Pickler et al., 2016):

t≈ z2

4κ
, (3)5

where κ is the thermal diffusivity of the subsurface. We consider κ= 1× 10−6 m2s−1 for all BTP measurements (Cermak

and Rybach, 1982). In this study, all BTPs are truncated at the same depth (300 m) to ensure that all T0 temperatures are

estimated for the same temporal period. We use the last hundred meters of each BTP to estimate the subsurface thermal

equilibrium, obtaining an estimated temporal period that approximately ranges from ∼ 1300 CE (z = 300 m) to ∼ 1700 CE

(z = 200 m). Thereby, this period of time provides a baseline to compare with long-term temperatures from the PMIP3/CMIP510

PM simulations. However, the estimated temporal period is not homogeneous as result of the non-linear relationship between

time and depth (Beltrami and Mareschal, 1995), and thus estimates of recent years (i.e., 1700 CE) are better determined than

estimates of past years (1300 CE). Influences of long-term perturbations of the past surface energy budget outside of that

temporal window may also affect the temperature within the depth range used here, see Section 5 for more details.

3 The LoST database15

In order to provide with a gridded dataset over continental North America, T0 temperatures from BTP measurements are spa-

tially interpolated to a 0.5◦ × 0.5◦ grid using the Gradient plus Inverse Distance Squared (GIDS) technique. The GIDS method

(Nalder and Wein, 1998) relies on the multiple linear regression of observed climate variables to retrieve longitudinal, latitu-

dinal and altitudinal gradients that are employed to estimate values for gridded nodes. The contribution of each measurement

is inverse-weighted by their squared distance to the target node, while the coefficients from the regression analysis allow to20

correct for the location of each measurement:

V0 =

∑N
i=1 [Vi + (lat0 − lati)Clat + (lon0 − loni)Clon + (z0 − zi)Cz]d−2

i∑N
i=1 d

−2
i

, (4)

where V0 is the predicted variable at the target node, Vi, lati, loni and zi represent the variable, latitude, longitude and

altitude of the ith measurement respectively, lat0, lon0 and z0 represent the latitude, longitude and altitude of the target node

respectively, Clat, Clon and Cz are the coefficients from the regression analysis, and di is the distance from the ith measurement25

to the target node. The propagation of known errors in the GIDS algorithm is described in Section S1. The GIDS technique

has been used to interpolate surface temperature, precipitation, evapotranspiration and other climate variables in several zones

of the world including North America (e.g., Price et al., 2000; Mardikis et al., 2005). Furthermore, the GIDS method performs

well in comparison with other broadly used interpolation techniques like co-kriging or smoothing splines (ANUSPLIN suite)

(Nalder and Wein, 1998; Price et al., 2000; Li and Heap, 2011), and it has been previously employed to downscale CMIP530

simulations (McCullough et al., 2016).

Since the T0 dataset employed here provides latitudes and longitudes for each temperature profile, we expand the database

estimating the altitude above sea level for each BTP measurement from the second version of the 2-minute Gridded Global
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Relief Data (ETOPO2) of the National Oceanic and Atmospheric Administration (National Geophysical Data Center, 2006.

Two-minute Gridded Global Relief Data (ETOPO2) v2. National Geophysical Data Center, NOAA. doi:10.7289/V5J1012Q

[last accessed on July 7th, 2017]). For this study, the regression analysis of T0 temperatures considering latitude, longitude and

altitude yields robust results, with a R2 value of 0.865 and a p-Value � 0.05. The distance from the measurements to the nodes5

is computed using the Vincenty’s formula for an ellipsoid with different major and minor axes (Vincenty, 1975), and therefore

the altitude of both measurements and grid nodes are not considered in our distance calculations.

We performed a pseudo-proxy experiment (e.g., Smerdon, 2012) to determine which is the maximum appropriate distance

from a grid node to a BTP measurement to interpolate the T0 temperatures. That is, we use the long-term mean ground

surface temperatures for the period 1300-1700 CE from the five PMIP3/CMIP5 PM simulations as surrogate realities, and10

apply the interpolation methodology employed to create the LoST database. Thereby, these GCM simulations were regridded

to a 0.5◦ × 0.5◦ grid, considering grid cells containing BTP measurements as reference for applying Eq. 4 to the rest of grid

cells. Then, Root-Mean Squared Errors (RMSEs) between the interpolated data and the remapped simulations were computed

(Fig. S1). We set 650 km as maximum distance criterion since this is the maximum distance at which the RMSE is lower

than 1.0 ◦C for the five simulations. Such distance criterion, nevertheless, produces results for three grid cells in the Yucatan15

peninsula (Mexico), which we consider unjustifiable as there are no BTP measurements in or near that part of Mexico. Those

grid cells are therefore masked out from our analysis.

4 Results

The distribution of LoST temperatures at grid cells containing BTP measurements reproduces the shape of the distribution

of raw T0 temperatures (Fig. 2a), indicating that the GIDS interpolation does not substantially modify the shape of the orig-20

inal distribution of temperatures retrieved from BTP measurements. However, the distribution of the entire LoST database

resembles the distribution of CRU temperatures, differing from the distribution of the raw T0 temperatures. This change in the

temperature distribution after the spatial interpolation may be related to the inclusion of interpolated temperatures at higher and

lower latitudes than the raw T0 temperatures, as the majority of BTP measurements cover from 35 ◦ N to 60 ◦ N. Nonetheless,

the latitudinal mean temperatures from the LoST database are consistent with T0 temperatures from BTP measurements, either25

considering only grid cells with BTP measurements or the entire LoST database (Fig. 2b). The latitudinal mean temperatures

from the LoST database reach higher values than the CRU database at latitudes higher than ∼ 50 ◦N, while both datasets

achieve similar mean temperatures at lower latitudes (Fig. 2b). Previous studies have found warmer ground temperatures than

air temperatures in meteorological observations over North America, probably due to the insulating effect of snow cover dur-

ing winter (e.g., Beltrami and Kellman, 2003; Smerdon et al., 2003). That is, warmer temperatures should be expected for the30

LoST database than for the CRU database, as our results show (Fig. 2a and 2b). It should be noted, nevertheless, that the CRU

database covers a period with a marked global temperature increase (Hartmann et al., 2013). Therefore, estimates of long-term

surface temperatures from CRU data reflect such temperature increase, hindering the direct comparison between both datasets.

Despite this difference in the climatology of both databases, the long-term surface temperature from the LoST dataset repro-
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duces the expected spatial pattern of temperatures for North America (Figs. 2c and 2d), in agreement with long-term surface

temperatures estimated from BTP measurements and with long-term surface temperatures from CRU data.

The LoST temperatures were also compared with long-term surface temperature estimates from five Past Millennium (PM)5

and five piControl simulations (Table 1) included in the PMIP3/CMIP5 archive to test the realism of forced and control GCM

simulations in reproducing estimates of long-term surface temperatures. Long-term surface temperatures from the PM simu-

lations are estimated as the mean surface air temperature for the period 1300-1700 CE (SAT0) and the mean ground surface

temperature linearly interpolated at 1.0 m depth for the same period (GST0), in order to be consistent with the estimated

temporal range for T0 temperatures in Section 2.3. The PMIP3/CMIP5 simulations are interpolated onto the grid of the LoST10

database; SAT0 and GST0 values are estimated only at grid cells containing LoST temperatures. SAT0 and GST0 values are

also estimated for piControl simulations following the same method, but averaging over each entire control simulation.

Surface temperatures from PMIP3/CMIP5 PM and piControl simulations show similar latitudinal patterns to that from the

LoST database, with lower temperatures at northern latitudes and higher temperatures at southern latitudes (Figs. S2 and S3).

SAT0 estimates from the CCSM4, the MRI-CGCM3 and the BCC-CSM1.1 models show generally lower values than LoST15

temperatures for both piControl and PM simulations, while GST0 estimates show higher values than LoST temperatures at

high latitudes for the same GCM simulations (Figs. S4 and S5). Such result is in agreement with previous analyses of air and

ground temperature relationship within GCM simulations (González-Rouco et al., 2003; González-Rouco et al., 2006; Stieglitz

and Smerdon, 2007; Koven et al., 2013; García-García et al., 2016) and meteorological observations over North America

(e.g., Smerdon et al., 2003; Beltrami and Kellman, 2003). In contrast, MPI-ESM-P and GISS-E2-R simulations present lower20

SAT0 and GST0 values than LoST temperatures, indicating lower long-term ground surface temperatures than the rest of the

models (Table 1 and Figs. S4 and S5). The comparison of the mean LoST temperature over North America with the simulated

temperature evolution by each GCM shows three different behaviors within the PMIP3/CMIP5 ensemble. The CCSM4 and

the BCC-CSM1.1 simulations present lower mean air temperatures and higher mean ground temperatures than the mean LoST

temperature (Fig. 3 and Table 1). The similar GST0 and mean ground surface temperatures for the CCSM4 and the BCC-25

CSM1.1 GCMs in both PM and piControl simulations were expected since these models use a similar land surface model

component (Wu et al., 2014) and the simulated ground temperatures by CMIP5 models are highly dependent on the employed

land surface model component (Slater and Lawrence, 2013, García-García et al., submitted to Journal of Geophysical Research

- Atmospheres). In contrast, the GISS-E2-R and the MPI-ESM-P models produce lower mean GST0 values than the mean LoST

temperature and the rest of models, while simulating similar SAT0 values to those from the rest of the PMIP3/CMIP5 GCMs.30

Previous results have shown that the MPI-ESM-P PM simulation yields a high air-ground temperature coupling (García-García

et al., 2016), probably due to the omission of latent heat of fusion in soil water (Koven et al., 2013). This could cause the low

ground surface temperature simulated by the MPI-ESM-P model in both PM and piControl simulations in comparison with

the mean LoST temperature (Fig 3). A strong air-ground coupling may also cause the low ground surface temperature in the

GISS-E2-R simulations, since the magnitude of the difference between GST0 and SAT0 is similar to that from the MPI-ESM-

P simulations (Table 1). Finally, the MRI-CGCM3 PM simulation yields GST0 values below the LoST climatology, but only

by 0.3 ◦C (0.1 ◦C if considering the 2σ range of the LoST climatology, Fig. S6), which are relatively small in comparison with
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the differences between the LoST climatology and the GST0 values from MPI-ESM-P and GISS-E2-R simulations (> 2.0 ◦C,5

Table 1). Thus, we can consider that three of the five PMIP3/CMIP5 GCMs (the CCSM4, the MRI-CGCM3 and the BCC-

CSM1.1) simulate a surface temperature climatology, in the PM (1300-1700 CE) and piControl simulations, comparable to

that from the LoST dataset, which is an unexpected result as none of the PMIP3/CMIP5 GCM simulations studied here were

specifically tuned to match this climatology.

5 Discussion10

Our results demonstrate that LoST temperatures can be used as reference for assessing the represented climatology in both

PM and piControl simulations. The determination of T0 temperatures, nevertheless, presents some uncertainties that should be

discussed. The extrapolation of each quasi-equilibrium temperature profile to the surface introduces a small error in the LoST

estimates, averaging less than 0.15 ◦C from the 514 BTPs evaluated here (see Section S1 for details about the error treatment in

the LoST database). Rock heterogeneity should also be considered for estimating T0 temperatures. We assume, nevertheless,15

homogenous thermal properties for all borehole profiles, which is another source of uncertainty for LoST temperatures. The

ideal approach consists in estimating the thermal resistance with depth (Eq. 1), but the absence of thermal conductivity mea-

surements for the employed BTPs (Jaume-Santero et al., 2016) makes that approach impractical. Additionally, measurements

of thermal conductivity tend to be distributed around a central value (e.g., the measurements at the Neil Well, Beltrami and

Taylor, 1995). If the thermal conductivity varies systematically with depth at a certain location, such variation will be reflected20

in the temperature profile as an unphysical signal. Such logs were removed from the database employed in this analysis, as

explained in Jaume-Santero et al. (2016). Therefore, it is reasonable to assume a homogenous conductivity with depth. Long-

term alterations of the surface energy balance out of the 1300-1700 CE period may also affect the LoST estimates. Particularly,

possible transient temperatures in BTPs due to the Little Ice Age (LIA) and the Medieval Warm Period (MWP) add a certain

degree of uncertainty in the determination of T0 values. However, the spatial extent of both LIA and MWP was not homoge-25

neous over North America (e.g., Masson-Delmotte et al., 2013, and references therein), meaning that not all BTPs were affected

by the events (Beltrami and Mareschal, 1992; Chouinard et al., 2007; Jaume-Santero et al., 2016). Additionally, the influence

of the LIA and the MWP should be part of any millennial-scale transient climate simulation, and therefore the effect of such

climate events is taken into account in the comparison between LoST results and transient climate simulations. The absence of

these two periods in piControl simulations is probably contributing to the slightly poorer agreement between LoST tempera-30

tures and piControl temperatures in comparison with results for the PM simulation (Figure 3). Another factor that may impact

the retrieved quasi-equilibrium temperature profile is the heterogeneity of North American topography (e.g., Kohl, 1999). To

our knowledge, all analyzed BTPs are located in plain terrain, and were not corrected for elevation since the employed BTP

database does not provide elevation data. Therefore, we use the ETOPO2 database to assess if the altitude distribution of BTPs

is enough for representing the topography of the LoST domain. The altitude distribution over the LoST domain and at grid cells35

containing boreholes sites are displayed in Fig. S8. Both histograms present a similar shape for altitudes up to ∼ 430 m, show-

ing a lack of borehole locations at altitudes between ∼ 430 m and ∼ 1013 m. The uneven latitudinal distribution of borehole
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sites is probably causing this gap in the distribution of altitudes, as well as a small excess of BTP locations at high altitudes.

Despite these differences, both distributions are generally in agreement, indicating a sufficient altitude distribution from the

borehole database to represent the North American broad-scale topography.5

There are, however, two main limitations for the application of the LoST database at this stage of the study: the supplied

variable and the regional character of the database. The LoST database is constituted by estimates of long-term ground surface

temperatures, while GCM simulations are typically evaluated against observations of surface air temperature (SAT) (e.g.,

Mauritsen et al., 2012; Flato et al., 2013; Séférian et al., 2016; Schmidt et al., 2017). We can provide a reference for simulated

long-term SAT by accounting for the offset between simulated air and ground temperatures and using the LoST temperatures.10

As an example, SAT references are estimated for the five PM and five piControl simulations employed in this study (dashed

blue line in Fig. 3). SAT references for PM simulations are estimated from the offset between air and ground temperatures in

piControl simulations, while SAT references for piControl simulations are estimated from the offset between air and ground

temperatures in PM simulations. Such offsets show a constant behavior in both simulations (Fig. S7). GCM simulations in

disagreement with the estimated SAT reference (the MPI-ESM-P and the GISS-E2-R simulations) may be representing a15

strong air-ground coupling, as discussed in Section 4. Therefore, although the LoST database contains estimates of ground

surface temperatures, it may be also used to assess simulated long-term surface air temperatures on a first order approach.

The regional character of the presented LoST database poses some caveats for analyzing the global climatology of prein-

dustrial simulations. Indeed, results of the simulated regional climatology cannot be globally extrapolated since the magnitude

of the potential spurious drifts in control simulations varies markedly at regional scales and these regional drifts could be20

larger than the global-averaged drift (Sen Gupta et al., 2012, 2013). Further work would consist in generating a global LoST

database from the existing global network of BTP measurements, helping to minimize the effect of possible regional drifts on

the simulated climatology. However, BTP measurements are scarce in the Southern Hemisphere, a potential burden that needs

to be considered for assembling such global version of this database. Additionally, the temperature profiles employed in this

study to estimate T0 temperatures were truncated to 300 m of depth, which determines the temporal period of reference for the25

comparison with PM simulations. Deeper BTP measurements can retrieve the climatology of previous time periods, although

the global BTP network contains fewer temperature profiles deeper than 300 m (see Fig. 1 in Beltrami et al., 2015).

Despite the regional character of the LoST temperatures, the northern BTPs contained in this database allow to evaluate

the long-term stability of permafrost over North America. That is, the northern temperatures in this database can be compared

with regional and global simulations as a reference to the preindustrial permafrost stability. Furthermore, previous studies have30

found that the CMIP5 GCM simulations have difficulties to properly represent permafrost evolution (Koven et al., 2013; Slater

and Lawrence, 2013), partially due to the broad range of simulated climate trajectories by each GCM and the differences

between the employed land surface model components (Slater and Lawrence, 2013). Using LoST temperatures to improve the

surface temperature climatology of global and regional simulations may enhance the simulated long-term preindustrial 0 ◦C

isotherm, which is important to correctly represent permafrost evolution.

Numerous proxy-data based reconstructions of temperature, precipitation and other climate related variables exist for North

America, providing a reference for the evaluation of important aspects of past and future climate model simulations (e.g.,

9



PAGES 2k-PMIP3 Group, 2015; Cook et al., 2015). Proxy-data temperature reconstructions have already been compared5

against borehole temperature records of past variations in surface temperature over North America (e.g., Jaume-Santero et al.,

2016). It is worthy to note that proxy systems are indirect sources of climate information requiring a calibration procedure

with modern meteorological data, while borehole temperature data consist of direct measurements of the thermal regime of the

subsurface in the recent past. That is, the LoST database contains information derived from direct measurements of subsurface

temperatures, constituting the first estimates of long-term absolute surface temperatures in North America. Another important10

difference between proxy and borehole reconstructions is that most proxy systems generally capture high-frequency variations

of climate conditions (Moberg et al., 2005), while borehole temperature profiles record long-term changes in the surface

conditions, filtering out short-period signals. In this context, LoST temperatures provide a complementary reference to the

multiproxy database over North America for evaluating the performance of climate model simulations.

6 Conclusions15

A gridded database of past long-term surface temperatures over most part of continental North America has been assembled

from geothermal measurements. Our results show that this database can be used as reference to evaluate the realism of GCM

preindustrial control and past millennium simulations and possibly to improve the reference climate state by adjusting key

parameters or preindustrial forcings in control experiments. Thereby, spread in ECS estimates by GCM simulations may be

reduced given the relationship between control temperature climatology and three long-term powerful feedbacks as the ice-20

albedo feedback, the water vapor feedback and the permafrost carbon feedback. Future work would consist in generating a

global version of the LoST database using the rest of the global network of borehole temperature profile measurements and

following the described methodology, as well as generating new versions of this global database including future temperature

profile measurements.

Data availability. The LoST database can be downloaded from https://figshare.com/s/f20d6002a57cf3279a1c, with25

doi:10.6084/m9.figshare.8124887
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Table 1. Model name, SAT0 estimates, GST0 estimates, SAT0 and GST0 differences with the mean LoST temperatures and references for

each PMIP3/CMIP5 GCM simulation. All results in ◦C. Ground temperatures for MRI-CGCM3 piControl simulation could not be retrieved

from the PMIP3/CMIP5 data servers. Temperature average of the LoST database is 5.2 ◦C, with a 95% confidence interval between 5.0 and

5.4 ◦C.
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Figure 1. Synthetic borehole temperature profile (black dots) using data from the CCSM4 PM simulation (inset) and linear fit of temperatures

between 200 m and 300 m (red line). The synthetic temperature profile is generated using the simulated global ground temperature anomaly

at 1.0 m depth for the period 1300-1700 CE as transient perturbation (Tt), mean ground temperature as long-term surface temperature (T0)

and a typical thermal gradient (Γ) of 0.01 Km−1 (Jaume-Santero et al., 2016). The equivalence between depth (z) and time (t) is given by

Eq. 3. Thermal diffusivity is considered as κ= 1 · 10−6 m2 s−1 (Cermak and Rybach, 1982).
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Figure 2. Histogram (a) and latitudinal mean temperatures (b) from BTP measurements (gray), LoST temperatures at grid cells containing

BTP measurements (black), LoST temperatures (red) and mean surface air temperature from the CRU database (blue). LoST temperatures

(∼1300-1700 CE) (c) in comparison with mean surface air temperature from CRU data (1901-2015 CE) (d). White stars in (c) indicate the

location of the 514 BTP measurements.
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Figure 3. Surface air temperature evolution (gray solid line), ground surface temperature evolution (black solid line), SAT0 (gray horizontal

line) and GST0 (black horizontal line) for (a) PMIP3/CMIP5 PM and (b) PMIP3/CMIP5 piControl simulations. Solid red lines represent

the mean LoST temperature and the red shadow represents the 95% confidence interval (Section S1, Fig. S6). Dashed blue lines represent

estimated references for long-term surface air temperatures from the LoST climatology and the simulated air-ground temperature offset

in (a) piControl and (b) PM simulations. Ground temperatures for the MRI-CGCM3 piControl simulation could not be retrieved from the

PMIP3/CMIP5 data servers. 22


