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nally submitted version, is also included. Page and line numbers refer to the revised manuscript.

Anonymous Reviewer 1

We thank the referee for thorough and insightful comments on the manuscript. The com-

ments have challenged us to take a more comprehensive look at the numerous reconstruction

experiments we performed, and as a result, we have gained a more complete perspective on the

results.

The paleoclimatic discussion needs to go more into depth and the authors need to

be more critical about their own results. The authors compare their new data set to the

previous version (Hakim et al. 2016) and conclude this new version would be an overall

improvement. This conclusion is based on validation statistics in the 20th century. How-

ever, the new data set lost all multi-decadal to centennial variability in the global mean

temperature and does not show a warmer medieval period nor a cooler “little ice age”

anymore. The authors do not discuss this issue at all. The paper suggests that this new

reanalysis version would present the more likely global mean temperature evolution of

the past 2000 years although it is in contrast to what most other reconstructions and

paleodata records suggest.

We agree with the referee’s suggestion that results should be framed in the context of other

reconstructions, and a discussion focused on the long-term perspective (not limited to the 20th

century) of the updated reanalysis be included in the manuscript. To address this issue, a re-

vised section 3 includes a more complete discussion of our reconstruction results, including a

comparison of LMR reconstructions of Northern Hemisphere (NH) temperatures with other NH

reconstructions found in the IPCC AR4 and AR5 reports (see bottom panel of Figure 2, section

3). A greater perspective on the long-term (i.e. across the Common Era) evolution of tempera-

ture in our reconstructions is gained. The main takeaways from this comparison can be found in

the fourth paragraph of the revised section 3, page 10 line 23 to page 11 line 7.

We do acknowledge the updated reanalysis in our originally submitted manuscript was char-

acterized by a significant loss of variability compared to our prototype reanalysis. We have

revisited some of the choices made in the configuration of our system and conducted additional

experiments to identify the source of this loss of variability. We have determined that it is prefer-

able to eliminate the large number of unscreened tree-ring records from the Breitenmoser et al

(2014) collection, as included in Anderson et al (2019) from our reanalysis. This is despite an

increase in skill in temperature and hydroclimate reconstructions when this dataset is included,

as determined from observational data. We believe this underlines issues with our estimates
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of observation error variance (i.e. the Rk terms in equations 4 in the manuscript) specifically

for these records. We have found that the inclusion of these tree-ring chronologies is largely

resposible for the warm bias which characterizes reconstructed temperatures in our previous

updated reanalysis during the 1600–1700CE and 1810–1920CE periods of the Little Ice Age

(LIA). Therefore, we now present a new updated reanalysis using a revised configuration of

the assimilated proxies, limited to the proxies from the PAGES 2k Consortium (2017) collection.

With this configuration, we find a greater level of temperature variability is recovered, as well as

a much improved agreement between the LMR Northern Hemisphere temperature to the other

reconstructions during the LIA. We note however that the absence of a notable warm medieval

period continues to characterize our reanalysis. An analysis of results from a large number of

reconstruction experiments has allowed us to conclude that colder temperatures during the me-

dieval period, compared to the prototype LMR, are related to the change from the proxy dataset

of PAGES 2k Consortium (2013) to the more recent PAGES 2k Consortium (2017) collection.

The global temperature composites presented in PAGES 2k Consortium (2017) shows that a

distinctly warmer medieval period isn’t a prominent feature of the new collection, and is not the

result of other updates to our data assimilation system. As this dataset reflects the community’s

most recent and rigorous identification of proxy records suitable for temperature reconstructions,

we believe that the lack of a “classic” medieval warm period in our updated reconstructions of

global mean surface temperature and NH-mean temperature should not necessarily be consid-

ered an outstanding shortcoming of our updated reanalysis. Discussions on the issues outlined

above are included in section 3, page 10 lines 3 to 12, and in section 4.3, entirely revised due to

the re-focus of the updated reanalysis.

The loss of low-frequency variability is most likely a consequence of the proxy data

sets used, because this is the major change in the new version. Many of the tree-ring

chronologies in Breitenmoser et al. 2014 are not climate sensitive at all or moisture sen-

sitive. As precipitation does not show any low-frequency variability in contrast to tem-

perature, it is a logical consequence that using covariance information from moisture

sensitive trees to correct temperature data leads to a loss of low frequency variability.

The referee raises good points, confirmed following a careful review of our results, including

those from additional test reconstructions (see response to previous comment). We note how-

ever that the data assimilation (DA) framework is different than other reconstruction methods.

Key elements are the forward models (the proxy system models, or PSMs) used to estimate

proxy observations from a model prior, and the observation error variance assigned to the prox-

ies, i.e. the Rk terms in equations 4 in the manuscript. Within a DA framework, there are

no fundamental reasons why the inclusion of records with sensitivities other than temperature

would lead to a deterioration to reconstructions of temperature, provided that PSMs properly

account for the proxy sensitivities and the associated observation error variances representa-

tive are properly specified. However, it is acknowledged that these conditions may not easily

achieved. Initial LMR results (i.e the prototype) suggested that our approach has the ability to

delineate proxy records with weaker sensitivity to climate by assigning relatively larger observa-

tion error variances (Rk), resulting in such records only weakly influencing the reanalysis results

even though they are assimilated. Also, the main motivation for developing the bilinear approach

to model tree-ring width (TRW) data as been to gain an ability to seamlessly handle the more
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complex sensitivities to temperature and/or moisture of these chronologies. With this approach,

in principle, TRW records can be assimilated without having to make a binary decision whether

each record is dominantly sensitive to temperature or moisture, or having to screen records out

a priori. However, we acknowledge that relying on simple regression-based PSMs opens up the

process to the influence of spurious correlations between noisy data. With a large number of

proxies considered, some records will invariably be characterized by somewhat overestimated

confidence, i.e. too-small error variance, and therefore overly weighted in the update. Closer

examination of additional test reconstructions strongly suggest that these issues are responsible

for the loss of variability observed when the entire set of Breitenmoser TRW records are assimi-

lated. We conclude that the possible inclusion of proxies from this dataset, including an improved

characterization of observation errors, requires further attention. Hence, the revised manuscript

presents, throughout the paper, an updated LMR using a revised configuration, where assimi-

lated proxies are limited to the PAGES 2k Consortium (2017) collection.

A second reason may be the use of proxy data with dating uncertainties, such as ice

cores, in an annual reconstruction. These proxies probably do not have age errors in

the 20th century validation period but become just noise if they have an age offset of

one or a few years further back in the past. The authors just conclude that using moisture

sensitive data leads to improved reconstruction skill, although this is only true in the 20th

century validation period but not in the pre-instrumental period, most user of this data set

will be interested in.

This is an interesting suggestion. We have tested this hypothesis by performing an additional

experiment in which all ice cores records were withheld from assimilation. The results do not

support the hypothesis put forward by the referee however. GMST and NH-mean temperatures

exhibit similar multi-decadal variability compared to reconstructions which include ice core infor-

mation. The main difference consists of a modified long-term trend, showing a flatter temporal

evolution over most of the Common Era prior to the 20th century warming, worsening the agree-

ment with the other reconstructions. The primary role of ice core proxy data seems to rather

anchor the millennial-scale cooling characterizing the pre-industrial era. However, we reserve a

discussion on this specific topic for a future publication which is expected to focus on the role of

various proxies in the reanalysis.

In the current version, the global mean temperature evolution is the reappearance of

the famous “hockey stick” in climate science. After all the discussion, the hockey stick

was rising 20 years ago, I would not publish this as a state-of-the-art temperature recon-

struction, especially not without a discussion and not if it is an artefact of unscreened

input data.

See responses to the comments above. In the light of results outlined above, the revised

manuscript presents an alternate updated LMR, showing a greater level of variability, including

at lower frequencies, in better agreement with reconstructions from other authors as shown in

panel (c) in a revised Figure 2 and discussed in the revised section 3, page 10 lines 3 to 12 and

page 10 line 23 t page 11, line 7.
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I see two options, the first would involve minor revisions and the second major revi-

sions: 1. It must be stated prominently (already in the abstract) that this reanalysis should

not be used or considered to have the correct multi-decadal and centennial variability and

that the global mean time series over the last 2000 year potentially has serious issues.

The discussion needs to include all problems of data set, too and ideas how to overcome

them in the future. In general, the paper should be put more into a context of methodolog-

ical improvements to achieve better products in the future instead of claiming this would

be nearly the prefect reanalysis for the past 2000 years. 2. A proper screening of the

data needs to be introduced that prohibits the assimilation of non-climatic information,

which has just spurious correction with observations in the short window of overlapping

instrumental and proxy data (a minimum of 25 data points has been used in this study,

page 5, line 2). These records will have little weight in the assimilation procedure due to

large residual variance, but hundreds of little errors probably produce significant noise.

Probably, precipitation limited proxies and proxies with age errors have to be removed or

treated specifically, too. These are just some ideas and it will need many improvements

and new experiments to find and solve the problem.

We appreciate these comments and suggestions. As outlined in our response to previous

comments, we have chosen to follow a path inspired by the second suggestion. A complete

review of results has been undertaken and new reconstructions experiments were carried out.

The newly gained perspective has led us to consider an alternate reanalysis configuration which

addresses the issues identified by the referee. Suggestions by the referee were carefully con-

sidered and integrated in the design of our latest experiments.

However, we wish to underline our belief that an approach that seeks to simply remove the

information from precipitation limited proxies, as suggested by the referee, is not the preferred

framework in which to seek improvements in reconstructions. Rather, improved forward models

(PSMs), describing more accurately the relationships between climate variables and proxies, in

addition to improved characterization of observation errors, are the key aspects where improve-

ments can be achieved. We believe that this is reflected in part in our results showing improved

performance with the reanalysis using the seasonal bivariate temperature/precipitation PSMs on

the screened PAGES2k TRW records.

A difficulty in the review process is that the input data has not been published, yet.

Hence, it is not possible to properly judge the input data base. However, it appears to

be basically the Breitenmoser et al. 2014 data set with a few coral and ice core records

added. Why do you not simply refer to this first publication and give citations for the

additional records or wait until the Anderson et al. paper is published?

The manuscript is now available online at:

https://datascience.codata.org/article/10.5334/dsj-2019-002/

In general, the decrease of skill further back in time is not discussed sufficiently.

This is a great comment. We address this issue using our framework enabling an assess-

ment of reanalysis performance in proxy space. The scope of the verification of reconstruction
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results presented in the revised paper has been expanded by including results from verifica-

tion performed in proxy space on independent (withheld) proxies covering both calibration and

pre-calibration periods. Results that were originally included in the supplementary material have

been revised and moved to the main body of the paper. These results are found in section 4.1,

Table 4, to complement the evaluation of the various PSM configurations considered, confirming

with increased confidence the choices made in configuring the updated reanalysis system. Re-

sults from proxy–space verification are also included in section 4.3, Table 6, to gain an additional

perspective on the accuracy of reconstructions performed with the addition of proxy records from

the Anderson et al (2019) collection. The discussions on the proxy verification results are found

on page 14, lines 1 to 7, and on page 16 lines 3 to 16.

It should also be discussed why forcings are not important and what the consequences

of unforced simulations ensembles are for the final product, especially further back in the

past when the proxy network is sparse.

We are not sure how the referee has come to believe that forcings are not important. In

fact the model simulations from which we draw prior information do include forcings, such as

pre-industrial greenhouse gas and aerosol variability, including the effects of volcanic eruptions.

This point is mentioned in the manuscript. However, to bring the context into greater focus, we

have found that an important characteristic of prior information within our DA framework is the

amount of variance characterizing the simulations. We have found that the greater variance

generally characterizing the “Last Millennium”-type simulations (which include the forcings listed

above) provide for more accurate reconstructions, compared to using simulations performed

without the influence of external forcings (as in the “pre-industrial” or piControl CMIP5 protocol).

We also have generally refrained from using simulations which cover the 20th century warming

to dispel the notion that we are “cooking the books” when reconstructing temperature trends. In

our framework, temporal information (trends) come entirely from weighted information from the

proxies.

I suggest to evaluate the spatial skill of the reanalysis in the 20th century but with the

spatial proxy network at multiple time slices, e.g. 0 AD, 500 AD, 1000 AD, 1500 AD.

This is a great suggestion. We have generated proxy verification results over distinct periods

of the Common Era: 1–499, 500–999, 1000–1499, 1500–1879, 1880-2000 (calibration period)

in Table 2 and discuss the results from the perspective of reanalysis accuracy across time in a

revised section 3. Even though the verification is not performed on an identical set of proxies

we also compare the verification statistics from the prototype reanalysis, to further highlight the

enhanced performance of the updated LMR. Additions to the text are found on Page 12, lines 16

to 22.

Additionally, not using forced simulation offers the potential to use them in the valida-

tion procedure. It could be checked if temporal and spatial patterns of known past events

or periods are well represented in the reanalysis, e.g. spatial moisture distribution after

eruptions (Iles and Hegerl, 2015).

5



This is also a good suggestion, however we believe that such efforts are outside the scope of

the current work. The suggestion will be considered in future efforts.

Finally, it would be interesting to see a map of the regression residuals to get an idea

how many paleodata records have significant influence in the assimilation procedure and

which are basically ignored because they have no climate information.

We agree, however a concise presentation of this is challenging, due to the varied nature of

the proxy data. We believe this would be addressed in a more informative way by a formal proxy

impact study, which is intended to be the subject of another paper.

Additionally, I would like to know how many records in the PAGES2Kv2 data base have

expert information on seasonality? I would be interested to read how well the expert-

based seasonality in the PAGES data base agrees with the objective assessment in this

study. Probably, the experts did a similar search for highest correlation, maybe just in-

cluding more possible combinations of growing season months.

For the 2017 publication, the PAGES 2k consortium requested that each data certifier assess

the seasonality of the temperature response and report its basis. In the LiPD format (McKay and

EmileGeay, 2016), this information is encoded in the climateInterpretation seasonality and

climateInterpretation basis metadata properties. All records in the database include sea-

sonality information, either as letters (JJA) or numbers ([6 7 8]) indexing calendar months. When

the basis is reported, it is either from “first principles” (e.g. trees are known to grow in local sum-

mer, which in most cases is synonymous with June July August), or from a search for the highest

correlation. When the basis is not reported, the reader is referred to the publication documenting

each record, which in most cases uses a mix of first principles and search for highest correlation,

similar to the approach used in this paper. A key difference between the expert assessment of

seasonality and the one done in our paper lies in the choice of target datasets. Studies focusing

on individual series tend to be more careful about selecting an instrumental dataset appropriate

for calibration (e.g. local GHCN station, rather than GISTEMP grid box average). These choices

of target datasets are likely contributing to differences in the seasonal window determined via

this process.

The choice of calibration datasets in LMR is driven by the need to uniformly process a large

number of globally distributed records, hence the more general, likely not optimal, selection as

is possible when one has to consider a single or few records.

We also wish to point out that the information requested by the referee on the differences

between the expert-based seasonality in the PAGES data base and objective assessment in this

study is already provided in the supplemental information accompanying the main manuscript

(Figure S1).

I was surprised to read that the authors use an extended fall period (JJASON)? Is there

any reference for trees which are limited by climatic conditions in these autumn months.

Consideration of this period has initially been motivated following D’Arrigo et al (2005), along

with the fact that some seasonal responses found in the expert-derived PAGES2k metadata ex-
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tend to fall months, as suggested by the data shown in Figure S1a in the supplemental material

accompanying our submission. It is interesting to note however that the objectively-derived sea-

sonal responses determined by the approach described in our paper leads to less emphasis on

those fall months compared to the PAGES2k expert data.

It would be favorable to store the data at a world data center and not at a personal

homepage.

We completely agree with the referee on this point. The LMR team has engaged interactions

with the project’s sponsor (NOAA) to identify a suitable storage location and access point, but

these have yet to be identified, hence the reference to a personal homepage at this point.

Technical corrections

Abstract: skill score increase in percent is misleading. It is easy to have a large rela-

tive increase if scores were very low in the comparison data set, e.g. in Z500 where CE

improves from very negative to less negative the increase in percent is large but the skill

is still negative!

The point made by the referee is well taken. However, our emphasis has been about quanti-

fying differences with respect to our main benchmark, the LMR prototype, to highlight improve-

ments. Therefore we remain convinced that the formulation used is appropriate. The fact that

some skill scores remain characterized by negative values is not hidden and becomes quite clear

in the core of the text.

Abstract: be more precise what is meant with “ensemble characteristics”.

We have eliminated the sentence containing this expression to streamline the abstract. We

were referring to the preferred outcome of maintaining good correspondence between ensemble-

mean errors and ensemble variance (i.e. uncertainty), a concept referred to as ensemble cali-

bration in the data assimilation literature. We now more clearly define this in the last paragraph

of Section 3 in the revised paper, page 12 lines 7 to 16.

Introduction, Line 17: apart from paleoclimate with annual observations, the forecast

model is a third important component (this is even written in the Methods section).

We agree that this statement could be interpreted to mean that the prior data has less impor-

tance in the DA context. A revised statement, more accurately conveying the importance of the

various components, is included at the beginning of the second paragraph of the Introduction,

Page 2 lines 12 to 15.

Methods, Page 7, line 6ff: I do not understand why the calibration is done with a dif-

ferent gridded data set than the validation. Both data sets a based on largely overlapping

instrumental observations and therefore clearly not independent.
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The use of GISTEMP as the calibration dataset has largely been motivated by the fact that

a larger number of proxy records could be calibrated (larger number of records with sufficient

overlap with valid calibration data) compared to other datasets. Therefore, a larger number of

proxies may participate to the reanalysis. We in fact perform validation using all datasets at

our disposition, including the calibration dataset. Skill metrics show small differences among

the various results, but remain in general agreement. Here we have chosen the Berkeley Earth

dataset because it provides a greater spatial coverage, comparable to the calibration dataset,

therefore providing a larger sample of spatial verification results.

Methods, Page 4 line 14: How many ensemble members?

The information is already provided in the manuscript, in Section 2.3, where details of the

configuration are listed.

Methods, Page 4 line 14 it is written that Hakim et al. 2016 worked “with the same

randomly drawn ensemble members used for every year in the reconstruction”, whereas

on page page 5, line 28 it is written for this study: “each using a different randomly chosen

100member ensemble”. Are both studies consistent and is each year build on different

randomly chosen ensemble members?

Both statements are consistent, in that the first statement describes how the ensemble mem-

bers for a given reanalysis realization are used to populate prior information in the time domain,

whereas the second statement points out that different sets of states are used to populate the

prior ensemble for different Monte-Carlo realizations of reconstructions. A revised statement

clarifies this in the last paragraph of section 2.1, page 5, line 10, with the addition of “for every

year in the reconstruction of a given reanalysis realization”.

Page 5, line 1: “Only records for which a PSM can be established are shown ...”. What

do you mean by “shown”? There is no reference to a figure. Do you want to say that only

records meeting these criteria are assimilated?

We wish to point out that a reference to Figure 1 is included in the previous sentence. The

text of the last paragraph of section 2.2 has been modified to ensure the reader is not confused

about what the reference is. See page 5, lines 31-32.

Methods, Page 5, line 8: Breitenmoser et al. 2014 is not screened for any climate

sensitivity.

This text has been moved to section 4.3, and a clearer statement about the absence of

screening for climate sensitivity has been added, page 14, line 30.

Methods, Page 6, Proxy modeling: It should be repeated here over which period the re-

gression coefficients are calculated. As many data points as available in the overlapping

period with instrumental data but minimum 25 pairs of x and y?
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This information is now briefly clarified in the revised manuscript. We have added the follow-

ing statement: “a threshold of at least 25 overlapping data is imposed”, page 7 lines 4-5.

Methods, Page 7, line 30: Is there a reference that any tree-ring proxy responds to an

extended fall period (JJASON)? The given references point to common growing seasons

from May to August in the northern hemisphere. Why are not all combinations of growing

season length tested and the optimum is chosen? In the PAGES data base there are also

various different length of growing seasons defined.

For the first part of the question, see the reply provided earlier in this document. About the

second part, we concede that our objective seasonal PSM calibration methodology is a com-

promise between comprehensiveness and efficiency in the calculations, performed over more

than 2000 proxy records. Nonetheless, we believe that while perhaps non-optimal, the resulting

characterization provides realistic results, as suggested by the fact that more accurate recon-

structions are obtained when this information is used in forward modeling tree-ring records. This

outcome is now further supported in the revised manuscript with verification results performed in

proxy space using independent records, with results presented in the new Table 4 and discussed

in Page 14 lines 1 to 7.

Methods, Page 8, line 26: “local” should better be “grid box”.

The word “local” has been changed to “grid cell” in the revised text, page 9, line 18.

Updated reanalysis, Page 9, line 5: Can you explain the localization better? Does a

cut-off radius of 25000 km mean that each proxy influences basically the entire globe?

A clear reference to section 4.2 has been added in the first paragraph of section 3 , where the

influence of covariance localization is characterized in more detail. Also, more details are now

provided in section S5 in the supplementary material. See text modifications on Page 9, line 30

and Page 14, line 16.

Updated reanalysis, Page 9, line 7: Mention that the reference for the skill score is

climatology.

We believe that the CE skill score has well-known characteristics among the intended reader-

ship of this paper. We also provide the reference which describes the metric in detail Therefore

we decline to add further details, in order to avoid lengthening the text.

Figures: some text is too small that it cannot be read in a print version.

We have simplified the design of figures in the revised manuscript. Summary information

included as text within figures has been minimized for greater clarity. The font size has also been

increased when necessary to increase clarity.

Figures: figures should have consistent font types.
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We have revised all figures so that a more uniform visual is achieved.
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Anonymous Reviewer 2

This reviewer believes the methodology, analysis and the final LMR product presented

herein are too premature to be acceptable for formal publication, let alone for its stated

purpose to serve as the basis for the first publicly released NOAA last millennium reanal-

ysis.

The data from the first release described in Hakim et al (2016) has been publically avail-

able for over two years. The basic method on which Hakim et al (2016) and the present paper

are based has been evaluated and tested extensively in the literature (e.g. Bhend et al, 2012;

Steiger et al , 2014; Matsikaris et al, 2015; Acevedo et al, 2017; Franke et al, 2017; Okazaki and

Yoshimura, 2017; Steiger et al , 2018).

It is misleading for this study (and its prototype in H16) to call the DA method used ...

as an ensemble Kalman filter (EnKF). As in Evensen (1994) and subsequent studies, the

primary promise of the EnKF is the use of flow dependent background error covariance

represented by the forecasting ensemble. The current socalled “offline” DA method has

none of that: the ensemble perturbations are randomly sampled from a past-millennium

climate simulation that has no relation to the prior estimate, and the same set of sampled

perturbations were used at all analysis times.

The reviewer appears to have a view of data assimilation limited to operational weather fore-

casting. In fact, from a broader perspective, the prior may come from a wide variety of sources,

and Monte Carlo sampling of that distribution using ensembles has proved to be a powerful so-

lution method. The “offline” EnKF approach was originally described by Oke et al (2002) and in

Evensen’s review of the ensemble Kalman filter (Evensen, 2003), as well as subsequently used

in ocean data assimilation applications Oke et al (e.g. 2005, 2007), and in various published pa-

leoclimate data assimilation applications (e.g. Steiger et al , 2014; Matsikaris et al, 2015; Steiger

et al , 2018). To make that point clearer to readers perhaps less familiar with this literature, we

have added a brief discussion in the last paragraph of section 2.1 outlining the aforementioned

literature on the origin and applicability of the technique. See Page 5, lines 13 to 20.

This method used in this study is similar to the commonly used 3D-Var method for

numerical weather prediction with static background error covariance, and is arguably

less advanced than 3D-Var since 3D-Var in NWP used the dynamic model to propagate the

previous cycles analysis as the prior before the analysis. The current so-called “offline”

DA method neither cycles the analysis nor the ensemble perturbations, with the stated

reason that the forecast model is not good enough to do either.

We regret the reviewer’s interpretation that the motivation for offline DA is because “the fore-

cast model is not good enough,” which is not the case. Peraps the original text was not clear

enough. The choice is a result of a cost–benefit analysis: predictive skill of Earth System models

on proxy timescales is small, but the cost of ensemble forecasts with these models is high. We

now make that point clearer in the revised manuscript, in the last paragraph of section 2.1, Page

5 lines 16 to 20.
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If the forecast model is not good enough to cycle the mean analysis or the analysis

uncertainties to provide the best estimate of the prior estimate and related prior uncer-

tainties, why would this model(s) be good at all for use as the prior estimate that the LMR

reanalysis depends critically on? In this regards, it is premature to state (line 10) that the

“LMR employs the ensemble data assimilation to optimally blend the information from

the proxies and the climate model data”. The current method is more like an objective

analysis method.

Yes, the method is a form of “OI”, although we believe that using such jargon is not helpful to

the readership of this journal.

It is not clear whether the authors are aware that the traditional static 3D-Var methods

also derive the background covariance from an ensemble of perturbations, as is tradition-

ally called “the NMC method” using the sampled forecast divergence between different

lead times from many realizations. The Kalman filter update in this case is equivalent to

the variational update using the 3D-Var algorithm, though again the 3DVar in NWP cycles

the analysis and forecast during data assimilation, which is the most basic function in

combining the model and data.

We are indeed aware of the NMC method, which samples forecast differences on the timescale

of the DA cycle. In our case that is one year, and the random sampling method we employ as-

sumes that forecast differences on that timescale have converged on the climatological distribu-

tion; we lack analyses and forecasts over the Common Era to formally apply the NMC method.

The validation performed in this study for the prototype and updated LMR “reanaly-

sis” with several existing 20th-century reanalysis is misleading at best. The quality of the

LMR reanalysis for the 20th century is the least issue given the availability of the modern

much more advanced reanalysis and given the exponentially increased number of proxies

or model instrumental observations. The validation currently focuses exclusively on the

20th century says little on the quality and performance of the LMR products, in particu-

lar over the early period when the proxy data are scarce. A more appropriate validation

can potentially be done in two objective methods: (1) perform the 20th century “reanaly-

sis” through thinning the observation density and maybe also degrading the observation

accuracy to those representation of different periods of the past millennium; and/or (2)

performing observing system experiments in which a certain number of observations are

not assimilated but reserved for independent validation (or all of them in cross validation).

Our validation efforts focusing on the 20th century were primarily motivated by the desire to

validate against the most robust reference datasets, as well as being able to assess the spatial

skill of our reconstructions with some confidence. However we agree this is not comprehensive,

as information about performance over the pre-industrial period is not provided. Consistent

with suggestion (2), part of the DA method we have developed involves withholding 25% of the

proxies for independent validation, which is performed randomly for each of the 51 realizations

in each experiment, so that all proxies participate in validation. Validation statistics are compiled

both before and during the instrumental period. These results are now highlighted more clearly
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in numerous different parts in the main body of the revised paper. See Page 12 lines 17 to 23,

Page 14, lines 2 to 7, and Page 16 lines 3 to 20.

Regarding suggestion (1), we have performed experiments where we vary the percentage of

withheld proxies and we have found little sensitivity to the 25% value.

The use of a 2,5000-km covariance localization is highly questionable for the use of a

100 sets of fixed ensemble perturbations. At midlatitudes, this is amount to the observa-

tion impacts across the entire global latitude belt. The use of a fixed set of 100 sample

perturbations also means a high rank deficiency over such a large area with this large

localization distance.

This reasoning is consistent with covariance lengthscales on weather timescales. Covari-

ance lengthscales on annual timescales are much longer, and the effective dimension of the

covariance matrix is comparatively smaller.

The current final LMR reanalysis derives from the mean of 51 such 100-member analy-

ses, should it be the same if the 5100 samples of perturbations are used simultaneously

in the Kalman filter update given the Kalman filter used is largely a linear operation?

We have tested this and have found that better results are obtained by averaging over Monte

Carlo realizations (multiple analyses) as compared to a single large ensemble. The underlying

reason is not completely understood and believe that fully exploring this issue is beyond the

scope of the present paper. However, we believe that this finding is an artifact of averaging over

analysis errors related to poorly estimated observation errors for some proxies. In the revised

manuscript, section 2.3, we highlight this issue as an additional motivation for performing multiple

Monte-Carlo realizations and outline the hypothesis we have for the behavior. See revised text

Page 6, lines 19 to 21.

How much is the result sensitive to the choice of this arbitrary number of sample

perturbations? It is also worth noting the the NMC method used for 3D-Var uses singular

value decomposition to make it full rank. Such a approach is different from (and likely

more advantageous over) the current Kalman filter update using purely non-envolving

static ensemble covariances.

We have found little sensitivity to the ensemble size, provided it is at least 100 members

and that covariance localization is used (effectively increases the rank of the covariance matrix).

We find larger improvements by randomly subsampling the proxies through many Monte Carlo

realizations.

It is unclear what is the purpose of such as hastily done LMR reanalysis products with

such ad-hoc DA approaches and the not-good-enough forecast models? The so derived

climate trend is almost certainly depending too much on the climate models used as

a prior and ensemble sampled perturbations (and maybe the assumed climate forcings

used in these models), as well as the density of observations over different periods. It

could do more harm if such a premature reanalysis product is used or misused and if it
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were publicly released through NOAA, unfortunately. A more careful vetting of the prod-

ucts, and a more concerned effort in refined DA methodology are warranted before NOAA

sanctioned such a product as reanalysis, in this reviewers opinion.

If the reviewer wishes to see more sensitivity analysis with respect to these issues, please

carefully read Hakim et al (2016), where we not only considered the performance statistics of

analyses using different priors and calibrations of proxy forward models, but also examples of

the differences that result in the spatial fields for an individual year.
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Anonymous Reviewer 3

I have two main concerns about the paper, which together require that the manuscript

undergo major revisions before it is acceptable for publication. The first is the character of

the derived reconstruction and the unsatisfactory verification of the product using only

observational data. The second is the use of multiple ad hoc methodological choices,

none of which are reasonably justified or widely tested.

The revised manuscript includes a more complete discussion on the character of the temper-

ature reconstruction, compared and contrasted with other reconstructions (see response to next

comment).

The scope of the verification of reconstruction results presented in the paper has been ex-

panded by including results from verification performed in proxy space on independent (withheld)

proxies. Results that were originally included in the supplementary material have been revised

and moved to the main body of the paper. These results are now found in section 4.1, Table

3, to evaluate in a more comprehensive fashion the various PSM configurations considered and

to further confirm choices made for the configuration of the updated reanalysis. Results from

proxy–space verification are also included in section 4.3, Table 5, to gain an additional perspec-

tive on the accuracy of reconstructions performed with the addition of proxy records from the

Anderson et al (2019) collection. See revised text page 14, lines 1 to 7, Page 16 lines 3 to 19.

Regarding the referee’s concern on the justification of our selection of data assimilation pa-

rameters is addressed with the addition of a brief mention on how those choices were made at

the end of section 2.3. We believe however that a lengthy discussion on these is not warranted

in the present paper, as these choices have been discussed in prior publications. The following

statement has been added in the last paragraph os section 2.3: “Little sensitivity to the use of

75% of the proxies for each realization hase been found (not shown), while 100 members have

been chosen to maintain consistency with H16. ” , Page 6 lines 19 to 23.

I am struck by the comparison in 2a and the little attention the authors give to the

differences between the previous LMR product and the newer version (not to mention

the complete lack of comparison between either of these results and other temperature

reconstructions).

We agree with this comment. As a result, we now compare LMR results of Northern Hemi-

sphere (NH) temperature to other NH reconstructions found in the IPCC AR4 and AR5 reports.

This comparison is included in the bottom panel of Figure 2, section 3, to obtain a greater per-

spective on the long-term (i.e. across the Common Era) evolution of temperature in our recon-

structions. A discussion outlining the main takeaways from this comparison can be found in the

fourth paragraph of a revised section 3. See revised manuscript, Page 10 line 23 to Page 11 line

7.

The GMT from the newer product looks almost like white noise and has lost not only

the multi-decadal to centennial variability in the first product, it is also likely at odds with

the now large collection of global and hemispheric temperature reconstructions spanning

the last millennium or more. The authors not only need to spend more time discussing

15



this issue, they also need to compare their results to the collection of large-scale temper-

ature and hydroclimate reconstructions currently available.

We do acknowledge the updated reanalysis in our originally submitted manuscript was char-

acterized by a significant loss of variability compared to our prototype reanalysis. The compar-

ison with other reconstructions (see previous response) has helped gain additional perspective

on the long-term evolution of temperature in our reanalyses. As a result, we have revisited some

of the choices made in the configuration of our system and conducted additional experiments to

identify the source of this loss of variability. We have determined that it is preferable to eliminate

from our reanalysis the large number of unscreened tree-ring records from the Breitenmoser

et al (2014) collection, as included in Anderson et al (2019). This is despite increased skill in

temperature and hydroclimate reconstructions when this dataset is included, as determined from

observational data. We believe this underlines some issues with our estimates of observation

error variance (i.e. the Rk terms in equations 4 in the manuscript) for these records. We have

found that the inclusion of these tree-ring chronologies lead to the warm bias characterizing the

reconstructed temperatures in our previous updated reanalysis during the 1600–1700CE and

1810–1920CE periods of the Little Ice Age (LIA).

In the revised manuscript, we present a new updated reanalysis using a revised configuration

of the assimilated proxies, limited to the proxies from the PAGES 2k Consortium (2017) collec-

tion. With this configuration, we find that greater level of temperature variability is recovered, as

well as a much improved agreement between the LMR Northern Hemisphere temperature and

other reconstructions during the LIA. We note however that the absence of a notable warm me-

dieval period continues to characterize our reanalysis. An analysis of results from a large num-

ber of reconstruction experiments has allowed us to conclude that colder temperatures during

the medieval period, compared to the prototype LMR, are related to the change from the proxy

dataset of PAGES 2k Consortium (2013) to the more recent PAGES 2k Consortium (2017) collec-

tion. The global temperature composites presented in PAGES 2k Consortium (2017) shows that

a distinctly warmer medieval period isn’t a prominent feature of the new collection, and is not the

result of other updates to our data assimilation system. As this dataset reflects the community’s

most recent and rigorous identification of proxy records suitable for temperature reconstructions,

we believe that the lack of a “classic” medieval warm period in our updated reconstructions of

global mean surface temperature and NH-mean temperature should not necessarily be consid-

ered an outstanding shortcoming of our updated reanalysis. Discussions in the issues outlined

above are included in sections 3 and 4.3. See revised mansucript Page 10 lines 3 to 12, and

Page 10 line 23 to Page 11 line 7.

...it is essential for them to do more to verify their results beyond the comparisons

they make to observational data. While the latter is important and useful, it is not enough.

Incidentally, the authors do perform validation exercises on a withheld period of observa-

tional data and using withheld proxy series, but that work is buried in the supplemental

and not adequately discussed in this context. More should be made of those efforts,

which strengthen the authors results with truly out-of-sample validation experiments.

We agree. As described in our response to a previous similar comment, additional verifica-

tion results are presented in the revised manuscript. More specifically, verification performed
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in proxy space on independent proxies are used to further evaluate the impact of the various

PSM configurations considered and to further confirm choices made for the configuration of the

updated reanalysis (section 4.1, Table 4), and to gain additional perspective on the accuracy of

test reconstructions using added records from Anderson et al (2019) (section 4.3, Table 6). See

revised mansucript, first paragraph on Page 14, and Page 16, lines 3 to 19.

I do not think the use of CE is the same as it is traditionally used in the paleo literature,

given that the latter approach requires a true cross-validation period. The authors should

clarify this point.

The formulation has been used in numerous other published work, including in a similar

manner as we do in this work. We have found that CE is a valuable complementary metric to

correlation, due to its sensitivity to mean errors and representation of variance in the evaluated

fields. Furthermore, we now use the CE score using independent proxy data as the verification

data.

I think it is further important for the authors to derive validation experiments for the

sparsely sampled periods early in the proxy network (e.g. deriving reconstructions using

only subsets of the proxies that extend back to specific time intervals). This would go a

long way toward helping to better understand the loss of proxy information back in time.

This is partially addressed by the variance exercise the authors perform, but more can

be done. Recons for temporal subsets of the proxy network would in fact be more useful

than the MC sampling of the proxy network that the authors perform, given that it would

be systematic and inform a direct question about the influence of the declining proxy

network.

This is a very good suggestion. Experiments similar to what is suggested here have been

conducted in support of another publication, currently under review. This issue can also be

investigated through an assessment of reanalysis performance performed in proxy space, with

a focus on different time intervals. We have generated proxy verification results over distinct

periods of the Common Era: 0–499, 500–999, 1000–1499, 1500–1879, 1880-2000 (calibration

period) in Table 2 and discuss the results from the perspective of reanalysis accuracy across

time in a revised section 3. Even though the verification is not performed on an identical set

of proxies we also compare the verification statistics from the prototype reanalysis, to further

highlight the enhanced performance of the updated LMR. See revised manuscript Page 11, line

34 to Page 12 line 22.

Here is a ... list of choices the authors have adopted that are not accompanied by

any justifications or sensitivity discussion: 1-Use of 100-member ensemble; 2-Use of the

CCSM4 last millennium simulation as the prior; 3-Use of 51 MC realizations; 4-Use of a

proxy sampling scheme based on 75% of the proxy records; 5-Degradation of the model

resolution to a ∼5x5 grid. All of these choices undoubtedly influence the derived LMR

product. Some of them can be justified based on discussions in the literature. Some of

them require empirical demonstrations. All of them come across as ad hoc. I would also

venture to guess that the LMR results are more dependent on a couple of these choices
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than the other dependencies that the authors more systematically test. It is therefore

essential that the authors do a better job of justifying these choices and convincing the

reader that they are either reasonable choices or chosen based on some methodologi-

cal/logistical rationale.

Some of these choices have been discussed in prior publications. See Hakim et al (2016)

and references therein for example. However we agree that text reminding the reader of how

parameters were chosen should be included to convince that careful consideration was involved.

To further clarify the context, we should point out that some parameter values used here were

chosen to maintain consistency with the configuration used in Hakim et al (2016), in order em-

phasize the impact of updates specifically addressed in this work.

Some of the parameters were originally chosen based on practical considerations. For exam-

ple, the ratio of assimilated versus withheld proxies and the number of Monte-Carlo realizations

were chosen so that the random sample of proxies set aside for independent validation is repre-

sentative of the overall dataset, while maintaining minimal sensitivity on the accuracy of the the

reanalysis. A revised statement clarifying these points has been added in the last paragraph of

section 2.3., page 6, lines 17 to 23.

I should specifically mention the use of the CCSM4 as the prior. The authors say noth-

ing about how their results might depend on the model prior and whether they have tested

alternative last-millennium simulations in their analysis. This is an obvious question and

the authors need to address it.

This topic is addressed in Hakim et al (2016), with results from reconstructions using a wide

range of calibration and prior data (see Fig. 12 of that paper). Work on this topic has since been

expanded and explored in more detail. These results are, however, expected to be the subject

of a separate publication.

Page 2, lines 5-6: What does ”synthesizing information” mean? This is vague and I am

not even sure the statement is true. There are lots of central challenges of paleoclimate

science, and it is arguable that what the authors are alluding to is one of them. This

strikes me as an unsupported justification for what the authors subsequently say they

are attempting to do.

In this part of the text, our goal is to emphasize that data assimilation is a powerful frame-

work in which information from proxies and numerical model simulations is combined for the

production of, hopefully, robust climate reconstructions. Therefore, we believe that this goal is

appropriately described by the verb ”synthesize”, which may be defined as the act of combin-

ing (a number of things) into a coherent whole. We modified the statement as being “one of

the challenges of paleoclmate science” in order to more accurately convey our belief that other

challenges than this one exist. See revised manuscript Page 2 line 1.

Page 2, lines 30-32: This is a much more mundane objective than the sense given in

the abstract. Are the authors attempting to release a shiny new LMR product or should

this be seen as an iterative verification step toward some improved effort down the line?
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We apologize if the text does not clearly convey the goals pursued here. As with any complex

problem to be solved, as is the case here, improvements are generally incremental and modest.

The main goal of efforts reported in this paper has been to improve our system over the LMR

prototype, and to deliver an incrementally improved product, while being fully cognizant of the

fact that room for improvement remains. A revised statement at the end of the third paragraph

now includes “compared to the prototype LMR” to better convey the scope of our objective, while

the remaining room for improvement is acknowledged in a clearer manner in the next to last

paragraph of the conclusion. See Page 2 lines 29-30, and Page 17, lines 12 and 13.

Page 8, line 9: The use of precipitation is not justified and concerning. First, precip-

itation is almost never the variable associated with moisture sensitivity in trees - some

measure of soil moisture is. It is therefore not clear why the authors used precipitation

and how it influences their results. Why not use a more conventional variable like PDSI?

Secondly, how do the characteristics of precipitation influence the results? Does it matter

that precip is likely not Gaussian and that it has limited spatial and temporal covariance

structure? Is the use of precip perhaps adding to the loss of low-frequency variance in

this new LMR product? My guess is that this specific choice has a large impact on the

derived reconstruction and the use of precip is not justified in any way.

The reviewer is raising fair and important points here. We acknowledge that soil moisture

is the preferred response variable for the modeling of tree-ring widths. However, given our ap-

proach, which relies on the availability of calibrated forward models, the absence, to our knowl-

edge, of a reliable century-long soil moisture dataset is an important limiting factor. An alter-

native, as pointed out by the referee, would be PDSI (or other drought indices such as SPEI)

instead of soil moisture. This option, is enabled within our framework with the use of the Dai et al

(2004) dataset for forward model calibration (see below). To provide additional context about our

efforts, more particularly with the development of bivariate “temperature and moisture” PSMs,

our intent is to replicate VSlite’s (Tolwinski-Ward et al, 2011) general approach of combining the

influences of temperature and moisture in modeling tree-ring width variability, albeit in a simpler

fashion, while avoiding the issues associated with VSlite’s formulation involving thresholds (see

Dee et al, 2016). We use precipitation as the moisture source variable in bivariate models rather

than PDSI, since the latter is itself a function of temperature through the potential evapotranspi-

ration term involved in its calculation.

In response to the reviewer’s concern, we compare two reconstruction experiments in which

the univariate “temperature or moisture” (“TorM”) models are used to forward model tree-ring

width proxies. One experiment is performed with PSMs calibrated on PDSI using the dataset

from Dai et al (2004), while the other uses models calibrated on precipitation with the GPCC

dataset (Schneider et al, 2014). In each case, as described in section 2.4.2 in the main text,

decisions are made whether each tree-ring record is moisture sensitive or temperature sensitive

by comparing moisture calibrations (with PDSI or precipitation) and temperature calibrations (us-

ing GISTEMP as the calibration data). The regression providing the better fit is used to forward

model the proxy record. In all experiments. all other proxies are modeled with univariate tem-

perature PSMs. Other reconstruction parameters are the same as with experiments described

in the paper (100 ensemble members, CCSM4 as the prior model, 51 Monte-Carlo realizations

with 75% of proxies assimilated). Covariance localization is not applied here. Temperature re-
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constructions from both experiments are verified against instrumental-era analyses and against

independent (withheld from assimilation) proxies and results are compared in Tables AR.1 and

AR.2. Results obtained from a reconstruction using bivariate PSMs calibrated on temperature

and precipitation are included for comparison. The skill of reconstructions using the univariate

models are similar, whether PSMs are calibrated on PDSI or precipitation. But more importantly,

the skill scores are generally inferior to those obtained with the use of bivariate models. This is

particularly true with the CE score. Proxy-based verification results are less definitive due to the

noisy nature of the proxies, but generally support to the conclusion drawn from instrumental-era

verification. We have also calculated the spectra of Northern Hemisphere mean temperature

from both reconstructions, shown in Fig. AR.1. The results are nearly identical (indistinguish-

able at the 95% confidence level) , suggesting that the use of precipitation-calibrated PSMs

does not lead to a loss of variability in temperature reconstructions. Furthermore, the exercise

has shown that bivariate temperature/precipitation PSMs provide superior results compared to

univatiate “TorM” models, even when the latter are calibrated on PDSI. As part of the revision

of the manuscript, the results discussed herein are now included in the supplementary material,

while a statement referring to section S4 of the supplementary material is included in the last

sentence of section 2.4. See revised manuscript Page 7, lines 33-34.

Figures: In general, there is a lot of small text in the figures that is hard to read and

also rather confusing and messy.

We have simplified the design of figures in the revised manuscript. The summary information

included as text on the figures has been minimized for greater clarity.

Figures: The many colorbars are also unnecessary in many plots when one would do.

We thank you for your recommendation. We acknowledge the presence of multiple color-

bars, however we point out that the ranges shown in the various frames are not all identical.

Therefore, we elect to keep showing the colorbars. However we made efforts in cleaning up and

streamlining the design of the figures for greater clarity.
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Figure AR.1: Comparison of spectra of the Northern Hemisphere mean temperature from two

Common Era reconstructions using the Dai et al (2004) PDSI dataset versus the GPCC precipi-

tation dataset (Schneider et al, 2014) to calibrate univariate “TorM” PSMs used to model tree-ring

width proxies. Shading indicate the χ2 95% highest density regions (HDR).
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Table AR.1: Summary of instrumental–era verification results for reconstructions performed with

various PSM configurations to model tree-ring width proxies (see main text, section 2.4.2 for

PSM details). Verification scores shown are correlation (r) and coefficient of efficiency (CE) for

the annual global mean temperature (GMT) and detrended GMT verified against the consensus

of instrumental–era analyses, the global mean of gridpoint r and CE characterizing the spatially

reconstructed temperature, verified against the Berkeley Earth analysis.

PSM configuration
Annual GMT Detrended GMT Spatial temperature

r CE r CE r CE

Univariate “TorM” (PDSI) 0.92 0.79 0.72 0.46 0.52 0.17

Univariate “TorM” (precip.) 0.93 0.77 0.74 0.48 0.53 0.17

Bivariate 0.93 0.86 0.77 0.54 0.53 0.20

Table AR.2: Verification of LMR reconstructions against independent (withheld from assimilation)

proxies, for experiments using various PSM configurations to model tree-ring width proxies. Skill

scores shown are the median of distributions for correlation (r), the fraction of proxy records

characterized by a positive ∆CE (%+CE), and the median of the ∆CE distribution. Statistics are

compiled over 51 Monte-Carlo realizations, for two distinct periods: 1880–2000 (PSM calibration

period) and 0–1879 (pre-calibration period).

PSM configuration
1880–2000 0–1879

r %+CE ∆CE r %+CE ∆CE

Univariate “TorM” (PDSI) 0.34 80.0 0.09 0.21 70.4 0.05

Univariate “TorM” (precip.) 0.33 77.6 0.08 0.19 66.3 0.04

Bivariate 0.36 78.9 0.11 0.22 66.0 0.06

24



Last Millennium Reanalysis with an expanded proxy database and

seasonal proxy modeling

Robert Tardif1, Gregory J. Hakim1, Walter A. Perkins1, Kaleb A. Horlick2, Michael P. Erb3,
Julien Emile-Geay4, David M. Anderson5, Eric J. Steig6,1, and David Noone2

1Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
2College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
3School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA
4Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
5Retired, NOAA Paleoclimatology Program, Boulder, CO, USA
6Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA

Correspondence: R. Tardif (rtardif@atmos.washington.edu)

Abstract.

The Last Millennium Reanalysis utilizes an ensemble methodology to assimilate paleoclimate data for the production of an-

nually resolved climate field reconstructions of the Common Era. Two key elements are the focus of this work: the set of assim-

ilated proxy records, and the forward models that map climate variables to proxy measurements. Results based on an extensive

✿✿✿✿✿✿

updated
✿

proxy database and seasonal regression-based forward models are compared to the prototype reanalysis of Hakim et al.5

(2016), which was based on a smaller set of proxy records and simpler proxy models formulated as univariate linear regressions

against annual temperature. Validation against various instrumental–era gridded analyses shows that the new reconstructions

of surface air temperature, 500 hPa geopotential height and the Palmer Drought Severity Index are significantly improved ,

with skill scores increasing (from 10% to more than 200%, depending on the variable and verification measure
✿✿✿✿✿✿

100%),
✿✿✿✿✿

while

✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

Palmer
✿✿✿✿✿✿✿

Drought
✿✿✿✿✿✿✿✿

Severity
✿✿✿✿✿

Index
✿✿✿

are
✿✿✿✿

more
✿✿✿✿✿✿✿

modest. Additional experiments designed to10

isolate the sources of improvement reveal the importance of additional
✿✿✿

the
✿✿✿✿✿✿✿

updated proxy records, including coral records for

improving tropical reconstructions; tree-ring-width chronologies, including moisture-sensitive trees, for thermodynamic and

hydroclimate variables in mid-latitudes; and
✿✿✿

and tree-ring density records for temperature reconstructions, particularly in high

northern latitudes. Proxy forward models that account for seasonal responses, and the dual sensitivity to
✿✿✿✿✿✿✿✿✿

dependence
✿✿✿

on
✿✿✿✿

both

temperature and moisture characterizing tree-ring-width proxies, are also found to be particularly important. Other experiments15

highlight the beneficial role of covariance localization on reanalysis ensemble characteristics. This improved paleoclimate data

assimilation system served as the basis for the production of the first publicly released NOAA Last Millennium Reanalysis.

✿✿

for
✿✿✿✿✿✿✿✿

tree-ring
✿✿✿✿✿

width,
✿✿✿✿

also
✿✿✿✿✿✿✿✿

contribute
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿✿✿✿✿✿✿✿✿✿

thermodynamic
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

hydroclimate
✿✿✿✿✿✿✿✿

variables
✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

mid-latitudes.
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1 Introduction

Reconstructions of Earth’s past climate, particularly covering periods prior to instrumental data sets, are key to understanding

the causes of natural climate variability. For example, understanding natural variability provides the basis for improving pre-

dictions of climate variability in the coming decades. Information on past climates has traditionally been derived either from

climate proxy data (e.g., tree rings, ice cores, etc.) or from Earth system model simulations. Synthesizing
✿

,
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

synthesizing5

information from these two sources is a central challenge of
✿✿✿

one
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

challenges
✿✿

of
✿

paleoclimate science. Paleoclimate data

assimilation (PDA) has emerged as a powerful framework for such synthesis because it provides the optimal combination

of climate signals recorded by proxies as constrained by the dynamics of Earth system models. PDA-generated climate field

reconstructions have been used to investigate climate variability prior to the instrumental era (Goosse et al., 2006, 2010; Wid-

mann et al., 2010; Bhend et al., 2012; Steiger et al., 2014; Matsikaris et al., 2015; Franke et al., 2017; Okazaki and Yoshimura,10

2017; Steiger et al., 2018). Within this general PDA framework, a flexible PDA system is being developed for the Last Millen-

nium climate Reanalysis (LMR) project for the production of annually resolved reconstructions of the Common Era. Hakim

et al. (2016) describe a prototype configuration of the LMR and show results in good agreement with previous reconstructions

of Northern Hemisphere mean near-surface air temperature. Detailed comparisons with several gridded instrumental temper-

ature data products revealed significant skill over tropical regions but less skillful reconstructions over Northern Hemisphere15

continental areas, where a large proportion of proxy data are located.

As with any data assimilation system, two
✿✿

of
✿✿✿✿✿

three important components impacting the quality of the resulting analyses

are the set of assimilated observations (here, proxy records) and the forward models that map variables from climate model

output to proxy measurements (“proxy system models”; hereafter, PSMs).
✿✿✿

The
✿✿✿✿✿

third
✿✿✿✿✿✿✿✿✿

component
✿✿

is
✿✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

providing
✿✿✿

the

✿✿✿✿

prior
✿✿✿✿✿

state,
✿✿✿✿✿✿✿

although
✿✿

it
✿✿

is
✿✿✿

not
✿✿✿

the
✿✿✿✿✿

focus
✿✿

of
✿✿✿✿

this
✿✿✿✿✿

work. Hakim et al. (2016) assimilated proxy records from the first compilation20

of the PAGES 2k Consortium (PAGES 2k Consortium, 2013), and modeled the proxies through univariate linear regressions

calibrated against annually-averaged instrumental temperature data. Here we examine the impact on LMR reconstructions of

improvements to these two key components: (1) a much larger proxy data base, with
✿

an
✿✿✿✿✿✿✿

updated
✿✿✿✿

and
✿✿✿✿✿✿✿✿

expanded
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿

database,

✿✿✿✿✿✿✿

primarily
✿✿✿✿✿✿✿✿✿

composed
✿✿✿

of
✿

records from PAGES 2k Consortium (2017), Breitenmoser et al. (2014) and
✿✿

and
✿✿✿✿✿✿✿✿✿✿

assessment
✿✿✿

of
✿✿✿

the

additional records described in ?
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson et al. (2019); (2) more realistic PSMs in which seasonality and, for tree-ring-width25

proxies, temperature and moisture sensitivity are taken into account. Motivation for expanding the proxy database derives

from evidence that climate reconstructions are generally sensitive to the set of proxy records used as input (e.g., Wang et al.,

2015), while the introduction of more sophisticated PSMs is in part motivated
✿✿✿✿✿✿✿✿

motivated
✿✿

in
✿✿✿✿

part by the fact that comprehensive

reconstructions of temperature and hydroclimate variables depend on properly treating temperature-sensitive and moisture-

sensitive tree ring proxies (e.g., Steiger and Smerdon, 2017).30

The focus of improvements in PSMs here is on regression-based (i.e. statistical) forward models, in contrast to recent efforts

focusing on process-based PSMs (see e.g., Breitenmoser et al., 2014; Dee et al., 2016; Acevedo et al., 2017). Our objective

is to establish baseline skill of PDA reconstructions using statistical PSMs, to serve as a benchmark for evaluating possible

improvements associated with process-based PSMs (e.g., Dee et al., 2016). Here we develop a hierarchy of statistical PSMs to
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identify aspects that contribute increased skill to reconstructed temperature and hydroclimate states
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

prototype

✿✿✿✿

LMR.

The
✿✿✿✿✿✿✿✿

remainder
✿✿

of
✿✿✿

the
✿

paper is organized as follows. Section 2 outlines the LMR PDA-based framework and describes the

proxy database and PSMs. Reconstructions based on this configuration are presented in section 3, with comparisons to the

prototype described in Hakim et al. (2016). Section 4 explores the contributions to improvements in the new reconstructions.5

A concluding summary is given in section 5.

2 Methods

Paleoclimate data assimilation has three main components: proxy records, providing an indirect record of past climatic condi-

tions; climate models, providing prior estimates of the climate; and proxy system models, providing the connection between

the model prior and the proxy values. The method for each component is now described.10

2.1 Data assimilation framework

LMR employs ensemble data assimilation (DA) to optimally blend information from proxies and climate model data. DA

is performed using a variant of the ensemble Kalman filter, which for our application appears to perform well compared to

alternative PDA methods such as particle filters (Liu et al., 2017). The update equation is given by

xa = xb +K[y−ye]. (1)15

Here, xb is the prior state vector, which contains the climate variables to be reconstructed, averaged over an appropriate

timescale (here, annual), while
✿✿✿

and xa is the posterior state vector (i.e. the reanalysis, or reconstruction). The state vector may

include scalars, such as climate indices, and/or grid-point data for spatial fields. Vector y contains the assimilated proxy data

(i.e. observations) and ye is a vector containing estimates of the proxies derived from the prior by

ye =H(xb), (2)20

where H is the forward model mapping the prior xb to proxy space (i.e. the PSM, see section 2.4). The innovation, [y−ye],

is the new information from the proxies not already contained in the prior. This new information is weighted against the prior

through the Kalman gain matrix

K=BHT

[

HBHT + R

]

−1

(3)

where B is the prior covariance matrix, R is the error covariance matrix for the proxy data, and H is the linearization of H25

about the mean value of the prior. Here, Eq. (1) is solved using the ensemble square-root filter (EnSRF) approach of Whitaker

and Hamill (2002), in which the ensemble-mean and perturbations about the ensemble mean are solved separately. Moreover,

R is taken as a diagonal matrix (uncorrelated observation errors) where the diagonal elements represent the error variance

for each assimilated proxy record; details on how these are estimated are provided in Section 2.4. This allows for serial
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processing of observations, in which observations are assimilated one at a time. This greatly simplifies the implementation of

covariance localization, which is used to control sampling error in the prior covariance. Solutions for the ensemble mean, xa,

and perturbations, x′

a, for the single kth proxy yk, are obtained from:

xa = xb +
wloc ◦ cov(xb,ye,k)

var(ye,k)+Rk

(yk − ye,k) (4a)

x′

a = x′

b −

[

1+

√

Rk

var(ye,k)+Rk

]−1

wloc ◦ cov(xb,ye,k)

var(ye,k)+Rk

(y′e,k) (4b)5

where ye,k is the prior estimate of the proxy from (2) and Rk is the diagonal element of R corresponding to proxy yk. The

ensemble of updated states is then recovered by combining the posterior ensemble mean and perturbations

xa = xa +x′

a. (5)

Covariance localization, given by a Schur product denoted by ◦ in Eqs. 4 (i.e. element-wise multiplication), is a distance-

weighted filter wloc on the prior covariance matrix (see e.g. Hamill et al., 2001). Section 4.2provides for
✿✿✿✿✿✿✿

Sections
✿✿✿✿

4.2,
✿✿✿

and
✿✿✿

S510

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

supplementary
✿✿✿✿✿✿✿

material,
✿✿✿✿✿✿✿

provide more details on localization.

We also use an “appended state vector” approach for serially processing proxy measurements that avoids the need to re-

compute (2) after each proxy is assimilated. This approach also simplifies the
✿✿✿

The
✿✿✿

ye
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿

estimates
✿✿✿✿✿

from
✿✿✿✿

each
✿✿✿✿✿✿

record
✿✿✿

are

✿✿✿✿✿✿✿✿

appended
✿✿

to
✿✿✿

the
✿✿✿✿

state
✿✿✿✿✿

vector
✿✿✿

xb:
✿

xb =





























x1

...

xN

y1e
...

yPe





























,

✿✿✿✿✿✿✿✿✿✿

(6)15

✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿

x1 . . .xN
✿✿✿✿✿✿✿

elements
✿✿✿✿✿✿

contain
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿

grid
✿✿✿✿✿

point
✿✿✿

data
✿✿✿✿✿

from
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿

the
✿✿✿✿

state
✿✿✿✿

(e.g.
✿✿✿✿✿✿✿✿✿✿✿

temperature,

✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿

etc.),
✿✿✿✿

with
✿✿✿

N
✿✿✿

the
✿✿✿✿

sum
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿

variables
✿✿✿✿✿

times
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿

grid
✿✿✿✿✿✿

points,
✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿✿

y1e . . .y
P
e ✿✿✿✿

are
✿✿✿

the

✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿

estimates
✿✿✿

for
✿✿✿✿

each
✿✿✿

of
✿✿✿

the
✿✿

P
✿✿✿✿✿✿

proxy
✿✿✿✿✿✿

records
✿✿✿✿✿✿✿✿✿✿

considered.
✿✿✿✿✿

Each
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

x1 . . .xN
✿✿✿✿

and
✿✿✿✿✿✿✿

y1e . . .y
P
e✿✿✿✿✿✿✿✿

elements
✿✿✿

are
✿✿✿

of

✿✿✿✿✿✿✿✿✿

dimensions
✿✿✿✿✿✿✿✿✿

1×Nens,
✿✿✿✿✿

where
✿✿✿✿✿

Nens
✿✿

is
✿✿

the
✿✿✿✿✿✿✿✿

specified
✿✿✿✿

size
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble.
✿✿✿✿✿✿✿

Hence,
✿✿

xb
✿✿

is
✿

a
✿✿✿✿✿✿

matrix
✿✿

of
✿✿✿✿✿✿✿✿✿

dimension
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(N +P )×Nens.

✿✿✿✿

With
✿✿✿✿

such
✿✿✿

an
✿✿✿✿✿✿✿✿

appended
✿✿✿✿

state,
✿✿✿

the
✿✿✿

ye
✿✿✿✿✿✿✿

elements
✿✿✿

in
✿✿✿

Eq.
✿

6
✿✿✿

are
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿

through
✿✿✿✿

Eqs.
✿

4
✿✿✿

as
✿✿✿

any
✿✿✿✿✿

other
✿✿✿✿

state
✿✿✿✿✿✿✿✿

variables,
✿✿✿✿✿✿✿✿✿✿

eliminating
✿✿✿

the20

✿✿✿✿

need
✿✿

to
✿✿✿✿✿✿✿✿✿

re-evaluate
✿✿✿

ye
✿✿✿✿

with
✿✿✿

Eq.
✿✿

2
✿✿✿✿

once
✿✿✿

the
✿✿✿✿✿

state
✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿

updated.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿

simplification
✿✿

is
✿✿✿✿✿✿✿✿✿✿

particularly
✿✿✿✿✿✿✿✿

attractive
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

context

✿✿

of
✿✿✿✿✿

LMR
✿✿✿✿✿✿

updates
✿✿✿✿✿✿✿✿✿

discussed
✿✿✿✿✿

herein
✿✿

as
✿✿

it
✿✿✿✿✿✿✿

enables
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

straightforward
✿

implementation of seasonal forward models as described in

more detail in Appendix ??.
✿✿✿✿✿

PSMs
✿✿✿✿

(i.e.
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿

models
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

accurately
✿✿✿✿✿✿✿✿✿✿

representing
✿✿✿✿

the
✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿✿✿✿

responses
✿✿

of
✿✿✿✿✿✿✿✿✿

individual

✿✿✿✿✿

proxy
✿✿✿✿✿✿✿

records)
✿✿

as
✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿✿✿✿

section
✿✿✿

2.4.
✿✿

In
✿✿✿✿

our
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

annually-averaged
✿✿✿✿✿✿

states,
✿✿✿

the
✿✿✿✿

data

✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿

procedure
✿✿✿✿✿✿✿

follows
✿✿✿

this
✿✿✿✿✿✿

general
✿✿✿✿✿✿✿✿✿

algorithm.
✿
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1.
✿✿✿

The
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿

estimates
✿✿✿✿

(ye)
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿

pre-calculated
✿✿✿✿

using
✿✿✿✿

Eq.
✿

2
✿✿✿✿

with
✿✿✿✿✿

either
✿✿✿✿✿✿✿✿

annually-
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

seasonally-averaged
✿✿✿✿✿

model
✿✿✿✿

data
✿✿

as
✿✿✿✿✿

input

✿✿✿

(i.e.
✿✿✿

the
✿✿✿

xb
✿✿

in
✿✿✿

Eq.
✿✿✿

2).

2.
✿

A
✿✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

annually-averaged
✿✿✿✿✿

model
✿✿✿✿✿

states
✿✿

is
✿✿✿✿✿✿✿✿✿

randomly
✿✿✿✿✿

drawn
✿✿✿✿✿

from
✿✿

a
✿✿✿✿✿✿✿✿✿✿

pre-existing
✿✿✿✿✿✿✿✿✿

simulation
✿✿

to
✿✿✿✿✿

form
✿✿✿

the

✿✿✿✿

main
✿✿✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿

prior
✿✿✿✿

state
✿✿✿✿✿✿

vector
✿✿✿

(i.e.
✿✿✿

the
✿✿✿✿✿✿✿✿

x1 . . .xN
✿✿✿✿✿✿✿✿

elements
✿✿

in
✿✿✿

Eq.
✿✿✿

6).

3.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

pre-calculated
✿✿✿✿✿✿✿

y1e . . .y
P
e✿✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿

estimates
✿✿✿

are
✿✿✿✿✿

added
✿✿

on
✿✿

to
✿✿✿✿✿

form
✿✿✿

the
✿✿✿✿✿✿✿✿

appended
✿✿✿✿

state
✿✿

as
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿

Eq.
✿✿

6.
✿✿✿✿✿

This
✿✿✿✿✿✿✿✿

appended5

✿✿✿✿

state
✿✿✿✿✿✿✿

becomes
✿✿✿

the
✿✿✿

xb
✿✿

in
✿✿✿

Eq.
✿✿

1,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿✿✿

decomposed
✿✿

in
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿

ensemble-mean
✿✿✿✿

(xb)
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿

(x′

b)
✿✿

as

✿✿✿✿✿

shown
✿✿

in
✿✿✿✿

Eqs.
✿✿

4.
✿

4.
✿✿✿✿✿✿

Proxies
✿✿✿✿✿✿✿

forming
✿✿✿

the
✿✿

y
✿✿✿✿✿

vector
✿✿✿

are
✿✿✿✿

then
✿✿✿✿✿✿

serially
✿✿✿✿✿✿✿✿✿

processed,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

updated
✿✿✿✿✿

state,
✿✿✿✿✿✿✿✿

including
✿✿✿

the
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿

estimates,
✿✿✿✿✿✿✿✿

obtained

✿✿✿✿

from
✿✿✿✿

Eqs.
✿✿

4.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿

is
✿✿✿✿✿✿✿✿✿

completed
✿✿

for
✿✿✿✿

one
✿✿✿✿

year
✿✿✿✿

once
✿✿✿

all
✿✿✿✿✿✿

proxies
✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿✿

assimilated.
✿

✿✿✿

We
✿✿✿✿

note
✿✿✿✿

here
✿✿✿

that
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

configuration
✿✿✿✿✿✿✿✿

involving
✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿

PSMs
✿✿✿✿✿✿

without
✿✿✿

the
✿✿✿✿

use
✿✿

of
✿✿

an
✿✿✿✿✿✿✿✿✿

appended
✿✿✿✿

state,
✿✿✿

the
✿✿✿✿✿✿

vector
✿✿

xb
✿✿✿✿

has
✿✿

to10

✿✿✿✿✿✿

include
✿✿✿✿✿

states
✿✿✿✿

with
✿✿✿✿✿✿✿✿

sufficient
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿

resolution
✿✿

to
✿✿✿✿✿

allow
✿✿✿

the
✿✿✿✿✿✿✿✿✿

calculation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿✿✿

y1e . . .y
P
e ✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿✿

estimates.
✿✿

In

✿✿✿

this
✿✿✿✿✿✿✿✿

scenario,
✿✿

an
✿✿✿✿✿✿✿✿

additional
✿✿✿✿

step
✿✿

to
✿✿✿

the
✿✿✿✿

ones
✿✿✿✿✿

listed
✿✿✿✿✿

above
✿✿

is
✿✿✿✿✿✿✿✿

required,
✿✿✿✿✿✿✿✿

involving
✿✿✿

Eq.
✿✿

2
✿✿✿✿✿

using
✿✿

the
✿✿✿✿✿✿✿✿✿✿

appropriate
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

seasonally-averaged

✿✿✿✿✿✿

updated
✿✿✿✿✿

states
✿✿✿

as
✿✿✿✿✿

input.
✿✿✿✿

With
✿✿✿✿✿✿✿

proxies
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿

by
✿✿

a
✿✿✿✿

wide
✿✿✿✿✿

range
✿✿✿

of
✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿✿✿✿

responses,
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

requirement
✿✿✿✿✿✿

would
✿✿✿✿✿✿

impose
✿✿✿

an

✿✿

xb
✿✿✿✿✿✿✿✿✿

composed
✿✿

of
✿✿✿✿✿✿✿

monthly
✿✿✿✿

data
✿✿✿✿✿

which
✿✿✿✿✿✿

would
✿✿✿✿✿✿

greatly
✿✿✿✿✿✿✿

increase
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿

cost
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

reanalysis.
✿✿✿✿✿✿✿✿✿✿

Reanalysis
✿✿✿✿✿

results
✿✿✿✿✿✿

would

✿✿✿

also
✿✿✿✿✿

likely
✿✿✿

be
✿✿✿✿✿✿✿✿

adversely
✿✿✿✿✿✿✿

affected
✿✿✿

by
✿✿✿

the
✿✿✿✿✿

larger
✿✿✿✿✿

noise
✿✿✿✿

level
✿✿✿✿✿✿✿✿✿✿✿✿

characterizing
✿✿✿✿

data
✿✿

at
✿✿✿✿✿✿✿

shorter
✿✿✿

(i.e.
✿✿✿✿✿✿✿✿

monthly)
✿✿✿✿✿✿✿✿✿

timescales
✿✿✿✿✿✿✿

through
✿✿✿

its15

✿✿✿✿✿

impact
✿✿✿

on
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

estimates
✿✿

of
✿✿✿✿

prior
✿✿✿✿✿✿✿✿✿✿

covariances
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(see, e.g. Tardif et al., 2016)
✿

.

As in Hakim et al. (2016), an “offline” DA approach is used, where the prior ensemble is formed by random draws of

time–averaged states from a pre-existing millennial-long model simulation, with the same randomly drawn ensemble members

used for every year in the reconstruction
✿✿

of
✿

a
✿✿✿✿✿

given
✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿✿✿✿✿✿

realization
✿✿✿✿

(see
✿✿✿✿✿✿✿

Section
✿✿✿

2.3
✿✿✿✿✿✿

below). This is in contrast to online

DA (e.g., Matsikaris et al., 2015; Perkins and Hakim, 2017), where a numerical model is used to dynamically forecast the20

evolution of climate states from the latest proxy-informed analysis to the following year, when new proxy observations are

assimilated. The “offline” approach,
✿✿✿✿✿✿✿✿✿

introduced
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Oke et al. (2002)
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Evensen (2003)
✿✿✿

and
✿✿✿✿

used
✿✿

in
✿✿

an
✿✿✿✿✿✿

ocean
✿✿✿

DA
✿✿✿✿✿✿

system
✿✿✿

by

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Oke et al. (2005),
✿

offers several practical advantages, particularly from a computational cost perspective . Furthermore, it is

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Oke et al., 2007)
✿

.
✿✿

Its
✿✿✿

use
✿✿

is
✿✿✿✿✿✿

further justified when model forecasts have little
✿✿✿✿✿✿

limited
✿

skill over timescales corresponding to the

time interval between updates, as is the case here with
✿✿✿✿✿

global
✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿

models
✿✿✿

and proxies assimilated on an annual basis.
✿✿✿✿

This25

✿✿✿✿✿✿✿

scenario
✿✿

is
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿

supported
✿✿✿

by
✿✿✿

the
✿✿✿✿✿

PDA
✿✿✿✿✿

results
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Matsikaris et al. (2015)
✿✿✿

who
✿✿✿✿✿

show
✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

is
✿✿✿✿✿✿✿✿

achieved
✿✿✿✿

with

✿✿✿✿✿

online
✿✿✿✿

and
✿✿✿✿✿

offline
✿✿✿✿✿✿✿✿✿✿

approaches.
✿✿✿✿✿

From
✿✿

a
✿✿✿✿✿✿✿✿✿✿

cost-benefit
✿✿✿✿✿✿✿✿✿✿

perspective,
✿✿✿

the
✿✿✿✿

high
✿✿✿✿

cost
✿✿

of
✿✿✿✿✿✿✿

running
✿✿✿✿✿✿✿✿✿

ensembles
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

comprehensive
✿✿✿✿✿✿

global

✿✿✿✿✿✿

climate
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿

appear
✿✿✿✿✿✿✿

justified.
✿✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿✿✿

ongoing
✿✿✿✿✿✿✿

research
✿✿✿✿✿✿✿✿

suggests
✿✿✿✿✿✿✿✿✿✿✿

cost-effective
✿✿✿✿✿✿

online
✿✿✿✿

PDA
✿✿✿✿

may
✿✿✿

be

✿✿✿✿✿✿✿

achieved
✿✿✿

by
✿✿✿✿

using
✿✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿

models
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Perkins and Hakim, 2017).
✿

2.2 Climate proxies30
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Here we use a combination of proxy records from
✿✿✿

Our
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿

database
✿

is
✿✿✿✿✿✿✿

updated
✿✿

to the latest PAGES 2k collection (PAGES 2k Consortium,

and the additional records assembled by ?. As in the LMR prototype (Hakim et al., 2016, hereafter H16), only records with

sub-annual to annual resolutions are considered; sub-annual records are averaged to annual. The PAGES 2k Consortium (2017)

dataset (hereafter PAGES2k-2017) is a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(PAGES 2k Consortium, 2017, hereafter PAGES2k-2017)
✿

.
✿✿✿✿

This
✿✿✿✿✿✿

dataset
✿✿✿✿✿✿✿✿✿

represents
✿✿✿

the

community standard in global proxy observations covering the Common Era (CE) , and serves as the core source of proxy infor-5

mation used here. Proxies included in
✿

in
✿✿✿

our
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿✿✿

reanalysis.
✿

PAGES2k-2017
✿✿✿✿✿✿

proxies were screened to retain temperature-

sensitive recordsonly, extensively quality controlled, and described by more metadata compared to previous collections.

Figure 1 shows the various proxy networks considered for assimilation, comparing
✿✿✿

The
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿

records
✿✿✿✿✿✿✿✿✿

assembled
✿✿✿

by

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson et al. (2019)1,
✿✿✿✿✿✿✿✿✿

consisting
✿✿

in
✿✿✿✿

large
✿✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿

tree
✿✿✿

ring
✿✿✿✿✿

width
✿✿✿✿✿✿✿

records
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Breitenmoser et al. (2014)
✿✿✿✿✿✿✿✿

(hereafter
✿✿✿✿✿

B14),

✿✿

are
✿✿✿✿✿✿✿✿✿✿

considered
✿✿

as
✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿✿✿✿✿✿

enhancement
✿✿

to
✿✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿

used
✿✿

in
✿✿✿

our
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

paleo-reanalyses
✿✿✿

(see
✿✿✿✿✿✿✿

section
✿✿✿✿

4.3).10

✿✿

As
✿✿

in
✿✿✿

the
✿✿✿✿✿

LMR
✿✿✿✿✿✿✿✿

prototype
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Hakim et al., 2016, hereafter H16)
✿

,
✿✿✿✿

only
✿✿✿✿✿✿

records
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

sub-annual
✿✿

to
✿✿✿✿✿✿

annual
✿✿✿✿✿✿✿✿✿

resolutions
✿✿✿

are
✿✿✿✿✿✿✿✿✿

considered;

✿✿✿✿✿✿✿✿✿

sub-annual
✿✿✿✿✿✿

records
✿✿✿

are
✿✿✿✿✿✿✿✿

averaged
✿✿

to
✿✿✿✿✿✿✿

annual.
✿✿✿✿✿

Figure
✿✿

1
✿✿✿✿✿✿✿✿

compares
✿

the PAGES 2k Consortium (2013) (hereafter PAGES2k-2013)

dataset used in H16, to
✿✿

and
✿

the PAGES2k-2017 update, and to the entire updated LMR database including the records of ?

. Only records for which a PSM can be established are shown
✿

in
✿✿✿✿

Fig.
✿✿

1, defined by proxy records with at least 25 years of

(non-contiguous) overlap with calibration data (see section 2.4).15

Compared to the proxies assimilated in H16, PAGES2k-2017 data provide enhanced spatial coverage in the tropics with

additional coral δ18O and Sr/Ca records. Additional tree ring wood density records from Europe and western North America

are also included. The temporal distribution of the total number of records remains similar, except for significant increases in

the number of tree ring width and coral proxies during 1800–2000CE, and tree ring wood density records during 1500–2000CE.

The additional records from ? include the large number of tree ring width records from Breitenmoser et al. (2014) (hereafter20

B14), not strictly screened for temperature sensitivity in contrast to the PAGES 2k collection. These records provide enhanced

coverage over eastern North America, southern Europe, boreal Eurasia and southern South America. Two tree ring records

are also added in the data-void region of southern Africa. Other additions, totaling 94 records, provide additional records in

the Tropics (23 coral records), and a greatly enhanced number of ice core records concentrated over Greenland and eastern

Canadian Arctic (37 records) and Antarctica (26 records in West Antarctica and Drönning Maud Land). A few lower latitude25

ice core records (6 records) are also added in the Peruvian Andes and Tibetan Plateau, along with two higher latitude lake

core records. From a temporal perspective relative to proxies used in H16, the addition of the tree ring width records from

B14 contributes a notable number of additional proxies back to 1000CE, more than double the number of records available for

assimilation from 1500CE onward, up to a fourfold increase during the 19th and 20th centuries.

0An exception is the use of the Palmyra coral record from Cobb et al. (2003) rather than the Emile-Geay et al. (2013) update, as described in ?.
1
✿✿

An
✿✿✿✿✿✿✿

exception
✿✿

is
✿✿✿

the
✿✿✿

use
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

Palmyra
✿✿✿✿

coral
✿✿✿✿✿

record
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿

Cobb et al. (2003)
✿✿✿✿

rather
✿✿✿✿

than
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Emile-Geay et al. (2013)
✿✿✿✿

update,
✿✿✿

as
✿✿✿✿✿✿✿

described
✿✿

in

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson et al. (2019)
✿

.
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2.3 Climate model prior information

For all reconstruction experiments reported in this paper, the prior state vector is formed with data from the CMIP5 (Taylor

et al., 2012) Last Millennium simulation from the Community Climate System Model version 4 (CCSM4) coupled atmosphere-

ocean-sea ice model. The simulation covers years 850 to 1850 CE and includes incoming solar variability, variable greenhouse

gases as well as stratospheric aerosols from volcanic eruptions known to have occurred during the simulation period (see5

Landrum et al., 2013). The same “offline” DA methodology as in H16 is used, where the prior ensemble is a random sample

of annual averages, with the same sample used for all years of the reconstruction. The sampled states are deviations (i.e.

anomalies) from the temporal mean taken over the entire length of the simulation. Therefore, the prior ensemble–mean does

not contain time-specific information about climate events (e.g. a volcanic eruption) or trends characterizing specific periods

(e.g. twentieth century warming). Finally, the spatial resolution of prior state variables is reduced from 0.95o × 1.25o of the10

Last Millennium simulation to a of 4.3o × 5.7o Gaussian grid
✿✿

as
✿✿

in
✿✿✿✿

H16.

All reconstruction experiments are composed of 51 Monte-Carlo assimilation realizations, each using a different randomly

chosen 100–member ensemble and 75% of available proxy records for assimilation. This Monte-Carlo sampling over sub-

sets of prior states and proxy records is designed to incorporate uncertainties in covariance estimates derived from model

states, and uncertainties associated with proxy error estimates.
✿✿✿✿✿✿✿✿

Moreover,
✿✿✿

we
✿✿✿✿

have
✿✿✿✿✿

found
✿✿✿✿

that
✿✿✿✿✿✿✿✿

averaging
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿

ensembles
✿✿✿✿✿

from15

✿✿✿✿✿✿✿✿✿✿

Monte-Carlo
✿✿✿✿✿✿✿✿✿✿

realizations
✿✿✿✿✿

leads
✿✿

to
✿✿✿✿✿

more
✿✿✿✿✿✿✿

accurate
✿✿✿✿✿✿

results.
✿✿✿✿✿

This
✿

is
✿✿✿✿✿✿

likely
✿✿✿

the
✿✿✿✿✿

result
✿✿

of
✿✿✿✿✿✿✿✿

averaging
✿✿✿✿✿

over
✿✿✿✿✿✿

random
✿✿✿✿✿✿

errors
✿✿✿✿✿✿✿✿✿

introduced

✿✿✿

into
✿✿✿

the
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿

from
✿✿✿✿

few
✿✿✿✿✿✿✿✿

randomly
✿✿✿✿✿✿

chosen
✿✿✿✿✿✿

proxy
✿✿✿✿✿✿

records
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimated
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

errors.
✿✿✿✿✿

Little
✿✿✿✿✿✿✿✿

sensitivity
✿✿✿

to
✿✿✿

the

✿✿✿

use
✿✿

of
✿✿✿✿

75%
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

proxies
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿

realization
✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿

found
✿✿✿✿

(not
✿✿✿✿✿✿✿

shown),
✿✿✿✿✿

while
✿✿✿✿

100
✿✿✿✿✿✿✿

members
✿✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿

chosen
✿✿

to
✿✿✿✿✿✿✿✿

maintain

✿✿✿✿✿✿✿✿✿

consistency
✿✿✿✿

with
✿✿✿✿✿

H16. In the following, climate reanalyses are taken as the mean over the 100–member DA ensembles and 51

Monte-Carlo realizations (i.e., a 5100–member “grand ensemble”).20

2.4 Proxy modeling

A critical component of PDA is the mapping of prior climate state variables (e.g., temperature, precipitation from a climate

model) to the assimilated proxies (e.g., tree ring width). This is expressed mathematically by Eq. 2, section 2.1, where the

operator H (i.e. the forward model) ideally represents the complete set of processes associated with proxy values, i.e. a

comprehensive physically-based PSM. This remains a major challenge as the information archive is often complex, involv-25

ing physical, biological and chemical processes (Evans et al., 2013). Despite recent progress in the development and use of

process-based PSMs (e.g., Dee et al., 2015, 2016; Goosse, 2016; Steiger et al., 2017; Acevedo et al., 2017), the focus here is on

statistical PSMs, which offer distinct advantages: 1) ease of implementation and flexibility with respect to forward modeling

of multiple proxies, regardless of archive types, measurements, units etc.; 2) observation error statistics for each assimilated

record are well-defined from the regression (see below); and 3) regressions are formulated on the basis of deviations from30

the mean over a reference period (e.g. 1951–1980) of the driving climate variable(s), therefore avoiding issues with absolute

calibration where climate model bias is problematic, particularly for PSMs having threshold transitions (see e.g., Dee et al.,

2016). Statistical PSMs also have distinct disadvantages: 1) PSMs cannot be calibrated without sufficient overlap with calibra-
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tion data
✿

(a
✿✿✿✿✿✿✿✿

threshold
✿✿

of
✿✿

at
✿✿✿✿✿

least
✿✿

25
✿✿✿✿✿✿✿✿✿✿

overlapping
✿✿✿✿

data
✿✿

is
✿✿✿✿✿✿✿✿

imposed); 2) the accuracy of the models depends on the limitations of

the calibration datasets (e.g. less reliable analysis over the Southern Ocean and over high latitude continental areas due to a

lack of observations); and 3) possible lack of stationarity of the derived relationships established with instrumental–era data.

Despite these limitations, we believe statistical PSMs provide advantageous capabilities within the context of the LMR and,

moreover, define a baseline to measure future progress with the development of process-based PSMs.5

Here, univariate and bivariate statistical PSMs are considered,

yk = β0k + β1kX ′

1
+ ǫk (7)

and

yk = β0k + β1kX ′

1
+ β2kX ′

2
+ ǫk (8)

where yk are annualized observations from the kth proxy time series, X ′

1
,X ′

2
are anomalies of key climate variables (e.g.10

near-surface air temperature and precipitation) from calibration instrumental–era datasets, β0 is the intercept and β1,β2 are

the slopes with respect to the X ′

1
and X ′

2
independent variables respectively, and ǫ is a Gaussian random variable with zero

mean and variance σ2. The overbar in Eqs. 7 and 8 denotes time averages over annual periods as in H16, or over appropriate

seasonal intervals for the seasonal PSMs. Calibration data concurrent with available proxy observations are taken at the grid

point nearest the proxy location and the appropriate least-squares solution determines regression parameters (β0,β1,β2,σ). In15

this version of LMR, PSM configuration is the same for each proxy category (e.g., univariate for all coral δ18O, bivariate for

all tree ring widths records, etc.).

With the framework described above, the regression–based approach measures the diagonal elements in matrix R through

the variance of regression residuals, i.e. Rk = σ2. This is a key parameter in PDA as it determines the extent to which the

information provided by the proxy is weighted against prior information in the resulting reanalysis. This method provides a20

sound basis through which assimilated proxy records influence the reanalysis depending on the strength of their relationship

to the dependent climate variables. For example, a record with a poor fit to calibration data will be characterized by larger

residuals, hence larger observation error variance, and less weight in the reanalysis relative to a record that has a stronger

correlation with climate variables. We note that modestly different results are obtained with different observational calibration

datasets (see H16).25

The calibration datasets used in this study are the NASA Goddard Institute for Space Studies (GISS) Surface Temperature

Analysis (GISTEMP) (Hansen et al., 2010) version 4 for temperature, and the gridded precipitation dataset from the Global

Precipitation Climatology Centre (GPCC) (Schneider et al., 2014) version 6 as the source of monthly information on moisture

input over land surfaces.
✿✿✿

The
✿✿✿

use
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿

instead
✿✿

of
✿✿✿

the
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

traditional
✿✿✿✿✿✿

Palmer
✿✿✿✿✿✿✿✿

Drought
✿✿✿✿✿✿✿

Severity
✿✿✿✿✿

Index
✿✿✿✿✿✿

(PDSI)
✿✿✿

to

✿✿✿✿✿✿

account
✿✿✿

for
✿✿✿✿✿✿✿✿

moisture
✿

is
✿✿✿✿✿✿✿✿✿

described
✿✿

in
✿✿✿✿

more
✿✿✿✿✿

detail
✿✿

in
✿✿✿✿✿✿

section
✿✿✿

S4
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

supplementary
✿✿✿✿✿✿✿✿

material.30

2.4.1 Seasonality

Here we take advantage of the availability of expert information about the seasonal response to temperature for each proxy

record included in the PAGES2k-2017 metadata. This information is not available in PAGES2k-2013, hence the use of PSMs
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calibrated on annual averages for all records in H16. Seasonality information is provided for each record as a numerical

representation of a sequence of consecutive months (e.g. JJA as [6,7,8]). Seasonal PSMs are derived by using this sequence as

the averaging period defining X ′

1
and X ′

2
in Eqs. 7 and 8.

Precise information on proxy seasonality is however not available for all records in the updated LMR proxy database. The

proxies from ? (section 2.2)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson et al. (2019),
✿✿✿✿✿✿✿✿✿✿

considered
✿✿

as
✿

a
✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿

expansion
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿

database, have5

not been subjected to extensive community–wide screening and vetting as with the PAGES2k-2017 proxies. In particular, sea-

sonality information for the large number of additional tree ring records from B14 has been encoded using a simple latitudinal

dependence which does not attempt to represent possible record-by-record diversity (see ?)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(see Anderson et al., 2019). This

lack of expert-informed seasonality motivates an objective alternative to the metadata seasonality information for calibrating

tree ring width (TRW) forward models. We consider several potential seasonal periods, perform a regression over each possi-10

ble season, and identify the linear relationship providing the best fit to proxy values, as defined by the maximum value of the

adjusted R2, a goodness-of-fit measure defined as (Goldberger, 1964, p. 217):

R2

adj = 1−

[

(1−R2)(N − 1)

N −M − 1

]

. (9)

Here, R2 is the variance explained by the linear model, N is the sample size and M is the number of predictors in the model.

The adjusted R2 penalizes complexity (i.e. the number of predictors) of the model in such a way that values characterizing a15

more complex model will increase only if the additional predictors improve the fit more than would be expected by chance.

Test periods considered include, in addition to the seasonal response in the proxy metadata (if available), the calendar year,

boreal summer (JJA) and boreal winter (DJF), and extended Spring and Fall growing seasons (MAMJJA, JJASON for NH trees,

SONDJF, DJFMAM for SH trees) to account for ecosystem–dependent variations in tree growth shifted toward the earlier or

later parts of the warm season (see, e.g., Sano et al., 2009; D’Arrigo et al., 2005). With this test set of seasonal responses, the20

dominant sensitivity of some TRW chronologies to winter temperature (D’Arrigo et al., 2012) is included, as well as the winter

and spring precipitation sensitivities characterizing some tree species (see, e.g., Stahle et al., 2009; Touchan et al., 2003). The

latter point is germane to the calibration of seasonal TRW models using precipitation as a predictor (see next section).

2.4.2 Tree ring width sensitivity to temperature and moisture

Proxy number is strongly dominated by TRW records in the LMR proxy database, particularly with the addition of chronologies25

from B14. Furthermore, these records have not been screened on temperature, which opens the opportunity to measure moisture

sensitivity through the regression framework. The addition of an explanatory variable increases the potential for overfitting,

and our framework is designed to measure that using the 25% of proxies withheld from assimilation, for which we can measure

reconstruction errors and compare results with proxies that were assimilated.

Two methods are considered, both adding a dependence to moisture input (as represented here with precipitation). The first30

maintains the univariate approach (Eq. 7) but considers linear PSMs calibrated against either temperature or precipitation. For

each TRW record, distinct regressions with either variables
✿✿✿✿✿✿✿

variable are established and the model providing the best fit to

proxy data is selected. Following a common practice in dendroclimatology, this approach determines whether the record is pre-
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dominantly temperature or moisture limited (see, e.g., St. George, 2014). Similar univariate “temperature or moisture” models

(abbreviated as “TorM” hereafter) are successfully used in Steiger et al. (2018). The second method consists of simultaneously

factoring both temperature and moisture sensitivities through the bivariate relationship expressed in Eq. 8.

Seasonal univariate TorM and bivariate TRW models are considered, with distinct sets of models calibrated using proxy

seasonality either from the proxy metadata or objectively-derived during calibration. This selection has important implications5

for the representation of the proxy seasonal response to moisture in particular. For the proxy metadata, seasonality for moisture

is assumed to be identical to temperature as this is the only information available, whereas the objective approach allows

for independent encoding of seasonal responses to temperature and moisture. For TorM models, the objective seasonality for

univariate moisture models is independent of temperature as it is determined solely from the fit to precipitation data. For

bivariate PSMs, all possible combinations of seasonal responses specified independently for temperature and moisture are10

considered and the combination providing the best fit is selected. With such flexibility, TRW models with objectively-derived

seasonality are expected to provide a more realistic representation of the significant variability in seasonal responses to moisture

characterizing TRW records (see, e.g., St. George et al., 2010). We note that this approach is similar to the methodology used

to calibrate the VS-Lite model (Tolwinski-Ward et al., 2011) in that local
✿✿✿

grid
✿✿✿✿

cell temperature and precipitation data are used

to determine site-specific growth seasons and seasonally-dependent temperature and moisture growth parameters.15

An examination of PSM characteristics, summarized here, with more detail provided in appendix A, confirms that proxies

are represented more accurately by seasonal models, particularly for tree-ring wood density and width records (see Table A1).

Moreover, more-accurate fits to TRW data are obtained when proxy seasonal responses are determined objectively during

model calibration. Finally, the addition of moisture input as a climate driver in TRW modeling proves most beneficial when

implemented in bivariate models (see Table A2). These findings serve as the basis for defining a PDA configuration used for20

the reconstruction described in the next section.

3 The updated reanalysis

We present a comparison between the updated reanalysis described by the method in the previous section with the LMR

prototype described in H162. Specifically, the updated reanalysis consists of all proxy records in the expanded database, using

objectively-derived seasonal PSMs, with a bivariate formulation for all TRW proxies and univariate for all other proxy types.25

Covariance localization is applied with a 25000 km cut-off radius
✿✿✿✿

(see
✿✿✿✿✿✿

section
✿✿✿

4.2
✿✿✿

for
✿✿✿✿✿

more
✿✿✿✿✿✿

details). In the next section we

identify the sources of improvement that contribute to the increase in skill of the updated reconstruction. Results are evaluated

against various twentieth century instrumental data and reanalyses
✿

,
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿✿✿✿✿

performed
✿✿

in
✿✿✿✿✿

proxy
✿✿✿✿✿✿

space, using the

Pearson correlation coefficient and the coefficient of efficiency (CE) (Nash and Sutcliffe, 1970).

Figure 3
✿

2a shows a comparison of reconstructed global–mean
✿✿✿✿✿✿✿✿✿✿

global-mean
✿

temperature (GMT) between the prototype and30

updated reanalyses over the entire Common Era. Similar features are observed in the ensemble mean from both reanalyses,

2We use the experiment included in Figure 12 of H16, with PSMs calibrated using GISTEMP. Moreover, we use this configuration to generate a recon-

struction of the Palmer Drought Severity Index (PDSI), which was not included in H16.
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namely the cooling trend over most of the Common Era, followed by the industrial–era
✿✿✿✿✿✿✿✿✿✿✿

industrial-era warming. Superimposed

on these main trends, significant multidecadal to multicentennial variability characterize both reanalyses, including a cool

period prior to the industrial warming, consistent with the Little Ice Age (LIA). Noticeable differences also exist between

the reanalyses, such as the absence
✿✿✿

most
✿✿✿✿✿✿✿✿✿

noticeably
✿✿✿✿

the
✿✿✿✿✿✿✿

absence
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

updated
✿✿✿✿✿

LMR
✿

of the relatively warm period during

870–1000CE, representing the Medieval Climate anomaly (MCA), in the updated LMR. Weaker decadal-scale temperature5

variations largely characterize the updated reconstruction, particularly after 1000CE when more proxies are assimilated. Cooler

conditions also prevail during the LIA
✿

.
✿✿✿✿✿

Also,
✿✿✿✿✿✿

warmer
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿

prevail
✿

in the prototype compared to the updated reanalysis,

although verification against instrumental–era temperature analyses provides evidence that the prototype reanalysis is too cold

✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿

half
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

fifteenth
✿✿✿✿✿✿✿

century,
✿✿✿

i.e.
✿✿✿✿✿✿

Spörer
✿✿✿✿✿✿✿✿✿

Minimum,
✿✿✿✿✿

while
✿✿✿✿✿

cooler
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿

occur during the early part of the

instrumental period .10

GMT verification results of the LMR ensemble mean against various instrumental temperature products are shown in Figs.

3c and d for the prototype and updated reanalyses respectively. Noticeably higher verification scores characterize the updated

LMR, including a 10% increase in CE relative to the average of observations-based
✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

prototype
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

updated

✿✿✿✿✿✿✿✿

reanalysis.
✿✿✿✿

We
✿✿✿✿

note
✿✿✿✿✿✿✿

however
✿✿✿

that
✿✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿✿

against
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

instrumental–era
✿

temperature analyses (“consensus”), and an increase in

CE in the verification of the detrended GMT (over 1880-2000CE) from 0.32 in the prototype to 0.60 in the updated reanalysis15

(see Table 1). A narrower ensemble is also a characteristic of the new reanalysis, indicating a decrease in reconstructed GMT

uncertainty. This represents an improvement over the prototype from the point of view of ensemble calibration, defined as the

relationship between the mean squared error in the ensemble-mean and ensemble variance. The two should closely match for

a well-calibrated ensemble. The GMT ensemble from the prototype is found to be overdispersive, meaning that the ensemble

variance is much larger than the error in the ensemble mean, whereas the GMT ensemble in the updated LMR is found to be20

well-calibrated (see section 4.2 for more details)
✿✿✿✿✿✿✿✿

discussed
✿✿✿✿

later
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

section)
✿✿✿✿✿✿✿

provides
✿✿✿✿✿✿✿✿

evidence
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

prototype
✿✿✿✿✿✿✿✿✿

reanalysis

✿

is
✿✿✿

too
✿✿✿✿

cold
✿✿✿✿✿✿

during
✿✿✿✿

that
✿✿✿✿✿

period.

Having access to ensembles can provide further insight into uncertaintyin the reanalyses
✿✿✿✿✿✿✿✿

Ensembles
✿✿✿✿✿✿✿

provide
✿✿✿✿✿✿

access
✿✿✿

to

✿✿✿✿✿

useful
✿✿✿✿✿✿✿✿✿

diagnostics
✿✿✿✿✿✿✿✿✿

regarding
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿✿✿✿✿

uncertainty. It can be shown mathematically that the assimilation of observations

invariably leads to a reduction in the variance characterizing
✿✿✿✿✿✿✿✿✿✿✿✿

monotonically
✿✿✿✿✿✿✿

reduces
✿✿✿

the
✿✿✿✿✿✿✿

variance
✿✿✿

of the posterior ensemble25

compared to the prior. The ratio of ensemble variances
✿✿✿✿✿✿✿

variance
✿

of the posterior (reanalysis) to the prior is a measure of the

information provided by the assimilated proxies. Figure 3
✿

2b shows the temporal evolution of 1−Var[xa]/Var[xb], so that a

value of zero indicates no influence from proxies and one implies that all error has been removed. In the early part of the Com-

mon Era, when few proxy data are available, a variance decrease of only 10% occurs
✿✿✿✿✿✿✿

decreases
✿✿

of
✿✿✿✿✿

only
✿✿✿✿✿✿✿

10-15%
✿✿✿✿✿

occur in the

prototype compared to 20
✿✿✿✿✿

15-20% for the updated reanalysis. The influence of proxies gradually increases after 450CE, at simi-30

lar rates in both reanalyses. The reduction in variance is more pronounced in the updated LMR beginning at 1500CE
✿✿✿✿✿✿✿✿✿

reductions

✿✿

in
✿✿✿✿✿✿✿

variance
✿✿✿

are
✿✿✿✿✿✿

roughly
✿✿✿✿✿✿

similar
✿✿

in
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿

reanalyses
✿✿✿✿

until
✿✿✿✿✿✿✿

1700CE, corresponding to the period with a significantly larger number

of proxies
✿

in
✿✿✿

the
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿✿

database (see Fig. 1). The largest reduction, 60
✿✿

68% in the prototype compared to 80% to 90%
✿✿✿✿

78%

in the updated reanalysis, is found during the 20th century when the most proxies are available. The uncertainty characterizing
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the updated reanalysis is therefore reduced overall compared to ,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿

underscores
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

importance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

expanded
✿✿✿✿✿✿

proxy

✿✿✿✿✿✿✿

database
✿✿

in
✿✿✿✿✿

LMR.
✿

✿✿

To
✿✿✿✿

gain
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿✿

perspective
✿✿✿

on
✿✿✿

our
✿✿✿✿✿✿

results,
✿✿✿

we
✿✿✿✿✿✿✿✿

compare
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿✿✿✿✿

Northern
✿✿✿✿✿✿✿✿✿✿

Hemispheric
✿✿✿✿✿✿✿

average
✿✿✿

2m
✿✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿

prototype
✿✿✿

and
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿✿✿

reanalyses
✿✿✿

with
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿✿

quoted
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Intergovernmental
✿✿✿✿✿

Panel
✿✿

on
✿✿✿✿✿✿✿

Climate
✿✿✿✿✿✿✿

Change

✿✿✿✿✿

Fourth
✿✿✿✿

and
✿✿✿✿✿

Fifth
✿✿✿✿✿✿✿✿✿✿

Assessment
✿✿✿✿✿✿✿

Reports
✿✿✿✿✿✿

(IPCC
✿✿✿✿

AR4
✿✿✿✿

and
✿✿✿✿✿

AR5)
✿✿✿✿

(Fig.
✿✿✿✿

2c).
✿✿✿✿✿

Here
✿✿✿

we
✿✿✿✿✿✿

restrict
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions5

✿✿✿✿✿✿✿

covering
✿✿✿

the
✿✿✿✿✿

entire
✿✿✿✿✿✿✿✿✿✿

hemisphere
✿✿✿✿

and
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿

coverage
✿✿✿✿✿✿✿✿

extending
✿✿✿

to
✿✿

at
✿✿✿✿

least
✿✿✿✿✿

1980.
✿✿✿

A
✿✿✿✿✿✿✿

30-year
✿✿✿✿✿✿✿

low-pass
✿✿✿✿✿✿✿✿✿✿✿

Butterworth

✿✿✿✿

filter
✿✿

is
✿✿✿✿✿✿

applied
✿✿

on
✿✿✿

all
✿✿✿✿✿✿

results
✿✿

to
✿✿✿✿✿✿✿

highlight
✿✿✿✿✿✿✿✿✿

variability
✿✿

at
✿✿✿

the
✿✿✿✿✿

lower
✿✿✿✿✿✿✿✿✿✿

frequencies.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿✿

shows
✿✿✿✿

that
✿✿✿✿

most
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions

✿✿✿✿

from
✿✿✿✿✿

other
✿✿✿✿✿✿

studies
✿✿✿

are
✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿

bounds
✿✿

of
✿✿✿

the
✿✿✿✿✿

LMR
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿

most
✿✿✿

of
✿✿✿

the
✿✿✿✿

time,
✿✿✿✿✿✿✿✿✿

indicating
✿

a
✿✿✿✿✿✿✿

general
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿✿✿✿✿

between
✿✿✿

the

✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

products,
✿✿

at
✿✿✿✿

least
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿

bounds
✿✿

of
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

as
✿✿✿✿✿✿✿

defined
✿✿✿✿✿

from
✿✿✿✿✿

LMR.
✿✿✿

As
✿✿✿✿

with
✿✿✿✿✿✿

GMT,
✿✿✿✿✿✿

periods
✿✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

largest

✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿✿✿

correspond
✿✿

to
✿✿✿

the
✿✿✿✿✿

MCA
✿✿✿✿✿✿✿✿✿✿✿✿✿

(870–1000CE),
✿✿✿

the
✿✿✿✿✿✿

Spörer
✿✿✿✿✿✿✿✿✿

Minimum
✿✿✿✿✿✿✿✿✿✿✿✿✿

(1450–1550CE)
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

latter
✿✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

nineteenth10

✿✿✿✿✿✿

century.
✿✿✿✿✿

First,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿✿

colder
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿✿✿

medieval
✿✿✿✿✿✿

period
✿✿✿

are
✿✿

in
✿✿✿✿✿✿✿

contrast
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

prototype
✿✿✿✿✿

LMR
✿✿✿✿

and

✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions.
✿✿✿✿✿✿✿✿

However,
✿✿✿✿

this
✿✿✿✿✿

period
✿✿

is
✿✿✿✿

one
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿

various
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿✿✿✿

exhibit
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿✿✿

disagreement.
✿✿✿✿✿

This

✿✿✿✿✿✿✿✿

sensitivity
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

proxy
✿✿✿✿✿✿✿

network
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿✿

method
✿✿✿✿✿✿✿✿✿✿

underscores
✿✿✿✿

the
✿✿✿✿✿✿✿

inherent
✿✿✿✿✿✿✿✿✿✿

ambiguities
✿✿

in
✿✿✿✿✿✿✿

defining
✿✿✿✿

this
✿✿✿✿✿✿

feature,
✿✿✿

as

✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Diaz et al. (2011)
✿

.
✿✿✿✿

With
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿✿✿

LMR,
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿

update
✿✿✿

and
✿✿✿✿✿✿✿✿

prototype
✿✿✿

are
✿✿✿✿✿✿✿✿

primarily
✿✿✿✿✿✿

rooted
✿✿

in
✿✿✿

the

✿✿✿✿✿✿

change
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

PAGES 2k Consortium (2013)
✿✿

to
✿✿✿

the
✿✿✿✿✿

more
✿✿✿✿✿

recent
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

PAGES 2k Consortium (2017)
✿✿✿✿✿

proxy
✿✿✿✿

data.
✿✿

A
✿✿✿✿✿✿✿✿

distinctly
✿✿✿✿✿✿✿

warmer15

✿✿✿✿✿✿✿

medieval
✿✿✿✿✿✿

period
✿✿✿✿

isn’t
✿

a
✿✿✿✿✿✿✿✿✿

prominent
✿✿✿✿✿✿

feature
✿✿✿

of
✿✿✿

the
✿✿✿✿

new
✿✿✿✿✿✿✿✿

collection,
✿✿✿

as
✿✿✿✿✿✿✿✿

indicated
✿✿

by
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿

composites
✿✿✿✿✿✿✿✿✿

presented

✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

PAGES 2k Consortium (2017).
✿✿✿✿✿✿✿

Second,
✿✿✿

the
✿✿✿✿✿✿

colder
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿

Spörer
✿✿✿✿✿✿✿✿✿

Minimum
✿✿

is

✿✿

in
✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

majority
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿

in
✿✿✿✿

other
✿✿✿✿✿✿✿

studies,
✿✿✿✿

with
✿✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿

both
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿

and
✿✿✿✿✿

trend
✿✿✿

of

✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿

anomalies.
✿✿✿✿

The
✿✿✿✿✿

LMR
✿✿✿✿✿✿✿✿

prototype
✿✿✿✿✿✿✿

appears
✿✿

as
✿✿

a
✿✿✿✿✿

warm
✿✿✿✿✿✿

outlier
✿✿✿

for
✿✿✿✿

this
✿✿✿✿✿✿✿

100-year
✿✿✿✿✿✿✿

period.
✿✿

In
✿✿✿✿✿✿✿✿

contrast, the prototype,

which underscores the importance of the expanded proxy database in LMR
✿✿✿✿✿✿✿✿

prototype
✿✿✿✿

LMR
✿✿✿✿✿✿✿

appears
✿✿

as
✿

a
✿✿✿✿

cold
✿✿✿✿✿✿

outlier
✿✿✿✿✿✿

during
✿✿✿

the20

✿✿✿✿

latter
✿✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

nineteenth
✿✿✿✿

and
✿✿✿✿

early
✿✿✿✿✿✿✿✿

twentieth
✿✿✿✿✿✿✿✿

centuries.
✿✿✿✿✿✿

During
✿✿✿✿

that
✿✿✿✿✿✿

period,
✿✿✿

the
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿✿

reanalysis
✿✿

is
✿✿

in
✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿✿

with

✿✿✿✿✿

results
✿✿✿✿✿

from
✿✿✿✿

other
✿✿✿✿✿✿✿

authors,
✿✿

in
✿✿✿✿✿✿✿✿

particular
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

borehole
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pollack and Smerdon (2004).

✿✿✿✿

GMT
✿✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿✿

results
✿✿

of
✿✿✿

the
✿✿✿✿✿

LMR
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

mean
✿✿✿✿✿✿

against
✿✿✿✿✿✿

various
✿✿✿✿✿✿✿✿✿✿✿

instrumental
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

products
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿

Figs.

✿✿

3a
✿✿✿

and
✿✿

b
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

prototype
✿✿✿

and
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿✿✿

reanalyses
✿✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿✿✿✿✿✿

Noticeably
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿✿

scores
✿✿✿✿✿✿✿✿✿✿

characterize
✿✿✿

the
✿✿✿✿✿✿✿

updated

✿✿✿✿✿

LMR,
✿✿✿✿✿✿✿✿

including
✿

a
✿✿✿

9%
✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿

CE
✿✿✿✿✿✿

relative
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

observations-based
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

analyses
✿✿✿✿✿✿✿✿✿✿✿✿

(“consensus”),
✿✿✿

and
✿✿✿

an25

✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿

CE
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

verification
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

detrended
✿✿✿✿

GMT
✿✿✿✿✿

(over
✿✿✿✿✿✿✿✿✿✿✿✿

1880-2000CE)
✿✿✿✿✿

from
✿✿✿✿

0.32
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

prototype
✿✿

to
✿✿✿✿

0.59
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

updated

✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿

(see
✿✿✿✿✿

Table
✿✿✿

1). Spatial verification is provided by comparing the LMR gridded 2m air temperature field against the

Berkeley Earth (BE) instrumental–era temperature analysis (Rohde et al., 2013) (Fig. 4). BE is chosen as the verification

reference as it has not been
✿

is
✿✿✿

not
✿

used to calibrate the PSMs, and provides the most complete spatial coverage compared to

other instrumental products. The updated temperature reconstruction is largely improved compared to the prototype over large30

areas, including the tropical Pacific, northern Atlantic,
✿✿✿✿✿✿✿

western North America, northern Europe, eastern and central Asia,

Oceania, and over
✿✿✿✿✿✿✿

portions
✿✿

of
✿

the Pacific sector of the Southern Ocean. The improvement is reflected in both correlation and

CE scores, indicating improved timing and amplitude in reconstructed temperature variability. Exceptions are found over parts

of the southern Atlantic and Indian oceans, although the decrease in skill is
✿✿✿✿✿✿✿✿

generally more modest compared to the magnitude

of improvements elsewhere.35
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Hydroclimate verification is defined by a comparison of the reconstructed Palmer Drought Severity Index (PDSI) with

the Dai (2011) product. We note here that this verification is entirely independent as TRW forward models were calibrated

on precipitation and not on PDSI as in Steiger et al. (2018). PDSI is also improved in the updated reanalysis compared to

the prototype (Fig. ??). Enhanced skill is particularly noticeable over North America, Europe and Asia, where most of the

additional TRW records are located. An exception is the decreased skill found over a narrow band along the Siberian Taiga.5

Finally
✿✿✿✿

Next
✿

we verify a climate variable away from the surface, the 500 hPa geopotential height field, against the corre-

sponding field from NOAA’s twentieth century reanalysis (20CR-v2, Compo et al., 2011) (Fig. 5). Once again we find the

largest improvements over extratropical continental locations, and over the Arctic. We note similar improvements are found in

the tropics and
✿✿✿✿

over
✿✿✿

the
✿

Northern Hemisphere mid-latitudes when verified against the ERA-20C reanalysis (Poli et al., 2016)

(not shown). However;
✿✿✿✿✿✿✿✿

however, over the Northern and Southern Hemisphere high latitudes verification against ERA-20C is10

worse, which underscores significant differences between twentieth-century reanalyses in these data-sparse regions.

Table 1 summarizes the verification results discussed above through globally averaged verification scores.
✿✿✿

The
✿✿✿✿✿

table
✿✿✿✿

also

✿✿✿✿✿✿✿

includes
✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿✿

results
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿✿

PDSI,
✿✿✿

not
✿✿✿✿✿✿✿✿

discussed
✿✿✿✿✿✿

above.
✿✿

A
✿✿✿✿✿

more
✿✿✿✿✿✿

detailed
✿✿✿✿✿✿✿

analysis
✿✿✿

for
✿✿✿✿

this
✿✿✿✿✿✿✿

variable
✿

is
✿✿✿✿✿✿✿✿

reserved

✿✿

for
✿✿✿✿✿✿✿

section
✿✿✿

4.3,
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿

role
✿✿

of
✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿

proxy
✿✿✿✿✿✿

records
✿✿

is
✿✿✿✿✿✿✿✿✿

discussed.
✿

Improvements in the updated reanalyses are evident

for all reconstructed variables, particularly with respect to the CE score, which is sensitive to bias and amplitude in inter-15

annual variability. These skill improvements suggest significant positive impact from the updated
✿✿✿✿✿✿

tropical
✿

coral proxies and

the addition of a large number of tree-ring proxies at higher latitudes. Furthermore, we anticipate that generalizing PSMs to

accounting for seasonality and moisture sensitivity for TRW proxies also contribute to the improvements.

✿✿✿

We
✿✿✿✿✿✿✿

consider
✿✿✿✿

now
✿✿

an
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿✿✿✿✿

evaluation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿

in
✿✿✿✿✿✿✿✿✿✿

proxy-space
✿✿✿✿✿

using
✿✿✿✿✿✿

proxies
✿✿✿✿✿✿✿✿

withheld
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿

assimilation.

✿✿✿✿✿

Proxy
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(forward-modeled)
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

posterior
✿✿✿✿

(i.e.
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions)
✿✿✿

are
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿

actual
✿✿✿✿✿✿

proxy20

✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

and
✿✿✿✿✿✿✿

various
✿✿✿

skill
✿✿✿✿✿✿✿

metrics
✿✿

are
✿✿✿✿✿✿✿✿✿

evaluated.
✿✿✿✿✿✿✿✿✿✿

Verification
✿✿

of
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿

estimates
✿✿✿✿✿✿✿

obtained
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uninformed
✿✿✿✿✿✿✿✿✿✿✿✿

climate-model

✿✿✿✿

prior
✿✿✿✿✿

serve
✿✿

as
✿✿

a
✿✿✿✿✿✿✿✿

reference
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

comparison.
✿✿✿✿✿✿✿✿✿✿✿

Specifically,
✿✿✿

we
✿✿✿

use
✿✿✿

the
✿✿✿✿✿✿

change
✿✿

in
✿✿✿✿

CE
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

posterior
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿

estimates
✿✿✿✿

and

✿✿✿✿✿✿✿

estimates
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

prior,
✿✿✿✿✿

∆CE
✿

=
✿✿✿✿✿✿✿✿✿✿✿

(CEposterior
✿

-
✿✿✿✿✿✿✿✿

CEprior).
✿✿✿✿✿✿

Values
✿✿✿

are
✿✿✿✿✿✿✿✿

compiled
✿✿✿✿✿

from
✿✿

all
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿

records
✿✿✿✿✿✿✿

withheld
✿✿✿✿✿

from

✿✿✿✿✿✿✿✿✿✿

assimilation,
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿

summary
✿✿✿✿✿✿

scores
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

considered:
✿✿✿

the
✿✿✿✿✿✿✿

fraction
✿✿

of
✿✿

all
✿✿✿✿✿✿

proxy
✿✿✿✿✿✿

records
✿✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

by

✿

a
✿✿✿✿✿✿✿

positive
✿✿✿✿✿

∆CE
✿✿✿✿

(i.e.
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿

records
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

accurately
✿✿✿✿✿✿✿✿✿✿

represented
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

posterior
✿✿✿✿

than
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿

prior),
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

median
✿✿✿

of
✿✿✿

the25

✿✿✿✿

∆CE
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿✿✿

compiled
✿✿✿✿

over
✿✿

all
✿✿✿✿✿

proxy
✿✿✿✿✿

time
✿✿✿✿✿

series.
✿✿✿✿✿

These
✿✿✿✿✿✿✿

provide
✿✿✿✿✿

global
✿✿✿✿✿✿✿✿

summary
✿✿✿✿✿✿✿✿

measures
✿✿

of
✿✿✿✿

how
✿✿✿✿✿✿✿✿✿

reanalyses
✿✿✿✿

skill
✿✿✿✿✿✿

differs

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

prior.
✿✿✿

An
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿✿✿✿✿

discriminating
✿✿✿✿✿

factor
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

quality
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿

is
✿✿✿✿✿✿✿✿✿

“ensemble
✿✿✿✿✿✿✿✿✿✿

calibration”
✿✿

as
✿✿✿✿✿✿✿

defined
✿✿✿

by

✿✿✿✿✿✿✿✿✿✿✿✿✿

(Murphy, 1988),
✿

ECR=

[

1

N − 1

N
∑

n=1

(vn −xn)
2

][

1

N − 1

N
∑

n=1

(σ2

x,n +σ2

v,n)

]−1

,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(10)

✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerator
✿

is
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿✿✿

square
✿✿✿✿

error
✿✿✿✿✿✿

(MSE)
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

mean
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿

data
✿

v
✿✿✿✿

(i.e.
✿✿✿

the30

✿✿✿✿✿✿✿

proxies),
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

denominator
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

innovation
✿✿✿✿✿✿✿✿

variance:
✿✿✿

the
✿✿✿✿

sum
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

variance
✿✿✿

σ2

x ✿✿✿

and
✿✿✿

the
✿✿✿✿

error
✿✿✿✿✿✿✿✿

variance

✿✿

σ2

v✿✿✿✿✿✿✿✿✿✿✿✿

characterizing
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿

data.
✿✿✿✿

Here
✿✿✿

we
✿✿✿✿✿

apply
✿✿✿✿

Eq.
✿✿

10
✿✿

to
✿✿✿✿✿

proxy
✿✿✿✿✿

time
✿✿✿✿✿

series
✿✿

so
✿✿✿

the
✿✿✿✿

error
✿✿✿✿✿✿✿✿

variance
✿✿

σ2

v✿✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to
✿✿✿

the

✿✿✿

Rk
✿✿✿✿✿

terms
✿✿

in
✿✿✿✿

Eqs.
✿✿

4.
✿✿✿✿

The
✿✿✿✿

ECR
✿✿✿✿✿

ratio
✿✿✿✿✿✿✿✿

expresses
✿✿✿

the
✿✿✿✿✿✿

degree
✿✿

to
✿✿✿✿✿✿

which
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

predicts
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

observations.
✿✿

A
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✿✿✿✿✿✿✿✿✿✿✿✿

well-calibrated
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

exhibits
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿

approximate
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

variance
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

ensemble–mean
✿✿✿✿✿✿

MSE,

✿✿

i.e.
✿✿✿✿✿

ECR
✿✿✿

≈
✿✿✿

1.0,
✿✿✿✿✿✿

while
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿

overdispersive
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿

has
✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿

larger
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ensemble-mean
✿✿✿✿✿

MSE
✿✿✿✿✿

(ECR
✿✿

<
✿✿✿✿✿

1.0),
✿✿✿✿

and

✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿

underdispersive
✿✿✿✿✿✿✿✿

ensemble
✿✿✿

is
✿✿✿✿✿✿✿✿

diagnosed
✿✿✿✿✿

when
✿✿✿

its
✿✿✿✿✿✿✿✿

variance
✿✿

is
✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

ensemble–mean
✿✿✿✿✿

MSE
✿✿✿✿✿

(ECR
✿✿✿✿✿✿

>1.0).
✿✿✿✿✿✿

Proxy

✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿

Table
✿✿

2,
✿✿✿✿

over
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

periods
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

Common
✿✿✿✿

Era.
✿✿✿✿✿✿✿✿✿✿✿

Significantly
✿✿✿✿✿✿✿

reduced
✿✿✿✿

skill
✿✿✿✿✿✿✿✿✿✿✿

characterizes

✿✿

the
✿✿✿✿✿✿✿

earliest
✿✿✿✿✿✿

period
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

Common
✿✿✿✿

Era,
✿✿✿✿✿✿✿✿

followed
✿✿✿

by
✿

a
✿✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿✿✿✿

increase
✿✿✿✿

over
✿✿✿✿✿

time
✿✿

in
✿✿✿

all
✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿✿✿

metrics
✿✿✿✿✿✿✿✿✿✿

considered,5

✿✿

for
✿✿✿✿

both
✿✿✿✿✿

LMR
✿✿✿✿✿✿✿✿✿✿

reanalyses.
✿✿✿

We
✿✿✿✿

also
✿✿✿✿

note
✿✿✿

that
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿✿✿✿✿✿

ensembles
✿✿✿

are
✿✿✿✿✿✿✿✿

generally
✿✿✿✿✿✿✿✿✿✿✿✿

well-calibrated
✿✿✿✿✿✿✿✿✿✿

throughout
✿✿✿

the
✿✿✿✿✿✿✿✿

Common
✿✿✿✿

Era,

✿✿✿✿✿✿✿✿

indicating
✿✿✿

that
✿✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿✿

remain
✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

with
✿✿✿✿✿

mean
✿✿✿✿✿

errors
✿✿✿✿

(i.e.
✿✿✿✿✿✿

reliable
✿✿✿✿✿✿✿✿✿✿

ensembles).
✿✿✿✿✿✿✿✿

Although
✿✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿

data

✿

is
✿✿✿✿

not
✿✿✿✿✿✿✿

identical
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿

prototype
✿✿✿

and
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿✿✿✿

reanalyses,
✿✿✿

we
✿✿✿

also
✿✿✿✿

note
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

increase
✿✿✿

in
✿✿✿✿

skill
✿✿

is
✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

pronounced
✿✿✿

in
✿✿✿

the

✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿✿✿

reanalysis,
✿✿✿✿✿✿✿✿✿✿

particularly
✿✿✿✿

from
✿✿✿✿✿✿✿

1000CE
✿✿✿✿✿✿✿

onward.
✿✿✿✿✿✿

These
✿✿✿✿✿

results
✿✿✿✿✿✿✿

provide
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿

evidence
✿✿

of
✿✿

a
✿✿✿✿

more
✿✿✿✿✿✿✿

skillful
✿✿✿✿✿✿

updated
✿✿✿✿✿✿

LMR.

In the following section we systematically evaluate improvements from these
✿✿✿✿✿✿

various
✿

sources.10

4 Sources of improvement

In this section, we turn our attention to the identification of the
✿✿✿✿✿✿✿

identify
✿✿✿

the sources of reanalysis improvement. Results from

multiple reconstruction experiments are presented, designed to quantify the impact of PSM formulation, the assimilation of

various proxy data sets and the role of covariance localization
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

of
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿

proxies.

4.1 Proxy system models15

The different PSM configurations described in section 2.4 are used in a series of reconstruction experiments . In order to

isolate PSM improvements, we first use
✿✿✿✿

using PAGES2k-2017 proxies exclusively, as they represent the community standard

in Common Era proxy information, and
✿

.
✿✿✿

We
✿✿✿✿

note
✿✿✿

that
✿✿✿✿✿

these
✿✿✿✿✿✿

records
✿

have well-defined seasonal metadata.

The impact of seasonal PSMs is first considered with three experiments performed using univariate temperature regression

models for: (1) annual-mean calibration; (2) seasonality defined by expert metadata; and (3) objectively determined seasonal-20

ity. Performance is again measured by correlation and CE scores with verification against the Berkeley Earth analysis. Relative

to reconstructions with annual-mean PSMs (Figs. 6a and b), the reconstructions with seasonal PSMs (Figs. 6c–f) show im-

provements in both measures over nearly the entire globe (Figs. 6g–j). Results show a larger improvement for CE (Figs. 6h and

j) compared to correlation (Figs. 6g and i), reflecting improvement in both the amplitude of temperature variability and bias.

Noteworthy improvements are found in regions with large numbers of tree-ring proxies, such as the western United States, the25

region around and including Alaska, Northern Canada and western Arctic ocean, over Scandinavia and Norwegian Sea, central

Asia and over the Southern Pacific west of the Antarctic Peninsula (see Fig. 6h). Comparing the differences of correlations and

CE in Figs. 6i and j to those shown in Figs. 6g and h reveals that PSMs with objectively-derived seasonality contribute posi-

tively to skill for the aforementioned regions, especially where tree ring width records are most abundant (e.g. North America

and Asia).30

We turn now to the impact of moisture on seasonal TRW PSMs on the reconstructions. Since objectively defined seasonality

performs best (i.e., Figs. 6e and f), reconstructions generated with univariate PSMs are used as the reference for measuring skill

14



improvements for modeling TRW records as univariate in either temperature or moisture (abbreviated as “TorM”) (Figs. 7c and

d) and for bivariate “temperature and moisture” PSMs (Figs. 7e and f). Improvement over univariate PSMs is apparent for the

bivariate approach compared with the univariate “TorM” approach (cf. Fig. 7 panels g,h with i,j, respectively). In the bivariate

approach regions such as western North America and central Asia, where most of the TRW records are found, improve the most

in CE, but also over Australia, likely in response to the improved modeling of TRW records in New Zealand and Tasmania.5

Improvements are also noticeable,
✿

through teleconnections with
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿

locations
✿✿

in
✿

the central Atlantic and southern India

Oceans, and over the eastern North Pacific Ocean. A decrease in skill is present over the mid-latitude Pacific ocean, but this is

smaller in magnitude compared with skill enhancements elsewhere.

Verification of GMT for reconstructions using seasonal PSMs (Fig. ??
✿✿✿✿

Table
✿✿

3) yields a similar interpretation to the spatial

verification results. Compared to the consensus of instrumental–era
✿✿✿✿✿✿✿✿✿✿✿✿✿

instrumental-era
✿

products, we find that the 20th century10

trend in GMT is overestimated with the PAGES2k-2017 proxy data set if univariate PSMs are used. This is particularly the

case with annual PSMs. Better agreement is obtained when seasonal bivariate PSMs are used to model TRW proxies. The

representation of GMT interannual variability as measured by verification of the detrended GMT is also improved with seasonal

PSMs, particularly for the CE metric. Similar to spatial verification results, PSMs with objectively-derived seasonality and

bivariate TRW modeling have GMT reconstructions with consistently higher skill scores.15

We recognize that the previous evaluation relies on comparisons with observation-based products covering the same time

period as the data used to calibrate the statistical PSMs. To test the sensitivity of the results to the calibration period, we

conduct additional independent instrumental–era calibration–validation experiments where PSMs are calibrated over a subset

of the instrumental-era period and reconstructions are evaluated with data not used in calibration. Moreover, we perform an

independent evaluation of reconstructions in proxy-space using proxies withheld from assimilation, for both the calibration and20

pre-calibration periods. These results, described in sections
✿✿✿✿✿✿

Results
✿✿✿✿

from
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿

experiments,
✿✿✿✿✿✿✿✿

described
✿✿

in
✿✿✿✿✿✿

section
✿

S3 and S4 in

the supplementary material, confirm the main results and conclusions drawn here on the superiority of seasonal PSMs relative

to those calibrated with annual averages, and the use of bivariate models for TRW proxies. Building upon this improved proxy

modeling, we turn now to

✿✿✿

We
✿✿✿

now
✿✿✿✿✿✿✿✿

examine
✿✿✿✿✿

results
✿✿✿✿✿

from
✿✿

an
✿✿✿✿✿✿✿✿✿

evaluation
✿✿✿✿✿✿✿✿

performed
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

proxy-space
✿✿✿✿

using
✿✿✿✿✿✿✿

proxies
✿✿✿✿✿✿✿

withheld
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

as
✿✿

in
✿✿✿✿✿✿

section25

✿✿

3.
✿✿✿✿✿✿

Results
✿✿✿

for
✿✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿

PSM
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

pre-calibration
✿✿✿✿✿✿✿

periods
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿

Table
✿✿✿

4.
✿✿✿✿✿✿✿✿✿✿

Differences
✿✿✿✿✿✿

among
✿✿✿

the
✿✿✿✿✿✿✿

various

✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿

suggest
✿✿✿

the
✿✿✿✿✿✿✿✿✿

superiority
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿

(with
✿✿✿✿✿✿✿

objective
✿✿✿✿✿✿✿✿✿✿✿

seasonality)
✿✿✿✿✿

PSMs
✿✿

as
✿✿✿✿

skill
✿✿✿✿✿✿

scores
✿✿✿✿✿✿✿✿✿✿

consistently
✿✿✿✿

rank
✿✿✿✿✿✿

among

✿✿

the
✿✿✿✿✿✿✿

highest
✿✿✿✿✿✿

among
✿✿

all
✿✿✿✿✿✿✿✿✿✿✿

experiments,
✿✿✿

for
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

pre-calibration
✿✿✿✿✿✿✿

periods.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿

univariate
✿✿✿✿✿✿

annual

✿✿✿✿✿

PSMs
✿✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿✿✿

weakest
✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿✿✿✿

statistics,
✿✿✿✿✿✿✿✿✿✿

confirming
✿✿✿

the
✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

instrumental-era
✿✿✿✿✿✿✿✿

analyses.
✿✿✿✿✿✿

Finally,
✿✿✿

use
✿✿✿

of

✿✿✿✿✿✿✿

bivariate
✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿

PSMs
✿✿

for
✿✿✿✿✿

TRW
✿✿✿✿✿✿✿

records
✿✿

is
✿✿✿

also
✿✿✿✿✿✿✿✿✿

suggested
✿✿✿✿

from
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿

results,
✿✿

as
✿✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿

and
✿✿✿✿✿

∆CE
✿✿✿

are30

✿✿✿✿✿✿✿

obtained
✿✿✿✿

with
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿✿

configuration.

4.2
✿✿✿✿✿✿✿✿✿

Covariance
✿✿✿✿✿✿✿✿✿✿✿

localization

✿✿✿

One
✿✿✿✿✿✿✿✿

approach
✿✿

to
✿✿✿✿✿✿✿✿

managing
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿

error
✿✿

in
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

is
✿✿✿✿✿✿

through
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿✿

localization.
✿✿✿✿✿✿✿✿✿✿✿

Localization

✿

is
✿✿✿✿✿✿✿

applied
✿✿

to
✿✿✿✿✿✿✿✿

minimize
✿✿✿

the
✿✿✿✿✿✿

adverse
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿✿✿

spurious
✿✿✿✿✿✿✿✿✿✿

covariances
✿✿

at
✿✿✿✿

large
✿✿✿✿✿✿✿✿

distances
✿✿✿✿

from
✿✿

a
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿

location,
✿✿✿✿✿✿

which
✿✿✿✿✿

results
✿✿✿✿✿

from
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✿✿✿✿✿✿

sample
✿✿✿✿

error
✿✿✿

in
✿✿✿✿✿

finite
✿✿✿✿✿✿✿✿✿

ensembles
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Hamill et al., 2001).
✿✿

If
✿✿✿✿✿✿✿✿✿✿

localization
✿✿

is
✿✿✿✿

not
✿✿✿✿✿✿✿

applied,
✿✿✿✿✿✿✿

spurious
✿✿✿✿✿✿✿✿✿✿✿

covariances
✿✿✿✿✿

allow
✿✿✿✿✿✿

proxies
✿✿✿

to

✿✿✿✿✿

affect
✿✿✿✿✿✿

remote
✿✿✿✿✿✿✿✿

locations,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

adversely
✿✿✿✿✿✿

affects
✿✿✿

the
✿✿✿✿✿✿

quality
✿✿

of
✿

the role of increasing the number of proxy measurements on

reconstruction skill .
✿✿✿✿✿✿✿

analysis.
✿✿✿

On
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿

hand,
✿✿✿✿✿✿✿✿

too-short
✿✿✿✿✿✿✿✿✿✿

localization
✿✿✿✿✿

length
✿✿✿✿✿✿

scales
✿✿✿✿✿✿

reduces
✿✿✿

the
✿✿✿✿✿✿

useful
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿

that
✿✿✿✿

can

✿✿

be
✿✿✿✿✿✿

derived
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

proxies.
✿✿✿✿✿✿✿✿

Therefore
✿✿

a
✿✿✿✿✿✿

balance
✿✿

is
✿✿✿✿✿✿

sought
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿

minimizing
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿✿

noise
✿✿✿✿✿

versus
✿✿✿✿✿✿✿✿

retaining
✿✿✿✿✿✿

useful
✿✿✿✿✿

proxy

✿✿✿✿✿✿✿✿✿✿

information.5

✿✿✿

We
✿✿✿

use
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

Gaspari-Cohn
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Gaspari and Cohn, 1999)
✿✿✿✿✿✿✿✿

fifth-order
✿✿✿✿✿✿✿✿✿✿

polynomial
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿

specified
✿✿✿✿✿✿

cut-off
✿✿✿✿✿

radius
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

localization

✿✿✿✿✿✿✿

function
✿✿✿✿

(wloc
✿✿✿

in
✿✿✿✿

(4)).
✿✿✿

See
✿✿✿✿✿✿

section
✿✿✿

S5
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

supplementary
✿✿✿✿✿✿✿

material
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿

of
✿✿✿✿

wloc.
✿✿

A
✿✿✿✿✿✿

series
✿✿

of

✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿

are
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿

with
✿✿

a
✿✿✿✿

wide
✿✿✿✿✿

range
✿✿

of
✿✿✿✿✿✿✿✿✿✿

localization
✿✿✿✿✿✿

length
✿✿✿✿✿

scales.
✿✿✿

As
✿✿✿✿

with
✿✿✿✿✿✿✿✿

previous
✿✿✿✿✿✿✿✿✿✿

experiments,
✿✿✿

51
✿✿✿✿✿✿✿✿✿✿✿

Monte-Carlo

✿✿✿✿✿✿✿✿✿

realizations
✿✿✿

are
✿✿✿✿✿✿

carried
✿✿✿

out,
✿✿✿✿

each
✿✿✿✿

with
✿✿✿✿

100
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

members
✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿✿✿✿

75%
✿✿

of
✿✿✿✿✿

proxy
✿✿✿✿✿✿

records.
✿✿✿✿✿✿✿

Results
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

instrumental-era

✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿✿

scores
✿✿✿✿✿✿✿✿✿

previously
✿✿✿✿✿✿✿✿

described
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

summarized
✿✿

in
✿✿✿✿✿

Table
✿✿

5.
✿✿✿✿

We
✿✿✿✿✿✿

observe
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

GMT
✿✿✿✿✿

trend
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimated
✿✿✿✿

and10

✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿

scores
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿

reduced
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿✿

“too-small”
✿✿✿✿✿✿✿✿✿

localization
✿✿✿✿

radii
✿✿✿

are
✿✿✿✿✿

used,
✿✿✿✿✿✿✿✿

indicating
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

information
✿✿

on
✿✿✿✿✿✿✿✿✿✿

temperature

✿✿✿✿✿✿✿

provided
✿✿✿

by
✿✿✿✿✿

some
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿

records
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

properly
✿✿✿✿✿✿✿✿✿✿

incorporated
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

reanalysis.
✿✿✿

In
✿✿✿✿✿✿✿

contrast,
✿✿✿

the
✿✿✿✿✿

trend
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

overestimated
✿✿✿✿

and

✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿

cores
✿✿✿

are
✿✿✿✿✿✿✿✿

generally
✿✿✿✿✿✿✿✿

reduced
✿✿✿✿✿✿

without
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿✿

localization.
✿✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿✿✿

particularly
✿✿✿

the
✿✿✿✿

case
✿✿✿

for
✿✿✿

the
✿✿✿✿

CE
✿✿✿✿✿

score
✿✿✿

for

✿✿

the
✿✿✿✿✿✿✿✿✿

detrended
✿✿✿✿✿

GMT,
✿✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

amplitude
✿✿

in
✿✿✿✿✿✿✿✿✿✿

interannual
✿✿✿✿✿✿✿✿✿

variability.
✿✿✿✿

This
✿✿✿✿

skill
✿✿✿✿✿✿✿✿

measure
✿✿

is
✿✿✿✿✿✿✿✿✿

maximized
✿✿✿

for
✿✿

a
✿✿✿✿✿✿✿✿✿✿

localization

✿✿✿✿

radii
✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿

15000
✿✿

to
✿✿✿✿✿✿

25000
✿✿✿

km
✿✿✿✿✿✿

range.
✿✿

A
✿✿✿✿✿✿✿✿✿✿

localization
✿✿✿✿✿

radius
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

upper
✿✿✿

end
✿✿

of
✿✿✿✿

this
✿✿✿✿✿

range
✿✿✿✿✿✿

(25000
✿✿✿✿

km)
✿✿

is
✿✿✿✿✿✿✿✿✿

preferable,
✿✿✿

as15

✿✿✿✿✿

results
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿

scores
✿✿✿✿✿✿✿

suggest
✿✿✿✿

that
✿

a
✿✿✿✿✿✿✿

skillful
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿

is
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿

with
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿✿

localization

✿✿✿✿✿✿✿✿✿✿✿

configuration.
✿✿✿✿

We
✿✿✿✿

note
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

optimal
✿✿✿✿✿✿✿✿✿✿

localization
✿✿✿✿✿✿

radius
✿✿✿✿✿✿✿✿

depends
✿✿

on
✿✿

a
✿✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿

factors,
✿✿✿✿✿

such
✿✿✿

as
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿

size,
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿

network
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿✿✿

characteristics.
✿

4.3 Proxy data sets

Here we explore the role of the number of assimilated proxies on reanalysis verification.
✿✿✿✿✿

impact
✿✿✿

of
✿✿✿✿✿✿

adding
✿✿✿

the
✿✿✿✿

large
✿✿✿✿✿✿✿

number
✿✿

of20

✿✿✿✿✿✿

proxies
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson et al. (2019)
✿✿✿✿✿✿✿✿

(hereafter
✿✿✿✿✿

A19),
✿✿✿✿✿

which
✿✿✿✿✿✿

include
✿✿✿

the
✿✿✿✿

tree
✿✿✿

ring
✿✿✿✿✿

width
✿✿✿✿✿✿✿✿✿✿✿

chronologies
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Breitenmoser et al. (2014)

✿✿✿✿✿✿✿✿

(hereafter
✿✿✿✿✿

B14),
✿✿✿

not
✿✿✿✿✿✿

strictly
✿✿✿✿✿✿✿✿

screened
✿✿

for
✿✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿

sensitivity
✿✿

in
✿✿✿✿✿✿✿

contrast
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

PAGES2k
✿✿✿✿✿✿✿✿✿

collection.
✿✿✿✿✿✿

Figure
✿

8
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿

spatial

✿✿✿

and
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿✿✿

distributions
✿✿

of
✿✿✿

the
✿✿✿✿

B14
✿✿✿✿✿✿✿

records,
✿✿✿✿✿

which
✿✿✿✿✿✿

reveals
✿✿✿✿✿✿✿✿

enhanced
✿✿✿✿✿✿✿✿

coverage
✿✿✿✿

over
✿✿✿✿✿✿

eastern
✿✿✿✿✿

North
✿✿✿✿✿✿✿✿

America,
✿✿✿✿✿✿✿

southern
✿✿✿✿✿✿✿

Europe,

✿✿✿✿✿

boreal
✿✿✿✿✿✿✿

Eurasia
✿✿✿

and
✿✿✿✿✿✿✿✿

southern
✿✿✿✿✿

South
✿✿✿✿✿✿✿✿

America.
✿✿✿✿✿✿

Other
✿✿✿✿✿✿✿✿

additions,
✿✿✿✿✿✿✿

totaling
✿✿✿

94
✿✿✿✿✿✿✿

records,
✿✿✿✿✿✿

provide
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿

records
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

Tropics

✿✿✿

(23
✿✿✿✿

coral
✿✿✿✿✿✿✿✿

records),
✿✿✿

and
✿✿✿

an
✿✿✿✿✿✿✿✿

enhanced
✿✿✿✿✿✿

number
✿✿

of
✿✿✿

ice
✿✿✿✿

core
✿✿✿✿✿✿✿

records
✿✿✿✿✿✿✿✿✿✿

concentrated
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿

Greenland
✿✿✿✿

and
✿✿✿✿✿✿

eastern
✿✿✿✿✿✿✿✿

Canadian
✿✿✿✿✿✿

Arctic
✿✿✿

(3725

✿✿✿✿✿✿✿

records)
✿✿✿

and
✿✿✿✿✿✿✿✿✿

Antarctica
✿✿✿

(26
✿✿✿✿✿✿✿

records
✿✿

in
✿✿✿✿✿

West
✿✿✿✿✿✿✿✿✿

Antarctica
✿✿✿

and
✿✿✿✿✿✿✿✿

Drönning
✿✿✿✿✿✿

Maud
✿✿✿✿✿✿

Land).
✿✿

A
✿✿✿

few
✿✿✿✿✿

lower
✿✿✿✿✿✿✿

latitude
✿✿✿

ice
✿✿✿✿

core
✿✿✿✿✿✿

records
✿✿✿

(6

✿✿✿✿✿✿✿

records)
✿✿✿

are
✿✿✿

also
✿✿✿✿✿✿

added
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

Peruvian
✿✿✿✿✿

Andes
✿✿✿✿

and
✿✿✿✿✿✿

Tibetan
✿✿✿✿✿✿✿

Plateau,
✿✿✿✿✿

along
✿✿✿✿✿

with
✿✿✿

two
✿✿✿✿✿✿

higher
✿✿✿✿✿✿

latitude
✿✿✿✿

lake
✿✿✿✿

core
✿✿✿✿✿✿✿

records.
✿✿✿✿✿

From
✿✿

a

✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿✿

perspective,
✿✿✿

the
✿✿✿✿✿✿✿

addition
✿✿✿

of
✿✿✿

the
✿✿✿

B14
✿✿✿✿

tree
✿✿✿✿

ring
✿✿✿✿✿

width
✿✿✿✿✿✿

records
✿✿✿✿✿✿✿✿✿✿

contributes
✿

a
✿✿✿✿✿✿✿

notable
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿

proxies
✿✿✿✿✿

back

✿✿

to
✿✿✿✿✿✿✿

1000CE,
✿✿✿✿✿

more
✿✿✿✿

than
✿✿✿✿✿✿

double
✿✿✿

the
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿

records
✿✿✿✿✿✿✿

available
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿

from
✿✿✿✿✿✿✿

1500CE
✿✿✿✿✿✿✿

onward,
✿✿

up
✿✿

to
✿✿

a
✿✿✿✿✿✿✿

fourfold
✿✿✿✿✿✿✿

increase

✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿✿✿✿

nineteenth
✿✿✿

and
✿✿✿✿✿✿✿✿

twentieth
✿✿✿✿✿✿✿✿✿

centuries.30

In order to measure this
✿✿

the
✿

impact with the best configuration, the reconstruction experiments reported in this section are

carried out using seasonal PSMs with objectively-derived
✿✿✿✿✿✿✿✿✿

objectively
✿✿✿✿✿✿

derived seasonality for all records, with a bivariate formu-

lation on temperature and precipitation for all TRW proxies, and univariate on temperature for all other proxies. The baseline

reconstruction uses the PAGES2k-2017 proxies (as in the previous section
✿✿✿✿✿✿

section
✿

3), which we compare to experiments
✿✿✿✿✿

results
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✿✿✿

first
✿✿✿✿✿✿✿✿

obtained with the addition of the B14 TRW records, and then
✿✿✿✿✿

finally
✿✿✿✿✿

with the further addition of the coral, ice and lake

core records from ?.
✿✿✿

A19
✿✿✿✿

(i.e.
✿✿✿

the
✿✿✿

full
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿✿

database).
✿✿✿✿✿

Other
✿✿✿✿

trial
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

vastly
✿✿✿✿✿✿✿✿

expanded
✿✿✿✿✿✿

proxy

✿✿✿✿✿✿✿

network,
✿✿✿

not
✿✿✿✿✿✿✿

reported
✿✿✿✿✿

here,
✿✿✿✿

have
✿✿✿✿✿

shown
✿✿✿✿

that
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

well-calibrated
✿✿✿✿✿

GMT
✿✿✿✿✿✿✿✿

ensemble
✿

is
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿✿

localization
✿✿✿✿✿✿

cut-off

✿✿✿✿✿

radius
✿✿

of
✿✿✿✿✿✿

25000
✿✿✿

km.
✿✿✿✿✿

Next,
✿✿✿

we
✿✿✿✿✿✿✿

compare
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿✿

results
✿✿✿✿

from
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿

configuration
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

baseline
✿✿✿✿✿✿✿✿✿

reanalysis.

Differences in correlation and CE associated with the addition of the B14 collection over the PAGES2k-2017 proxies show5

skill improvements
✿✿

in
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions over the continental United States and Mexico, Europe, and the southern

edge of the Tibetan Plateau , where the additional records provide enhanced coverage (cf. Figs. 9g and h). Through the influence

of significant spatial covariances with the added records, assimilation of the additional TRW records also leads to improved

temperature skill over remote areas of the mid-latitude Pacific , northern Atlantic and Indian oceans.

✿✿✿

and
✿✿✿✿✿✿✿

northern
✿✿✿✿✿✿✿

Atlantic
✿✿✿✿✿✿✿

oceans.
✿

The addition of records described in ?
✿✿✿✿

A19 has minimal additional impact overall, with the10

exception of modest increases in correlation and CE over Greenland (see see Figs. 9i and j). Results for GMT show that the

20th century trends from the prototype and the three experiments described here are within the uncertainty of the instrumental

products (Fig. ??) . However, the consensus trend (defined as the mean of trends from all instrumental analyses) is best

reproduced with the most comprehensive proxy network. Skill metrics for the detrended GMT are higher for all of the updates

to the proxy database compared to the prototype configuration, with a slight improvement for the reconstruction using the15

PAGES2k-2017 and B14 records; however, differences between results with the various subsets of the expanded proxy database

are not statistically significant at the 95% confidence level.

✿✿✿✿✿✿✿✿✿✿✿

Hydroclimate
✿✿✿✿✿✿✿✿✿✿

verification
✿✿

is
✿✿✿✿✿✿

defined
✿✿✿

by
✿

a
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿✿✿

Palmer
✿✿✿✿✿✿✿

Drought
✿✿✿✿✿✿✿

Severity
✿✿✿✿✿

Index
✿✿✿✿✿✿✿

(PDSI)
✿✿✿✿

with
✿✿✿

the

✿✿✿✿✿✿✿✿✿

Dai (2011)
✿✿✿✿✿✿✿

product.
✿✿✿

We
✿✿✿✿

note
✿✿✿✿

here
✿✿✿✿

that
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

verification
✿✿

is
✿✿✿✿✿✿

entirely
✿✿✿✿✿✿✿✿✿✿✿

independent
✿✿

as
✿✿✿✿✿

TRW
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿

models
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

calibrated
✿✿✿

on

✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿

and
✿✿✿

not
✿✿

on
✿✿✿✿✿

PDSI
✿✿✿

as
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Steiger et al. (2018)
✿

. A comparison of the reconstructed PDSI between the prototypeand20

experiments discussed in this section (Fig.10) indicate that the increase in skill shown in Fig. ?? derives from the combined

influence of the updated PAGES2k-2017 records and the
✿

,
✿✿✿

the
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿

of
✿✿✿✿✿✿

section
✿✿

3
✿✿✿✿

and
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿✿✿

carried

✿✿✿

out
✿✿✿✿

with
✿✿✿

the B14 TRW records.With bivariate TRW forward models, enhanced skill is found predominantly over the western

United States and Asia, as well as
✿✿✿✿

TRW
✿✿✿✿✿✿✿

records
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿

coral,
✿✿✿

ice
✿✿✿

and
✿✿✿✿

lake
✿✿✿✿

core
✿✿✿✿✿✿✿

records
✿✿✿✿

(i.e.
✿✿✿

the
✿✿✿

full
✿✿✿✿✿✿✿✿✿

database)

✿

is
✿✿✿✿✿✿

shown
✿✿✿

in
✿✿✿✿✿✿

Figure
✿✿✿

10.
✿✿✿✿

The
✿✿✿✿✿

PDSI
✿✿

is
✿✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿

improved
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

prototype
✿✿✿✿✿✿✿✿

(Figs.10g
✿✿✿✿

and25

✿✿

h).
✿✿✿✿✿✿✿✿✿

Enhanced
✿✿✿✿

skill
✿✿

is
✿✿✿✿✿✿✿✿✿

noticeable
✿✿✿✿

over
✿✿✿✿✿✿

western
✿✿✿✿✿✿

North
✿✿✿✿✿✿✿✿

America,
✿✿✿

and
✿

over eastern Europe (Figs. 10g and h)
✿✿✿

and
✿✿✿✿

Asia
✿✿

to
✿✿

a
✿✿✿✿✿

lesser

✿✿✿✿✿✿

degree.
✿✿✿✿✿✿✿✿✿

Decreased
✿✿✿✿

skill
✿✿

is
✿✿✿✿✿

found
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿

central
✿✿✿✿✿

plains
✿✿✿

of
✿✿✿✿✿

North
✿✿✿✿✿✿✿

America
✿✿✿✿

and
✿✿✿✿✿

along
✿

a
✿✿✿✿✿✿

narrow
✿✿✿✿✿

band
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿✿✿

Siberian
✿✿✿✿✿

Taiga.

The impact of adding the B14 TRW
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson et al. (2019) records is mostly found over the eastern part of the United states

and over western Europe (Figs.10i and j). Finally, we note that the
✿✿✿

this
✿✿✿✿✿✿

impact
✿✿

is
✿✿✿

due
✿✿✿✿✿✿✿

entirely
✿✿

to
✿✿✿

the
✿✿✿✿

B14
✿✿✿✿✿

TRW
✿✿✿✿✿✿✿

records,
✿✿

as
✿✿✿

the

additional coral, ice and lake core records from ?
✿✿✿

A19
✿

do not significantly affect the PDSI reconstruction skill (Figs.10e and f30

are nearly identical to Figs. ??c and d
✿✿✿✿

from
✿✿✿✿✿

results
✿✿✿

of
✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿

carried
✿✿✿

out
✿✿

to
✿✿✿✿✿✿

isolate
✿✿✿

this
✿✿✿✿✿✿✿

impact,

✿✿✿

not
✿✿✿✿✿

shown).

4.4 Covariance localization
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A key question with ensemble data assimilation is whether spatial covariance localization should be applied, and if so, with

what length scale (i. e. cut-off distance). Localization is applied to minimize the adverse impact of spurious covariances at large

distances from a proxy location, which results from sample error in finite ensembles (Hamill et al., 2001). If localization is not

applied, spurious covariances allow proxies to affect remote locations, which adversely affects the quality of the analysis.

On the other hand, too-short localization length scales reduces the useful information that can be derived from the proxies.5

Therefore a balance is sought between minimizing sampling noise versus retaining useful proxy information.

We use the Gaspari-Cohn fifth-order polynomial with a specified cut-off radius (Gaspari and Cohn, 1999) for the localization

function wloc in (4). A series of reconstructions are performed with localization radii ranging from 5000 km to 25000 km.

As with previous experiments
✿✿✿✿✿✿✿✿✿

Examining
✿✿✿

the
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

entire
✿✿✿✿✿✿✿✿✿

Common
✿✿✿

Era
✿✿✿✿

(Fig.
✿✿✿✿

11), 51

Monte-Carlo realizations are carried out, each with 100 ensemble members assimilating 75% of proxy records in the expanded10

LMR database. In addition to the verification scores previously described, an additional discriminating factor on the quality of

the reanalysis is “ensemble calibration” as defined by (Murphy, 1988),

ECR=

[

1

N − 1

N
∑

n=1

(vn −xn)
2

][

1

N − 1

N
∑

n=1

(σ2

x,n +σ2

v,n)

]−1

,

where the numerator is the mean square error (MSE) of the analysis ensemble mean with respect to a verification data set v, and

the denominator is
✿✿

we
✿✿✿

see
✿✿

a
✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿✿

modified
✿✿✿✿✿✿✿

Northern
✿✿✿✿✿✿✿✿✿✿✿

Hemisphere
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿

(NHMT)
✿✿✿✿✿✿✿

resulting
✿✿✿✿✿

from the innovation15

variance: the sum of the analysis ensemble variance σ2

x and the error variance σ2

v characterizing the verification data. Here

we apply Eq. 10 to the GMT ensembles from each Monte-Carlo realization, where the verification data corresponds to the

consensus of instrumental–era data sets as before. The error variance σ2

v is estimated from the deviations of the constituent

sample data (the instrumental datasets) from their mean (i. e. the consensus), and the N “observations” are taken from the time

series of annual analysis and verification data points over the 20th century. The ECR ratio expresses the degree to which the20

ensemble predicts the distribution of observations. A well-calibrated ensemble exhibits an approximate agreement between the

ensemble variance and the ensemble–mean MSE, i. e. ECR ≈ 1.0, while an overdispersive ensemble has variance larger than

the ensemble-mean MSE (ECR < 1.0), and an underdispersive ensemble is diagnosed when its variance is smaller than the

ensemble–mean MSE (ECR >1.0).
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿

proxies.
✿✿

A
✿✿✿✿✿✿✿✿

generally
✿✿✿✿✿✿✿

warmer
✿✿✿✿✿✿

NHMT
✿✿

is
✿✿✿✿✿✿✿

obtained
✿✿✿✿✿✿✿✿✿✿

throughout

✿✿

the
✿✿✿✿✿✿✿✿✿

Common
✿✿✿✿

Era,
✿✿✿

but
✿✿✿✿

most
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿

LIA,
✿✿✿✿✿✿✿✿✿

worsening
✿✿✿

the
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿✿

from
✿✿✿✿

other
✿✿✿✿✿✿✿

studies25

✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

Figure
✿✿

2.
✿✿

A
✿✿✿✿✿✿✿✿✿

noticeable
✿✿✿✿

loss
✿✿

of
✿✿✿✿✿✿✿✿✿

variability
✿✿

is
✿✿✿✿✿✿✿✿

observed,
✿✿✿✿✿✿✿✿

confirmed
✿✿✿

by
✿✿✿✿✿✿✿✿✿

comparing
✿✿✿✿✿✿

spectra
✿✿✿✿✿

from
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿

(Fig.

✿✿✿✿

11c).
✿✿✿✿

This
✿✿✿✿

loss
✿✿

of
✿✿✿✿✿✿✿✿✿

variability
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿

using
✿✿✿

all
✿✿✿✿✿✿

proxies
✿✿✿✿✿✿

occurs
✿✿

at
✿✿✿✿✿

nearly
✿✿✿

all
✿✿✿✿✿✿

scales,
✿✿✿✿✿✿✿✿✿✿

underlining
✿✿

an
✿✿✿✿✿✿✿

adverse
✿✿✿✿✿✿

impact

✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿✿✿

B14
✿✿✿

tree
✿✿✿✿

ring
✿✿✿✿✿

width
✿✿✿✿✿✿✿

proxies.
✿

An ECR value is obtained for each Monte-Carlo reconstruction, and the average is taken over the 51 values. Results indicate

that GMT ensembles tend to be underdispersive without covariance localization (Table 5). An excessive reduction in posterior30

ensemble spread, compared to the mean error, can arise from two factors: too-small observation error variance for some records,

leading to overestimated weight of these records in the reanalysis, combined with sample error in the ensemble-estimated

covariances, which artificially reduces ensemble variance over the entire state vector. In contrast, ensembles are overdispersive
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when “too-small” localization radii are used, indicating the information on global-mean temperature provided by some proxy

records is not properly incorporated in the reanalysis. The ECR closest to one (i.e. well-calibrated ensemble) is obtained when

covariance localization is applied with a cut-off radius of about 25000 km. This result, along with those from the common

verification scores (see Fig. S4) , suggest that a skillful and reliable reconstruction is obtained with this covariance localization

configuration.5

We note that the optimal localization radius depends on a number of factors, such as ensemble size, the observation network

and observation error characteristics. For example, as seen in Table 5, an overdispersive GMT ensemble is obtained when

proxies from PAGES2k-2013 are assimilated in the absence of covariance localization, due to the much smaller number of

proxies. This is in contrast with the underdispersive ensemble resulting from the
✿✿

We
✿✿✿✿

now
✿✿✿✿

turn
✿✿

to
✿✿✿✿✿✿✿✿✿✿

verification
✿✿

in
✿✿✿✿✿

proxy
✿✿✿✿✿✿

space,

✿✿✿✿✿

which
✿✿

is
✿✿✿

the
✿✿✿✿✿

only
✿✿✿✿✿✿

source
✿✿✿✿✿✿✿

available
✿✿✿✿✿

prior
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

instrumental
✿✿✿✿✿✿✿

period.
✿✿✿✿✿

Proxy
✿✿✿✿✿✿✿✿✿

estimates
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

reanalyses
✿✿✿✿✿✿✿✿✿

(estimated
✿✿✿✿✿✿

using
✿✿✿

the10

✿✿✿✿✿✿✿✿✿

appropriate
✿✿✿✿✿

PSM)
✿✿✿

are
✿✿✿✿✿✿✿✿✿

compared
✿✿✿✿✿✿

directly
✿✿✿

to
✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿✿✿✿

observations.
✿✿✿✿✿

Here,
✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿

skill
✿✿

is
✿✿✿✿✿✿✿✿

assessed
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿

(the
✿✿✿✿

25%

✿✿✿✿✿✿✿

withheld
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿

assimilation)
✿✿✿✿✿✿✿

proxies.
✿✿✿

We
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿

restrict
✿✿✿

our
✿✿✿✿✿✿✿

analysis
✿✿

to
✿✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿✿

against
✿✿✿

tree
✿✿✿✿

ring
✿✿✿✿✿

wood
✿✿✿✿✿✿✿

density
✿✿✿✿✿✿

proxies,
✿✿✿

as

✿✿✿

they
✿✿✿

are
✿✿✿✿✿✿

among
✿✿✿

the
✿✿✿✿

most
✿✿✿✿✿✿✿

reliable
✿✿✿✿✿✿✿✿

recorders
✿✿

of
✿✿✿✿✿✿✿✿✿✿

temperature
✿

in
✿✿✿✿

our
✿✿✿✿✿✿✿

database,
✿✿

as
✿✿✿✿✿✿✿✿✿

evidenced
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

generally
✿✿✿✿✿

better
✿✿✿

fits
✿✿

to
✿✿✿✿✿✿✿✿✿

calibration

✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

data
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

calibrating
✿✿✿

the
✿✿✿✿✿✿✿✿✿

univariate
✿✿✿✿✿✿

PSMs.
✿✿✿✿

Also,
✿✿✿✿✿

these
✿✿✿✿✿✿✿

proxies
✿✿✿✿✿✿

provide
✿✿✿✿✿

good
✿✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿

coverage
✿✿✿

of
✿✿✿

the

✿✿✿✿

latter
✿✿✿✿✿✿

portion
✿✿

of
✿✿✿

the
✿✿✿✿

LIA
✿✿✿✿

into
✿✿✿

the
✿✿✿✿✿✿✿✿

industrial
✿✿✿✿✿

period
✿✿

as
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

Figure
✿

1.
✿✿✿✿

The
✿✿✿✿✿✿

results,
✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿✿✿

Table
✿✿

6,
✿✿✿✿✿

show
✿✿✿✿✿✿✿✿

distinctly
✿✿✿✿✿

larger15

✿✿✿

skill
✿✿✿✿✿✿

scores
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿✿✿✿

PAGES2k-2017
✿✿✿✿✿✿

proxies
✿✿✿✿

only
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿✿

when
✿✿✿

all
✿✿✿✿✿✿

proxies
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

assimilated.
✿✿✿✿✿✿✿✿

Improved
✿✿✿✿

skill

✿

is
✿✿✿✿✿✿✿✿

observed
✿✿✿

for
✿✿✿✿

both
✿✿✿✿✿✿

periods
✿✿✿

of
✿✿✿✿✿✿✿

interest.
✿✿✿✿✿✿

Results
✿✿✿✿

from
✿✿

a
✿✿✿✿

third
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿✿✿✿✿✿

experiment
✿✿✿

are
✿✿✿

also
✿✿✿✿✿✿✿✿✿

presented,
✿✿✿✿✿

where
✿✿✿✿

only
✿✿

a
✿✿✿✿✿

small

✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿✿

B14
✿✿✿✿✿✿✿

records
✿✿✿

are
✿✿✿✿✿✿✿✿✿

assimilated
✿✿✿✿✿

(B14
✿✿✿✿✿

subset
✿✿✿✿✿✿✿✿✿✿

experiment
✿✿

in
✿✿✿✿✿

Table
✿✿✿

6).
✿✿

A
✿✿✿✿

total
✿✿

of
✿✿✿

188
✿✿✿✿✿✿✿

records
✿✿✿✿

(out
✿✿

of
✿✿✿

the
✿✿✿✿

2156
✿✿✿✿✿✿✿✿✿

available)

✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿✿

selected
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

basis
✿✿

of
✿✿✿✿✿

their
✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿

to
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿

data
✿✿

as
✿✿✿✿✿✿✿✿✿✿

determined

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿✿

coefficient
✿✿✿✿✿✿✿✿✿✿✿✿

characterizing
✿✿✿✿✿✿✿

bivariate
✿✿✿✿✿✿

PSMs.
✿✿✿✿✿✿✿

Records
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿

above
✿✿✿

0.6
✿✿✿

are
✿✿✿✿✿

found
✿✿

to
✿✿✿

be20

✿✿✿✿✿✿

located
✿✿✿

for
✿✿✿

the
✿✿✿✿

most
✿✿✿✿

part
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿

United
✿✿✿✿✿

States.
✿✿✿✿✿✿

Proxy
✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿✿

results
✿✿✿✿✿✿✿

indicate
✿✿

an
✿✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿

skill
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

representation
✿✿

of

✿✿✿

tree
✿✿✿✿

ring
✿✿✿✿✿

wood
✿✿✿✿✿✿

density
✿✿✿✿✿✿✿

proxies,
✿✿

as
✿✿✿✿✿✿✿✿

indicated
✿✿✿

by
✿✿✿✿

skill
✿✿✿✿✿

metric
✿✿✿✿✿✿

values
✿✿✿✿

only
✿✿✿✿✿✿

slightly
✿✿✿✿✿

lower
✿✿✿✿

than
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

PAGES2k-2017
✿✿✿✿✿✿✿✿✿✿

experiment.

✿✿✿✿✿✿

Spatial
✿✿✿✿✿✿✿✿✿

verification
✿✿

of
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

and
✿✿✿✿

PDSI
✿✿✿✿

(not
✿✿✿✿✿✿

shown)
✿✿✿✿

also
✿✿✿✿✿✿✿

suggest
✿✿✿

that
✿✿✿✿✿

some
✿✿

of
✿✿✿

the
✿✿✿✿

skill
✿✿✿✿✿✿✿✿✿✿✿

enhancements
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

Figure
✿✿✿

10i

✿✿✿

and
✿

j
✿✿✿

are
✿✿✿✿✿✿✿

retained
✿✿✿✿

even
✿✿✿✿✿

when
✿✿✿

this
✿✿✿✿✿

small
✿✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿

the
✿✿✿✿

B14
✿✿✿✿✿✿

records
✿✿

is
✿✿✿✿✿✿✿✿✿✿

considered.
✿✿✿✿

This
✿✿✿✿✿✿✿

suggests
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

issues
✿✿✿✿

with
✿✿✿

the
✿

assim-

ilation of the significantly larger number of proxies from the updated proxy database used here.
✿✿✿

B14
✿✿✿✿✿✿

records
✿✿✿✿✿✿✿✿

identified
✿✿✿✿✿✿

above25

✿✿✿

can
✿✿✿✿✿✿✿

possibly
✿✿✿

be
✿✿✿✿✿✿✿✿

mitigated
✿✿✿✿✿

while
✿✿✿✿✿✿✿✿✿✿

maintaining
✿✿✿✿✿

some
✿✿

of
✿✿✿

the
✿✿✿✿✿

skill
✿✿✿✿

they
✿✿✿✿✿✿

provide
✿✿✿✿✿✿✿

toward
✿✿✿✿✿✿✿✿

enhanced
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

hydroclimate

✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿

in
✿✿✿✿✿

local
✿✿✿✿✿✿✿

regions.
✿✿✿✿✿✿✿

Optimal
✿✿✿✿✿✿✿✿

selection
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿

records
✿✿✿✿✿✿✿✿

requires
✿✿✿✿✿✿

further
✿✿✿✿✿✿

careful
✿✿✿✿✿✿✿✿

attention,
✿✿✿

and
✿✿✿✿✿✿

could
✿✿✿✿

serve
✿✿✿

as
✿✿✿

the

✿✿✿✿

basis
✿✿✿

for
✿✿✿✿✿

future
✿✿✿✿✿✿

efforts.
✿

5 Concluding summary

A paleoclimate reanalysis of the Common Era has been developed using an updated data assimilation framework. Results show30

significant improvement over the prototype Last Millennium Reanalysis presented in Hakim et al. (2016). The development

of a vastly expanded
✿✿✿

An
✿✿✿✿✿✿

updated
✿

proxy database and implementation of proxy system models (PSMs) with improved realism

are shown to be key contributors to the enhanced reanalysis. Upgrades
✿✿✿

The
✿✿✿✿✿

main
✿✿✿✿✿✿✿

upgrade to the proxy database consist of a

19



change from the community-standard of PAGES 2k Consortium (2013) to the more recent PAGES 2k Consortium (2017) data

set, complemented by
✿✿✿✿✿

while the records described in ?, bringing a fivefold increase in the number of proxy records available

for assimilation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson et al. (2019)
✿✿✿✿✿✿

remain
✿✿✿✿✿✿✿

available
✿✿✿

for
✿✿✿✿✿✿✿

possible
✿✿✿✿✿

future
✿✿✿✿✿✿✿✿✿✿✿✿

enhancements
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿

used
✿✿

in
✿✿✿

the

✿✿✿✿✿✿✿✿

reanalysis. Moreover, new methods to map state variables to observations extend the prototype’s linear univariate models

calibrated on annual-mean temperature in two key aspects: accounting for seasonal dependencies of individual proxy records,5

and the modeling of tree-ring-width proxies using temperature and moisture as predictors. The encoding of proxy seasonality

information within PSMs has also been refined by objectively determining the characteristic seasonal response of individual

records, and by decoupling the seasonality for temperature and precipitation sensitivity for tree-ring-width.

Climate field reconstructions from a series of assimilation experiments carried out with various proxy and PSM configura-

tions have been compared to available instrumental–era observation-based analyses, revealing notable improvements not only10

in the reconstructed global mean temperature in general, but also in reconstructed spatial fields. More skillful tropical Pacific

temperatures are obtained primarily due to the updated set of coral records in the PAGES 2k Consortium (2017) collection.

Improved temperature reconstructions over continental extratropical regions are the result of the newly implemented seasonal

PSMs, combined with the assimilation of the large number of Breitenmoser et al. (2014)
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿

modeling
✿✿

of
✿

tree-ring-width

chronologies , forward-modeled using a bivariate temperature-moisture formulation. Improvements are reflected not only in15

temperature reconstructions, but also in dynamical variables (500 hPa geopotential heights) and
✿✿✿✿✿

height
✿✿✿

and
✿✿

to
✿✿✿✿✿

some
✿✿✿✿✿✿

extent in

hydroclimate variables such as the PDSI. The introduction within LMR’s proxy database
✿✿✿✿✿✿

Lastly,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

introduction
✿

of the large

collection of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Breitenmoser et al. (2014) tree-ring-width records
✿✿✿✿✿✿✿✿✿✿✿

chronologies,
✿

not screened for temperature sensitivityappears

to be a significant factor in enabling this capability. Lastly, covariance localization, applied with a relatively large cut-off length

scale, has been shown to have a positive impact , particularly in maintaining an appropriate relationship between mean error20

and variance in the reanalysis ensemble
✿

,
✿✿✿✿✿✿

appears
✿✿

to
✿✿✿✿✿✿✿

provide
✿✿✿✿

local
✿✿✿✿

skill
✿✿✿✿✿✿✿✿✿✿✿✿

enhancements
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

hydroclimate
✿✿✿✿✿✿✿✿

variables
✿✿

(e.
✿✿

g.
✿✿✿✿✿

PDSI
✿✿✿✿

over

✿✿

the
✿✿✿✿✿✿✿

eastern
✿✿✿✿✿✿

United
✿✿✿✿✿✿

States).
✿✿✿✿✿✿✿✿

However
✿✿✿

this
✿✿

is
✿✿✿✿✿✿✿✿

achieved
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

expense
✿✿

of
✿✿✿✿✿✿✿✿

accuracy
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿

of
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿

features
✿✿✿

of

✿✿✿✿✿✿✿✿✿✿✿

pre-industrial
✿✿✿✿✿✿

climate
✿✿✿✿✿

such
✿✿

as
✿✿✿

the
✿✿✿✿✿

colder
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿

Little
✿✿✿

Ice
✿✿✿✿✿

Age.
✿✿✿✿✿✿✿✿

However,
✿✿✿

the
✿✿✿✿✿✿✿✿

generally
✿✿✿✿✿✿✿

positive
✿✿✿✿✿✿

impact
✿✿

of
✿✿

a

✿✿✿✿✿

simple
✿✿✿

ad
✿✿✿

hoc
✿✿✿✿✿✿✿✿

screening
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Breitenmoser et al. (2014)
✿✿✿✿✿✿

suggest
✿✿✿✿

that
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿✿✿

possible
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿

careful

✿✿✿✿✿✿✿

selection
✿✿

of
✿✿✿✿✿✿✿✿

tree-ring
✿✿✿✿✿✿✿✿✿✿

chronologies.25

Results presented here, based upon regression PSMs, may serve as a reference for future efforts designed to assess the value

of more comprehensive process-based PSMs in paleoclimate data assimilation research. Finally, we note that the version of the

PDA system described herein
✿✿✿

here
✿

corresponds to the configuration used in the production of the first publicly released
✿✿✿✿✿✿

release

✿✿

of
✿✿✿

the NOAA Last Millennium Reanalysis, available at https://atmos.washington.edu/~hakim/LMR/.

Code and data availability. The code used in the production of the reanalysis is publicly available at https://github.com/modons/LMR, and30

data are available from https://atmos.washington.edu/~hakim/LMR/.
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Appendix A: DA with an appended state

For reasons of computational efficiency and flexibility we perform data assimilation with an “appended state”, where the ye

proxy estimates from each record are appended to the state vector xb:

xb =





























x1

...

xN

y1e
...

yPe





























,

where the x1 . . .xN elements contain the ensemble grid point data from model variables included in the state (e.g. temperature,5

precipitation etc.), with N the sum of the number of variables times the number of grid points, and the y1e . . .y
P
e are the

ensemble proxy estimates for each of the P proxy records considered. Each of the x1 . . .xN and y1e . . .y
P
e elements are of

dimensions 1×Nens, where Nens is the specified size of the ensemble. Hence, xb is a matrix of dimension (N +P )×Nens.

With such an appended state, the ye elements in Eq. 6 are updated through Eqs. 4 as any other state variables, eliminating the

need to re-evaluate ye with Eq. 2 once the state has been updated. This simplification is particularly attractive in the context10

of LMR updates discussed herein as it enables a straightforward implementation of seasonal PSMs (i.e. forward models more

accurately representing the seasonal responses of individual proxy records) as discussed in section 2.4. In our implementation

with an appended state and serial processing of observations, along with the reconstruction of annually-averaged states, the

data assimilation procedure follows this general algorithm.

1. The proxy estimates (ye) are pre-calculated using Eq. 2 with either annually- or seasonally-averaged model data as input15

(i.e. the xb in Eq. 2).

2. A sample ensemble of annually-averaged model states is randomly drawn from a pre-existing simulation to form the

main part of the prior state vector (i.e. the x1 . . .xN elements in Eq. 6).

3. The pre-calculated y1e . . .y
P
e proxy estimates are added on to form the appended state as shown in Eq. 6. This appended

state becomes the xb in Eq. 1, which is decomposed in an ensemble-mean (xb) and perturbations about the mean (x′

b) as20

shown in Eqs. 4.

4. Proxies forming the y vector are then serially processed, with the updated state, including the proxy estimates, obtained

from Eqs. 4. The complete reanalysis is completed once all proxies have been assimilated.

We note here that with a configuration involving seasonal PSMs without the use of an appended state, the vector xb has to

include states with sufficient temporal resolution to allow the calculation of the updated seasonal y1e . . .y
P
e proxy estimates. In25
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this scenario, an additional step to the ones listed above is required, involving Eq. 2 using the appropriate seasonally-averaged

updated states as input. With proxies characterized by a wide range of seasonal responses, this requirement would impose an

xb composed of monthly data which would greatly increase the computational cost of the reanalysis. Reanalysis results would

also likely be adversely affected by the larger noise level characterizing data at shorter (i.e. monthly) timescales through its

impact on ensemble estimates of prior covariances (see, e.g. Tardif et al., 2016).5

Appendix A: Proxy system model characteristics

Features introduced in the updated LMR proxy modeling capabilities include a representation of the seasonal response to

climate drivers characterizing individual proxy records (i.e. proxy seasonality), as well as proxy system models (PSMs) that

include moisture input
✿✿✿✿✿✿✿✿✿✿✿

precipitation and temperature as driving variables for modeling tree-ring-width (TRW) records.

The first approach is to use univariate PSMs calibrated against temperature data, with proxy seasonality either defined from10

the available proxy metadata or derived objectively using the method described in section 2.4.1. PSM performance is compared

using the Bayesian Information Criterion (BIC), defined as (Schwarz, 1978),

BIC =−2 ln(L̂)+ k ln(n) (A1)

where L̂ is the maximized value of the likelihood function of the model, n is the sample size and k is the number of estimated

parameters in the model. We note that the second term in Eq. A1 represents a penalty for models with a larger number of15

explanatory variables, i.e. a more complex model. This feature is particularly useful when comparing univariate and bivariate

models. Here we use the difference in BIC values between two models ∆BIC = (BICM−BICref ), to determine the relative

accuracy of model M over a reference. The model with the lowest BIC is preferred (i.e. a better fit to the data), hence a negative

∆BIC indicates the superiority of the test model over its reference. Here, the seasonal PSMs are tested against the univariate

PSMs calibrated with annually-averaged temperatures as the reference. Significant evidence of the superiority of the test model20

over its reference is obtained when ∆BIC < -2.0.

Table A1 presents a summary of ∆BIC results for records in each proxy category considered in LMR. The advantage

of seasonal PSMs is particularly significant for tree-ring wood-density chronologies, a proxy known for its strong seasonal

response (Briffa et al., 2004). Seasonal PSMs also provide improved fits to tree ring width data, although to a lesser extent

compared to density records. As indicated by the larger negative ∆BIC values, models based on objectively-derived seasonal25

responses lead to more accurate descriptions of proxy data compared to those calibrated using metadata seasonality, even for

tree ring chronologies within the community-curated PAGES2k-2017 data set. These results suggest that the objectively-derived

seasonality information is noticeably different than in the metadata, particularly for tree ring records in the Breitenmoser et al.

(2014) (i.e. B14) data set, but also for those in PAGES 2k Consortium (2017) (i.e. PAGES2k-2017). More details on this aspect

are provided in the supplementary material. The use of objectively-defined seasonality improves upon the simple latitude-30

dependent relationship described in ?
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson et al. (2019), more consistent with records from the PAGES2k-2017 data set.

Apart from lake sediment records, which are also more accurately modeled with seasonal PSMs, Table A1 shows that PSMs for
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other proxy types are not as sensitive to seasonality. In fact, the majority of the (tropical) coral records included in the current

database have metadata seasonality defined as annual already, as do the high-latitude ice core records. Note that some of

these records originate from the collection described by ?, where seasonality
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson et al. (2019),
✿✿✿✿✿✿

where
✿✿✿✿✿✿✿

seasonal
✿

metadata

information is generally not available. As a result, these records are assumed to be annual.

In addition to seasonal models, other improvements involve the development of PSMs which
✿✿✿

that add precipitation as an5

input variable for the modeling of TRW proxies as outlined in section 2.4.2. One approach consists of selecting the univariate

models, either calibrated on temperature or moisture input, which best describe the proxy data. This “temperature or mois-

ture” selection (abbreviated as “TorM”) is performed on individual TRW records, and the resulting proportion of TRW proxies

identified as temperature-sensitive is 56.4% versus 43.6% for moisture when metadata seasonality information is considered.

This is compared to 36.8% temperature-sensitive versus 63.2% moisture-sensitive trees when seasonal responses are deter-10

mined objectively. The latter option, leading to a larger proportion of moisture-sensitive records, is in better agreement with a

comparable characterization performed by Steiger et al. (2018) on a similar set of TRW records.

A second approach consists of bivariate PSM formulation, where TRW depends on both temperature and precipitation (see

Eq. 8. The ∆BIC results characterizing the univariate “TorM” and bivariate PSMs against their univariate temperature-only

counterparts (as the reference) are summarized in Table A2. The negative mean ∆BIC values confirm the advantage of15

including moisture in TRW linear models. The evidence is more pronounced for the B14 records, perhaps not surprisingly

given the larger proportion of moisture-sensitive records included in this data set. Nonetheless, the prevalent reduction in

BIC for models of PAGES2k-2017 trees suggests a non-negligible response to moisture despite the screening of records for

temperature. The mean positive ∆BIC characterizing the bivariate models calibrated using metadata seasonality confirm that

the assumption of identical seasonal responses for temperature and moisture is problematic for modeling tree ring growth,20

at least with these more complex models. On the other hand, allowing distinct representations of temperature and moisture

seasonal responses in bivariate PSMs, as enabled by the goodness-of-fit objective determination of these responses, leads to

significantly more accurate TRW modeling compared to univariate temperature PSMs.
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Figure 1. Locations (left column) and temporal (right column) distributions of proxy records available for assimilation (proxies for which

linear PSMs calibrated with GISTEMP version 4 are available), (a) and (b) used in the prototype version, (c) and (d) LMR proxy database

updated to PAGES 2k Consortium (2017) proxies, and finally (e) and (f) with the further addition of proxies from ?.
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Figure 2. Comparison of the LMR global-mean 2 m air temperature (GMT) (a) grand ensemble mean (solid lines) and 5–95% per-

centile range (shading) from the prototype (blue) and updated (red) reanalyses
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Instrumental-era verification for temperature 
 LMR vs. Berkeley Earth

Figure 4. Verification of LMR 2m air temperature against the Berkeley Earth instrumental–era analysis over the 1880–2000 period. Shown

are time series correlation (left column) and coefficient of efficiency (CE, right column), for (a) and (b) the prototype and, (c) and (d) the

updated reanalysis. Differences in correlations and CE between the two experiments are shown in (e) and (f) respectively. Gray shading

indicate regions with insufficient valid data for meaningful verification statistics.
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Figure 5. As in Fig. 4 except for the verification of LMR 500 hPa geopotential height anomalies against the 20CR-v2 reanalysis.

As in Fig. 4, except for verification of LMR Palmer Drought Severity Index (PDSI) against the Dai (2011) instrumental–era

PDSI analysis.
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Figure 6. Verification of LMR temperature anomalies against the Berkeley Earth instrumental–era analysis, for experiments using PAGES2k-

2017 proxies and univariate PSMs, with contrasting seasonalities. Shown are time series correlation (r) and coefficient of efficiency (CE), for

(a) and (b) experiment 1: annual, (c) and (d) experiment 2: seasonality from the proxy metadata, and (e) and (f) experiment 3: objectively-

derived seasonality. Differences in skill metrics are also shown, (g) and (h) between experiments 2 and 1, (i) and (j) between experiments 3

and 1.
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Instrumental-era verification for temperature 
 LMR vs. Berkeley Earth

Figure 7. As in Figure 6, but comparing experiments performed using PAGES2k-2017 proxies with different PSM configurations for tree

ring width proxies. (a) and (b) experiment 1: univariate on temperature for all proxies, (c) and (d) experiment 2: univariate with respect to

temperature or moisture for TRWs, and (e) and (f) experiment 3: bivariate on temperature and moisture for tree ring widths. Differences in

skill metrics are shown, (g) and (h) between experiments 2 and 1, and (i) and (j) between experiments 3 and 1. All reconstructions are based

on objectively-derived seasonal PSMs.
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Figure 8. Summary skill metrics from verification of LMR temperature reconstruction experiments, all using PAGES2k-2017 proxies only,

against the consensus of instrumental–era products. Experiments are a combination of those shown in Figs. 6 and 7. Metrics shown are

the 20th century trend of global mean temperature
✿✿✿✿✿✿✿

Locations (GMT
✿

a) , correlation (r) and coefficient of efficiency
✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿✿

distributions

(CE
✿

b) for the detrended GMT. The GMT trend from consensus of instrumental–era products is shown by the arrow and dashed black

line
✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿

proxies
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson et al. (2019)
✿✿✿✿✿✿✿✿

considered
✿✿✿

for
✿✿✿✿✿✿✿✿✿

assimilation, along with
✿✿✿✿✿✿✿

including
✿

the range defined by the individual

instrumental–era products shown by the gray-shaded area
✿✿✿

tree
✿✿✿

ring
✿✿✿✿✿✿✿✿✿✿

chronologies
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Breitenmoser et al. (2014). Error bars
✿✿

As
✿✿

in
✿✿✿

Fig.
✿

1
✿✿✿✿

only

✿✿✿✿✿

records
✿✿✿✿✿✿✿

available
✿✿✿

for
✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

(proxies
✿✿✿

for
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

regression
✿✿✿✿

based
✿✿✿✿✿

PSMs
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

calibrated)
✿

are the 5-95% bootstrap confidence intervals

on the corresponding skill metric
✿✿✿✿

shown.
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Instrumental-era verification for temperature 
 LMR vs. Berkeley Earth

Figure 9. As in Figure 6, but comparing experiments performed with different proxy networks: (a) correlation (r) and (b) CE for experiment

1: PAGES 2k Consortium (2017) proxies only, (c) and (d) experiment 2: with the addition of tree ring chronologies from Breitenmoser

et al. (2014), and (e) and (f) experiment 3: with all proxies in the updated LMR database. The differences in correlation and CE between

experiments 2 and 1 are shown in (g) and (h) respectively, and between experiments 3 and 2 in (i) and (j). Notice the latter is different to

Figure 6, where differences between experiments 3 and 1 are shown.

37



As in Fig. ?? for reconstruction experiments performed with different proxy networks: PAGES 2k Consortium (2017)

proxies only, with the addition of tree ring chronologies from Breitenmoser et al. (2014), and with all proxies in the updated

LMR database.
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Instrumental-era verification for PDSI 
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Figure 10. As in
✿✿✿✿✿

Similar
✿✿

to
✿

Figure 9, but comparing PDSI reconstructions against the Dai (2011) analysis for experiments performed with

different proxy networks: (a) correlation and (b) CE for experiment 1: prototype reanalysis already presented in Fig. ??
✿✿✿

from
✿✿✿✿

H16, experiment

2: PAGES 2k Consortium (2017) proxiesonly, (e) and (f) experiment 3: with
✿✿✿✿✿

further the addition of tree ring chronologies from Breitenmoser

et al. (2014)
✿✿✿

and
✿✿

the
✿✿✿✿✿

coral,
✿✿

ice
✿✿✿✿

and
✿✿✿

lake
✿✿✿

core
✿✿✿✿✿✿

records
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson et al. (2019)
✿

(i.
✿

e.
✿✿✿

the
✿✿✿

full
✿✿✿✿

proxy
✿✿✿✿✿✿✿✿

database). The differences in correlation

and CE between experiments 2 and 1 are shown in (e
✿

g) and (f
✿

h) respectively, and between experiments 3 and 2 in (i) and (j).
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Figure 11.
✿✿✿✿✿✿✿

Northern
✿✿✿✿✿✿✿✿✿

Hemisphere
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

(NHMT)
✿✿✿✿✿

grand
✿✿✿✿✿✿✿

ensemble
✿✿✿✿

mean
✿✿✿✿✿

(blue
✿✿✿✿

solid
✿✿✿✿

lines)
✿✿✿

and
✿✿✿✿✿✿

5–95%
✿✿✿✿✿✿✿

percentile
✿✿✿✿✿

range
✿✿✿✿

(blue
✿✿✿✿✿✿✿

shading)

✿✿✿

from
✿✿✿

(a)
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿✿✿✿✿

performed
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

PAGES2k-2017
✿✿✿✿✿

proxies
✿✿✿✿

and
✿✿

(b)
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿

with
✿✿

the
✿✿✿✿✿✿✿

addition
✿✿

of
✿✿✿✿✿✿

proxies
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson et al. (2019)

.
✿✿✿✿

The
✿✿✿✿

prior
✿✿✿✿✿✿✿

ensemble
✿✿

is
✿✿✿✿✿

shown
✿✿✿

by
✿✿✿

the
✿✿✿✿

solid
✿✿✿✿

black
✿✿✿✿

lines
✿✿✿✿✿✿✿✿

(ensemble
✿✿✿✿✿

mean)
✿✿✿

and
✿✿✿✿✿✿

5–95%
✿✿✿✿✿✿✿✿

percentile
✿✿✿✿

range
✿✿✿

by
✿✿✿

the
✿✿✿

gray
✿✿✿✿✿✿✿

shading.
✿✿✿

(c)
✿✿✿✿✿✿

Spectra
✿✿

of

✿✿✿✿✿

NHMT
✿✿✿✿

from
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿

(solid
✿✿✿✿✿

lines),
✿✿✿✿

along
✿✿✿✿

with
✿✿

the
✿✿✿

χ2

✿✿✿✿

95%
✿✿✿✿✿

highest
✿✿✿✿✿✿

density
✿✿✿✿✿✿

regions
✿✿✿✿✿✿✿

(shading).
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Table 1. Summary of instrumental–era verification results for the prototype and updated reanalyses. Verification scores shown are correlation

(r) and coefficient of efficiency (CE), for the annual global mean temperature (GMT) and detrended GMT verified against the consensus of

instrumental–era analyses, the global mean of gridpoint r and CE characterizing the spatially reconstructed temperature, 500 hPa geopotential

height (Z500) and Palmer Drought Severity Index (PDSI). LMR spatial temperature is verified against the Berkeley Earth analysis (Rohde

et al., 2013), Z500 is verified against the 20CR-V2 reanalysis (Compo et al., 2011) and PDSI is verified against the Dai (2011) analysis.

Reanalysis
Annual GMT Detrended GMT Spatial temperature Spatial Z500 Spatial PDSI

r CE r CE r CE r CE r CE

Prototype 0.91 0.79 0.71 0.32 0.49
✿✿✿

0.47 0.15
✿✿✿

0.10 0.41 0.07 0.05 -0.03

Updated 0.93 0.87
✿✿✿

0.86
✿✿✿

0.77
✿ ✿✿✿✿

0.59
✿✿✿

0.52
✿ ✿✿✿

0.22
✿ ✿✿✿

0.45
✿ ✿✿✿

0.18
✿ ✿✿✿

0.09
✿ ✿✿✿

0.00
✿
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Table 2.
✿✿✿✿✿✿✿✿✿

Verification
✿✿

of
✿✿✿✿

LMR
✿✿✿✿✿✿✿

prototype
✿✿✿

and
✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿✿

reanalyses
✿✿✿✿✿✿

against
✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿✿✿

(withheld
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿

assimilation)
✿✿✿✿✿✿

proxies.
✿✿✿✿

Skill
✿✿✿✿✿

scores
✿✿✿✿✿

shown

✿✿

are
✿✿✿

the
✿✿✿✿✿✿

median
✿✿

of
✿✿✿✿✿✿✿✿✿

distributions
✿✿✿

for
✿✿✿✿✿✿✿✿

correlation
✿✿✿

(r),
✿✿✿

the
✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿✿✿

proxy
✿✿✿✿✿✿

records
✿✿✿✿✿✿✿✿✿✿

characterized
✿✿

by
✿

a
✿✿✿✿✿✿✿

positive
✿✿✿✿

∆CE
✿✿✿✿✿✿✿

(%+CE),
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

median

✿

of
✿✿✿

the
✿✿✿✿✿

∆CE
✿✿✿✿✿✿✿✿✿

distribution,
✿✿✿✿✿

where
✿✿✿✿

∆CE
✿✿

is
✿✿

the
✿✿✿✿✿✿✿✿

difference
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

coefficient
✿✿

of
✿✿✿✿✿✿✿

efficiency
✿✿✿✿

(CE)
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿

posterior
✿✿✿✿✿✿✿✿✿

(reanalysis)
✿✿✿

and
✿✿

the
✿✿✿✿✿

prior.

✿✿✿

The
✿✿✿✿✿✿

median
✿

of
✿✿✿

the
✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

calibration
✿✿✿✿

ratio
✿✿✿✿✿

(ECR)
✿✿✿✿✿✿✿✿✿

distribution
✿✿

is
✿✿✿

also
✿✿✿✿✿

shown.
✿✿✿✿✿✿✿

Statistics
✿✿✿

are
✿✿✿✿✿✿✿

compiled
✿✿✿✿

over
✿✿

51
✿✿✿✿✿✿✿✿✿✿

Monte-Carlo
✿✿✿✿✿✿✿✿✿

realizations,
✿✿✿

and

✿✿✿✿

cover
✿✿✿✿✿✿✿

different
✿✿✿

time
✿✿✿✿✿✿

periods,
✿✿✿✿✿✿✿✿

including
✿✿

the
✿✿✿✿✿✿✿✿✿

1880–2000
✿✿✿✿

PSM
✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿✿

period.

Verification period

(years of Common Era)

Prototype Updated reanalysis

✿

r
✿ ✿✿✿✿✿

%+CE
✿✿✿✿

∆CE
✿✿✿✿

ECR
✿

r
✿ ✿✿✿✿✿

%+CE
✿✿✿✿

∆CE
✿✿✿✿

ECR

✿✿✿✿✿

1–499
✿✿✿

0.00
✿ ✿✿✿

56.0
✿ ✿✿✿

0.00
✿✿✿✿

0.78
✿✿✿

0.03
✿ ✿✿✿

55.9
✿ ✿✿✿

0.00
✿✿✿✿

0.96

✿✿✿✿✿✿✿

500–999
✿✿✿

0.08
✿ ✿✿✿

62.1
✿ ✿✿✿

0.01
✿✿✿✿

1.00
✿✿✿

0.13
✿ ✿✿✿

65.3
✿ ✿✿✿

0.02
✿✿✿✿

1.00

✿✿✿✿✿✿✿✿

1000–1499
✿ ✿✿✿

0.11
✿ ✿✿✿

63.0
✿ ✿✿✿

0.01
✿✿✿✿

1.10
✿✿✿

0.16
✿ ✿✿✿

67.3
✿ ✿✿✿

0.05
✿✿✿✿

1.06

✿✿✿✿✿✿✿✿

1500–1879
✿ ✿✿✿

0.14
✿ ✿✿✿

64.1
✿ ✿✿✿

0.02
✿✿✿✿

1.06
✿✿✿

0.28
✿ ✿✿✿

72.7
✿ ✿✿✿

0.10
✿✿✿✿

1.02

✿✿✿✿✿✿✿✿

1880–2000
✿ ✿✿✿

0.23
✿ ✿✿✿

72.6
✿ ✿✿✿

0.03
✿✿✿✿

0.97
✿✿✿

0.40
✿ ✿✿✿

82.7
✿ ✿✿✿

0.13
✿✿✿✿

0.89
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Table 3.
✿✿✿✿✿✿✿

Summary
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

instrumental-era
✿✿✿✿✿✿✿✿✿

verification
✿✿✿✿✿

results
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿✿✿

performed
✿✿✿✿

with
✿✿✿✿✿✿

various
✿✿✿✿

PSM
✿✿✿✿✿✿✿✿✿✿✿✿

configurations.

✿✿✿✿✿✿✿✿

Verification
✿✿✿✿✿

scores
✿✿✿✿✿✿

shown
✿✿

are
✿✿✿

the
✿✿✿✿

trend
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿✿

twentieth
✿✿✿✿✿✿

century
✿✿✿

(in
✿✿✿✿✿✿✿✿

K/100yrs),
✿✿✿✿✿✿✿✿

correlation
✿✿✿

(r)
✿✿✿

and
✿✿✿✿✿✿✿✿

coefficient
✿✿

of
✿✿✿✿✿✿✿✿

efficiency
✿✿✿✿

(CE),
✿✿✿

for
✿✿✿

the

✿✿✿✿✿

annual
✿✿✿✿✿

global
✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

(GMT)
✿✿✿

and
✿✿✿✿✿✿✿

detrended
✿✿✿✿✿

GMT
✿✿✿✿✿✿

verified
✿✿✿✿✿

against
✿✿✿

the
✿✿✿✿✿✿✿✿

consensus
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

instrumental–era
✿✿✿✿✿✿✿

analyses.
✿✿✿

The
✿✿✿✿✿

GMT
✿✿✿✿

trend
✿✿

in

✿✿

the
✿✿✿✿✿✿✿✿

consensus
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

instrumental-era
✿✿✿✿✿✿✿

analyses
✿

is
✿✿✿✿

0.56
✿✿✿✿✿

K/100
✿✿✿

yrs.

PSM configuration
GMT trend Annual GMT Detrended GMT

✿

r
✿✿✿

CE
✿

r
✿✿

CE

✿✿✿✿✿✿✿

Prototype
✿ ✿✿✿✿

0.61
✿✿✿

0.91
✿

0.79
✿✿✿

0.71
✿ ✿✿✿

0.32
✿

✿✿✿✿✿✿✿✿

Univariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

(annual)
✿ ✿✿✿✿

0.85
✿✿✿

0.93
✿ ✿✿✿

0.61
✿ ✿✿✿

0.74
✿ ✿✿✿

0.39
✿

✿✿✿✿✿✿✿✿

Univariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

(seasonal
✿✿✿✿✿

meta.)
✿✿✿✿

0.72
✿✿✿

0.93
✿ ✿✿✿

0.77
✿ ✿✿✿

0.73
✿ ✿✿✿

0.43
✿

✿✿✿✿✿✿✿✿

Univariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

(seasonal
✿✿✿✿

obj.)
✿✿✿✿

0.72
✿✿✿

0.93
✿ ✿✿✿

0.80
✿ ✿✿✿

0.75
✿ ✿✿✿

0.51
✿

✿✿✿✿✿✿✿✿

Univariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿

or
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿

(TRW)
✿✿✿✿✿✿✿

(seasonal
✿✿✿✿✿

meta.)
✿ ✿✿✿✿

0.71
✿✿✿

0.92
✿ ✿✿✿

0.78
✿ ✿✿✿

0.72
✿ ✿✿✿

0.44
✿

✿✿✿✿✿✿✿✿

Univariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿

or
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿

(TRW)
✿✿✿✿✿✿✿

(seasonal
✿✿✿✿

obj.)
✿✿✿✿

0.74
✿✿✿

0.93
✿ ✿✿✿

0.77
✿ ✿✿✿

0.74
✿ ✿✿✿

0.48
✿

✿✿✿✿✿✿✿

Bivariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿

(TRW)
✿✿✿✿✿✿✿

(seasonal
✿✿✿✿✿

meta.)
✿ ✿✿✿✿

0.62
✿✿✿

0.93
✿ ✿✿✿

0.84
✿ ✿✿✿

0.76
✿ ✿✿✿

0.50
✿

✿✿✿✿✿✿✿

Bivariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿

(TRW)
✿✿✿✿✿✿✿

(seasonal
✿✿✿✿

obj.)
✿

0.60 0.56
✿✿✿

0.93 0.26
✿✿✿

0.86 0.46
✿✿✿

0.77
✿✿✿

0.54
✿

43



Table 4.
✿✿✿✿✿✿✿✿

Verification
✿✿

of
✿✿✿✿

LMR
✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿✿

against
✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿✿✿✿

(withheld
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿

assimilation)
✿✿✿✿✿✿

proxies,
✿✿

for
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿

using
✿✿✿✿✿✿

various
✿✿✿✿

PSM

✿✿✿✿✿✿✿✿✿✿✿

configurations.
✿✿✿✿

Skill
✿✿✿✿

scores
✿✿✿✿✿✿

shown
✿✿

are
✿✿✿

the
✿✿✿✿✿✿

median
✿

of
✿✿✿✿✿✿✿✿✿✿

distributions
✿✿

for
✿✿✿✿✿✿✿✿✿

correlation
✿✿

(r),
✿✿✿

the
✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿✿

proxy
✿✿✿✿✿✿

records
✿✿✿✿✿✿✿✿✿✿

characterized
✿✿

by
✿✿

a
✿✿✿✿✿✿

positive

✿✿✿✿

∆CE
✿✿✿✿✿✿✿

(%+CE),
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

median
✿✿

of
✿✿✿

the
✿✿✿✿✿

∆CE
✿✿✿✿✿✿✿✿✿

distribution.
✿✿✿✿✿✿✿

Statistics
✿✿✿

are
✿✿✿✿✿✿✿

compiled
✿✿✿

over
✿✿✿

51
✿✿✿✿✿✿✿✿✿✿

Monte-Carlo
✿✿✿✿✿✿✿✿✿

realizations,
✿✿

for
✿✿✿✿

two
✿✿✿✿✿

distinct
✿✿✿✿✿✿✿

periods:

✿✿✿✿✿✿✿✿

1880–2000
✿✿✿✿✿

(PSM
✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿✿

period)
✿✿✿

and
✿✿✿✿✿

0–1879
✿✿✿✿✿✿✿✿✿✿✿✿

(pre-calibration
✿✿✿✿✿✿

period).

PSM configuration
1880–2000 1–1879

✿

r
✿ ✿✿✿✿✿

%+CE
✿✿✿✿

∆CE
✿

r
✿ ✿✿✿✿✿

%+CE
✿✿✿✿

∆CE

✿✿✿✿✿✿✿✿

Univariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

(annual)
✿ ✿✿✿

0.28
✿ ✿✿✿

75.2
✿ ✿✿✿

0.05 0.17 0.12
✿✿✿

66.0 0.01
✿✿✿

0.03

✿✿✿✿✿✿✿✿

Univariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

(seasonal
✿✿✿✿✿

meta.)
✿✿✿

0.32
✿ ✿✿✿

78.7
✿ ✿✿✿

0.06
✿✿✿

0.21
✿ ✿✿✿

69.6
✿ ✿✿✿

0.04
✿

✿✿✿✿✿✿✿✿

Univariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

(seasonal
✿✿✿✿

obj.)
✿✿✿

0.34
✿ ✿✿✿

80.6
✿ ✿✿✿

0.09
✿✿✿

0.21
✿ ✿✿✿

69.4
✿ ✿✿✿

0.06
✿

✿✿✿✿✿✿✿✿

Univariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿

or
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿

(TRW)
✿✿✿✿✿✿✿

(seasonal
✿✿✿✿✿

meta.)
✿ ✿✿✿

0.30
✿ ✿✿✿

76.1
✿ ✿✿✿

0.06
✿✿✿

0.19
✿ ✿✿✿

67.7
✿ ✿✿✿

0.04
✿

✿✿✿✿✿✿✿✿

Univariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿

or
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿

(TRW)
✿✿✿✿✿✿✿

(seasonal
✿✿✿✿

obj.)
✿✿✿

0.33
✿ ✿✿✿

77.6
✿ ✿✿✿

0.08
✿✿✿

0.19
✿ ✿✿✿

66.3
✿ ✿✿✿

0.04
✿

✿✿✿✿✿✿✿

Bivariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿

(TRW)
✿✿✿✿✿✿✿

(seasonal
✿✿✿✿✿

meta.)
✿ ✿✿✿

0.32
✿ ✿✿✿

77.9
✿ ✿✿✿

0.07
✿✿✿

0.20
✿ ✿✿✿

68.1
✿ ✿✿✿

0.04
✿

✿✿✿✿✿✿✿

Bivariate
✿

-
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿

(TRW)
✿✿✿✿✿✿✿

(seasonal
✿✿✿✿

obj.)
✿ ✿✿✿

0.36
✿ ✿✿✿

78.9
✿ ✿✿✿

0.11
✿✿✿

0.22
✿ ✿✿✿

66.0
✿ ✿✿✿

0.06
✿
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Table 5. Ensemble calibration ratios characterizing ensembles
✿✿✿✿✿✿✿

Twentieth
✿✿✿✿✿✿

century
✿✿✿✿

trend
✿

of global-mean temperature from
✿✿✿✿✿✿

(GMT),
✿✿✿✿✿✿✿✿

correlation

✿✿

(r)
✿✿✿

and
✿✿✿✿✿✿✿✿

coefficient
✿✿

of
✿✿✿✿✿✿✿✿

efficiency
✿✿✿✿✿

(CE),
✿✿

for
✿✿✿

the
✿✿✿✿✿

annual
✿✿✿✿

and
✿✿✿✿✿✿✿

detrended
✿✿✿✿✿

GMT,
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿

the
✿✿✿✿✿

global
✿✿✿✿✿

mean
✿✿

of
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿

(i.e.
✿✿✿✿✿✿✿✿

gridpoint)
✿✿

r
✿✿✿

and

✿✿

CE
✿✿

of
✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

verified
✿✿✿✿✿✿

against
✿✿✿

the
✿✿✿✿✿✿✿

consensus
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

instrumental-era
✿✿✿✿✿✿✿

analyses,
✿✿

for
✿

reconstruction experiments performed with

covariance localization applied with
✿✿✿✿

using
✿

various values of the localization radius RL
✿✿✿✿✿

cut-off
✿✿✿✿

radii
✿✿✿

LR. The ratio from
✿✿✿✿✿✿✿✿

Verification
✿✿✿✿✿✿✿

statistics

✿✿

for
✿

an experiment without covariance localization is
✿✿

are
✿

also shown for comparison. The result
✿✿✿✿✿✿

Results from the prototype reanalysis is
✿✿

are

shown for reference.
✿✿✿

The
✿✿✿✿

GMT
✿✿✿✿✿

trend
✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

consensus
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

instrumental-era
✿✿✿✿✿✿✿

analyses
✿

is
✿✿✿✿

0.56
✿✿✿✿✿

K/100
✿✿✿

yrs.

Localization Localization
✿✿

LR
✿

Localization
✿✿

LR
✿

Localization
✿✿

LR
✿

Localization
✿✿

LR
✿

No localization
✿✿

LR
✿✿

LR
✿

RL = 5000 km RL = 10000 km RL = 15000 km RL = 20000
✿✿✿✿

25000
✿

km RL= 25000
✿✿✿✿✿

35000 km
✿✿✿✿✿

45000
✿✿

km
✿

0.66
✿✿✿✿

Trend
✿✿✿✿✿✿

(K/100
✿✿✿

yrs)
✿✿✿

0.17
✿✿✿

0.31
✿✿✿

0.40
✿✿✿

0.49
✿✿✿✿

0.51
✿✿✿

0.56
✿

✿✿✿✿✿

Annual
✿✿✿✿✿

GMT
✿

r
✿✿✿

0.92
✿✿✿

0.93
✿✿✿

0.93
✿✿✿

0.93
✿✿✿✿

0.93
✿✿✿

0.93
✿

✿✿✿✿✿

Annual
✿✿✿✿✿

GMT
✿✿✿

CE
✿✿✿

0.46
✿✿✿

0.71
✿✿✿

0.82
✿✿✿

0.86
✿✿✿✿

0.87
✿✿✿

0.87
✿

✿✿✿✿✿✿✿✿

Detrended
✿✿✿✿

GMT
✿

r
✿ ✿✿✿

0.74
✿✿✿

0.77
✿✿✿

0.77
✿✿✿

0.77
✿✿✿✿

0.77
✿✿✿

0.76
✿

✿✿✿✿✿✿✿✿

Detrended
✿✿✿✿

GMT
✿✿✿

CE
✿✿✿

0.35
✿✿✿

0.53
✿✿✿

0.59
✿✿✿

0.59
✿✿✿✿

0.58
✿✿✿

0.56
✿

✿✿✿✿

Mean
✿✿✿✿✿

spatial
✿

r
✿ ✿✿✿

0.36
✿✿✿

0.46 0.50 0.68
✿✿✿

0.52 0.81
✿✿✿

0.52
✿

1.06
✿✿✿

0.53
✿

✿✿✿✿

Mean
✿✿✿✿✿

spatial
✿✿✿

CE
✿ ✿✿✿

0.11
✿✿✿

0.17
✿✿✿

0.19
✿✿✿

0.22
✿✿✿✿

0.21
✿✿✿

0.21
✿
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Table 6.
✿✿

As
✿✿

in
✿✿✿✿✿

Table
✿

4,
✿✿✿

but
✿✿✿✿✿✿✿

statistics
✿✿✿✿✿✿✿

compiled
✿✿

for
✿✿✿✿✿✿✿

tree-ring
✿✿✿✿✿✿✿✿✿✿

wood-density
✿✿✿✿✿✿

(MXD)
✿✿✿✿✿

proxies
✿✿✿✿

only,
✿✿✿

and
✿✿✿

for
✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

PAGES2k-2017

✿✿✿✿✿

proxies
✿✿✿✿

only,
✿✿✿✿✿✿✿✿✿✿✿✿

PAGES2k-2017
✿✿✿✿

with
✿✿

the
✿✿✿✿✿✿✿

addition
✿✿

of
✿✿

all
✿✿✿✿✿✿

proxies
✿✿✿✿

from
✿✿✿

A19
✿✿✿✿

(All
✿✿✿✿✿✿

proxies),
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

PAGES2k-2017
✿✿✿✿

plus
✿✿✿

only
✿✿

a
✿✿✿✿✿

subset
✿

of
✿✿✿✿

A19
✿✿✿✿✿✿

records

✿✿✿✿✿✿

obtained
✿✿✿✿

after
✿✿✿✿✿✿✿

removing
✿✿✿

all
✿✿✿

but
✿✿✿

188
✿✿✿✿

TRW
✿✿✿✿✿✿

records
✿✿✿✿

from
✿✿✿✿

B14
✿✿✿✿

(B14
✿✿✿✿✿✿

subset).
✿✿✿

See
✿✿✿

text
✿✿✿

for
✿✿✿✿✿✿✿

selection
✿✿✿✿✿✿

details.
✿✿✿✿

Skill
✿✿✿✿✿

scores
✿✿

are
✿✿✿

the
✿✿✿✿✿✿

median
✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿

correlation
✿✿

(r)
✿✿✿✿✿✿✿✿✿✿

distributions,
✿✿✿

the
✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿✿✿

proxy
✿✿✿✿✿

records
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿

by
✿

a
✿✿✿✿✿✿

positive
✿✿✿✿✿

∆CE
✿✿✿✿✿✿✿

(%+CE),
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

median
✿✿

of
✿✿✿✿✿

∆CE
✿✿✿✿✿✿✿✿✿✿

distributions.

✿✿✿✿✿✿✿

Statistics
✿✿

are
✿✿✿✿✿✿✿

compiled
✿✿✿✿

over
✿✿

the
✿✿✿

51
✿✿✿✿✿✿✿✿✿

Monte-Carlo
✿✿✿✿✿✿✿✿✿✿

realizations,
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

following
✿✿✿✿✿✿

periods:
✿✿✿✿✿✿✿✿✿

1880–2000
✿✿✿✿

(PSM
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿

period)
✿✿✿

and
✿✿✿✿✿✿✿✿✿

1600–1879

✿✿✿✿✿✿✿✿✿✿✿

(pre-calibration
✿✿✿✿✿

period
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿

MXD
✿✿✿✿✿

records
✿✿✿

and
✿✿✿✿✿✿✿

covering
✿

a
✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿

portion
✿✿

of
✿✿✿

the
✿✿✿✿

Little
✿✿✿

Ice
✿✿✿✿

Age).

PSM configuration
1880–2000 1600–1879

✿

r
✿ ✿✿✿✿✿

%+CE
✿✿✿✿

∆CE
✿

r
✿ ✿✿✿✿✿

%+CE
✿✿✿✿

∆CE

✿✿✿✿✿✿✿✿✿✿✿✿

PAGES2k-2017
✿✿✿

0.62
✿ ✿✿✿

93.2
✿ ✿✿✿

0.37
✿✿✿

0.58
✿ ✿✿✿

91.4
✿ ✿✿✿

0.39
✿

✿✿✿

All
✿✿✿✿✿

proxies
✿ ✿✿✿

0.43
✿ ✿✿✿

88.0
✿ ✿✿✿

0.18
✿✿✿

0.46
✿ ✿✿✿

95.4
✿ ✿✿✿

0.26
✿

✿✿✿

B14
✿✿✿✿✿

subset
✿ ✿✿✿

0.56
✿ ✿✿✿

92.5
✿ ✿✿✿

0.30
✿✿✿

0.53
✿ ✿✿✿

93.8
✿ ✿✿✿

0.34
✿
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Table A1. Mean differences in Bayesian Information Criterion (∆BIC) corresponding to PSMs for records within the proxy categories

considered in LMR, between models calibrated using proxy seasonal responses from the metadata or derived objectively during calibration,

with respect to the reference of annual seasonality. Calibration dataset: GISTEMP v4.

Proxy types Number of records Seasonal (metadata) Seasonal (objective)

Tree ring width (PAGES2k-2017) 347 -1.34 -4.84

Tree ring width (Breitenmoser et al.) 2156 -1.72 -5.24

Tree ring wood density 59 -23.28 n/a

Coral δ18O 75 +0.02 n/a

Coral Sr/Ca 30 -0.01 n/a

Coral Rates 11 +0.03 n/a

Ice core δ18O 89 +0.02 n/a

Ice core δD 12 0.00 n/a

Ice core accumulation 3 0.00 n/a

Ice core melt 1 0.00 n/a

Lake core varve 7 -0.52 n/a

Lake core misc. 2 -2.32 n/a

Bivalve δ18O 1 0.00 n/a

Tree ring δ18O 1 +11.81 n/a

47



Table A2. Mean differences in Bayesian Information Criterion (∆BIC) for tree ring width univariate “temperature or moisture” and bivariate

PSMs, calibrated using metadata seasonality or derived objectively during calibration, against their respective univariate temperature-only

PSMs as reference. Calibration datasets: GISTEMP v4 and GPCC v6.

PSM formulation
Seasonal (metadata) Seasonal (objective)

PAGES 2k trees Breitenmoser trees PAGES 2k trees Breitenmoser trees

Univariate - temperature or moisture -0.86 -1.41 -2.59 -6.65

Bivariate +2.63 +1.73 -2.35 -6.88
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