1 Pollen-based quantitative land-cover reconstruction for northern Asia covering

- 2 the last 40 ka
- Xianyong Cao^{a*}, Fang Tian^a, Furong Li^b, Marie-Jos é Gaillard^b, Natalia Rudaya^{a,c,d},
 Qinghai Xu^e, Ulrike Herzschuh^{a,d,f*}
- 5 ^a Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A43, 14473
- 6 Potsdam, Germany
- 7 ^b Department of Biology and Environmental Science, Linnaeus University, Kalmar SE-39182, Sweden
- 8 ^c Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrentieva
- 9 17, Novosibirsk 630090, Russia
- ^d Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24, 14476
- 11 Potsdam, Germany
- ^e College of Resources and Environment Science, Hebei Normal University, Shijiazhuang 050024, China
- ¹³ ^f Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24, Potsdam 14476, Germany
- 14

15 ABSTRACT

We collected the available relative pollen productivity estimates (PPEs) for 27 major pollen taxa from Eurasia and applied them to estimate plant abundances during the last 40 cal. ka BP (calibrated thousand years before present) using pollen counts from 203 fossil pollen records in northern Asia (north of 40 N). These pollen records were organised into 42 site-groups, and regional mean plant abundances calculated using the REVEALS (Regional Estimates of Vegetation Abundance from Large Sites)

^{*} Corresponding authors. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A43, Potsdam 14473, Germany. X. Cao (xcao@itpcas.ac.cn); U. Herzschuh (Ulrike.Herzschuh@awi.de). Present address for Xianyong Cao: Key Laboratory of Alpine Ecology, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.

22 model. Time-series clustering, constrained hierarchical clustering, and detrended 23 canonical correspondence analysis were performed to investigate the regional pattern, time, and strength of vegetation changes, respectively. Reconstructed regional 24 plant-functional type (PFT) components for each site-group are generally consistent 25 with modern vegetation, in that vegetation changes within the regions are 26 characterized by minor changes in the abundance of PFTs rather than by increase in 27 new PFTs, particularly during the Holocene. We argue that pollen-based REVEALS 28 29 estimates of plant abundances should be a more reliable reflection of the vegetation as pollen may overestimate the turnover, particularly when a high pollen producer 30 invades dominated by low pollen producers. 31 areas Comparisons with vegetation-independent climate records show that climate change is the primary factor 32 33 driving land-cover changes at broad spatial and temporal scales. Vegetation changes in certain regions or periods, however, could not be explained by direct climate 34 change, for example inland Siberia, where a sharp increase in evergreen conifer tree 35 abundance occurred at ca. 7–8 cal. ka BP despite an unchanging climate, potentially 36 reflecting their response to complex climate-permafrost-fire-vegetation interactions 37 38 and thus a possible long-term-scale lagged climate response.

Keywords: boreal forests, China, Holocene, late Quaternary, pollen productivity,
 quantitative reconstruction, Siberia, vegetation

41 **1 Introduction**

High northern latitudes such as northern Asia experience above-average temperature 42 43 increases in times of past and recent global warming (Serreze et al., 2000; IPCC, 44 2007), known as polar amplification (Miller et al., 2010). Temperature rise is expected 45 to promote vegetation change as the vegetation composition in these areas is assumed 46 to be controlled mainly by temperature (Li J. et al., 2017; Tian et al., 2018). However, a more complex response can occur mainly because vegetation is not linearly related 47 48 to temperature change (e.g. due to resilience, stable states or time-lagged responses; 49 Soja et al., 2007; Herzschuh et al., 2016) and/or vegetation is only indirectly limited

by temperature while other temperature-related environmental drivers such as
permafrost conditions are more influential (Tchebakova et al., 2005).

Such complex relationships between temperature and vegetation may help explain 52 several contradictory findings of recent ecological change in northern Asia. For 53 54 example, simulations of vegetation change in response to a warmer and drier climate indicate that steppe should expand in the present-day forest-steppe ecotone of 55 56 southern Siberia (Tchebakova et al., 2009) but, contrarily, pine forest has increased during the past 74 years, probably because the warming temperature was mediated by 57 improved local moisture conditions (Shestakova et al., 2017). In another example, 58 evergreen conifers, which are assumed to be more susceptible to frost damage than 59 60 Larix, expanded their distribution by 10% during a period with cooler winters from 2001 to 2012, while the distribution of Larix forests decreased by 40% on the West 61 Siberian Plain as revealed by a remote sensing study (He et al., 2017). Additionally, 62 63 some field studies and dynamic vegetation models infer a rapid response of the 64 treeline to warming in northern Siberia (e.g., Moiseev, 2002; Soja et al., 2007; 65 Kirdyanov et al., 2012), but combined model- and field-based investigations of larch stands in north-central Siberia reveal only a densification of tree-stands, not an areal 66 expansion (Kruse et al., 2016; Wieczorek et al., 2017). 67

These findings on recent vegetation dynamics that contradict a straightforward 68 vegetation-temperature relationship may be better understood in the context of 69 vegetation change over longer time-scales. Synthesizing multi-record pollen data is 70 71 the most suitable approach to investigate quantitatively the past vegetation change at 72 broad spatial and long temporal scales. Broad spatial scale pollen-based land-cover reconstructions have been made for Europe (e.g. Mazier et al., 2012; Nielsen et al., 73 2012; Trondman et al., 2015) and temperate China (Li, 2016) for the Holocene. 74 However, vegetation change studies in northern Asia are restricted to biome 75 reconstructions (Tarasov et al., 1998, 2000; Bigelow et al., 2003; Binney et al. 2017; 76 77 Tian et al., 2018), which do not reflect compositional change. Syntheses of pure pollen percentage data are not appropriate due to differences in pollen productivity, 78

79 which may result in an overestimation of the strength of vegetation changes (Wang and Herzschuh, 2011). This might be particularly severe when strong pollen producers 80 81 such as pine (Mazier et al., 2012) invade areas dominated by low pollen producers 82 such as larch (Niemeyer et al, 2015). Marquer et al. (2014, 2017) also demonstrated the strength of pollen-based REVEALS estimates of plant abundance in studies of 83 Holocene vegetation change and plant diversity indices in Europe. Accordingly, 84 syntheses of quantitative plant cover derived from the application of PPEs to multiple 85 86 pollen records (Trondman et al., 2015; Li, 2016) should be a better way to investigate 87 Late Glacial and Holocene vegetation change in northern Asia.

88 In this study, we employ the taxonomically harmonized and temporally standardized 89 fossil pollen datasets available from eastern continental Asia (Cao et al., 2013, 2015) 90 and Siberia (Tian et al., 2018) covering the last 40 cal. ka BP (henceforth abbreviated to ka). We compile all the available PPEs from Eurasia and use the mean estimate for 91 92 each taxon. Finally, we quantitatively reconstruct plant cover using the REVEALS 93 model (Sugita, 2007) for 27 major taxa at 18 key time slices. We reveal the nature, 94 strength, and timing of vegetation change in northern Asia and its regional 95 peculiarities, and discuss the driving factors of vegetation change.

96 2 Data and methods

97 2.1. Fossil pollen data process

98 The fossil pollen records were obtained from the extended version of the fossil pollen 99 dataset for eastern continental Asia containing 297 records (Cao et al., 2013, 2015) 100 and the fossil pollen dataset for Siberia with 171 records (Tian et al., 2017). For the 101 468 pollen records, pollen names were harmonized to genus level for arboreal taxa while family level for herbaceous taxa, and age-depth models were re-established 102 using the Bayesian age-depth modelling (further details are described in Cao et al., 103 104 2013). We selected 203 pollen records from lacustrine sediments (110 sites) and peat 105 (93 sites) north of 40°N, with chronologies based on \geq 3 dates and <500 year/sample temporal resolution generally, following previous studies (Mazier et al., 2012; Nielsen 106

et al., 2012; Fyfe et al., 2013; Trondman et al., 2015). Out of the 203 pollen records,
170 sites (83 from lakes, 87 from bogs) have original pollen counts, while in the other
33 sites only pollen percentages are available. Due to overall low site density, we
decided to include these data. The pollen counts were back calculated from
percentages using the terrestrial pollen sum indicated in the original publications.
Detailed information (including location, data quality, chronology reliability, and data
source) of the selected sites is presented in Appendices 1 and 2.

114

Table 1 Selected time windows.	
--------------------------------	--

Time window (cal a BP)	Abbreviated name
-60~100	0 ka
100~350	0.2 ka
350~700	0.5 ka
700~1200	1 ka
1700~2200	2 ka
2700~3200	3 ka
3700~4200	4 ka
4700~5200	5 ka
5700~6200	6 ka
6700~7200	7 ka
7700~8200	8 ka
8700~9200	9 ka
9700~10200	10 ka
10500~11500	11 ka
11500~12500	12 ka
13500~14500	14 ka
19000~23000	21 ka
23000~27000	25 ka
36000~44000	40 ka

115 We selected 18 key time slices for reconstruction (Table 1) to capture the general 116 temporal patterns of vegetation change during the last 40 ka, i.e. 40, 25, 21, 18, 14, 117 and 12 ka during the late Pleistocene and 1000-year resolution (i.e. 500-year time 118 windows around each millennium, e.g. 0.7-1.2 ka, 1.7-2.2 ka, etc.) during the Holocene. For the 0 ka time slice, the ca. 150-year time window (<0.1 ka) was set to 119 120 represent the modern vegetation. Since few pollen records have available samples at the 0 ka time slice, the 0.2 and 0.5 ka time slices covered a 250-year or 350-year time 121 window (0.1~0.35 ka and 0.35~0.7 ka, respectively) to represent the recent vegetation, 122

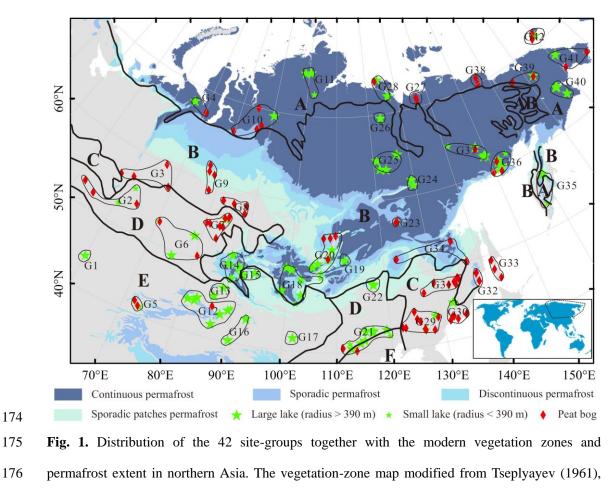
123 following the strategy and time windows implemented for Europe (Mazier et al., 2012; 124 Trondman et al., 2015). For the last glacial period, even broader time windows were chosen to offset the sparsely available samples (Table 1). Pollen counts of all available 125 samples within one time window were summed up to represent the total pollen count 126 127 for each time slice. In this study, we selected 27 major pollen taxa (with available PPE values) that form dominant components in both modern vegetation communities and 128 the fossil pollen spectra and reconstruct their abundances in the past vegetation (Table 129 130 2).

Table 2 Fall speed of pollen grains (FS) and mean relative pollen productivity
estimate (PPE) with standard error (SE) for the 27 selected taxa. Plant-functional type
(PFT) assignment is according to previous biome reconstructions (Tarasov et al., 1998,
2000; Bigelow et al., 2003; Ni et al., 2010).

PFT	PFT description	pollen type	FS (m/s)	PPE (SE)
Ι	evergreen conifer tree	Pinus	0.031 1	9.629 (0.075)
Ι	evergreen conifer tree	Picea	0.056^{-1}	2.546 (0.041)
Ι	evergreen conifer tree	Abies	0.120^{-1}	6.875 (1.442)
II	deciduous conifer tree	Larix	0.126 1	3.642 (0.125)
III	boreal deciduous tree	<i>Betula_</i> tree <i>Betula_</i> undiff.	0.024 1	8.106 (0.125)
III	boreal deciduous tree	Alnus_tree Alnus_undiff.	0.021 1	9.856 (0.092)
III	boreal deciduous tree	Corylus	$0.025^{\ 2}$	1.637 (0.065)
IV	temperature deciduous tree	Quercus	0.035 1	6.119 (0.050)
IV	temperature deciduous tree	Fraxinus	0.022^{-1}	2.046 (0.105)
IV	temperature deciduous tree	Juglans	0.037 ³	4.893 (0.221)
IV	temperature deciduous tree	Carpinus	0.042^{-1}	5.908 (0.285)
IV	temperature deciduous tree	Tilia	$0.032^{\ 2}$	1.055 (0.066)
IV	temperature deciduous tree	Ulmus	$0.032^{\ 2}$	6.449 (0.684)
V	boreal shrub	Betula_shrub	0.024^{-1}	1.600 (0.132)
V	boreal shrub	Alnus_shrub	0.021^{-1}	6.420 (0.420)
V	boreal shrub	Salix	0.034 ²	1.209 (0.039)
V	boreal shrub	Ericaceae	0.034 4	0.200 (0.029)
VI	arid-tolerant shrub and herb	Ephedra	0.015 8	0.960 (0.140)
VI	arid-tolerant shrub and herb	Artemisia	0.014^{-6}	9.072 (0.176)
VI	arid-tolerant shrub and herb	Chenopodiaceae	0.019 6	5.440 (0.460)
VII	grassland and tundra forb	Poaceae	0.035 4	1.000 (0.000)
VII	grassland and tundra forb	Cyperaceae	0.035 5	0.757 (0.044)

VII	grassland and tundra forb	Asteraceae	0.051 7	0.465 (0.066)
VII	grassland and tundra forb	Thalictrum	0.007 8	3.855 (0.258)
VII	grassland and tundra forb	Ranunculaceae	0.014 9	2.900 (0.363)
VII	grassland and tundra forb	Caryophyllaceae	0.028 9	0.600 (0.050)
VII	grassland and tundra forb	Brassicaceae	0.002^{3}	4.185 (0.188)

¹ Eisenhut (1961); ² Gregory (1973); ³ Li et al. (2017); ⁴ Broström et al. (2004); ⁵ Sugita et al. (1999); ⁶ Abraham and Koz &ov á (2012); ⁷ Broström et al. (2002); ⁸ Xu et al. (2014); ⁹ Bunting et al. (2013).


138 2.2 The REVEALS model setting

The REVEALS model assumes the PPEs of pollen taxa are constant variables over the 139 target period, and requires parameter inputs including sediment basin radius (m), fall 140 speed of pollen grain (FS, m/s), and PPE with standard error (SE; Sugita, 2007). The 141 areas of the 110 lakes were obtained from descriptions in original publications and 142 143 validated by measurements on Google Earth. Their basin radii were back-calculated from their areas assuming a circular shape. There are 83 large lakes (radius >390 m; 144 following Sugita, 2007) in our dataset with a fairly even distribution across the study 145 146 area (Fig. 1; Appendix 1), which helps ensure the reliability of the regional vegetation estimations (Sugita, 2007; Mazier et al., 2012). Only 18 bogs have published 147 descriptions about their size and it is infeasible to measure them on Google Earth 148 because of unclear boundaries. A test-run showed that using different bog radii (i.e. 5 149 m, 10 m, 20 m, 50 m, 100 m, 200 m and 500 m) did not significantly affect the 150 REVEALS estimates (Appendix 3), hence a standard (moderate size) radius of 100 m 151 152 was set for all bogs.

We collected available PPEs for the 27 selected pollen taxa from 20 studies in Eurasia 153 (Appendix 4). We calculated the mean PPE from all available PPE values, but 154 excluded records with PPE \leq SE (Mazier et al., 2012). We included these PPEs for 155 various species in the mean PPE calculation for their family or genus. For 156 simplification, we did not evaluate the values or select PPE values following 157 consistent criteria as was done in Europe (Mazier et al., 2012). Instead, we used the 158 original values from the studies included in Mazier et al. (2012) and added new PPE 159 values from Europe published since the synthesis of Mazier et al. (2012). SE of the 160

mean PPE was estimated using the delta method (Stuart and Ord, 1994). Fall speeds
for each of the 27 pollen taxa were retrieved from previous studies (Table 2).

The REVEALS model generally performs best with pollen records from large lakes, 163 although multiple pollen records from small lakes and bogs (at least two sites) can 164 165 also produce reliable results where large lakes are absent (Sugita, 2007; Trondman et al., 2016). Here, due to the sparse distribution of available sites, we divided the 203 166 167 sites into 42 site-groups, based on criteria of geographic location, vegetation type (vegetation zone map modified from Tseplyayev, 1961; Dulamsuren et al., 2005; Hou, 168 169 2001), climate (based on modern precipitation and temperature contours), and permafrost (Brown, 1997) following the strategy of Li (2016), and the pollen data 170 171 within one site-group should be of similar components and temporal patterns. To ensure the reliability of REVEALS estimates of plant cover, each group includes at 172 least one large lake or two small sites (small lakes or bogs; Fig. 1; Appendix 5). 173

177 Dulamsuren et al. (2005), and Hou (2001) includes: A: tundra, B: taiga forest, C: temperate mixed

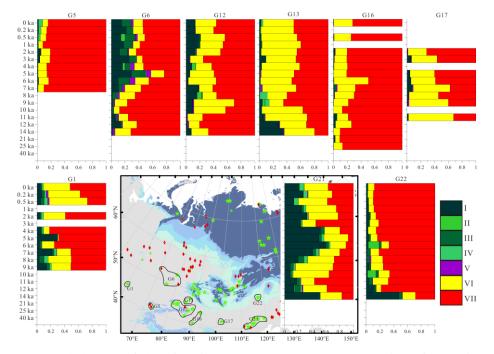
178 conifer-deciduous broadleaved forest, D: temperate steppe, E: semi-desert and desert; F:
179 warm-temperate deciduous forest.

The REVEALS model was run with a mean wind speed set to 3 m/s and neutral 180 181 atmospheric conditions following Trondman et al. (2015), and the maximum distance of regional vegetation Zmax was set to 100 km. The lake and bog sites were 182 183 reconstructed using the models of pollen dispersal and deposition for lakes (Sugita, 184 1993) and bogs (Prentice, 1985), respectively in REVEALS version 5.0 (Sugita, unpublished). The mean estimate of plant abundances from lakes and bogs was 185 calculated for each of the 42 site-groups, which includes both sediment types (using 186 187 the computer program bog.lake.data.fusion, Sugita, unpublished). Finally, the 27 taxa were assigned to seven plant functional types (PFT; Table 1) following the PFT 188 189 definitions for China and Siberia (Tarasov et al. 1998, 2000; Bigelow et al. 2003; Ni et al., 2010; Tian et al., 2017), with the restriction that each pollen taxon is attributed 190 191 to only one PFT according to the strategy of Li (2016) (Table 2).

192 2.2 Numerical analyses of reconstruction

193 The abundance variations of the seven PFTs during the Holocene (time slices between 194 12 and 1 ka) from 36 site-groups were used in a clustering analysis. Six site-groups 195 had to be excluded from the analysis due to poor coverage of time slices (G1, G5, G17, G19, G27, G42). For site-groups with <3 missing time slices during the 196 197 Holocene (G3, G16, G26, G32, G33, G35, G38, G39, G41), linear interpolation was employed to estimate the PFT abundances for the missing time slices. Time-series 198 clustering for the three-way dataset was performed to generate a distance matrix 199 among the site-groups using the *tsclust* function in the *dtwclust* package 200 201 (Sarda-Espinosa, 2018) in R 3.4.1 (R Core Team, 2017). The distance matrix was 202 employed in hierarchical clustering (using the hclust function in R) to cluster the site-groups. Constrained hierarchical clustering (using chclust function in rioja 203 204 package version 0.9-15.1; Juggins, 2018) was used to determine the timing of primary 205 vegetation changes (i.e. the first split) in each site-group. A change was considered to

be significant when the split passed the broken-stick test. The amount of PFT compositional change (turnover) through time during the period between 12 and 1 ka for the 36 site-groups (time slices cover entire period) was estimated by detrended canonical correspondence analysis (DCCA) for each site-group (ter Braak, 1986) using CANOCO 4.5 (ter Braak and Šmilauer, 2002).


211 **3. Results**

212 Large-scale pattern

213 On a glacial-interglacial scale, marked temporal changes in the occurrence and abundance of PFTs are revealed, in particular the high cover of tree PFTs during the 214 215 Holocene as opposed to the widespread open landscape during the glacial period. In contrast, vegetation changes in northern Asia within the Holocene are rather minor 216 217 with only slight changes in PFT abundances. Cluster analyses of grouped vegetation 218 records from the Holocene find five clusters (Appendix 6). Their spatial distribution is largely consistent with the distribution of modern vegetation types as characterized by 219 certain PFTs. (1) Records from the forest-steppe ecotone (e.g. G12, G21; Fig. 2A) in 220 221 north-central China and the Tianshan Mts. (the mentioned geographic locations are indicated in Appendix 7) have high tree PFTs during the middle Holocene. (2) Areas 222 223 in southern and south-western Siberia and north-eastern China were covered by 224 cool-temperate mixed forest or light taiga with a high diversity of trees throughout the 225 Holocene (e.g. G2, G7, G14, G29; Fig. 2B). (3) The West Siberian Plain and south-eastern Siberia that are presently covered by open dark taiga forests (e.g. G8, 226 G9, G33; Fig. 2C) had an even higher abundance of evergreen conifer trees during the 227 228 middle Holocene than at present. (4) Larix formed light taiga forests in central Yakutia 229 throughout the Holocene (e.g. G25, G26; Fig. 2D). (5) Northern Siberia, which is 230 currently covered by tundra formed by boreal shrubs and herbs, had a higher share of tree PFTs during the middle Holocene (e.g. G28, G39; Fig. 2E). 231

The turnover in PFT composition is <0.7 SD units in almost all site-groups, except G8
(0.88 SD), G9 (0.73 SD), and G24 (0.76 SD), indicating only slight vegetation change

during the Holocene (Fig. 3). The three site-groups with higher turnover show a 234 distinct transition from light taiga to dark taiga in the middle Holocene (at ca. 8 ka). 235 236 The significant primary vegetation changes (pass the broken-stick test) occur during different intervals in each site-group. Overall, the middle Holocene (including 8.5, 7.5, 237 6.5, and 5.5 ka time-slices) has the highest frequency of primary vegetation changes. 238 Records from inland areas such as the West Siberian Plain, central Yakutia, and 239 northern Mongolia are characterized by relatively many middle-Holocene splits. 240 241 There are seven site-groups whose primary vegetation changes during the early Holocene (including 11.5, 10.5, and 9.5 ka time-slices), and most of them from the 242 243 south-eastern coastal part of the study area. Only three site-groups have late-Holocene 244 primary vegetation changes (Fig. 3).

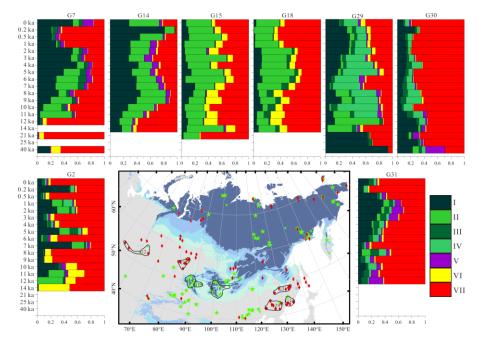

245

Fig. 2A. Temporal changes of plant functional type (PFT) cover, as proportions, for the site-groups from the warm temperate forest margin zone. PFT I: evergreen conifer tree; PFT II: deciduous conifer tree; PFT III: boreal deciduous tree; PFT IV: temperate deciduous tree; PFT V: boreal shrub; PFT VI: arid-tolerant shrub and herb; and PFT VII: steppe and tundra forb.

250 Warm temperate forest margin zone in vicinity of Tianshan Mts. and north-central 251 China (G6, G12, G13, G16, G21, G22)

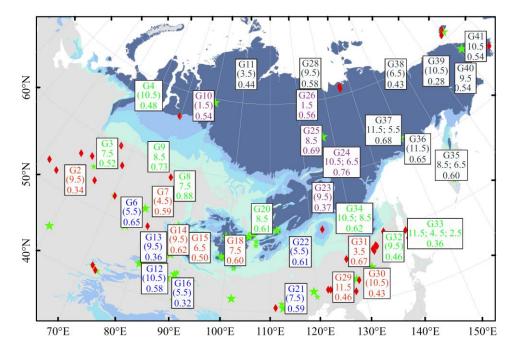
252 Six site-groups from the warm temperate forest-steppe transition zone (G6, G21, G22)

and from the lowlands adjacent to mountainous forest in arid central Asia (G12, G13, 253 G16) are clustered together (Fig. 3). Our results indicate that these areas, which are 254 255 now dominated by arid-tolerant shrub and steppe species, had more arboreal species, mainly evergreen conifer tree taxa, in the middle Holocene (Fig. 2A). For example, 256 north-central China (G21) has a marked mid-Holocene maximum in forest cover (7-4 257 ka; mean 51%). However, certain peculiarities are noted: open landscape is 258 reconstructed between 14 and 7 ka in northern Kazakhstan (G6), followed by an 259 260 abundance of evergreen conifer trees and an increase in boreal deciduous trees that maintain high values (mean 30%) after 7 ka. In the eastern branch of the Tianshan Mts. 261 (G12), evergreen conifer trees are highly abundant from 10 to 7 ka and after 2 ka, 262 while low abundance occurs from 14 to 11 ka and from 6 to 3 ka. In the Gobi desert 263 near the Tianshan Mts. (G16) there was an even higher abundance of arid-tolerant 264 265 species with no notable temporal trend in abundance of arboreal species. We assume that the high arboreal cover at site-groups G13 and G22 at 14 and 12 ka originates 266 from riverine transport and therefore exclude them from further analyses. 267

268

Fig. 2B. Temporal changes of plant functional type (PFT) cover, as proportions, for the site-groups
from cool-temperate mixed forest and taiga forest. PFT I: evergreen conifer tree; PFT II:
deciduous conifer tree; PFT III: boreal deciduous tree; PFT IV: temperate deciduous tree; PFT V:
boreal shrub; PFT VI: arid-tolerant shrub and herb; and PFT VII: steppe and tundra forb.

273 Cool-temperate mixed forest and taiga forest in southern and south-western Siberia
274 and north-eastern China (G2, G7, G14, G15, G18, G29, G30, G31)


Eight site-groups located in (or near) the temperate mixed conifer-deciduous broadleaved forest zone (G2, G29, G30, G31) and taiga-steppe transition zone (G7, G14, G15, G18) show similar PFT compositions and temporal evolutions. At these sites, evergreen conifer tree is the dominant PFT intermixed with other arboreal PFTs, such as deciduous conifers (*Larix*) in the Altai Mts. and northern Mongolia, and/or temperate deciduous trees in north-eastern China (Fig. 2B).

281

Fig. 2C. Temporal changes of plant functional type (PFT) cover, as proportions, for the site-groups from dark taiga forest. PFT I: evergreen conifer tree; PFT II: deciduous conifer tree; PFT III: boreal deciduous tree; PFT IV: temperate deciduous tree; PFT V: boreal shrub; PFT VI: arid-tolerant shrub and herb; and PFT VII: steppe and tundra forb.

Evergreen conifer tree is the dominant PFT at 40, 25, and 21 ka in the southern part of north-eastern China (G29), *Larix* then becomes the dominant taxa at 14 and 12 ka, and temperate deciduous trees increase thereafter and maintain high cover between 11 and 3 ka. After 2 ka, evergreen conifer trees increase to 32% on average while temperate deciduous trees decrease to 18% on average. While arboreal abundance is lower in the northern part of north-eastern China (G30, G31) than in the southern part
(G29), it shows a similar temporal pattern (Fig. 2B).

293

Fig. 3. Clustering results of the 36 site-groups represented by the colour of the boxes, with the age of primary vegetation changes (middle row of each box; data in brackets means the hierarchical clustering failed the broken-stick test) and the compositional change (turnover; lower row) during the Holocene.

Open landscape is revealed for the southern Ural region (G2) with high abundances of herbaceous species at 14 ka. The cover of *Larix* and evergreen conifer trees increases after 12 ka and maintains high values thereafter with no notable temporal trend (Fig. 2B).

In the taiga-steppe transition zone, *Larix* is the dominant arboreal taxon, particularly 302 303 in the northern Altai Mts. and northern Mongolia (G15, G18). Open landscapes are inferred at 40, 21, and 12 ka on the southern West Siberian Plain (G7); cover of Larix 304 increases at 11 ka, and evergreen conifer trees increase from 9 ka and become the 305 dominant forest taxon after 4 ka. The temporal pattern of evergreen conifer trees in 306 the Altai Mts. (G14) is similar to the southern West Siberian Plain, although Larix 307 maintains high abundances into the late Holocene. Relative to the Altai Mts., the 308 abundance of evergreen conifer trees for all time windows are lower in the area north 309

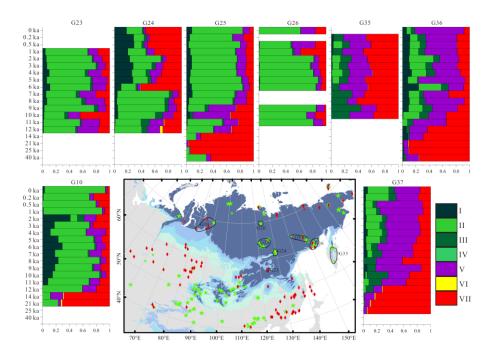
of the Altai Mts. and in northern Mongolia (G15, G18), but their temporal change
patterns are consistent with those of the Altai Mts. (G14; Fig. 2B).

312 Dark taiga forest in western and south-eastern Siberia (G3, G4, G8, G9, G20, G32,
313 G33, G34)

Site-groups with dark taiga forest from western Siberia (G3, G4, G8, G9), the Baikal region (G20), and south-eastern Siberia (G32, G33, G34) form one cluster sharing similar PFT compositions dominated by evergreen conifer trees, with *Larix* and boreal broadleaved shrubs as the common woody taxa during the Holocene (Fig. 2C).

On the West Siberian Plain (G8, G9), high cover of *Larix* is reconstructed during the early Holocene as well as high woody cover since the middle Holocene formed by evergreen conifer trees and boreal shrubs. In the Ural region (G3, G4), evergreen conifer trees dominate the arboreal species throughout the Holocene. The absence of *Larix* in the early Holocene in this Ural region is a notable difference to the West Siberian Plain (Fig. 2C).

In the Baikal region (G20), relatively closed landscape is revealed at 40 ka; openness then increases to >95% at 25 and 21 ka. Since 14 ka, woody cover increases as shown by a notable rise in evergreen conifer trees from 14 to 8 ka and by increases of *Larix* after 7 ka (Fig. 2C).


In south-eastern Siberia (G32, G34), arboreal abundance is high in the early and late Holocene, but low in the middle Holocene. South of Sakhalin Island (G33), closed landscape is revealed between 40 and 1 ka with >80% woody cover. Evergreen conifer tree PFT has lower cover than boreal shrub PFT at 25 and 21 ka, but increases in abundance around 14 ka rising to 83% on average between 11 and 3 ka, and reduces thereafter (Fig. 2C).

Light taiga forest in north-western Siberia and central Yakutia (G10, G23, G24, G25,
G26)

336 Plant composition of this cluster is dominated by Larix with high arboreal cover

15

during the Holocene. Evergreen conifer trees are present at ca. 15% cover between 11
and 2 ka, with high arboreal values (mean 73%) during the Holocene in north-western
Siberia (G10). In central Yakutia (G23, G24, G25), evergreen conifer trees increase
markedly from ca. 8 ka, 6 ka, and 7 ka, respectively and maintain high cover
thereafter, with ca. 60% arboreal cover throughout the Holocene. Evergreen conifer
trees are almost absent in the taiga-tundra ecotone (G26; Fig. 2D).

343

Fig. 2D. Temporal changes of plant functional type (PFT) cover, as proportions, for the site-groups
from light taiga forest and taiga-tundra ecotone (G35, G36, G37). PFT I: evergreen conifer tree;
PFT II: deciduous conifer tree; PFT III: boreal deciduous tree; PFT IV: temperate deciduous tree;
PFT V: boreal shrub; PFT VI: arid-tolerant shrub and herb; and PFT VII: steppe and tundra forb.

Tundra on the Taymyr Peninsula and taiga-tundra ecotone in north-eastern Siberia
(G11, G28, G35, G36, G37, G38, G39, G40, G41)

Plant compositions of this cluster are characterized by high abundances of boreal shrubs and tundra forbs. *Larix* is the only tree species on the Taymyr Peninsula (G11) and its abundance increases from 18% at 14 ka to 60% at 10 ka, and then decreases to 18% at 5 ka. The landscape of the north Siberian coast (G28) is dominated by shrub tundra from 14 ka to 10 ka, then *Larix* increases sharply and maintains high values between 9 and 6 ka. After 5 ka, *Larix* reduces, and shrub tundra becomes the

dominant landscape again (Fig. 2E).

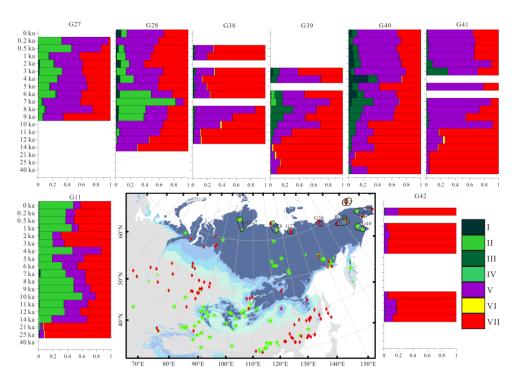


Fig. 2E. Temporal changes of plant functional type (PFT) cover, as proportions, for the site-groups
from tundra and taiga-tundra ecotone. PFT I: evergreen conifer tree; PFT II: deciduous conifer tree;
PFT III: boreal deciduous tree; PFT IV: temperate deciduous tree; PFT V: boreal shrub; PFT VI:
arid-tolerant shrub and herb; and PFT VII: steppe and tundra forb.

In north-eastern Siberia, arboreal cover shows a decreasing trend from southerly 362 363 site-groups (G35, G36, G37; Fig. 2D) to northerly ones (G40, G38, G39, G41) following the increasing latitude. In the Olsky District, temporal patterns of vegetation 364 changes in G37 are consistent with G36, with stable vegetation during the Holocene 365 366 and increases in evergreen conifer tree abundance from ca. 9 ka. Arboreal composition on the southern Kamchatka Peninsula (G35) is dominated by boreal deciduous trees 367 368 during the first stage of the Holocene, followed by rising abundances of Larix and evergreen conifer trees from 5 ka. 369

In north-eastern Siberia (G40, G38, G39, G41), the landscape is dominated by forb tundra with sparse shrubs between 40 and 21 ka; the cover of shrubs increases at 14 ka and arboreal cover (dominated by boreal deciduous trees) increases in the early Holocene (11 or 10 ka). Shrubs maintain a high abundance throughout the Holocene, while trees peak between 10 and 2 ka generally (Fig. 2E).

375 4. Discussion

376 4.1 Land-cover changes and potential biases

The overall patterns of pollen-based REVEALS estimates of land cover are generally 377 378 consistent with previous vegetation reconstructions. Although only a few site-groups 379 cover the period from 40 to 21 ka, a consistent vegetation signal indicates that relatively closed landscapes occurred in south-eastern Siberia, north-eastern China, 380 381 and the Baikal region (Fig. 2), while most of Siberia was rather open, particularly around 21 ka (Fig. 2). These findings are consistent with previous pollen-based 382 (Tarasov et al., 1998, 2000; Bigelow et al., 2003; Binney et al. 2017; Tian et al., 2018) 383 and model-estimated biome reconstructions (Tian et al., 2018). During the late 384 Pleistocene (40, 25, 21, 14 ka), steppe PFT abundance was high in central Yakutia and 385 386 north-eastern Siberia (e.g. G25, G36, G37, G39, G40, G41), which may reflect the expansion of tundra-steppe, consistent with results from ancient sediment DNA which 387 reveal abundant forb species during the period between 46 and 12.5 ka on the Taymyr 388 389 Peninsula (Jørgensen et al., 2012). The tundra-steppe was replaced by light taiga in 390 southern Siberia and by tundra in northern Siberia at the beginning of Holocene or the last deglaciation, which is consistent with ancient DNA results (forbs-dominated 391 392 steppe-tundra; Willerslev et al., 2014).

During the Holocene, reconstructed land cover for each site-group is generally 393 consistent with their modern vegetation. The slight vegetation changes are represented 394 by changes in PFT abundances rather than by changes in PFT presence/absence. 395 Minor changes are also indicated in the cluster analysis, which shows that plant 396 397 compositions and their temporal patterns are consistent among the site-groups within the same modern vegetation zone (Fig. 3). PFT datasets from only 19 site-groups pass 398 399 the broken-stick test for clustering analysis, and most of them have only one significant vegetation change, further supporting the case that only slight changes 400 401 occurred during the Holocene in northern Asia. In addition, the low total amount of 402 PFT change (turnover) over the Holocene for most site-groups supports the view of403 slight temporal changes in land cover.

Vegetation turnover on the Tibetan Plateau inferred from pollen percentages is 404 documented to overestimate the strength of vegetation changes (Wang and Herzschuh, 405 406 2011). This matches with our results. In central Yakutia, the pollen percentage data 407 indicate a strong vegetation change during the middle Holocene, represented by a 408 sharp increase of *Pinus* pollen, but the strength of the vegetation change is overestimated because of the high PPE of Pinus. The PPE-corrected arboreal 409 abundances in central Yakutia after ca. 7 ka with ca. 70% Larix and ca. 10% Pinus are 410 consistent with modern light taiga (Katamura et al., 2009). Furthermore, the absence 411 412 of *Pinus* macrofossils in central Yakutia throughout the Holocene (Binney et al., 2009) 413 also suggests a restricted distribution of Pinus, possibly to sandy places such as river 414 banks (Isaev et al., 2010).

Pollen-based turnover estimates from southern Norway range between 0.84 to 1.3 SD 415 416 (mean 1.02 SD) for ten Holocene pollen spectra (Birks, 2007), and from northern Europe between 0.01 (recent) to 0.99 (start of the Holocene) SD for three sites (N 417 Sweden, NW and SE Finland) (Marquer et al., 2014). Moreover, the REVEALS-based 418 turnover estimates (0.3–1) for northern Europe are significantly higher than the 419 pollen-based one (0.2–0.8) from 11 ka to 5.5 ka BP. The same is true for all other 420 421 regions studied by Marquer et al. (2014) in north-western Europe, and the turnover estimates (pollen- and REVEALS-based) are generally higher at lower latitudes from 422 southern Sweden down to Switzerland and eastwards to Britain and Ireland. These 423 424 European values are higher than our REVEALS-based turnover estimates (from 0.37 to 0.88 SD, mean 0.66 SD; G3, G8, G9, G23, G24, G25, G36, G37) from a similar 425 latitudinal range (Fig. 3). The fewer parameters used in the turnover calculations for 426 northern Asia (PFTs) compared to Europe (pollen taxa) is a potential reason for the 427 lower turnover obtained in this study. In addition, the PPE-based transformation from 428 pollen percentages to plant abundances may reduce the strength of vegetation changes 429 (Wang and Herzschuh, 2011). Aside from the methodological aspects, the lower 430

turnover in northern Asia may, at least partly, originate from differences in the environmental history between northern Europe compared with northern Asia, that is glaciation followed by postglacial re-vegetation vs. non-glaciated areas with trees in refugia, respectively, and a maritime climate with temperature-limited vegetation distribution vs. a continental climate with temperature- and moisture-limited vegetation.

437 We consider the REVEALS-based regional vegetation-cover estimations in this study as generally reliable with reasonable standard errors (Appendix 8) thanks to the 438 439 thorough selection of records with high quality pollen data and reliable chronologies. In addition, the landscape reconstructions are generally consistent with previous 440 441 syntheses of past vegetation change (e.g. Tian et al., 2018) and known global climate 442 trends (Marcott et al., 2013), plus the clustering results of PFT abundance are 443 consistent with modern spatial vegetation patterns. That said, this study faced two 444 major methodological challenges, discussed below, that may reduce the reliability of 445 the obtained quantitative land-cover reconstructions; 1) the low number of PPEs and 446 their origin and 2) restrictions with respect to the number, distribution, and type of 447 available sites.

448 (1) Twenty PPE sets were used which mostly originate from Europe and 449 temperate northern China. The available PPEs were estimated from various 450 environmental and ecological settings, which might cause regional differences in each PPE. And, PPEs of different species within one family or genus were 451 included in our mean PPE calculation for the family or genus, ignoring the 452 453 inter-species differences. Also, some taxa behave few available PPEs with significant differences (such as Abies, Larix, Juglans, Brassicaceae), and their 454 mean PPE could fail to represent their real pollen productivities. These aspects 455 can cause uncertainty in the mean PPE to some extent. However, we believe 456 that the compiled PPE sets can be used to extract major broad-scale and 457 long-term vegetation patterns because the regional differences in the PPE for 458 most taxa are small compared to the large between-taxa differences. The mean 459

PPEs used in this REVEALS modelling (Table 2) are broadly consistent with 460 those obtained from Europe (Mazier et al., 2012). In addition, although there 461 462 are no PPEs for the core from the Siberia taiga forest, available studies on modern pollen composition support the weightings in the applied PPEs for 463 major taxa in terms of pollen under- or over-representation of vegetation 464 465 abundance. For example, modern pollen investigations in north-eastern Siberia revealed that pollen records from northern Larix forest often have less than 466 467 13% Larix pollen, confirming the low pollen productivity of Larix relative to over-represented pollen taxa such as Betula and Alnus (Pisaric et al., 2001, 468 469 Klemm et al., 2016). Similarly, a study on modern pollen in southern Siberia 470 (transitional area of steppe and taiga) finds that Artemisia, Betula, and Pinus 471 are high pollen producers compared to Larix (Pelánková et al., 2008). Also, 472 despite Larix being the most common tree in taiga forest in north-central Mongolia, the pollen abundance of *Larix* is generally lower than 3% (Ma et al., 473 2008), implying its low pollen productivity. 474

475 (2) In this study, we attempt to reconstruct past landscape changes at a regional 476 scale. Pollen signals from large lakes are assumed to reflect regional vegetation patterns (e.g. Sugita et al., 2010; Trondman et al., 2015). If large 477 478 lakes are absent in a region, multiple small-sized sites can be used, although 479 error estimates are usually large (Sugita, 2007; Mazier et al., 2012; Trondman et al., 2016). In our study, 70% of the time slices for the 42 site-groups include 480 pollen data from large lakes (i.e. radii >390m), which supports the reliability 481 of REVEALS reconstructions (Appendix 5). However, sites are unevenly 482 483 distributed and occasionally sites from different areas were combined into one group (G2, G6, G34), which might produce a different vegetation-change 484 485 signal because of the broad distribution of these sites (Fig. 1). In addition, the linear interpolation of pollen abundances for time windows with few pollen 486 data might be another source of uncertainty, particularly for the late 487 Pleistocene and its broad time windows (Table 1). Finally, pollen signals from 488

489 certain sites and during certain periods may be of water-runoff origin rather
490 than aerial origin violating the assumption of the REVEALS-model that pollen
491 is transported by wind.

492 4.2 Driving factors of vegetation changes

On a glacial-interglacial scale, pollen-based reconstructed land-cover changes in 493 494 northern Asia are generally consistent with the global climate signal (e.g. sea-surface 495 temperature: Pailler and Bard, 2002; ice-core: Andersen et al., 2004; solar insolation: 496 Laskar et al., 2004; cave deposits: Cheng et al., 2016; Appendix 9). For example, the 497 relatively high arboreal cover at 40 ka (e.g. G20) corresponds with the warm MIS3 record from the Baikal region (Swann et al., 2005). The open landscape at 25 ka and 498 499 21 ka (e.g. G25, G36) reflects the cold and dry last glacial maximum (e.g. Swann et al., 2010). Furthermore, the relatively high arboreal cover during the Holocene is 500 501 consistent with the warm and wet climate (occurring in most site-groups). The 502 primary vegetation change in north-eastern China (G29, G30) occurs in the early 503 Holocene (11.5 and 10.5 ka), caused by the rapid increase in abundance of temperate deciduous trees, which may reflect the warmer climate and enhanced summer 504 monsoon known from that region at the beginning of the Holocene (Hong et al., 2009, 505 Liu et al., 2014). 506

507 A sensitivity analysis of model-based biome estimation reveals that precipitation plays an important or even dominant role in controlling vegetation changes in arid central 508 509 Asia (e.g. Tian et al., 2018). The climate of central Asia during the early Holocene is 510 inferred to be quite dry and moisture increase occurs at ca. 8 ka revealed by a series of 511 multi-proxy syntheses (Chen et al., 2008, 2016; Xie et al., 2018) and model-based 512 estimations (Jin et al., 2012). In the taiga-steppe transition zone (south-eastern Siberia 513 and north-central Asia; e.g. G6, G12, G14, G18), relatively open landscape is reconstructed for the early Holocene and abundances of forest taxa increase after ca. 8 514 ka, which are consistent with the moisture evolution, and imply the importance of 515 516 moisture in controlling vegetation changes. Our results support the prediction of an expansion of steppe in the present forest-steppe ecotone of southern Siberia in 517

response to a warmer and drier climate in the future (Tchebakova et al., 2009). During the late Holocene, the decreases in forest cover in the forest-steppe ecotone of north-central China and central Asia are ascribed to the drying or cooling climate respectively by sensitivity analysis (Tian et al., 2018). Previous studies argued that the enhanced human impacts might be important factor for the reduce in forest cover (e.g. Ren, 2017), however our study fails to determine its contribution on vegetation changes.

525 High abundances of *Larix* or boreal deciduous woody taxa (mostly shrubs) pollen occur in northern Siberia (e.g. G28, G38, G39, G40) during the middle Holocene, 526 which is now covered by tundra. This is consistent with non-vegetation climate 527 528 records of a mid-Holocene temperature maximum (e.g. Biskaborn et al, 2012; 529 Nazarova et al., 2013). This result indicates that the boreal treeline in northern Siberia reacts sensitively to warming on millennial time-scales, which contrasts with the 530 531 observed lack of response on a decadal time-scale (Wieczoreck et al., 2017). This may 532 point to a highly non-linear vegetation-climate relationship in northern Siberia.

Our results indicate that climate change is the major factor driving land-cover change 533 in northern Asia on a long temporal scale. However, climate change cannot fully 534 explain the changes in arboreal taxa abundance for the West Siberian Plain (G8, G9) 535 536 and sandy places in central Yakutia (G23, G24, G25). In addition to climate, changes in permafrost condition (Vandenberghe et al., 2014) and fire regime may have played 537 a central role in vegetation change. Larix is the dominant arboreal taxon during the 538 early Holocene (ca. between 12 and 8 ka), which is replaced by evergreen conifer 539 540 trees, mostly pine and spruce at 8 or 7 ka. Larix can survive on permafrost with an active-layer depth of <40 cm (Osawa et al., 2010) and a high fire frequency, while 541 pine trees can only grow on soil with >1.5m active-layer (Tzedakis and Bennett, 1995) 542 and spruce is a fire-avoider. Probably the compositional change of boreal trees was 543 not in equilibrium with climate but rather driven by changes in the permafrost and fire 544 characteristics that were themselves affected by forest composition, resulting in 545 complex feedbacks. This explanation would be in agreement with the finding of 546

Herzschuh et al. (2016) that the boreal forest composition of nearby refugia during a
glacial influences the initial interglacial forest composition that is then only slowly
replaced by a forest composition that is in equilibrium with climate.

Population changes of herbivores could also be an important factor for vegetation 550 551 change at a regional scale during certain intervals (Zimov et al., 1995; Guthrie, 2006). As with our pollen-based land-cover reconstruction, a circumpolar ancient DNA 552 553 metabarcoding study confirms the replacement of steppe-like tundra by moist tundra with abundant woody plants at the Pleistocene-Holocene transition (Willerslev et al., 554 2014). According to Zimov et al. (1995, 2012), such a change cannot be explained by 555 climate change alone, and thus a reduced density of herbivores is considered to be a 556 557 major driving factor of steppe composition reduction, since a reduced number of herbivores is insufficient to maintain the open steppe landscapes and so causes a 558 decrease in steppe area (Zimov et al., 1995; Guthrie, 2006). Our land-cover 559 560 reconstruction fails to address the contribution of herbivores to vegetation changes, 561 but the extinction of herbivorous megafauna would add to the complexity of the 562 interactions among vegetation, climate and permafrost.

563 **5. Conclusions**

Regional vegetation based on pollen data has been estimated using the REVEALS 564 model for northern Asia during the last 40 ka. Relatively closed land cover was 565 566 replaced by open landscapes in northern Asia during the transition from MIS 3 to the last glacial maximum. Abundances of woody components increase again from the last 567 568 deglaciation or early Holocene. Pollen-based REVEALS estimates of plant 569 abundances should be a more reliable reflection of the vegetation as pollen may 570 overestimate the turnover, and indicates that the vegetation was quite stable during the 571 Holocene as only slight changes in the abundances of PFTs were recorded rather than mass expansion of new PFTs. From comparisons of our results with other data, we 572 573 infer that climate change is likely the primary driving factor for vegetation changes on 574 a glacial-interglacial scale. However, the extension of evergreen conifer trees since ca.

8–7 ka throughout Siberia could reflect vegetation-climate disequilibrium at a
long-term scale caused by the interaction of climate, vegetation, fire, and permafrost,
which could be a palaeo-analogue not only for the recent complex vegetation response
to climate changes but also for the vegetation prediction in future.

579 **Data availability**. The used fossil pollen dataset with the re-established age-depth 580 model for each pollen record have been made publicly available in Pangaea 581 (https://doi.pangaea.de/10.1594/PANGAEA.898616).

582 Acknowledgements. The authors would like to express their gratitude to all the palynologists who, either directly or indirectly, contributed their pollen records and 583 PPE results to our study. This research was supported by the German Research 584 585 Foundation (DFG) and PalMod project (BMBF). FL and MJG thank the Faculty of Health and Life Science of Linnaeus University (Kalmar, Sweden), the 586 China-Swedish STINT Exchange Grant 2016-2018 and the Swedish Strategic 587 Research Area on ModElling the Regional and Global Earth system (MERGE) for 588 589 financial support. This study is a contribution to the Past Global Changes (PAGES) 590 LandCover6k working group project.

591 **References**

- Abaimov, A.P., Prokushkin, S.G., Matssura, Y., Osawa, A., Takenaka, A., and
 Kajimoto, T.: Wildfire and cutting effect on larch ecosystem permafrost dynamics
 in central Siberia, in Shibuya, M., Takanashi, K., Inoue, G. (eds.), Proceedings of
 the Seventh Symposium on the Joint Siberian Permafrost Studies between Japan
 and Russia in 1998, Tsukuba, Japan, 48–58pp., 1999.
- Abraham, V., and Koz & Kov & R.: Relative pollen productivity estimates in the modern
 agricultural landscape of Central Bohemia (Czech Republic), Review of
 Palaeobotany and Palynology, 179, 1–12, 2012.
- An, C., Tao, S., Zhao, J., Chen, F., Lv, Y., Dong, W., Li, H., Zhao, Y., Jin, M., and
 Wang, Z.: Late Quaternary (30.7–9.0 cal ka BP) vegetation history in Central Asia
 inferred from pollen records of Lake Balikun, northwest China, Journal of

Andersen, K.K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P., Caillon, N., 604 Chappellaz, J., Clausen, H.B., Dahl-Jensen, D., Fischer, H., Flückiger, J., 605 Fritzsche, D., Fujii, Y., Goto-Azuma, K., Grenvold, K., Gundestrup, N.S., 606 Hansson, M., Huber, C., Hvidberg, C.S., Johnsen, S.J., Jonsell, U., Jouzel, J., 607 Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson,-Delmotte, V., 608 Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S.O., Raynaud, D., 609 610 Rothlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H., Siggard-Andersen, M.-L., Steffensen, J.P., Stocker, T., Sveinbjörnsdáttir, A.E., 611 Svensson, A., Takata, M., Tison, J.-L., Thorsteinsson, T., Watanabe, O., Wilhelms, 612 F., and White, J.W.C.: High-resolution record of Northern Hemisphere climate 613 extending into the last interglacial period, Nature, 431, 147-151, 2004. 614 Anderson, P.M., and Lozhkin, A.V.: Late Quaternary vegetation of Chukotka 615 (Northeast Russia), implications for Glacial and Holocene environments of 616 Beringia, Quaternary Science Reviews, 107, 112–128, 2015. 617 618 Anderson, P.M., Belaya, B.V., Glushkova, O.Y., and Lozhkin, A.V.: New data about the vegetation history of northern Priokhot'ye during the Late Pleistocene and 619 Holocene, in Gagiev, M.K. (eds.), Late Pleistocene and Holocene of Beringia, 620

North East Interdisciplinary Research Institute, Far East Branch, Russian
Academy of Sciences, Magadan, 33–54pp, 1997 (in Russian).

- Anderson, P.M., Lozhkin, A.V., Belaya, B.V., and Stetsenko, T.V.: New data about the
 stratigraphy of late Quaternary deposits of northern Priokhot'ye, in Simakov, K.V.
 (eds), Environmental changes in Beringia during the Quaternary, North East
 Interdisciplinary Research Institute, Far East Branch, Russian Academy of
 Sciences, Magadan, 69–87pp, 1998 (in Russian).
- Anderson, P.M., Lozhkin, A.V., Solomatkina, T.B., and Brown, T.A.: Paleoclimatic
 implications of glacial and postglacial refugia for *Pinus pumila* in western
 Beringia, Quaternary Research, 73, 269–276, 2010.
- Andreev, A.A., and Klimanov, V.A.: Quantitative Holocene climatic reconstruction
 from Arctic Russia, Journal of Paleolimnology, 24, 81–91, 2000.

⁶⁰³ Paleolimnology, 49, 145–154, 2013.

- Andreev, A.A., and Klimanov, V.A.: Vegetation and climate history of central Yakutia
 during Holocene and late Pleistocene, in Formirovanie rel'efa, korrelyatnykh
 otlozhenii i rossypei severo-vostoka SSSR (Formation of deposits and placers on
 north-east of the USSR), Magadan, 26–51pp, 1989 (in Russian).
- Andreev, A.A., and Klimanov, V.A.: Vegetation History and climate changes in the
 interfluve of the Rivers Ungra and Yakokit (the southern Yakutia) in Holocene,
 Botanichesky Zhurnal (Botanical Journal), 76, 334–351, 1991.
- Andreev, A.A., and Klimanov, V.A.: Vegetation History and climate changes in the
 interfluve of the Rivers Ungra and Yakokit (the southern Yakutia) in Holocene,
 Botanichesky Zhurnal (Botanical Journal), 76, 334–351, 1991.
- Andreev, A.A., Klimanov, V.A., Sulerzhitskii, L.D., and Khotinskii, N.A.: Chronology
 of environmental changes in central Yakutia during the Holocene, in Paleoklimaty
 golotsena i pozdnelednikov'ya (Paleoclimates of Holocene and late glacial),
 Nauka, Moscow, 115–121pp, 1989 (in Russian).
- Andreev, A.A., Pierau, R., Kalugin, I.A., Daryin, A.V., Smolyaninova, L.G., and
 Diekmann, B.: Environmental changes in the northern Altai during the last
 millennium documented in Lake Teletskoye pollen record, Quaternary Research,
 67, 394–399, 2007.
- Andreev, A.A., Siegert, C., Klimanov, V.A., Derevyagin, A.Y., Shilova, G.N., and
 Melles, M.: Late Pleistocene and Holocene Vegetation and Climate on the Taymyr
 Lowland, Northern Siberia, Quaternary Research, 57, 138–150, 2002.
- Andreev, A.A., Tarasov, P.E., Ilyashuk, B.P., Ilyashuk, E.A., Cremer, H., Hermichen,
 W.D., Wischer, F., and Hubberten, H.-W.: Holocene environmental history
 recorded in Lake Lyadhej To sediments, Polar Urals, Russia, Palaeogeography,
 Palaeoclimatology, Palaeoecology, 223, 181–203, 2005.
- Andreev, A.A., Tarasov, P.E., Klimanov, V.A., Melles, M., Lisitsyna, O.M., and
 Hubberten, H.-W.: Vegetation and climate changes around the Lama Lake,
 Taymyr Peninsula, Russia during the Late Pleistocene and Holocene, Quaternary
 International, 122, 69–84, 2004.
- 662 Andreev, A.A., Tarasov, P.E., Siegert, C., Ebel, T., Klimanov, V.A., Melles, M.,

27

- Bobrov, A.A., Dereviagin, A.Y., Lubinski, D.J., and Hubberten, H.-W.: Late
 Pleistocene and Holocene vegetation and climate on the northern Taymyr
 Peninsula, Arctic Russia, Boreas, 32, 484–505, 2003.
- Arkhipov, S.A., and Votakh, M.R.: Palynological characteristics and the absolute age
 of peat near the mouth of the Tom' River, in Saks, V.N. (eds), The palynology of
 Siberia, Nauka, Moscow, 112–118pp, 1980 (in Russian).
- 669 Baker, A.G., Zimny, M., Keczyński, N., Bhagwat, S.A., Willis, K.J., and Latałowa, M.:
- Pollen productivity estimates from old-growth forest strongly differ from those
 obtained in cultural landscapes: Evidence from the Biaowiea National Park,
 Poland, The Holocene, 26, 80–92, 2016.
- Beer, R., Kaiser, F., Schmidt, K., Ammann, B., Carraro, G., Grisa, E., and Tinner, W.:
 Vegetation history of the walnut forest in Kyrgyzstan (Central Asia): natural or
 anthropogenic origin? Quaternary Science Reviews, 27, 621–632, 2008.
- Beermann, F., Langer, M., Wetterich, S., Strauss, J., Boike, J., Fiencke, C.,
 Schirrmeister, L., Pfeiffer, E.-M., and Kutzbach, L.: Permafrost thaw and release
 of inorganic nitrogen from polygonal tundra soils in eastern Siberia.
 Biogeosciences Discussions, <u>https://doi.org/10.5194/bg-2016-117</u>, 2016.
- Bezrukova, E.V., Belov, A.V., and Orlova, L.A.: Holocene vegetation and climate
 variability in North Pre-Baikal region, East Siberia, Russia, Quaternary
 International, 237, 74–82, 2011.
- Bezrukova, E.V., Belov, A.V., Abzaeva, A.A., Letunova, P.P., Orlova, L.A., Sokolova,
 L.P., Kulagina, N.V., and Fisher, E.E.: First High-Resolution Dated Records of
 Vegetation and Climate Changes on the Lake Baikal Northern Shore in the
 Middle–Late Holocene, Doklady Earth Sciences, 411, 1331–1335, 2006.
- Bezrukova, E.V., Tarasov, P.E., Solovieva, N., Krivonogov, S.K., and Riedel, F.: Last
 glacial-interglacial vegetation and environmental dynamics in southern Siberia:
 Chronology, forcing and feedbacks, Palaeogeography, Palaeoclimatology,
 Palaeoecology, 296, 185–198, 2010.
- Bigelow, N.H., Brubaker, L.B., Edwards, M.E., Harrison, S.P., Prentice, I.C.,
 Anderson, P.M., Andreev, A.A., Bartlein, P.J., Christensen, T.R., Cramer, W.,

- 693 Kaplan, J.O., Lozhkin, A.V., Matveyeva, N.V., Murray, D.F., McGuire, A.D.,
- Razzhivin, V.Y., Ritchie, J.C., Smith, B., Walker, D.A., Gajewski, K., Wolf, V.,
- Holmqvist, B.H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M.F.J., and
- Volkova, V.S.: Climate change and arctic ecosystems: 1. Vegetation changes north
- 697 of 55 N between the last glacial maximum, mid-Holocene, and present, Journal of
- 698 Geophysical Research, 108, D19, 8170, DOI: 10.1029/2002JD002558, 2003.
- Binney, H.A., Edwards, M.E., Macias-Fauria, M., Lozhkin, A., Anderson, P., Kaplan,
- J.O., Andreev, A.A., Bezrukova, E., Blyakharchuk, T., Jankovska, V., Khazina, I.,
 Krivonogov, S., Kremenetski, K., Nield, J., Novenko, E., Ryabogina, N.,
 Solovieva, N., Willis, K.J., and Zernitskaya, V.: Vegetation of Eurasia from the
 last glacial maximum to present: key biogeographic patterns, Quaternary Science
 Reviews, 157, 80–97, 2017.
- Binney, H.A., Willis, K.J., Edwards, M.E., Bhagwat, S.A., Anderson, P.M., Andreev,
 A.A., Blaauw, M., Damblon, F., Haesaerts, P., Kienast, F., Kremenetski, K.V.,
 Krivonogov, S.K., Lozhkin, A.V., MacDonald, G.M., Novenko, E.Y., Oksane, P.,
 Sapelko, T.V., Väliranta, M., and Vazhenina, L.: The distribution of
 late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil
 database, Quaternary Science Reviews, 28, 2445–2464, 2009.
- Birks, H.J.B.: Estimating the amount of compositional change in late-Quaternary
 pollen-stratigraphical data, Vegetation History and Archaeobotany, 16, 197–202,
 2007.
- Biskaborn, B.K., Herzschuh, U., Bolshiyanov, D., Savelieva, L., and Diekmann, B.:
 Environmental variability in northeastern Siberia during the last ~13,300 yr
 inferred from lake diatoms and sediment-geochemical parameters,
 Palaeogeography, Palaeoclimatology, Palaeoecology, 329–330, 22–36, 2012.
- 718 Biskaborn, B.K., Subetto, D.A., Savelieva, L.A., Vakhrameeva, P.S., Hansche, A.,
- Herzschuh, U., Klemm, J., Heinecke, L., Pestryakova, L.A., Meyer, H., Kuhn, G.,
 and Diekmann, B.: Late Quaternary vegetation and lake system dynamics in
- north-eastern Siberia: implications for seasonal climate variability, Quaternary
- 722 Science Reviews, 147, 406–421, 2016.

- Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., van der Knaap, W.O., and
 Ammann, B.: Late Glacial and Holocene vegetational changes on the Ulagan
 high-mountain plateau, Altai Mountains, southern Siberia, Palaeogeography,
 Palaeoclimatology, Palaeoecology, 209, 259–279, 2004.
- Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., van der Knaap, W.O., and
 Ammann, B.: Late Glacial and Holocene vegetational history of the Altai
 Mountains (southwestern Tuva Republic, Siberia), Palaeogeography,
 Palaeoclimatology, Palaeoecology, 245, 518–534, 2007.
- Blyakharchuk, T.A.: Four new pollen sections tracing the Holocene vegetational
 development of the southern part of the West Siberian Lowland, The Holocene,
 13, 715–731, 2003.
- Blyakharchuk, T.A.: Istorija rastitel'nosti yugo-vostoka Zapadnoi Sibiri v golotsene po
 dannym botanicheskogo I sporovo-pyl'tsevogo analiza torfa (The Holocene
 history of vegetation of south-eastern West Siberia by botanical and pollen
 analyses of peat deposits). Ph.D. thesis, Tomsk State University, 1989.
- Borisova, O.K., Novenko, E.Y., Zelikson, E.M., and Kremenetski, K.V.: Lateglacial
 and Holocene vegetational and climatic changes in the southern taiga zone of
 West Siberia according to pollen records from Zhukovskoye peat mire,
 Quaternary International, 237, 65–73, 2011.
- Brewer, S., Cheddadi, R., de Beaulieu, J.L., Reille, M., and 154 data contributors: The
 spread of deciduous *Quercus* throughout Europe since the last glacial period,
 Forest Ecology and Management, 156, 27–48, 2002.
- Broström, A., Sugita, S., and Gaillard, M.-J.: Pollen productivity estimates for the
 reconstruction of past vegetation cover in the cultural landscape of southern
 Sweden, The Holocene, 14, 368–381, 2004.
- Broström, A., Sugita, S., and Gaillard, M.-J.: Pollen productivity estimates for the
 reconstruction of past vegetation cover in the cultural landscape of southern
 Sweden, The Holocene, 14, 368–381, 2004.
- Broströn, A.: Estimating source area of pollen and pollen productivity in the cultural
 landscapes of southern Sweden developing a palynological tool for quantifying

- past plant cover, Ph.D. thesis, Lund University, 2002.
- Brown, J., Ferrians, Jr., O.J., Heginbottom, J.A., and Melnikov, E.S.: Circum-Arctic
 map of permafrost and ground-ice conditions. Washington, DC: U.S. Geological
 Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral
 Resources, Circum-Pacific Map Series CP-45, scale 1:10,000,000, 1 sheet, 1997.
- Bunting, M.J., Armitage, R., Binney, H.A., and Waller, M.: Estimates of 'relative
 pollen productivity' and 'relevant source area of pollen' for major tree taxa in two
 Norfolk (UK) woodlands, The Holocene, 15, 459–465, 2005.
- Bunting, M.J., Schofield, J.E., and Edwards, K.J.: Estimates of relative pollen
 productivity (RPP) for selected taxa from southern Greenland: A pragmatic
 solution, Review of Palaeobotany and Palynology, 190, 66–74, 2013.
- Cao, X., Herzschuh, U., Ni, J., Zhao, Y., and Böhmer, T.: Spatial and temporal
 distributions of major tree taxa in eastern continental Asia during the last 22,000
 years, The Holocene, 25, 79–91, 2015.
- Cao, X., Ni, J., Herzschuh, U., Wang, Y., and Zhao, Y.: A late Quaternary pollen
 dataset in eastern continental Asia for vegetation and climate reconstructions:
 set-up and evaluation, Review of Palaeobotany and Palynology, 194, 21–37,
 2013.
- Chen, F., Jia, J., Chen, J., Li, G., Zhang, X., Xie, H., Xia, D., Huang, W., and An, C.: A
 persistent Holocene wetting trend in arid central Asia, with wettest conditions in
 the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences
 in Xingjiang, China, Quaternary Science Reviews, 146, 134–146, 2016.
- Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D.B., Huang, X., Zhao, Y., Sato,
 T., Birks, H.J.B., Boomer, I., Chen, J., An, C., and Wünnemann, B.: Holocene
 moisture evolution in arid central Asia and its out-of-phase relationship with
 Asian monsoon history, Quaternary Science Reviews, 27, 351–364, 2008.
- Cheng, H., Edwards, R.L, Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat,
 G., Wang, X., Li, X., Kong, X., Wang, Y., Ning, Y., and Zhang, H.: The Asian
 monsoon over the past 640,000 years and ice age terminations, Nature, 534, 640–
 646, 2016.

31

- Demske, D., Heumann, G., Granoszewski, W., Nita, M., Mamakowa, K., Tarasov, P.E.,
 and Oberhansli, H.: Late glacial and Holocene vegetation and regional climate
 variability evidenced in high-resolution pollen records from Lake Baikal, Global
 and Planetary Change, 46, 255–279, 2005.
- Dirksen, V., Dirksen, O., Van Den Bogaard, C., and Diekmann, B.: Holocene pollen
 record from Lake Sokoch, interior Kamchatka (Russia), and its paleobotanical
 and paleoclimatic interpretation, Global and Planetary Change, 58, 46–47, 2012.
- Dulamsuren, C., Welk, E., Jäger, E.J., Hauck, M., and Mühlenberg, M.: Range-habitat
 relationships of vascular plant species at the taiga forest-steppe borderline in the
 western Khentey Mountains, northern Mongolia, Flora, 200, 376–397, 2005.
- Eisenhut, G.: Untersuchung über die Morphologie und Ökologie der Pollenkörner
 heimischer und fremdländischer Waldbäume, Parey, Hamburg, 1961.
- Firsov, L.V., Levina, T.P., and Troitskii, S.L.: The Holocene climatic changes in northern Siberia, in Vasari, V., Hyvarinen, H., Hicks, S. (eds.), Climatic changes in arctic areas during the last ten thousand years. Acta Universitatis Onlensis.
 Section A., Scientitae Rerum Naturalium Number 3, 341–349, Geologica.
 University of Oula, Oula. 1972.
- Firsov, L.V., Volkova, V.S., Levina, T.P., Nikolayeva, I.V., Orlova, L.A., Panychev,
 V.A., and Volkov, I.A.: The stratigraphy, geochronology, and standard
 spore-pollen diagram for Holocene peat, Gladkoye Bog, Novosibirsk. In Arkhipov,
 S.A. (editor). Problems of stratigraphy and paleogeography of the Pleistocene of
 Siberia, Nauka, Novosibirsk, 96–107, 1982 (in Russian).
- Frost, G.V., and Epstein, H.E.: Tall shrub and tree expansion in Siberian tundra
 ecotones since the 1960s, Global Change Biology, 20, 1264–1277, 2014.
- Fyfe, R.M., Twiddle, C., Sugita, S., Gaillard, M.-J., Barratt, P., Caseldine, C.J.,
 Dodson, J., Edwards, K.J., Farrell, M., Froyd, C., Grant, M.J., Huckerby, E., Innes,
 J.B., Shaw, H., and Waller, M.: The Holocene vegetation cover of Britain and
 Ireland: overcoming problems of scale and discerning patterns of openness,
 Quaternary Science Reviews, 73, 132–148, 2013.
- 812 Gregory, P.H.: The microbiology of the atmosphere, 2nd ed., Leonard Hill, Aylesbury,

813 252 pp, 1973.

- Gunin, P.D., Vostokova, E.A., Dorofeyuk, N.I., Tarasov, P.E., and Black, C.C.:
 Vegetation Dynamics of Mongolia, Kluwer Academic Publishers, London, 1999.
- Guthrie, R.D.: New carbon dates link climatic change with human colonization and
 Pleistocene extinctions, Nature, 441, 207–209, 2006.
- He, Y., Huang, J., Shugart, H.H., Guan, X., Wang, B., and Yu, K.: Unexpected
 evergreen expansion in the Siberia forest under warming hiatus, Journal of
 Climate, 30, 5021–5037, 2017.
- Herzschuh, U., Birks, H.J.B., Laepple, T., Andreev, A., Melles, M., and
 Brigham-Grette, J.: Glacial legacies on interglacial vegetation at the
 Pliocene-Pleistocene transition in NE Asia, Nature Communications, 11967, DOI:
 10.1038/ncomms11967, 2016.
- Herzschuh, U., Tarasov, P., Wünnemann, B., and Hartmann, K.: Holocene vegetation
 and climate of the Alashan Plateau, NW China, reconstructed from Pollen data,
 Palaeogeography, Palaeoclimatology, Palaeoecology, 211, 1–17, 2004.
- Hjelle, K.L., and Sugita, S.: Estimating pollen productivity and relevant source area of
 pollen using lake sediments in Norway: How does lake size variation affect the
 estimates? The Holocene, 22, 313–324, 2011.
- Hoff, U., Biskaborn, B.K., Dirksen, V.G., Dirksen, O.V., Kuhn, G., Meyer, H.,
 Nazarova, L.B., Roth, A., and Diekmann, B.: Holocene environment of Central
 Kamchatka, Russia: Implications from a multi-proxy record of Two-Yurts Lake,
 Global and Planetary Change, 134, 101–117, 2015.
- 835 Hong, B., Liu, C., Lin, Q., Yasuyuki, S., Leng, X., Wang, Y., Zhu, Y., and Hong, Y.: 836 Temperature evolution from the δ^{18} O record of Hani peat, Northeast China, in the 837 last 14000 years, Science in China Series D: Earth Science, 52, 952–964, 2009.
- Hou, X.: Vegetation Atlas of China, Science Press, Beijing, 2001.
- Hu, Y., Cao, X., Zhao, Z., Li, Y., Sun, Y., and Wang, H.: The palaeoenvironmental and
 palaeoclimatic reconstruction and the relation with the human activities during the
- Early and Middle Holocene in the upper Western Liao river region, Quaternary
- 842 Sciences, 36, 530–541, 2016 (in Chinese with English abstract).

- Intergovernmental Panel on Climate Change (IPCC): Climate change 2007: the
 physical science basis summary for policymakers, World Meteorological
 Organization, Geneva, Switzerland, 2007.
- 846 Isaev, A.P., Protopopov, A.V., Protopopova, V.V., Egorova, A.A., Timofeyev, P.A.,
- 847 Nikolaev, A.N., Shurduk, I.F., Lytkina, L.P., Ermakov, N.B., Nikitina, N.V.,
- Emova, A.P., Zakharova, V.I., Cherosov, M.M., Nikolin, E.G., Sosina, N.K.,
- 849 Troeva, E.I., Gogoleva, P.A., Kuznetsova, L.V., Pestryakov, B.N., Mironova, S. I.,
- and Sleptsova, N.P.: Vegetation of Yakutia: Elements of Ecology and Plant
 Sociology, in: Troeva, E.I., Isaev, A.P., Cherosov, M.M., Karpov, N.S. (eds.), The
 Far North, vol. 3, Springer Netherlands, Dordrecht, 143–260pp, 2010.
- Ivanov, V.F., Lozhkin, A.V., Kal'nichenko, S.S., Kyshtymov, A.I., Narkhinova, V.E.,
 and Terekhova, V.E.: The late Pleistocene and Holocene of Chukchi Peninsula to
 the north of Kamchatka, in Goncharov, V.I. (eds.), Geology and useful minerals of
 northeast Asia, Far East Branch, USSR Academy of Sciences, Vladivostok, 33–42,
 1984 (in Russian).
- Ivanov, V.F.: Quaternary deposits of the coast of eastern Chukotka, North East
 Interdisciplinary Research Institute, Far East Branch, USSR Academy of Sciences,
 Vladivostok, 1986 (in Russian).
- Jackson, S.T., Overpeck, J.T., Webb, T., Keattch, S.E., and Anderson, K.H.: Mapped
 plant-macrofossil and pollen records of late Quaternary vegetation change in
 eastern North America, Quaternary Science Reviews, 16, 1–70, 1997.
- Ji, M., Shen, J., Wu, J., and Wang, Y.: Paleovegetation and Paleoclimate Evolution of
 Past 27.7 cal ka BP Recorded by Pollen and Charcoal of Lake Xingkai,
 Northeastern China, Earth Surface Processes and Environmental Changes in East
 Asia, Springer, Japan, 81–94, 2015.
- Jiang, Q., Ji, J., Shen, J., Matsumoto, R., Tong, G., Qian, P., Ren, X., and Yan, D.:
 Holocene vegetational and climatic variation in westerly-dominated areas of
 Central Asia inferred from the Sayram Lake in northern Xinjiang, China, Science
 China Earth Sciences, 56, 339–353, 2013.
- Jiang, W.Y., Guo, Z.T., Sun, X.J., Wu, H.B., Chu, G.Q., Yuan, B.Y., Hatte, C., and

34

- Guiot, J.: Reconstruction of climate and vegetation changes of Lake
 Bayanchagan (Inner Mongolia): Holocene variability of the East Asian monsoon,
 Quaternary Research, 65, 411–420, 2006.
- Jin, L., Chen, F., Morrill, C., Otto-Bliesner, B.L., and Rosenbloom, N.: Causes of
 early Holocene desertification in arid central Asia, Climate Dynamics, 38, 1577–
 1591, 2012.
- Jørgensen, T., Haile, J., Möller, P., Andreev, A., Boessenkool, S., Rasmussen, M.,
 Kienast, F., Coissac, E., Taberlet, P., Brochmann, C., Bigelow, N.H., Andersen, K.,
 Orlando, L., Gilbert, M.T.P., and Willerslev, E.: A comparative study of ancient
 sedimentary DNA, pollen and macrofossils from permafrost sediments of
 northern Siberia reveals long-term vegetational stability, Molecular Ecology, 21,
 1989–2003, 2012.
- Juggins, S.: rioja: Analysis of Quaternary Science Data. version 0.9-15.1, Available at:
 http://cran.r-project.org/web/packages/rioja/index.html, 2018.
- Katamura, F., Fukuda, M., Bosikov, N.P., and Desyatkin, R.V.: Forest fires and
 vegetation during the Holocene in central Yakutia, eastern Siberia, Journal of
 Forest Research, 14, 30–36, 2009.
- Kats, S.V.: History of vegetation of western Siberia during the Holocene, Bulletin of
 commission for study the Quaternary, 13, 118–123, 1953 (in Russian).
- Kharuk, V.I., Ranson, K.J., Dvinskaya, M.L., and Im, S.: Siberian pine and larch
 response to climate warming in the southern Siberian mountain forest: tundra
 ecotone, in Balzter, H. (eds.), Environmental Change in Siberia, Springer
 Netherlands, 40, 115–132, 2010.
- Khomutova, V., and Pushenko, M.: Evolution of lake ecosystem of Southern Ural
 (Russia) from palynological data, Abstract of 14 Symposium "Palynologie &
 changements globaux", Paris, 1995.
- Kirdyanov, A.V., Hagedorn, F., Knorre, A.A., Fedotova, E.V., Vaganov, E.A.,
 Naurzbaev, M.M., Moiseev, P.A., and Rigling, A.: 20th century tree-line advance
 and vegetation changes along an altitudinal transect in the Putorana Mountains,
 northern Siberia, Boreas, 41, 56–67, 2012.

35

- Klemm, J., Herzschuh, U., and Pestryakova, L.A.: Vegetation, climate and lake
 changes over the last 7000 years at the boreal treeline in north-central Siberia,
 Quaternary Science Reviews, 147, 422–434, 2016.
- Klimanov, V.A.: Methods for interpreting characteristics of past climate. Vestnik
 MGU, Geographic Series, 2, 92–98,1976 (in Russian).
- Kong, Z.C., and Du, N.Q.: Vegetation and climate in North Shanxi Plateau from 7000
 to 2300 aBP, in Zhang, P.Y. (eds.), Historic Climate Change in China, Shangdong
- Science and Tecnology Press, Jinan, 18–23, 1996.
- 911 Korotky, A.M., Grebennikova, T.A., Razzhigaeva, N.G., Volkov, V.G., Mokhova, L.M.,
- Ganzey, L.A., and Bazarova, V.B.: Marine terraces of western Sakhalin Island,
 Catena, 30, 61–81, 1997.
- Korotky, A.M., Karaulova, L.P., and Troitskaya, T.S.: The Quaternary deposits of
 Primor'ye, Nauka, Novosibirsk, 1980 (in Russian).
- Korotky, A.M., Mokhova, L.M., and Pushkar, V.S.: The climate changes of the
 Holocene and landscape evolution of bald mountains of central Yam-Alin', in
 Korotky, A.M., Pushkar, V.S. (eds.), Paleogeographic investigations in the Far
 East, Far Eastern Science Center of the USSR Academy of Sciences, Vladivostok,
 5–22, 1985 (in Russian).
- Korotky, A.M., Pletnev, S.P., Pushkar, V.S., Grebennikova, T.A., Razzhigaeva, N.G.,
 Sakhebgareeva, E.D., and Mokhova, L.M.: Evolution environment of south Far
 East (late Pleistocene and Holocene), Nauka, Moscow, 1988 (in Russian).
- Korotky, A.M.: Paleographic conditions of the formation of Quaternary peats (south
 of Far East), in Pletnev, S.P. Pushkar, V.S. (eds), Modern sedimentation and
 morpholithogenesis of the Far East, Far Eastern Science Center, USSR Academy
 of Sciences, Vladivostok, 58–71, 1982 (in Russian).
- Kremenetski, C.V., Bottger, T., Junge, F.W., and Tarasov, A.G.: Late- and postglacial
 environment of the Buzuluk area, middle Volga region, Russia, Quaternary
 Science Reviews, 18, 1185–1203, 1999.
- Kremenetskii, C.V., Tarasov, P.E., and Cherkinski, A.E.: Istoriva ostrovnykh borov
 Kazakhstana v golotsene (Holocene history of the Kazakhstan "island" pine

- forests), Botanicheski Zhurial (Botanical Journal), 79, 13–29, 1994.
- 934 Krengel, M.: Discourse on history of vegetation and climate in Mongoliapalynological report of sediment core Bayan Nuur I (NW-Mongolia), in Walther, 935 M., Janzen, J., Riedel, F., Keupp, H. (eds.), State and dynamics of geosciences 936 and human geography in Mongolia: extended abstracts of the international 937 938 symposium (Berliner Geowissenschaftliche Abhandlungen). Selbstverlag 939 Fachbereich Geowissenschaften, Free University of Berlin, Germany, 80-84, 940 2000.
- Kruse, S., Wieczorek, M., Jeltsch, F., and Herzschuh, U.: Treeline dynamics in Siberia
 under changing climates as inferred from an individual-based model for *Larix*,
 Ecological Modelling, 338, 101–121, 2016.
- Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., and Levrard, B.: A
 long-term numerical solution for the insolation quantities of the Earth, Astronomy
 and Astrophysics, 428, 261–285, 2004.
- Levina, T.P., Orlova, L.A., Panychev, V.A., and Ponomareva, E.A.: Radiochronometry
 and pollen stratigraphy of Holocene peat of Kayakskoye Zaimitschye
 (Barabinskaya forest-steppe), in Nikolayeva, I.V. (eds.), Regional geochronology
 of Siberia and the Far East, Nauka, Novosibirsk, 136–143, 1987 (in Russian).
- Li, C., Wu, Y., and Hou, X.: Holocene vegetation and climate in Northeast China
 revealed from Jingbo Lake sediment, Quaternary International, 229, 67–73, 2011.
- Li, C.Y., Xu, Z.L., and Kong, Z.C.: A preliminary investigation on the Holocene
 vegetation changes from pollen analysis in the Gaoxigema section, Hunshandak
 Sand Land, Acta Phytoecologica Sinica, 27, 797–803, 2003 (in Chinese with
 English abstract).
- Li, F., Gaillard, M.-J., Sugita, S., Mazier, F., Xu, Q., Zhou, Z., Zhang, Y., Li, Y., and
 Laffly, D.: Relative pollen productivity estimates for major plant taxa of cultural
 landscapes in central eastern China, Vegetation History and Archaeobotany, 26,
 587–605, 2017.
- Li, F.: Pollen productivity estimates and pollen-based reconstructions of Holocene
 vegetation cover in northern and temperate China for climate modelling, PhD

- Li, J., Fan, K., and Zhou, L.: Satellite observations of El Niño impacts on Eurasian
 spring vegetation greenness during the period 1982–2015, Remote Sensing, 9,
 628, 2017.
- Li, R.Q., Zheng, L.M., and Zhu G.R.: Lakes and Environmental Change in the Inner
 Mongolian Plateau, Beijing Normal University Press, Beijing, 121–135, 1990 (in
 Chinese).
- Li, W.Y., and Yan, S.: Quaternary spore and pollen research in Chaiwopu Basin, in Shi,
 Y.F., Wen, Q.Z., Qu, Y.G. (eds.), The Quaternary climo-environment changes and
 hydrogeological condition of Chaiwopu Basin in Xinjiang region, Beijing: China
 Ocean Press, 1990.
- Li, Y., Nielsen, A.B., Zhao, X., Shan, L., Wang, S., Wu, J., and Zhou, L.: Pollen
 production estimates (PPEs) and fall speeds for major tree taxa and relevant
 source areas of pollen (RSAP) in Changbai Mountain, northeastern China,
 Review of Palaeobotany and Palynology, 216, 92–100, 2015.
- Li, Y.H., Yin, H.N., Zhang, X.Y., and Chen, Z.J.: The environment disaster events and
 the evolution of man-land relation in the west Liaoning during 5000 aBP, Journal
 of Glaciology and Geocryology, 25, 19–26, 2003 (in Chinese with English
 abstract).
- Li, Y.H., Yin, H.N., Zhang, Y., and Zhao, J.: Temperature drop at about 5000
 aB.P.-4700 aB.P. in northeast of China and effect on archaeological culture,
 Yunnan Geographic Environment Research, 15, 12–18, 2003a.
- Li, Y.Y., Willis, K.J., Zhou, L.P., and Cui, H.T.: The impact of ancient civilization on
 the northeastern Chinese landscape: palaeoecological evidence from the Western
 Liaohe River Basin, Inner Mongolia, The Holocene, 16, 1109–1121, 2006.
- Lin, M.C.: Spore-pollen analysis of Quaternary in Xinjiang Region, in Wen, Q.Z.
 (eds.), Quaternary Geology and Environment of Xinjinag Region, China,
 Agricultural Press of China, Beijing, 68–94, 1994 (in Chinese).
- 991 Liu, X.Q., Herzschuh, U., Shen, J., Jiang, Q.F., and Xiao, X.Y.: Holocene
 992 environmental and climate changes inferred from Wulungu Lake in northern

⁹⁶³ thesis, Linnaeus University, 2016.

- 393 Xinjiang, China, Quaternary Research, 70, 412–425, 2008.
- Liu, Y.Y., Zhang, S.Q., Liu, J.Q., You, H.T., and Han, J.T.: Vegetation and
 environment history of Erlongwan Maar Lake during the late Pleistocene on
 pollen record, Acta Micropalaeontologica Sinica, 25, 274–280, 2008 (in Chinese
 with English abstract).
- Liu, Z., Wen, X., Brady, E.C., Otto-Bliesner, B., Yu, G., Lu, H., Cheng, H., Wang, Y.,
 Zheng, W., Ding, Y., Edwards, R.L., Cheng, J., Liu, W., and Yang, H.: Chinese
 cave records and the East Asia Summer Monsoon, Quaternary Science Reviews,
 83, 115–128, 2014.
- Lloyd, A.H., Bunn, A.G., and Berner, L.: A latitudinal gradient in tree growth response
 to climate warming in the Siberian taiga, Global Change Biology, 17, 1935–1945,
 2010.
- López-Garc á, P., López-S áz, J.A., Chernykh, E.N., and Tarasov, P.E.: Late Holocene
 vegetation history and human activity shown by pollen analysis of Novienki peat
 bog (Kargaly region, Orenburg Oblast, Russia), Vegetation History and
 Archaeobotany, 12, 75–82, 2003.
- Lozhkin, A., and Anderson, P.: Late Quaternary lake records from the Anadyr
 Lowland, Central Chukotka (Russia), Quaternary Science Reviews, 68, 1–16,
 2013.
- Lozhkin, A.V., and Anderson, P.M.: A late Quaternary pollen record from Elikchan 4
 Lake, northeast Siberia, Geology of the Pacific Ocean, 14, 18–22, 1995.
- Lozhkin, A.V., and Glushkova, O.Y.: New palynological assemblages and radiocarbon
 dates from the late Quaternary deposits of northern Priokhot'ye, in Gagiev, M.K.
 (eds.), Late Pleistocene and Holocene of Beringia, North East Interdisciplinary
 Research Institute, Far East Branch, Russian Academy of Sciences, Magadan, 70–
- 1018 79pp, 1997 (in Russian).
- Lozhkin, A.V., and Vazhenina, L.N.: The characteristics of vegetational development
 from the Kolyma lowland in the early Holocene, in Pokhialainen, V.P. (eds.),
 Quaternary period of northeast Asia, North East Interdisciplinary Research
 Institute, Far East Branch, USSR Academy of Sciences, Magadan 135–144pp,

1023 1987 (in Russian).

- Lozhkin, A.V., Anderson, P.M., Belaya, B.V., Glushkova, O.Y., and Stetsenko, T.V.:
 Vegetation change in northeast Siberia at the Pleistocene-Holocene boundary and
 during the Holocene, in Simakov, K.V. (eds.), The Quaternary period of Beringia,
 North East Interdisciplinary Research Institute, Far East Branch, Russian
 Academy of Sciences, Magadan, 53–75pp, 2000 (in Russian).
- Lozhkin, A.V., Anderson, P.M., Belaya, B.V., Glushkova, O.Y., and Kotova, L.N.:
 Particularities of vegetation evolution in the mountain regions of the Kolyma in
 the Subatlantic period of the Holocene, in Bychkov, Y.M. (eds), Quaternary
 climates and vegetation of western Beringia, North East Interdisciplinary
 Research Institute, Far East Branch, Russian Academy of Sciences, Magadan, 64–
 77pp, 1996 (in Russian).
- Lozhkin, A.V., Anderson, P.M., Belaya, B.V., Glushkova, O.Y., Kozhevinkova, M.V.,
 and Kotova, L.N.: Palynological characteristics and radiocarbon dates of
 sediments from Elgennya Lake, Upper Kolyma, in Bychkov, Y.M. (eds.),
 Quaternary climates and vegetation of western Beringia, North East
 Interdisciplinary Research Institute, Far East Branch, Russian Academy of
 Sciences, Magadan, 50–64pp, 1996 (in Russian).
- Lozhkin, A.V., Anderson, P.M., Brubaker, L.B., Kotov, A.N., Kotova, L.N., and
 Prokhorova, T.P.: The herb pollen zone from sediments of glacial lakes, in
 Simakov, K.V. (eds.), Environmental changes in Beringia during the Quaternary,
 North East Interdisciplinary Research Institute, Far East Branch, Russian
 Academy of Sciences, Magadan, 96–111pp, 1998 (in Russian).
- 1046 Lozhkin, A.V., Anderson, P.M., Eisner, W.R., Ravako, L.G., Hopkins, D.M., Brubaker,
- L.B., Colinvaux, P.A., and Miller M.C.: Late Quaternary lacustrine pollen records
 from southwestern Beringia, Quaternary Research, 39, 314–324, 1993.
- 1049 Lozhkin, A.V., Anderson, P.M., Vartanyan, S.L., Brown, T.A., Belaya, B.V., and Kotov,
- 1050 A.N.: Late Quaternary paleoenvironments and modern pollen data from Wrangel
 1051 Island (northern Chukotka), Quaternary Science Reviews, 20, 217–233, 2001.
- 1052 Lozhkin, A.V., Skorodumov, I.N., Meshkov, A.P., and Rovako, L.G.: Changed

- paleogeographic environments in the region of Glukhoye Lake (north coast of the
 Okhotsk Sea) during the Pleistocene-Holocene transition, Doklady Akademii
 Nauk, 316,184–188, 1990 (in Russian).
- Ma, Y., Liu, K., Feng, Z., Sang, Y., Wang, W., and Sun, A.: A survey of modern pollen
 and vegetation along a south–north transect in Mongolia, Journal of Biogeography,
 35, 1512–1532, 2008.
- MacDonald, G.M., Kremenetski, K.V., and Beilman, D.W.: Climate change and the
 northern Russian treeline zone, Philosophical Transactions of the Royal Society,
 363, 2285–2299, 2008.
- MacDonald, G.M., Velichko, A.A., Kremenetski, C.V., Borisova, O.K., Goleva, A.A.,
 Andreev, A.A., Cwynar, L.C., Riding, R.T., Forman, S.L., Edwards, T.W.D.,
 Aravena, R., Hammarlund, D., Szeicz, J.M., and Gattaulin, V.N.: Holocene
 treeline history and climate change across northern Eurasia, Quaternary Research,
 53, 302–311, 2000.
- Marcott, S.A., Shakun, J.D., Clark, P.U., and Mix, A.C.: A reconstruction of regional
 and global temperature for the past 11,300 years, Science, 339, 1198–1201, 2013.
- Marquer, L., Gaillard, M.-J., Sugita, S., Poska, A., Trondman, A.-K., Mazier, F.,
 Nielsen, A.B., Fyfe, R.M., Jönsson, A.M., Smith, B., Kaplan, J.O., Alenius, T.,
 Birks, H.J.B., Bjune, A.E., Christiansen, J., Dodson, J., Edwards, K.J., Giesecke,
 T., Herzschuh, U., Kangur, M., Koff, T., Latałowa, M., Lechterbeck, J., Olofsson,
 J., and Sepp ä, H.: Quantifying the effects of land use and climate on Holocene
 vegetation in Europe, Quaternary Science Reviews, 171, 20–37, 2017.
- Marquer, L., Gaillard, M.J., Sugita, S., Trondman, A.K., Mazier, F., Nielsen, A.B.,
 Fyfe, R.M., Odgaard, B.V., Alenius, T., Birks, H.J.B, Bjune, A.E., Christiansen, J.,
 Dodson, J., Edwards, K.J., Giesecke, T., Herzschuh, U., Kangur, M., Lorenz, S.,
 Poska, A., Schult, M., and Seppä, H.: Holocene changes in vegetation
 composition in northern Europe: why quantitative pollen-based vegetation
 reconstructions matter, Quaternary Science Reviews, 90, 199–216, 2014.
- Matthias, I., Nielsen, A.B., and Giesecke, T.: Evaluating the effect of flowering ageand forest structure on pollen productivity estimates, Vegetation History and

- Mazier, F., Broström, A., Gaillard, M.-J., Sugita, S., Vittoz, P., and Buttler, A.: Pollen
 productivity estimates and relevant source area of pollen for selected plant taxa in
 a pasture woodland landscape of the Jura Mountains (Switzerland), Vegetation
 History and Archaeobotany, 17, 479–495, 2008.
- Mazier, F., Gaillard, M.-J., Kuneš, P., Trodmann, A.-K., and Broström, A.: Testing the
 effect of site selection and parameter setting on REVEALS-model estimates of
 plant abundance using the Czech Quaternary Palynological Database, Review of
 Palaeobotany and Palynology, 187, 38–49, 2012.
- Miller, G.H., Alley, R., Brigham-Grette, J., Fitzpatrick, J.J., Polyak, L., Serreze, M.C.,
 and White, J.W.C.: Arctic amplification: can the past constrain the future?
 Quaternary Science Reviews, 29, 1779–1790, 2010.
- Moiseev, P.A.: Climate-change impacts on radial growth and formation of the age
 structure of highland larch forests in Kuznetsky Alatau, Russian Journal of
 Ecology, 1, 10–16, 2002.
- Mokhova, L., Tarasov, P., Bazarova, V., and Klimin, M.: Quantitative biome
 reconstruction using modern and late Quaternary pollen data from the southern
 part of the Russian Far East, Quaternary Science Reviews, 28, 2913–2926, 2009.
- Monserud, R.A., Denissenko, O.V., and Tchebakova, N.M.: Comparison of Siberian
 paleovegetation to current and future vegetation under climate change, Climate
 Research, 3, 143–159, 1993.
- Müller, S., Tarasov, P.E., Andreev, A,A., and Diekmann, B.: Late Glacial to Holocene
 environments in the present-day coldest region of the Northern Hemisphere
 inferred from a pollen record of Lake Billyakh, Verkhoyansk Mts, NE Siberia,
 Climate of the Past, 5, 73–84, 2009.
- Müller, S., Tarasov, P.E., Andreev, A.A., Tütken, T., Gartz, S., and Diekmann, B.: Late
 Quaternary vegetation and environments in the Verkhoyansk Mountains region
- (NE Asia) reconstructed from a 50-kyr fossil pollen record from Lake Billyakh,
 Quaternary Science Reviews, 29, 2071–2086, 2010.
- 1112 Nazarova, L., Lüpfert, H., Subetto, D., Pestryakova, L., and Diekmann, B.: Holocene

¹⁰⁸³ Archaeobotany, 21, 471–484, 2012.

- climate conditions in central Yakutia (Eastern Siberia) inferred from sediment
 composition and fossil chironomids of Lake Temje, Quaternary International,
 290–291, 264–274, 2013.
- Neishtadt, M.I.: Holocene processes in western Siberia and associated problems, in
 Neishtadt, M.I. (eds.), Studying and mastering the environment, USSR Academy
 of Sciences, Institute of Geography, Moscow, 90–99pp, 1976 (in Russian).
- 1119 Neustadt, M.I., and Zelikson, E.M.: Neue Angaben zur stratigraphie der Torfmoore
 1120 Westsibiriens, Acta Agralia fennica, 123, 27–32, 1985.
- Ni, J., Yu, G., Harrison, S.P., and Prentice, I.C.: Palaeovegetation in China during the
 late Quaternary: biome reconstructions based on a global scheme of plant
 functional types, Palaeogeography, Palaeoclimatology, Palaeoecology, 289, 44–61,
 2010.
- Nielsen, A.B., Giesecke, T., Theuerkauf, M., Feeser, I., Behre, K.-E., Beug, H.-J.,
 Chen, S.-H., Christiansen, J., Dörfler, W., Endtmann, E., Jahns, S., de Klerk, P.,
 K ühl, N., Latałowa, M., Odgaard, B.V., Rasmussen, P., Stockholm, J.R., Voigt, R.,
 Wiethold, J., and Wolters, S.: Quantitative reconstructions of changes in regional
 openness in north-central Europe reveal new insights into old questions,
 Quaternary Science Reviews, 47, 131–149, 2012.
- Niemeyer, B., Klemm, J., Pestryakova, J.A., and Herzschuh, U.: Relative pollen
 productivity estimates for common taxa of the northern Siberian Arctic, Review
 of Palaeobotany and Palynology, 221, 71–82, 2015.
- Niemeyer, B., Klemm, J., Pestryakova, J.A., and Herzschuh, U.: Relative pollen
 productivity estimates for common taxa of the northern Siberian Arctic, Review
 of Palaeobotany and Palynology, 221, 71–82, 2015.
- Oganesyan, A.S., Prokhorova, T.P., Trumpe, M.A., and Susekova, N.G.: Paleosols and
 peats of Wrangel Island, Pochvovedenie, 2, 15–28, 1993 (in Russian).
- Osawa, A., Zyryanova, O. A., Matsuura, Y., Kajimoto, T., and Wein, R. W.:
 Permafrost Ecosystems: Siberian Larch Forests, Springer, Auflage, 502, 2010.
- 1141 Pailler, D., and Bard, E.: High frequency paleoceanographic changes during the past
- 1142 140,000 years recorded by the organic matter in sediments off the Iberian Margin,

- 1143 Palaeogeography, Palaeoclimatology, Palaeoecology, 181, 431–452, 2002.
- Panova, N., Makovsky, V.I., and Erokhin, N.G.: Golotsenovaya dinamika rastitelnosti
 v raione Krasnoufimskoi stepi (Holocene dynamics of vegetation in
 Krasnoufimskaya forest-steppe area), Lesoobrazovatelnyi protses na Urale i v
 Zaurali, 80–93, 1996.
- Panova, N.: Novye dannye po paleoekologii i istorii rastitelnosti yuzhnogo Yamala v
 golotsene (New data for paleoecology and vegetation history of southern Yamal
 during the Holocene), Chetvertichnyi period: metody issledovania, strat, 45–46,
 1990.
- Panova, N.: Palinologicheskoe issledovanie Karasieozerskogo torfyanika na srednem
 Urale (Palynological study of Karasieozerskiy peatland on Middle Ural), in
 Issledovanie lesov Urala, Materialy nauchnykh chteniy posvyaschennykh pamyati
 B, 28–31, 1997.
- Parsons, R.W., and Prentice, I.C.: Statistical approaches to R-values and the pollen–
 vegetation relationship, Review of Palaeobotany and Palynology, 32, 127–152,
 1981.
- Pearson, R.G., Phillips, S.J., Loranty, M.M., Beck, P.S.A., Damoulas, T., Knight, S.J.,
 and Goetz, S.J.: Shifts in arctic vegetation and associated feedbacks under climate
 change, Nature Climate Change, 3, 673–677, 2013.
- Pelánková, B., Kuneš, P., Chytrý, M., Jankovská, V., Ermakov, N., and
 Svobodov á Svitavsk á, H.: The relationship of modern pollen spectra to vegetation
 and climate along a steppe-forest-tundra transition in southern Siberia, explored
 by decision trees, The Holocene, 18, 1259–1271, 2008.
- Peteet, D.M., Andreev, A.A., Bardeen, W., and Mistretta, F.: Long-term Arctic
 peatland dynamics, vegetation and climate history of the Pur-Taz region, Western
 Siberia, Boreas, 27, 115–126, 1998.
- Pisaric, M.F.J., MacDonald, G.M., Cwynar, L.C., and Velichko, A.A.: Modern pollen
 and conifer stomates from north-central Siberian lake sediments: their use in
 interpreting late Quaternary fossil pollen assemblages, Arctic, Antarctic, and
 Alpine Research, 33, 19–27, 2001.

- Pisaric, M.F.J., MacDonald, G.M., Velichko, A.A., and Cwynar, L.C.: The Lateglacial
 and Postglacial vegetation history of the northwestern limits of Beringia, based on
 pollen, stomate and tree stump evidence, Quaternary Science Reviews, 20, 235–
 245, 2001.
- Poska, A., Meltsov, V., Sugita, S., and Vassiljev, J.: Relative pollen productivity
 estimates of major anemophilous taxa and relevant source area of pollen in a
 cultural landscape of the hemi-boreal forest zone (Estonia), Review of
 Palaeobotany and Palynology, 167, 30–39, 2011.
- Prentice, I.C., and Parsons, R.W.: Maximum likelihood linear calibration of pollen
 spectra in terms of forest composition, Biometrics, 39, 1051–1057, 1983.
- Prentice, I.C.: Pollen representation, source area, and basin size: toward a unified
 theory of pollen analysis, Quaternary Research, 23, 76–86, 1985.
- Prokopenko, A.A., Khursevich, G.K., Bezrukova, E.V., Kuzmin, M.I., Boes, X.,
 Williams, D.F., Fedenya, S.A., Kulagina, N.V., Letunova, P.P., and Abzaeva, A.A.:
 Paleoenvironmental proxy records from Lake Hovsgol, Mongolia, and a synthesis
 of Holocene climate change in the Lake Baikal watershed, Quaternary Research,
 68, 2–17, 2007.
- Qiao, S.Y.: A preliminary study on Hani peat-mire in the west part of the Changbai
 Mountain, Scientia Geographica Sinica, 13, 279–287, 1993 (in Chinese with
 English abstract).
- Qiu, S.W., Jiang, P., Li, F.H, Xia, Y.M., and Wang, P.F.: Preliminary study on natural
 environmental evolution in Northeast China since Late Glacial, Acta Geographica
 Sinica, 36, 315–327, 1981 (in Chinese with English abstract).
- R Core Team: R: A Language and Environment for Statistical Computing, R
 Foundation for Statistical Computing, Vienna, 2017.
- Räsänen, S., Suutari, H., and Nielsen, A.B.: A step further towards quantitative
 reconstruction of past vegetation in Fennoscandian boreal forests: Pollen
 productivity estimates for six dominant taxa, Review of Palaeobotany and
 Palynology, 146, 208–220, 2007.
- 1202 Ren, G., 2007. Changes in forest cover in China during the Holocene, Vegetation

- 1203 History and Archaeobotany, 16, 119–126.
- Ren, G.Y., and Zhang, L.S.: Late Holocene vegetation in Maili region, northeast China,
 as inferred from a high-resolution pollen record, Acta Botanica Sinica, 39, 353–
 362, 1997.
- Rudaya, N., Nazarova, L., Nourgaliev, D., Palagushkina, O., Papin, D., and Frolova,
 L.: Mid-late Holocene environmental history of Kulunda, southern West Siberia:
 vegetation, climate and humans, Quaternary Science Reviews, 48, 32–42, 2012.
- Rudaya, N., Tarasov, P., Dorofeyuk, N.I., Solovieva, N., Kalugin, I., Andreev, A.A.,
 Darin, A., Diekmann, B., Riedel, F., Narantsetseg, T., and Wagner, M.: Holocene
 environments and climate in the Mongolian Altai reconstructed from the
 Hoton-Nur pollen and diatom records, Quaternary Science Reviews, 28, 540–554,
 2009.
- Sarda-Espinosa, A.: dtwclust: Time series clustering along with optimizations for the
 dynamic time warping distance, version 5.2.0, Available at:
 http://cran.r-project.org/web/packages/dtwclust/index.html, 2018.
- Schuur, E.A.G., Vogel, J.G., Crummer, K.G., Lee, H., Sickman, J.O., and Osterkamp,
 T.E.: The effect of permafrost thaw on old carbon release and net carbon
 exchange from tundra, Nature, 459, 556–559, 2009.
- Serreze, M.C., Walsh, J.E., Chapin III, F.S., Osterkamp, T., Dyurgerov, M.,
 Romanovsky, V., Oechel, W.C., Morison, J., Zhang, T., and Barry, R.G.:
 Observational evidence of recent change in the northern high-latitude
 environment, Climatic Change, 46, 159–207, 2000.
- Shestakova, T.A., Voltas, J., Saurer, M., Siegwolf, R.T.W., and Kirdyanov, A.V.:
 Warming effects on *Pinus sylvestris* in the cold-dry Siberian forest-steppe:
 positive or negative balance of trade? Forests, 8, 490, doi: 10.3390/f8120490.,
 2017.
- Shichi, K., Takahara, H., Krivonogovc, S.K., Bezrukova, E.V., Kashiwaya, K.,
 Takehara, A., and Nakamura, T.: Late Pleistocene and Holocene vegetation and
 climate records from Lake Kotokel, central Baikal region, Quaternary
 International, 2009, 205, 98–110, 2009.

- Shilo, N.A.: Resolution: Interagency Stratigraphic meeting of Quaternary system of
 eastern USSR, North East Interdisciplinary Research Institute, Far East Branch,
 USSR Academy of Sciences, Magadan, 1987 (in Russian).
- Sjögren, P., van der Knaap, W.O., Huusko, A., and Leeuwen, J.F.N.: Pollen
 productivity, dispersal, and correction factors for major tree taxa in the Swiss Alps
 based on pollen-trap results, Review of Palaeobotany and Palynology, 152, 200–
 210, 2008.
- Soepboer, W., Sugita, S., Lotter, A.F., van Leeuwen, J.F.N., and van der Knaap, W.O.:
 Pollen productivity estimates for quantitative reconstruction of vegetation cover
 on the Swiss Plateau, The Holocene, 17, 65–77, 2007.
- Soja, A.J., Tchebakova, N.M., French, N.H.F., Flannigan, M.D., Shugart, H.H., Stocks,
 B.J., Sukhinin, A.I., Parfenova, E.I., Chapin III, F.S., and Stackhouse Jr, P.W.:
 Climate-induced boreal forest change: predictions versus current observations,
 Global and Planetary Change, 56, 274–296, 2007.
- Song, C.Q., Wang, B.Y., and Sun, X.J.: Implication of paleovegetational changes in
 Diaojiao Lake, Inner Mongolia, Acta Botanica Sinica, 38, 568–575, 1996 (in
 Chinese with English abstract).
- Stebich, M., Rehfeld, K., Schlütz, F., Tarasov, P.E., Liu, J., and Mingram, J.: Holocene
 vegetation and climate dynamics of NE China based on the pollen record from
 Sihailongwan Maar Lake, Quaternary Science Reviews, 124, 275–289, 2015.
- Stetsenko, T.V.: A pollen record from Holocene Lake deposits in the Malyk-Siena
 depression, upper Kolyma basin, in Simakov, K.V. (eds.), Environmental changes
 in Beringia during the Quaternary, North East Interdisciplinary Research Institute,
 Far East Branch, Russian Academy of Sciences, Magadan, 63–68, 1998 (in
 Russian).
- Stobbe, A., Gumnior, M., Roepke, A., and Schneider, H.: Palynological and
 sedimentological evidence from the Trans-Ural steppe (Russia) and its
 palaeoecological implications for the sudden emergence of Bronze Age
 sedentarism, Vegetation History and Archaeobotany, 24, 393–412, 2015.
- 1262 Stuart, A., and Ord, J.K.: Kendall's Advanced Theory of Statistic. Volume 1:

- 1263 Distribution Theory, Edward Arnold, London, 1994.
- Sugita, S., Gaillard, M.-J., and Broström, A.: Landscape openness and pollen records:
 a simulation approach, The Holocene, 9, 409–421, 1999.
- Sugita, S., Parshall, T., Calcote, R., and Walker, K.: Testing the landscape
 reconstruction algorithm for spatially explicit reconstruction of vegetation in
 northern Michigan and Wisconsin, Quaternary Research, 74, 289–300, 2010.
- Sugita, S.: A model of pollen source area for an entire lake surface, Quaternary
 Research, 39, 239–244, 1993.
- Sugita, S.: Pollen representation of vegetation in Quaternary sediments: theory and
 method in patchy vegetation, Journal of Ecology, 82, 881–897, 1994.
- Sugita, S.: Theory of quantitative reconstruction of vegetation I: pollen from large
 sites REVEALS regional vegetation composition, The Holocene, 17, 229–241,
 2007.
- Sun, A., Feng, Z., Ran, M., and Zhang, C.: Pollen-recorded bioclimatic variations of
 the last ~22,600 years retrieved from Achit Nuur core in the western Mongolian
 Plateau, Quaternary International, 311, 36–43, 2013.
- Sun, X.J., Du, N.Q., Weng, C.Y., Lin, R.F., and Wei, K.Q.: Paleovegetation and
 paleoenvironment of Manasi Lake, Xinjiang, N.W. China during the last 14 000
 years, Quaternary Sciences, 3, 239–248, 1994 (in Chinese with English abstract).
- Swann, G.E.A., Leng, M.J., Juschus, O., Melles, M., Brigham-Grette, J., and Sloane,
 H.J.: A combined oxygen and silicon diatom isotope record of Late Quaternary
 change in Lake El'gygytgyn, North East Siberia, Quaternary Science Reviews, 29,
 774–786, 2010.
- Swann, G.E.A., Mackay, A.W., Leng, M.J., and Demory, F.: Climate change in Central
 Asia during MIS 3/2: a case study using biological responses from Lake Baikal,
 Global and Planetary Change, 46, 235–253, 2005.
- Tao, S.C., An, C.B., Chen, F.H., Tang, L.Y., Lv, Y.B., and Zheng, T.M.: Holocene
 vegetation changes interpreted from pollen records in Balikun Lake, Xinjiang,
 China, Acta Palaeontologica Sinica, 48, 194–199, 2009 (in Chinese with English
 abstract).

- Tarasov, P.E., and Kremenetskii, K.V.: Geochronology and stratigraphy of the
 Holocene lacustrine-bog deposits in northern and central Kazakhstan,
 Stratigraphy and Geological Correlation, 3, 73–80, 1995.
- Tarasov, P.E., Bezrukova, E.V., and Krivonogov, S.K.: Late glacial and Holocene
 changes in vegetation cover and climate in southern Siberia derived from a 15kyr
 long pollen record from Lake Kotokel, Climate of the Past, 5, 285–295, 2009.
- 1299 Tarasov, P.E., Jolly, D., and Kaplan, J.O.: A continuous Late Glacial and Holocene
- record of vegetation changes in Kazakhstan, Palaeogeography, Palaeoclimatology,
 Palaeoecology, 136, 281–292, 1997.
- Tarasov, P.E., Volkova, V.S., Webb, T., Guiot, J., Andreev, A.A., Bezusko, L.G.,
 Bezusko, T.V., Bykova, G.V., Dorofeyuk, N.I., Kvavadze, E.V., Osipova, I.M.,
 Panova, N.K., and Sevastyanov, D.V.: Last glacial maximum biomes
 reconstructed from pollen and plant macrofossil data from northern Eurasia,
 Journal of Biogeography, 27, 609–620, 2000.
- Tarasov, P.E., Webb, T., Andreev, A.A, Afanas'Eva, N.B., Berezina, N.A., Bezusko,
 L.G., Blyakharchuk, T.A., Bolikhovskaya, N.S., Cheddadi, R., Chernavskaya,
 M.M., Chernova, G.M., Dorofeyuk, N.I., Dirksen, V.G., Elina, G.A., Filimonova,
 L.V., Glebov, F.Z., Guiot, J., Gunova, V.S., Harrison, S.P., Jolly, D., Khomutova,
- 1311 V.I., Kvavadze, E.V., Osipova, I.M., Panova, N.K., Prentice, I.C., Saarse, L.,
- Sevastyanov, D.V., Volkova, V.S., and Zernitskaya, V.P.: Present-day and
 mid-Holocene biomes reconstructed from pollen and plant macrofossil data from
 the Former Soviet Union and Mongolia, Journal of Biogeography, 25, 1029–1053,
 1998.
- Tarasov, P.E., Williams, J.W., Andreev, A.A., Nakagawa, T., Bezrukova, E.,
 Herzschuh, U., Igarashi, Y., Müller, S., Werner, K., and Zheng, Z.: Satellite- and
 pollen-based quantitative woody cover reconstructions for northern Asia:
 Verification and application to late-Quaternary pollen data, Earth and Planetary
 Science Letters, 264, 284–298, 2007.
- 1321 Tchebakova, N.M., Parfenova, E., and Soja, A.J.: The effects of climate, permafrost1322 and fire on vegetation change in Siberia in a changing climate, Environmental

- 1323 Research Letters, 4, 045013. doi:10.1088/1748-9326/4/4/045013, 2009.
- 1324Tchebakova, N.M., Rehfeldt, G., and Parfenova, E.I.: Impacts of climate change on1325the distribution of *Larix* spp. and *Pinus sylvestris* and their climatypes in Siberia,

1326 Mitigation and Adaptation Strategies for Global Change, 11, 861–882, 2005.

- ter Braak, C.J.F., and Šmilauer, P.: CANOCO reference manual and CanoDraw for
 Windows user's guide: software for canonical community ordination (version 4.5),
 Microcomputer Power, 2002.
- ter Braak, C.J.F.: Canonical correspondence analysis: a new eigenvector technique for
 multivariate direct gradient analysis, Ecology, 67, 1167–1179, 1986.
- Tian, F., Cao, X., Dallmeyer, A., Lohmann, G., Zhang, X., Ni, J., Andreev, A.A.,
 Anderson, P.M., Lozhkin, A.V., Bezrukova, E., Rudaya, N., Xu, Q., and
 Herzschuh, U.: Biome changes and their inferred climatic drivers in northern and
 eastern continental Asia at selected times since 40 cal ka BP, Vegetation History
 and Archaeobotany, 27: 365–379, 2018.
- Tian, F., Herzschuh, U., Dallmeyer, A., Xu, Q., Mischke, S., and Biskaborn, B.K.:
 High environmental variability in the monsoon-westerlies transition zone during
 the last 1200 years: lake sediment analyses from central Mongolia and
 supra-regional synthesis, Quaternary Science Reviews, 73, 31–47, 2013.
- 1341 Trondman, A.-K., Gaillard, M.-J., Mazier, F., Sugita, S., Fyfe, R.M., Nielsen, A.B.,
- 1342 Twiddle, C., Barratt, P., Birks, H.J.B., Bjune, A.E., Björkman, L., Broström, A., Caseldine, C., David, R., Dodson, J., Dörfler, W., Fischer, E., van Geel, B., 1343 Giesecke, T., Hultberg, T., Kalnina, L., Kangur, M., van der Knaap, W.O., Koff, T., 1344 Kuneš, P., Lagerås, P., Latałowa, M., Lechterbeck, J., Leroyer, C., Leydet, M., 1345 1346 Lindbladh, M., Marquer, L., Mitchell, F.J.G., Odgaard, B.V., Peglar, S.M., Persoon, T., Poska, A., Rösch, M., Seppä, H., Veski, S., and Wick, L.: 1347 Pollen-based quantitative reconstruction of Holocene regional vegetation cover 1348 (plant-functional types and land-cover types) in Europe suitable for climate 1349 1350 modelling, Global Change Biology, 21, 676–697, 2015.
- Trondman, A.-K., Gaillard, M.-J., Sugita, S., Björkman, L., Greisamn, A., Hultberg, T.,
 Lager ås, P., Lindbladh, M., and Mazier, F.: Are pollen records from small sites

- appropriate for REVEALS model-based quantitative reconstructions of past
 regional vegetation? An empirical test in southern Sweden, Vegetation History
 and Archaeobotany, 25, 131–151, 2016.
- Tseplyayev, V.P.: The forests of the U.S.S.R.: an economic characterisation, Lesa
 SSSR, Moscow, 1961.
- Tzedakis, P.C., and Bennett, K.D.: Interglacial vegetation succession: a view from
 southern Europe, Quaternary Science Reviews, 14, 967–982, 1995.
- Vandenberghe, J., French, H.M., Gorbunov, A., Marchenko, S., Velichko, A.A., Jin, H.,
 Cui, Z., Zhang, T., and Wan, X.: The Last Permafrost Maximum (LPM) map of
 the Northern Hemisphere: permafrost extent and mean annual air temperatures,
 25–17 ka BP, Boreas, 43, 652–666, 2014.
- Velichko, A.A., Andreev, A.A., and Klimanov, V.A.: Paleoenvironmental changes in
 tundra and forest zones of the former USSR during late Pleistocene and Holocene,
 in Velichko, A.A. (eds.), Environmental changes during the last 15000, 1(60),
 1994.
- 1368 Vipper, P.B.: Pollen profile CHERNOE, Chernoe Lake, Russia, Pangaea,
 1369 https://doi.org/10.1594/PANGAEA.739109, 2010.
- Volkov, I.A., and Arkhipov, S.A.: Quaternary deposits of the Novosibirsk Region,
 Joint Institute for Geology, Geophysics and Mineralogy, Siberia Branch, USSR

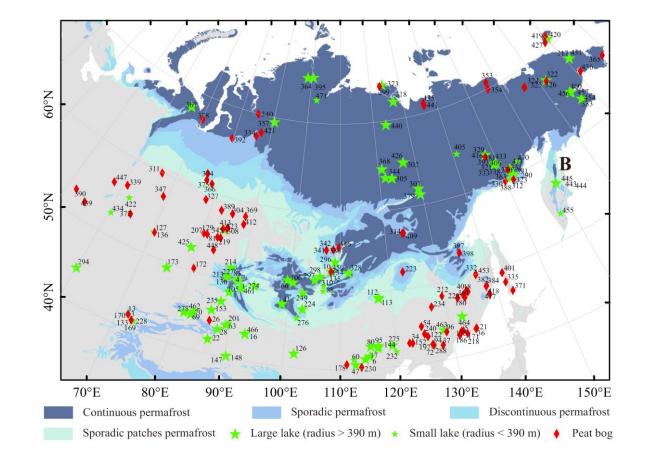
1372 Academy of Sciences, Novosibirsk, 1978 (in Russian).

- 1373 Volkova, V.S.: The Quaternary deposits of the lower Irtysh River and their
 1374 biostratigraphic characteristics, Nauka, Novosibirsk, 1966 (in Russian).
- von Stedingk, H., Fyfe, R.M., and Allard, A.: Pollen productivity estimates from the
 forest-tundra ecotone in west-central Sweden: implications for vegetation
 reconstruction at the limits of the boreal forest, The Holocene, 18, 323–332, 2008.
- Wang, B.Y., Song, C.Q., Cheng, Q.G., and Sun, X.J.: Palaeoclimate reconstruction by
 adopting the pollen-climate response surface model to analysis the Chasuqi
 deposition section, Acta Botanica Sinica, 40, 1067–1074, 1998 (in Chinese with
 English abstract).
- 1382 Wang, H.Y., Liu, H.Y., Cui, H.T., and Abrahamsen, N.: Terminal

- Pleistocene/Holocene palaeoenvironmental changes revealed by
 mineral-magnetism measurements of lake sediments for Dali Nor area,
 southeastern Inner Mongolia Plateau, China, Palaeogeography Palaeoclimatology
 Palaeoecology, 170, 115–132, 2001.
- Wang, P.F., and Xia, Y.M.: Preliminary research of vegetational succession on the
 Songnen Plain since Late Pleistocene, Bulletin of Botanical Research, 8, 87–96,
 1988 (in China with English abstract).
- Wang, W., Feng, Z., Ran, M., and Zhang, C.: Holocene climate and vegetation
 changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A
 potential contribution to understanding of Holocene climate pattern in
 East-central Asia, Quaternary International, 311, 54–62, 2013.
- Wang, W., Ma, Y.Z., Feng, Z.D., Narantsetseg, T., Liu, K.B., and Zhai X.W.: A
 prolonged dry mid-Holocene climate revealed by pollen and diatom records from
 Lake Ugii Nuur in central Mongolia, Quaternary International, 229, 74–83, 2011.
- Wang, Y., and Herzschuh, U.: Reassessment of Holocene vegetation change on the
 upper Tibetan Plateau using the pollen-based REVEALS model, Review of
 Palaeobotany and Palynology, 168, 31–40, 2011.
- Wen, Q.Z., and Qiao, Y.L.: Preliminary probe of climatic sequence in the last 13 000
 years in Xinjiang Region, Quaternary Saciences, 4, 363–371, 1990 (in Chinese
 with English abstract).
- Wen, R.L., Xiao, J.L., Chang, Z.G., Zhai, D.Y., Xu, Q.H., Li, Y.C., and Itoh, S.:
 Holocene precipitation and temperature variations in the East Asian monsoonal
 margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China,
 Boreas, 39, 262–272, 2010.
- Wieczorek, M., Kruse, S., Epp, L.S., Kolmogorov, A., Nikolaev, A.N., Heinrich, I.,
 Jeltsch, F., Pestryakova, L.A., Zibulski, R., and Herzschuh, U.: Dissimilar
 responses of larch stands in northern Siberia to increasing temperatures—a field
 and simulation based study, Ecology, 98, 2343–2355, 2017.
- Willerslev, E., Davison, J., Moora, M., Zobel, M., Coissac, E., Edwards, M.E.,
 Lorenzen, E.D., Vesterg ård, M., Gussarova, G., Haile, J., Craine, J., Gielly, L.,

- 1413 Boessenkool, S., Epp, L.S., Pearman, P.B., Cheddadi, R., Murray, D., Br åthen,
- 1414 K.A., Yoccoz, N., Binney, H., Cruaud, C., Wincker, P., Goslar, T., Alsos, I.G.,
- 1415 Bellemain, E., Brysting, A.K., Elven, R., Sønstebø, J.H., Murton, J., Sher, A.,
- 1416 Rasmussen, M., Rønn, R., Mourier, T., Cooper, A., Austin, J., Möller, P., Froese,
- 1417 D., Zazula, G., Pompanon, F., Rioux, D., Niderkorn, V., Tikhonov, A., Savvinov,
- 1418 G., Roberts, R.G., MacPhee, R.D.E., Gilbert, M.T.P., Kjær, K.H., Orlando, L.,
- 1419 Brochmann, C., and Taberlet, P.: Fifty thousand years of Arctic vegetation and 1420 megafaunal diet, Nature, 506, 47–51, 2014.
- 1421 Xia, Y.M., Wang, P.F., Li, Q.S., and Jiang, G.W.: The preliminary study on climate
 1422 change of the warm period of Holocene in the Northeast China, in Zhang, L.S.
 1423 (eds.), Research on the Past Life-Supporting Environment Change of China.
 1424 China Ocean Press, Beijing. 296–315pp, 1993 (in China with English abstract).
- 1425 Xia, Y.M.: Preliminary study on pollen assemblage and palaeoenvironment of the
 1426 Holocene peat in Northeast China, in Huang, X.C. (eds.), Studies on Chinese Bog,
 1427 Science Press of China, Beijing, 65–72pp, 1988b (in China with English abstract).
- 1428 Xia, Y.M.: Preliminary study on vegetational development and climatic changes in the
 1429 Sanjiang Plain in the last 12000 years, Scientia Geographica Sinica, 8, 240–249,
 1430 1988a (in China with English abstract).
- 1431 Xia, Y.M.: Study on record of spore-pollen in high moor peat and development and
 1432 successive process of peat in Da and Xiao Hinggan Mountains, Scientia
 1433 Geographica Sinica, 16, 337–344, 1996 (in China with English abstract).
- 1434 Xiao, J.L., Xu, Q.H., Nakamura, T., Yang, X.L., Liang, W.D., and Inouchif, Y.:
 1435 Holocene vegetation variation in the Daihai Lake region of north-central China: a
 1436 direct indication of the Asian monsoon climatic history, Quaternary Science
 1437 Reviews, 23, 1669–1679, 2004.
- Xie, H., Zhang, H., Ma, J., Li, G., Wang, Q., Rao, Z., Huang, W., Huang, X., and
 Chen, F.: Trend of increasing Holocene summer precipitation in arid central Asia:
 Evidence from an organic carbon isotopic record from the LJW10 loess section in
 Xinjiang, NW China, Palaeogeography, Palaeoclimatology, Palaeoecology, 509,
 24–32, 2018.

- Xu, Q., Cao, X., Tian, F., Zhang, S., Li, Y., Li, M., Liu, Y., and Liang, J.: Relative
 pollen productivities of typical steppe species in northern China and their
 potential in past vegetation reconstruction, Science China: Earth Sciences, 57,
 1254–1266, 2014.
- 1447 XU, Q.H., Wang, Z.H., Xu, Q.H., and Xia Y.M.: Pollen analysis of peat marsh in birch
 1448 forest, the Changbai Mountains and the significance, Scientia Geographica Sinica,
 1449 14, 186–192, 1994 (in China with English abstract).
- 1450 Xu, Y.Q.: The assemblage of Holocene spore pollen and its environment in Bosten
 1451 Lake area, Xinjiang, Arid Land Geography, 21, 43–49, 1998 (in Chinese with
 1452 English abstract).
- Yan, F.H., Ye, Y.Y., and Mai, X.S.: The sporo-pollen assemblage in the Luo 4 drilling
 of Lop Lake in Uygur Autonomous Region of Xinjiang and its significance,
 Seismology and Geology, 5, 75–80, 1983 (in Chinese with English abstract).
- Yan, S., Li, S.F., Kong, Z.C., Yang, Z.J., and Ni, J.: The pollen analyses and
 environmental changes of the Dongdaohaizi area in Urumqi, Xinjiang, Quaternary
 Sciences, 24, 463–468, 2004 (in Chinese with English abstract).
- Yan, S., Mu, G.J., Xu, Y.Q., and Zhao, Z.H.: Quaternary environmental evolution of
 the Lop Nur region, China, Acta geographica sinica, 53, 332–340, 1998 (in
 Chinese with English abstract).
- Yang X.D., Wang S.M., Xue B., and Tong G.B.: Vegetational development and
 environmental changes in Hulun Lake since Late Pleistocene, Acta
 Palaeontologica Sinica, 34, 647–656, 1995 (in Chinese with English abstract).
- Zhang, N., Yasunari, T., and Ohta, T.: Dynamics of the larch taiga permafrost coupled
 system in Siberia under climate change, Environmental Research Letters, 6,
 24003–24006, 2011.
- Zhang, Y., Kong, Z.C., Ni, J., Yan, S., and Yang, Z.J.: Pollen record and
 environmental evolution of Caotanhu wetland in Xinjiang since 4550 cal. a BP,
 Chinese Science Bulletin, 53, 1049–1061, 2008.
- 1471 Zhang, Y., Kong, Z.C., Yan, S., Yang, Z.J., and Ni, J.: "Medieval Warm Period" in
 1472 Xinjiang: Rediscussion on paleoenvironment of the Sichanghu Profile in


1473 Gurbantunggut Desert, Quaternary Sciences, 24, 701–708, 2004 (in Chinese with1474 English abstract).

- Zhang, Y.L., and Yang, Y.X.: The evolution of vegetation and climate on the basis of
 sporo-pollen assemblages since Mid-Holocene in the Tongjiang region,
 Heilongjiang, Scientia Geographica Sinica, 22, 426–429, 2002 (in Chinese with
 English abstract).
- Zimov, S.A., Chuprynin, V.I., Oreshko, A.P., Chapin III, F.S., Reynolds, J.F., and
 Chapin, M.C.: Steppe-tundra transition: an herbivore-driven biome shift at the end
 of the Pleistocene, The American Naturalist, 146, 765–794, 1995.
- 1482 Zimov, S.A., Zimov, N.S., Tikhonov, A.N., and Chapin III, F.S.: Mammoth steppe: a
- high-productivity phenomenon, Quaternary Science Reviews, 57, 26–45, 2012.
- 1484 Zudin, A.N., and Votakh, M.R.: The stratigraphy of Pliocene and Quaternary strata of

1485 Priobskogo Plateau, Nauka, Novosibirsk, 1977 (in Russian).

1487 Appendices

- 1488 Appendix 1 Distribution of the 203 fossil pollen sites together with the modern permafrost extent in northern Asia. The number of each site is used as its site ID in
- 1489 Appendix 2.

Group	Site ID	Site	Lat.	Long.	Elev. (m)	Basin type	Pollen count	Area (ha)	Radius (m)	Dating method	Num. of dating	Time span (cal ka BP)	Resol. (year)	Reference
G1	294	Aral Lake	44.42	59.98	53	Lake	Yes	330000	32410	¹⁴ C	4U	8.7-0	260	Aleshinskaya, Z.V. unpublished.
G2	372	Mokhovoye	53.77	64.25	178	Bog	Yes	20	252	¹⁴ C	4C+1E	6.0-0	180	Kremenetskii et al., 1994
G2	439	Novienky peat bog	52.24	54.75	197	Bog	Yes	-	-	¹⁴ C	1U	4.5-0	270	López-Garc á et al., 2003
G2	422	Zaboinoe Lake	55.53	62.37	275	Lake	Yes	6	138	¹⁴ C	1U	12.3-0.1	220	Khomutova and Pushenke
G2	434	Lake Fernsehsee	52.83	60.50	290	Lake	Yes	0	38	¹⁴ C	10A	9.1-0.4	220	Stobbe et al., 2015
G2	390	Pobochnoye	53.03	51.84	81	Bog	No	79	500	¹⁴ C	10C+6E	14.4-0	540	Kremenetski et al., 1999
G3	311	Chesnok Peat	60.00	66.50	42	Bog	Yes	-	-	¹⁴ C	7C	10.6-0.5	280	Volkova, 1966
G3	347	Komaritsa Peat	57.50	69.00	42	Bog	Yes	-	-	¹⁴ C	10C	10.5-0.5	350	Volkova, 1966
G3	447	UstMashevskoe	56.32	57.88	220	Bog	Yes	30	309	¹⁴ C	5C	7.8-0	150	Panova et al., 1996
G3	339	Karasieozerskoe	56.77	60.75	230	Bog	Yes	914	1706	¹⁴ C	3A	5.9-0.1	190	Panova, 1997
G4	378	Nulsaveito	67.53	70.17	57	Bog	Yes	-	-	¹⁴ C	4A+1C	8.4-6.4	70	Panova, 1990
G4	367	Lyadhej-To Lake	68.25	65.75	150	Lake	Yes	197	792	¹⁴ C	14A+6E	12.5-0.3	170	Andreev et al., 2005
G5	169	Nizhnee Lake	41.30	72.95	1371	Lake	No	-	70	¹⁴ C	4E	1.5-0	100	Beer et al., 2008
G5	228	Verkhnee Lake	41.30	72.95	1440	Lake	No	1	60	¹⁴ C	5E	1.5-0	100	Beer et al., 2008
G5	3	Ak Terk Lake	41.28	72.83	1748	Bog	No	-	-	¹⁴ C	2A	7.5-0	200	Beer et al., 2008
G5	133	Kosh Sas	41.85	71.97	1786	Bog	No	-	-	¹⁴ C	1A	3.5-0	100	Beer et al., 2008
G5	170	Ortok Lake	41.23	73.25	1786	Lake	No	-	60	¹⁴ C	5A	1-0	100	Beer et al., 2008
G5	13	Bakaly Lake	41.87	71.97	1879	Lake	No	1	50	¹⁴ C	4A	7-0	195	Beer et al., 2008
G6	425	Big Yarovoe Lake	52.85	78.63	79	Lake	Yes	6362	4500	inclination	-	4.3-0	190	Rudaya et al., 2012

1491	Appendix 2 Metadata for all	pollen records used in this study.	. Original publications list	st see https://doi.pangaea.de/10.	1594/PANGAEA.898616.

										Biwa				
G6	172	Ozerki	50.40	80.47	210	Bog	Yes	-	-	¹⁴ C	3A+13C	14.5-0	300	Tarasov et al., 1997
G6		Karas'e Lake	53.03	70.22	435	Lake	Yes	17	235	¹⁴ C	6U	5.5-0	170	Tarasov and Kremenetskii.
00	127	Turus e Eure	55.65	70.22	155	Luke	105	1,	200	C	00	5.5 0	170	1995
G6		Kotyrkol	52.97	70.42	439	Bog	Yes	-	-	¹⁴ C	8U	4.5-0.5	180	Tarasov and Kremenetskii.
	136													1995
G6	150	Pashennoe Lake	49.37	75.40	871	Lake	Yes	64	451	¹⁴ C	5D+5E	9.5-0	280	Tarasov and Kremenetskii.
	173													1995
G7	81	Gladkoye Bog	55.00	83.33	80	Bog	Yes	-	-	¹⁴ C	13C	11-0.5	170	Firsov et al., 1982
G7	308	Chaginskoe Mire	56.45	84.88	80	Bog	Yes	10	175	¹⁴ C	2C	8.8-0	320	Blyakharchuk, 2003.
G7	345	Kirek Lake	56.10	84.22	90	Lake	Yes	52	407	¹⁴ C	3G	10.5-1.5	190	Blyakharchuk, 2003
G7		Tom' River Peat	56.17	84.00	100	Bog	Yes			¹⁴ C	6C	10.1-0.2	390	Arkhipov and Votakh,
07	413	Tom River Feat	50.17	84.00	100	bog	105	-	-	C	00	10.1-0.2	390	1980
G7	423	Zhukovskoye mire	56.33	84.83	106	Bog	Yes	-	-	¹⁴ C	9C+6H	11.2-0	130	Borisova et al., 2011
G7		Tolmachevsko	55.00	84.00	110	Bog	Yes		_	¹⁴ C	1A+3C	13-1.5	400	Volkov and Arkhipov,
07	219	Tomachevsko	55.00	04.00	110	bog	103			C	IATSC	15-1.5	400	1978
G7	207	Suminskoye	55.00	80.25	135	Bog	Yes	-	-	¹⁴ C	8A	3-0	200	Klimanov, 1976
G7	129	Kayakskoye	55.00	81.00	150	Bog	Yes	-	-	¹⁴ C	5C	6.5-0	210	Levina et al., 1987
G7	448	Kalistratikha	53.33	83.25	190	Bog	Yes	-	-	¹⁴ C	4A	39.0-12.7	1870	Zudin and Votakh, 1977
G8	389	Petropavlovka	58.33	82.50	100	Bog	Yes	-	-	¹⁴ C	4C+1E	10.5-0.1	160	Blyakharchuk, 1989
G8	304	Bugristoe	58.25	85.17	130	Bog	Yes	-	-	LSC	4C+1E	11.5-5.0	100	Blyakharchuk, 1989
G8	369	Maksimkin Yar	58.33	88.17	150	Bog	Yes	-	-	¹⁴ C	4C	8.3-0.2	170	Blyakharchuk, 1989
G8	412	Teguldet	57.33	88.17	150	Bog	Yes	-	-	LSC	3C	7.3-2.4	90	Blyakharchuk, 1989
G9	374	Nizhnevartovsk	62.00	76.67	54	Bog	Yes	-	-	¹⁴ C	3A+7C	11.1-0	300	Neustadt and Zelikson,

with Lake

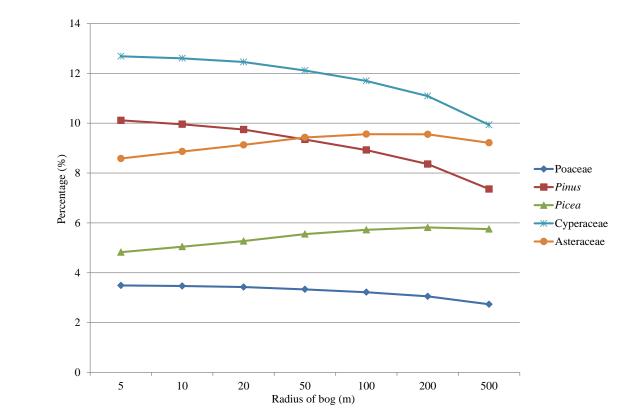
G9	375	Nizhnevartovskoye	61.25	77.00	55	Bog	Yes	-	-	¹⁴ C	1A+12C+1E	12.6-0	380	Neishtadt, 1976
G9	327	Entarnoye Peat	59.00	78.33	65	Bog	Yes	-	-	¹⁴ C	5C	14.9-0.9	460	Neishtadt, 1976
G9	366	Lukaschin Yar	61.00	78.50	65	Bog	Yes	-	-	¹⁴ C	13C	10.9-0.3	430	Neishtadt, 1976
G10	334	Igarka Peat	67.67	86.00	45	Bog	Yes	244	881	¹⁴ C	1A+2C	10.9-5.9	230	Kats, 1953
G10	392	Pur-Taz Peatland	66.70	79.73	50	Bog	Yes	5	126	¹⁴ C	5A	10.3-4.7	80	Peteet et al., 1998
G10	340	Karginskii Cape	70.00	85.00	60	Bog	Yes	-	-	¹⁴ C	13C	8.9-3.5	290	Firsov et al., 1972
G10	421	Yenisei	68.17	87.15	68	Bog	No	-	-	¹⁴ C	7C	6.5-1.6	110	Andreev and Klimanov 2000
G10	357	Lake Lama	69.53	90.20	77	Lake	Yes	64245	14300	¹⁴ C	26A+4D+4E	19.5-0	170	Andreev et al., 2004
G11	471	11-CH-12A Lake	72.40	102.29	60	Lake	Yes	3	100	¹⁴ C+Pb/Cs	8A+7E	7.0-0.1	110	Klemm et al., 2015
G11	364	Levinson-Lessing Lake	74.47	98.64	26	Lake	Yes	2145	2613	¹⁴ C	29A+1B+19E	35.3-0	390	Andreev et al., 2003
G11	395	SAO1	74.55	100.53	32	Lake	Yes	456000	38098	¹⁴ C	6A+5C	57.9-0	1320	Andreev et al., 2003
G12	462	Aibi Lake	45.02	82.83	200	Lake	Yes	100885	17920	¹⁴ C	8E	12.6-0	65	Wang et al., 2013
G12	69	Ebinur Lake	44.55	82.45	212	Lake	Yes	46421	12156	¹⁴ C	7U	13-0	900	Wen and Qiao, 1990
G12	70	Ebinur Lake_SW	45.00	82.80	212	Lake	Yes	46421	12156	¹⁴ C	6U	8.5-1.5	780	Lin, 1994
G12	26	Caotanhu Lake	44.42	86.02	380	Bog	Yes	2760	2964	¹⁴ C	5C	8.5-0	150	Zhang Y. et al., 2008
G12	63	Dongdaohaizi Lake	44.70	89.56	430	Lake	Yes	20	252	¹⁴ C	8U	5.5-0	85	Yan et al., 2004
G12	201	Sichanghu Lake	44.31	89.14	589	Lake	Yes	2000	2523	¹⁴ C	4U	1-0	50	Zhang Y. et al., 2004b
G12	22	Bosten Lake	41.97	86.55	1050	Lake	No	96608	17536	¹⁴ C	5U	13-0	420	Xu, 1998
G12	28	Chaiwopu Lake	43.55	87.78	1100	Lake	No	3101	3142	¹⁴ C	2U	10-0	845	Li and Yan, 1990
G12	278	Sayram Lake	44.57	81.15	2072	Lake	Yes	45800	12074	¹⁴ C	12E	13.8-0.1	90	Jiang et al., 2013
G13	153	Manas Lake	45.83	85.92	251	Lake	Yes	55000	13231	¹⁴ C	7C	13.5-1	210	Sun et al., 1994
G13	235	Wulungu Lake	47.22	87.30	479	Lake	Yes	67019	430	¹⁴ C+Pb/Cs	1C	9-0	80	Liu X.Q. et al., 2008

G14	214	Teletskoye Lake	51.72	87.65	1900	Lake	Yes	16610	7271	¹⁴ C+Pb/Cs	6E	1-0	20	Andreev et al., 2007
G14	227	Uzunkol Lake	50.48	87.11	1985	Lake	No	123	625	¹⁴ C	2A	17.5-0	210	Blyakharchuk et al., 2004
G14	130	Kendegelukol Lake	50.51	87.64	2050	Lake	No	5	130	¹⁴ C	7E	16-1	260	Blyakharchuk et al., 2004
G14	105	Hoton Nur Lake	48.62	88.35	2083	Lake	Yes	5021	3998	¹⁴ C	4A	6-0	60	Rudaya et al., 2009
G14	213	Tashkol Lake	50.45	87.67	2150	Lake	No	-	150	¹⁴ C	3C	16-3	250	Blyakharchuk et al., 2004
G14	4	Akkol Lake	50.25	89.63	2204	Lake	No	388	1111	¹⁴ C	12E	13.5-0	250	Blyakharchuk et al., 2007
G14	83	Grusha Lake	50.38	89.42	2413	Lake	No	130	644	¹⁴ C	3A+13E	14-1.5	250	Blyakharchuk et al., 2007
G15	274	Bayan Nuur	50.00	93.00	932	Lake	No	2968	3073	¹⁴ C	7E	15.7-0.2	210	Krengel, 2000
G15	1	Achit Nur Lake	49.50	90.60	1435	Lake	No	29700	9723	^{14}C	4E	14-0.5	700	Gunin et al., 1999
G15	461	Achit Nuur	49.42	90.52	1444	Lake	No	29700	9723	¹⁴ C	10E	20.2-0	250	Sun et al., 2013
G16	148	Lop Nur_1998	40.28	90.25	780	Lake	No	535000	41267	¹⁴ C	3U	22-2	2000	Yan et al., 1998
G16	147	Lop Nur_1983	40.33	90.25	800	Lake	Yes	535000	41267	¹⁴ C	3U	22-0.5	1600	Yan et al., 1983
G16	16	Barkol Lake	43.62	92.80	1575	Lake	Yes	11300	5997	¹⁴ C	1A+10E	10-0	115	Tao et al., 2009
G16	466	Balikun Lake	43.68	92.80	1575	Lake	Yes	7897	5014	^{14}C	1D+5E	30.5-9	250	An et al., 2013
G17	126	Juyan Lake	41.89	101.85	892	Lake	Yes	72000	15139	^{14}C	5E	10.5-1.5	140	Herzschuh et al., 2004
G18	88	Gun Nur Lake	50.25	106.60	600	Lake	No	33	325	¹⁴ C	7E	11-0	320	Gunin et al., 1999
G18	249	Yamant Nur Lake	49.90	102.60	1000	Lake	No	58	430	¹⁴ C	4E	15.5-0.5	360	Gunin et al., 1999
G18	224	Ugii Nuur Lake	47.77	102.77	1330	Lake	No	2456	2796	¹⁴ C	2C	9-0	85	Wang et al., 2011
G18	66	Dood Nur Lake	51.33	99.38	1538	Lake	No	6400	4514	¹⁴ C	2E	14-0	740	Gunin et al., 1999
G18	106	Hovsgol Lake	51.10	100.50	1645	Lake	Yes	276000	29640	^{14}C	5E	12-2.5	190	Prokopenko et al., 2007
G18	276	Khuisiin Lake	46.60	101.80	2270	Lake	Yes	4	118	¹⁴ C+Pb/Cs	6E	1.2-0	17	Tian et al., 2013
G18	41	Daba Nur Lake	48.20	98.79	2465	Lake	No	157	707	¹⁴ C	5E	13-0	520	Gunin et al., 1999
G19	328	Bolshoe Eravnoe Lake	52.58	111.67	947	Lake	Yes	9503	5500	¹⁴ C	3E	7.3-0.2	710	Vipper, 2010
G20	10	Baikel Lake	52.08	105.87	130	Lake	No	3150000	100134	¹⁴ C	12A	22-0	370	Demske et al., 2005

		Baikal												
G20	296	Lake-CON01-603-5	53.95	108.91	446	Lake	Yes	3150000	100134	¹⁴ C	10D	15.8-0	270	Demske et al., 2005
G20	135	Lake Kotokel_2010	52.78	108.12	458	Lake	Yes	6900	4687	¹⁴ C	11E	47-0	220	Bezrukova et al., 2010
G20	134	Lake Kotokel_2009	52.78	108.12	458	Lake	Yes	6900	4687	¹⁴ C	3E	15-0	500	Tarasov et al., 2009
G20	310	Chernoe Lake	50.95	106.63	500	Lake	Yes	-	250	¹⁴ C	4E	7-0.7	620	Vipper, 2010
G20	297	Baikal Lake-CON01-605-3	51.59	104.85	675	Lake	Yes	3150000	100134	¹⁴ C	5D	17.7-0	200	Demske et al., 2005
G20	380	Okunayka	55.52	108.47	802	Bog	Yes	-	-	¹⁴ C	6C	8.3-2.0	120	Bezrukova et al., 2011
G20	446	Ukta Creek mouth	55.80	109.70	906	Bog	Yes	-	-	¹⁴ C	3U	5.1-0	160	Bezrukova et al., 2006
G20	450	Cheremushka Bog	52.75	108.08	1500	Bog	Yes	-	-	¹⁴ C	6C	33.5-0	460	Shichi et al., 2009
G20	298	Baikal Lake-CON01-605-5	51.58	104.85	492	Lake	Yes	3150000	100134	¹⁴ C	12D	11.5-0	130	Demske et al., 2005
G20	341	Khanda-1	55.44	107.00	867	Bog	Yes	-	-	^{14}C	3C	3.1-0.3	50	Bezrukova et al., 2011
G20	342	Khanda	55.44	107.00	867	Bog	Yes	-	-	¹⁴ C	6C	5.8-0	140	Bezrukova et al., 2011
G21	275	Qiganhu Lake	42.90	119.30	600	Lake	Yes	190	778	¹⁴ C	5E	12.1-6.7	35	Hu et al., 2016
G21	232	Wangyanggou	42.07	119.92	751	Lake	No	13	200	¹⁴ C	1A+3E	5-0	85	Li et al., 2006
G21	230	Wangguantun	40.27	113.67	800	Bog	Yes	-	-	¹⁴ C	1A+4F	8-3	310	Kong and Du, 1996
G21	6	Anguli Nur Lake	41.33	114.37	1000	Lake	Yes	4264	3684	¹⁴ C	2U	14-10.5	520	Li et al., 1990
G21	178	Qasq	40.67	111.13	1000	Bog	Yes	-	-	¹⁴ C	2E	10-0	90	Wang et al., 1997
G21	47	Daihai Lake_2004	40.58	112.67	1220	Lake	Yes	16000	7136	¹⁴ C	8E	11.5-0	215	Xiao et al., 2004
G21	80	Gaoximage Lake	42.95	115.37	1253	Lake	No	100000	17841	¹⁴ C	4E	6-0	150	Li C.Y. et al., 2003
G21	95	Haoluku Lake	42.96	116.76	1295	Lake	No	1384	2099	¹⁴ C	4E	11.5-0	250	Wang et al., 2001
G21	17	Bayanchagan Lake	41.65	115.21	1355	Lake	Yes	636	1423	¹⁴ C	2B+7E	11.5-0	250	Jiang et al., 2006
G21	144	Liuzhouwan Lake	42.71	116.68	1365	Lake	No	288	957	¹⁴ C	3E	13-0.5	470	Wang et al., 2001
G21	60	Diaojiaohaizi Lake	41.30	112.35	1800	Lake	Yes	30	309	¹⁴ C	4U	11.5-2.5	95	Song et al., 1996

G22	112	Hulun Nur Lake_1995	49.28	117.40	544	Lake	No	233900	27286	¹⁴ C	7U	19-0.5	190	Yang et al., 1995
G22	113	Hulun Nur Lake_2006	49.13	117.51	545	Lake	Yes	233900	27286	¹⁴ C	13E	11-0	65	Wen et al., 2010
G23	314	Derput	57.03	124.12	700	Bog	Yes	1	56	¹⁴ C	1A+4C	11.7-0.8	210	Andreev and Klimanov, 1991
G23	409	Suollakh	57.05	123.85	811	Bog	Yes	-	-	¹⁴ C	8C	12.8-3.7	180	Andreev et al., 1991
G24	379	Nuochaga Lake	61.30	129.55	260	Lake	Yes	120	618	¹⁴ C	4E	6.5-0	140	Andreev and Klimanov, 1989
G24	307	Chabada Lake	61.98	129.37	290	Lake	Yes	210	818	¹⁴ C	15U	13-0	110	Andreev and Klimanov, 1989
G25	305	Boguda Lake	63.67	123.25	120	Lake	Yes	2500	2821	¹⁴ C	7E	10.9-0.4	180	Andreev et al., 1989
G25	344	Khomustakh Lake	63.82	121.62	120	Lake	Yes	440	1183	¹⁴ C	9E	12.3-0.1	170	Andreev et al., 1989
G25	368	Madjaga Lake	64.83	120.97	160	Lake	Yes	1440	2141	LSC	7E	8.2-0.2	120	Andreev and Klimanov, 1989
G25	302	Billyakh Lake	65.30	126.78	340	Lake	Yes	1678	2311	¹⁴ C	7A	14.1-0	180	Müller et al., 2009
G25	426	Lake Billyakh_PG1755	65.27	126.75	340	Lake	Yes	1634	2281	¹⁴ C	1A+10E	50.6-0.2	470	Müller et al., 2010
G26	440	Lake Kyutyunda_PG2022	69.63	123.65	66	Lake	Yes	468	1220	¹⁴ C	10E	10.8-0.3	360	Biskaborn et al., 2016
G27	435	Khocho	71.05	136.23	6	Bog	Yes	10	178	¹⁴ C	1C	10.4-0.4	300	Velichko et al., 1994
G27	441	Samandon	70.77	136.25	10	Bog	Yes	100	564	¹⁴ C	3A+8C+4E	7.9-0.2	280	Velichko et al., 1994
G28	299	Barbarina Tumsa	73.57	123.35	10	Bog	Yes	-	-	¹⁴ C	4C	4.9-0.3	240	Andreev et al., 2004
G28	373	Lake Nikolay	73.67	124.25	35	Lake	Yes	1500	2185	¹⁴ C	6A	12.5-0	600	Andreev et al., 2004
G28	318	Dolgoe Ozero	71.87	127.07	12	Lake	Yes	84	517	¹⁴ C	1A+9B	15.3-0	210	Pisaric et al., 2001
G29	152	Maili	42.87	122.88	155	Bog	No	-	-	¹⁴ C	5A	3-0	115	Ren and Zhang, 1997
G29	54	Dashan	44.88	124.85	200	Bog	Yes	-	-	¹⁴ C	5U	7.5-1	160	Xia et al., 1993
G29	240	Xiaonan	43.88	125.22	209	Bog	Yes	-	-	¹⁴ C	5U	5.5-0	290	Wang and Xia, 1988

G	29	197	Shuangyang	43.45	125.75	215	Bog	Yes	-	-	¹⁴ C	12E	2.5-0	30	Qiu et al., 1981
G	29	34	Charisu	42.95	122.35	249	Bog	Yes	-	-	¹⁴ C	10A	5.5-0	170	Li Y.H. et al., 2003b
G	29	463	Jingbo Lake	43.91	128.75	350	Lake	Yes	9500	5499	¹⁴ C+LSC	3E+4	8.8-0	40	Li et al., 2011
G	29	96	Harbaling	43.63	129.20	600	Bog	Yes	-	-	¹⁴ C	3U	3-0	150	Xia, 1988b
G	29	122	Jinchuan	42.35	126.38	620	Bog	Yes	-	-	¹⁴ C	7A	5.5-0	105	Li Y.H. et al., 2003a
G	29	72	Erhailongwan Lake	42.30	126.37	724	Lake	Yes	30	309	¹⁴ C	2A+14E	22-0	760	Liu Y.Y. et al., 2008
G	29	288	Sihailongwan Lake	42.28	126.60	797	Lake	Yes	41	360	¹⁴ C+varve	40A	16.9-0.2	47	Stebich et al., 2015
G	29	94	Hani	42.21	126.52	899	Bog	Yes	1800	2394	¹⁴ C	1C	9.5-0	455	Qiao, 1993
G	29	37	Chichi Lake	42.03	128.13	1800	Bog	Yes	0	40	¹⁴ C	1C	1-0	140	Xu et al., 1994
G	30	21	Belaya Skala	43.25	134.57	4	Bog	Yes	-	-	¹⁴ C	2A+1C	6.5-3	250	Korotky et al., 1980
G	30	36	Chernyii Yar	43.18	134.43	4	Bog	Yes	-	-	¹⁴ C	4C	10-0.5	260	Korotky et al., 1980
G	30	218	Tikhangou	42.83	132.78	4	Bog	Yes	-	-	¹⁴ C	5U	12-0	500	Korotky et al., 1980
G	30	5	Amba River	43.32	131.82	5	Bog	Yes	-	-	¹⁴ C	1A+1C+1U	5-2.5	300	Korotky et al., 1980
G	30	186	Ryazanovka	42.83	131.37	6	Bog	Yes	-	-	¹⁴ C	7A	6-0.5	540	Shilo, 1987
G	30	171	Ovrazhnyii	43.25	134.57	8	Bog	Yes	-	-	¹⁴ C	3A	7-1	200	Shilo, 1987
G	i30	175	Peschanka	43.30	132.12	12	Bog	Yes	-	-	¹⁴ C	3U	22-11	965	Anderson et al., 2002
G	i30	464	Xingkai Lake	45.21	132.51	69	Lake	Yes	419000	36520	¹⁴ C+Pb/Cs	3E	28.5-0	150	Ji et al., 2015
G	31	220	Tongjiang	47.65	132.50	49	Bog	Yes	-	-	¹⁴ C	5C	6-0	130	Zhang and Yang, 2002
G	31	40	Chuangye	48.33	134.47	50	Bog	Yes	-	-	¹⁴ C	3U	12-1	400	Xia, 1988a
G	31	161	Minzhuqiao	47.53	133.87	52	Bog	Yes	-	-	¹⁴ C	4U	6.5-0.5	420	Xia, 1988a
G	31	180	Qindeli	47.88	133.67	52	Bog	Yes	-	-	¹⁴ C	1F+7U	13.5-0.5	380	Xia, 1988a
G	31	18	Beidawan	48.13	134.70	60	Bog	Yes	8	157	¹⁴ C	3U	5.5-0.5	350	Xia, 1988a
G	31	234	Wuchanghai	47.22	127.33	200	Bog	Yes	-	-	¹⁴ C	9E	7-0	250	Xia, 1988b
G	31	212	Tangbei	48.35	129.67	486	Bog	Yes	-	-	¹⁴ C	2A	5.5-1	160	Xia, 1996


G32	418	Venyukovka-3	47.12	138.58	5	Bog	Yes	-	-	¹⁴ C	1A+2C	5.8-3.2	140	Korotky et al., 1980
G32	417	Venyukovka-2	47.03	138.58	6	Bog	Yes	-	-	¹⁴ C	1A+1C	3.6-0.4	140	Korotky et al., 1980
G32	384	Oumi	48.22	138.40	990	Bog	Yes	-	-	¹⁴ C	5C	2.6-0.4	80	Anderson et al., 2002
G32	382	Opasnaya River	48.23	138.48	1320	Bog	Yes	-	-	¹⁴ C	7C	13.3-6.7	360	Korotky et al., 1988
G33	335	Il'inka Terrace	47.97	142.17	3	Bog	Yes	-	-	¹⁴ C	2C+1F	2.6-1.1	360	Korotky et al., 1997
G33	371	Mereya River	46.62	142.92	4	Bog	Yes	-	-	¹⁴ C	2C+2F	42.0-0.8	1530	Anderson et al., 2002
G33	401	Sergeevskii	49.23	142.08	6	Bog	Yes	-	-	¹⁴ C	8A+1C	8.4-2.2	110	Korotky et al., 1997
G34	332	Gurskii Peat	50.07	137.08	15	Bog	Yes	-	-	¹⁴ C	7C	13.1-1.5	380	Korotky, 1982
G34	453	Gur Bog	50.00	137.05	35	Bog	No	-	-	¹⁴ C	13C	22.1-0	340	Mokhova et al., 2009
G34	223	Tuqiang	52.23	122.80	400	Bog	Yes	-	-	¹⁴ C	10A+14E+8F	3-1	125	Xia, 1996
G34	398	Selitkan-2	53.22	135.03	1300	Bog	Yes	-	-	¹⁴ C	4C	6.4-1.9	260	Volkov and Arkhipov, 1978
G34	397	Selitkan-1	53.22	135.05	1320	Bog	Yes	-	-	¹⁴ C	6C	7.9-0	140	Korotky et al., 1985
G35	443	Two-Yurts Lake_PG1856-3	56.82	160.04	275	Lake	Yes	1168	1928	¹⁴ C	5A	6.0-2.8	140	Hoff et al., 2015
G35	444	Two-Yurts Lake_PG1857-2	56.82	160.07	275	Lake	Yes	1168	1928	¹⁴ C	5A	2.5-0.1	130	Hoff et al., 2015
G35	445	Two-Yurts Lake_PG1857-5	56.82	160.07	275	Lake	Yes	1168	1928	¹⁴ C	5A	4.4-2.5	120	Hoff et al., 2015
G35	455	Lake Sokoch	53.25	157.75	495	Lake	Yes	41	363	¹⁴ C	8E	9.7-0.3	250	Dirksen et al., 2012.
G36	330	Glukhoye Lake	59.75	149.92	10	Bog	Yes	-	-	¹⁴ C	5C	9.4-3.4	1000	Lozhkin et al., 1990
G36	312	Chistoye Lake	59.55	151.83	91	Bog	Yes	-	-	¹⁴ C	5C	7.0-0	540	Anderson ey al., 1997
G36	363	Lesnoye Lake	59.58	151.87	95	Lake	Yes	13	200	¹⁴ C	8A	15.5-0	400	Anderson et al., 1997
G36	388	Pepel'noye Lake	59.85	150.62	115	Lake	Yes	0	18	¹⁴ C	2A	4.3-0	180	Lozhkin et al., 2000
G36	290	Alut Lake	60.14	152.31	480	Lake	Yes	63	448	¹⁴ C	16A+9B	50.4-0	430	Anderson et al., 1998

G36	391	Podkova Lake	59.96	152.10	660	Lake	Yes	114	602	^{14}C	5A	6.0-0	220	Anderson et al., 1997
G36	370	Maltan River	60.88	151.62	735	Bog	Yes	-	-	¹⁴ C	4A+7C	12.0-9.4	120	Lozhkin and Glushkova, 1997
G36	411	Taloye Lake	61.02	152.33	750	Lake	Yes	16	227	¹⁴ C	7A	10.3-0	290	Lozhkin et al., 2000
G36	323	Elikchan 4 Lake	60.75	151.88	810	Lake	Yes	329	1023	¹⁴ C	16U	55.5-0	440	Lozhkin and Anderson, 1995
G36	331	Goluboye Lake	61.12	152.27	810	Lake	Yes	12	192	^{14}C	11A+2B	9.7-0	240	Lozhkin et al., 2000
G36	470	Julietta Lake	61.34	154.56	880	Lake	Yes	11	189	¹⁴ C	2A+4E+1I	36.1-1.4	270	Anderson et al., 2010
G36	321	Elgennya Lake	62.08	149.00	1040	Lake	Yes	455	1204	¹⁴ C	6A	16.0-0	310	Lozhkin et al., 1996
G37	405	Smorodinovoye Lake	64.77	141.12	800	Lake	Yes	27	293	¹⁴ C	6A+5F	27.1-0	360	Anderson et al., 1998
G37	416	Vechernii River	63.28	147.75	800	Bog	Yes	-	-	^{14}C	1F	14.4-0.1	380	Anderson et al., 2002
G37	338	Jack London Lake	62.17	149.50	820	Lake	Yes	1213	1965	^{14}C	7F	19.5-0.2	320	Lozhkin et al., 1993
G37	406	Sosednee Lake	62.17	149.50	822	Lake	Yes	82	510	^{14}C	4E+1F	26.3-0	640	Lozhkin et al., 1993
G37	393	Rock Island Lake	62.03	149.59	849	Lake	Yes	5	124	¹⁴ C	2E	6.6-0	470	Lozhkin et al., 1993
G37	381	Oldcamp Lake	62.04	149.59	853	Lake	Yes	7	150	^{14}C	2E	3.7-0	370	Anderson, unpublished
G37	329	Gek Lake	63.52	147.93	969	Lake	Yes	2392	2759	^{14}C	8A+1B	9.6-0	440	Stetsenko, 1998
G37	433	Figurnoye Lake	62.10	149.00	1053	Lake	Yes	439	1182	¹⁴ C	4A	1.3-0	30	Lozhkin et al., 1996
G38	353	Kuropatoch'ya_Kurop7	70.67	156.75	7	Bog	Yes	-	-	¹⁴ C	3C	5.7-0.4	760	Anderson et al., 2002
G38	354	Kuropatoch'ya_Kurpeat	69.97	156.38	47	Bog	Yes	-	-	¹⁴ C	1A+4C	11.7-7.5	430	Lozhkin and Vazhenina, 1987
G39	322	Elgygytgyn Lake	67.50	172.10	496	Lake	No	9503	5500	polarity	-	20.2-1.5	650	Melles et al., 2012
G39	325	Enmynveem_mammoth	68.17	165.93	400	Bog	Yes	50	399	¹⁴ C	2C+2F	36.4-9.3	2470	Lozhkin et al., 1988
G39	326	Enmyvaam River	67.42	172.08	490	Bog	Yes	18	239	¹⁴ C	1A+4C	10.6-4.3	630	Lozhkin and Vazhenina, 1987
G39	324	Enmynveem River	68.25	166.00	500	Bog	Yes	-	-	¹⁴ C	4C	10.7-4.0	420	Anderson et al., 2002

G40		Malyi Krechet Lake	64.80	175.53	32	Lake	Yes	125	630	¹⁴ C	12A	9.6-0	400	Lozhkin and Anderson,
640	454	Maryi Krechet Lake	04.80	175.55	32	Lake	168	123	030	C	12A	9.0-0	400	2013
G40		Melkoye Lake	64.86	175.23	36	Lake	Yes	1870	2440	^{14}C	21E	39.1-0	1260	Lozhkin and Anderson,
040	456	Werkoye Lake	04.00	175.25	50	Lake	103	10/0	2440	C	21L	57.1-0	1200	2013
G40		Sunset Lake	64.84	175.30	36	Lake	Yes	240	874	14 C	7A	14.0-0	260	Lozhkin and Anderson,
040	460	Sunset Lake	04.04	175.50	50	Lake	103	240	074	C		14.0-0	200	2013
G40	333	Gytgykai Lake	63.42	176.57	102	Lake	Yes	99	561	¹⁴ C	1A+8E	32.3-0	470	Lozhkin et al., 1998
G40		Patricia Lake	63.33	176.50	121	Lake	Yes	40	357	¹⁴ C	3A+7E	19.1-0	290	Anderson and Lozhkin,
640	457	Fatticia Lake	05.55	170.50	121	Lake	168	40	557	C	JA+/L	19.1-0	290	2015
G41	436	Konergino	65.90	-178.90	10	Bog	Yes	-	-	¹⁴ C	1C	9.8-0	900	Ivanov et al., 1984
G41	365	Lorino	65.50	-171.70	12	Bog	Yes	-	-	¹⁴ C	3C	17.9-5.1	850	Ivanov, 1986
G41	317	Dlinnoye Lake	67.75	-178.83	280	Lake	Yes	71	476	¹⁴ C	3A	1.3-0	130	Anderson et al., 2002
G41	431	Dikikh Olyenyeii Lake	67.75	-178.83	300	Lake	Yes	64	450	¹⁴ C	1A+4C	50.3-0	1050	Anderson et al., 2002
G42	427	Blossom Cape	70.68	178.95	6	Bog	Yes	-	-	¹⁴ C	1C	13.8-0.2	3400	Oganesyan et al., 1993
G42		Wrangle Island_Jack	70.92	170 75	7	Laha	Vee	60	460	¹⁴ C	54.15	16102	790	Looklin et al. 2001
642	420	London Lake	70.83	-179.75	1	Lake	Yes	69	469	L	5A+1E	16.1-0.3	790	Lozhkin et al., 2001
G42	419	Wrangel Island	71.17	-179.75	200	Bog	Yes	-	-	¹⁴ C	17A+3C	13.7-10.2	110	Lozhkin et al., 2001

1492 LSC: liquid-scintillation counting; A: terrestrial plant macrofossil; B: non-terrestrial plant macrofossil; C: peat; D: pollen; U: unknown; E: total organic matter from

1493 silt; F: animal remains or shell; G: charcoal; H: CaCO₃; I: tephra.

Appendix 3 Slight percentage changes for five major plant taxa reconstructed by REVEALS model with different bog radii (5 m, 10 m, 20 m, 50 m, 100 m, 200 m and 500 m).

1503 Appendix 4 Pollen Productivity Estimates (PPEs) with their standard errors (SEs) for 27 pollen taxa from 20 study areas. Estimates where SE \geq PPE were

Country	Poland	Russia	Sweden	Sweden	Swiss	Swiss	Switzerland	Sweden	Finland	Estonia
Region	Białowieża Forest	Khatanga region	Southern Sweden	Southern Sweden	Swiss Plateau	Alps	Jura Mountains	west-central	Fennoscandia	Southeast
sample type	Moss	Moss	Moss	Moss	Lake	Trap	Moss	Moss	Moss	Lake
Defense	Data and 1, 2016	Niemeyer et al.,	Broström et al.,	Sugita et al.,	Soepboer et	Sjögren et al.,	Mazier et al.,	von Stedingk et	R äs änen et al.,	Poska et al.,
Reference	Baker et al., 2016	2015	2004	1999	al., 2007	2008	2008	al., 2008	2007	2011
Model	ERV-3	ERV-2	ERV-3	ERV-3	ERV-3	-	ERV-1	ERV-3	ERV-3	ERV-1
Poaceae	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)
Abies					9.92 (2.86)		3.83 (0.37)			
Pinus	23.12 (0.24)			5.66 (0.00)	1.35 (0.45)	9 (0.00)		21.58 (2.87)	8.4 (1.34)	5.07 (0.06)
Picea				1.76 (0.00)	0.57 (0.16)	0.5 (0.00)	7.1 (0.2)	2.78 (0.21)		4.73 (0.13)
Larix		0.00009 (0.1)				1.4 (0.00)				
Alnus_tree	15.95 (0.66)			4.2 (0.14)		20 (0.00)				13.93 (0.15)
Betula_tree	13.94 (0.23)			8.87 (0.13)	2.42 (0.39)			2.24 (0.2)	4.6 (0.7)	1.81 (0.02)
Juglans										
Fraxinus				0.67 (0.03)	1.39 (0.21)					
Quercus	18.47 (0.10)			7.53 (0.08)	2.56 (0.39)					7.39 (0.2)
Tilia	0.98 (0.03)			0.8 (0.03)						
Ulmus										
Alnus_shrub		6.42 (0.42)								
Betula_shrub		1.8 (0.26)								
Carpinus	4.48 (0.03)				4.56 (0.85)					
Corylus	1.35 (0.05)			1.4 (0.04)	2.58 (0.25)					

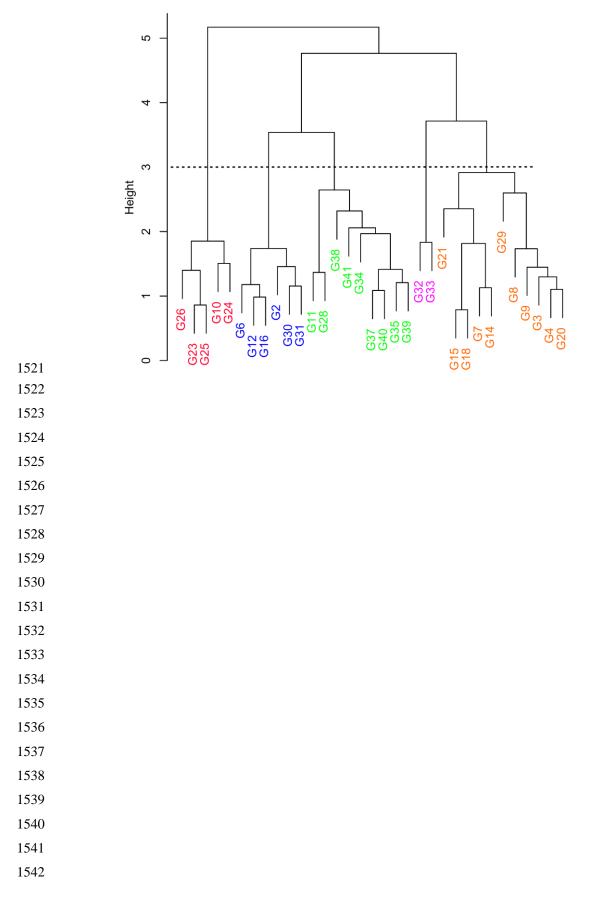
1504 excluded from the calculation of mean PPE and are shown in italics.

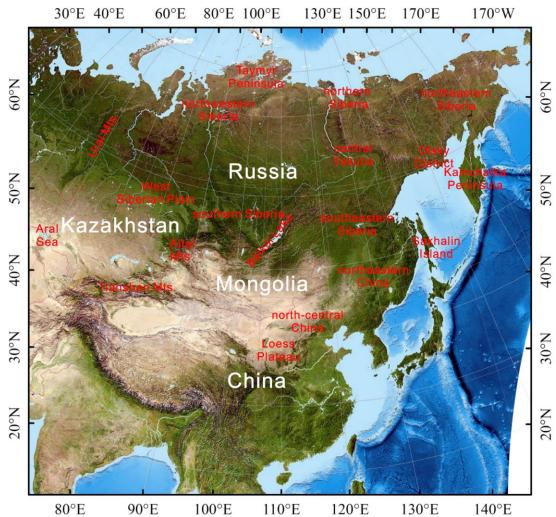
Salix	0.03 (0.03)		1.27 (0.31)			0.09 (0.03)		2.31 (0.08)
Ericaceae	0.33 (0.03)					0.07 (0.04)		
Ephedra								
Cyperaceae	0.53 (0.06)	1 (0.16)			0.68 (0.01)	0.89 (0.03)	0.002 (0.0022)	1.23 (0.09)
Artemisia								3.48 (0.19)
Chenopodiaceae								
Asteraceae		0.24 (0.06)		0.17 (0.03)				
Thalictrum								
Ranunculaceae		3.85 (0.72)						
Caryophyllaceae								
Brassicaceae								

Country	Czech	Norway	Greenland	England	England	Germany	China	China	China	China
Region	Central Bohemia	South	Southern	Calthorpe	Wheatfen	Brandenburg	Tibetan Plateau	Xilinhaote	Shandong	Changbai
Region	Central Bohemia	South	Southern	Caluloipe	wheatten	Brandenburg	Hoetan Flateau	Ammaote	Shandong	Mt.
sample type	Moss	Lake	Moss	Moss	Moss	Lake	Lake	Soil	moss	Moss
Reference	Abraham and	Hjelle and Sugita,	Bunting et al.,	Bunting et al.,	Bunting et al., 2005	Matthias et al.,	Wang and	Xu et al.,	Li et al.,	Li et al.,
	Koz ákov á, 2012	2012	2013	2005	Bunning et al., 2005	2012	Herzschuh, 2011	2014	2017	2015
Model	ERV-1	ERV-3	ERV-1	Average	Average	allFIDage_ERV3	ERV-2	ERV2	ERV-3	-
Poaceae	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	
Abies										
Pinus	6 17 (0 41)	5 72 (0.07)				5 2 (0.00)			8.06 (0.22)	15.2079
Pinus	6.17 (0.41)	5.73 (0.07)				5.2 (0.00)			8.96 (0.23)	(0.489)
Picea		1.2 (0.04)				1.456 (0.05)				
Larix						8.06 (0.32)				1.47 (0.19)

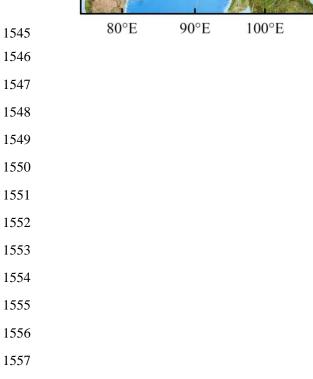
Alnus_tree	2.56 (0.32)	3.22 (0.22)		10.564 (0.00)	4.028 (0.00)	14.248 (0.22)				
Betula_tree			3.7 (0.4)	9.804 (0.00)		8.84 (0.34)				24.65 (0.73)
Juglans									0.3 (0.05)	9.49 (0.44)
Fraxinus	1.11 (0.09)			1.14 (0.00)	0.076 (0.00)	6.188 (0.12)				3.72 (0.68)
Quercus	1.76 (0.2)	1.3 (0.1)		7.6 (0.00)	7.6 (0.00)	1.976 (0.03)			4.89 (0.16)	
Tilia	1.36 (0.26)					1.352 (0.04)				0.78 (0.19)
Ulmus								11.5 (1.09)	1 (0.31)	6.85 (1.71)
Alnus_shrub										
Betula_shrub			1.4 (0.05)							
Carpinus						8.684 (0.09)				
Corylus					1.216 (0.00)					
Salix	1.19 (0.12)	0.62 (0.11)	0.8 (0.002)	1.748 (0.00)	2.736 (0.00)					
Ericaceae										
Ephedra								0.96 (0.14)		
Cyperaceae		1.37 (0.21)	0.95 (0.05)				0.65 (0.4)	0.94 (0.079)	0.21 (0.07)	
Artemisia	2.77 (0.39)						3.2 (0.6)	11.21 (0.31)	24.7 (0.36)	
Chenopodiaceae	4.28 (0.27)						5.3 (1.1)	6.74 (0.79)		
Asteraceae								0.39 (0.16)	1.06 (0.21)	
Thalictrum			4.65 (0.3)					3.06 (0.42)		
Ranunculaceae			1.95 (0.1)							
Caryophyllaceae			0.6 (0.05)							
Brassicaceae								7.48 (0.33)	0.89 (0.18)	

Grou	0 ka	0.2 ka	0.5 ka	1 ka	2 ka	3 ka	4 ka	5 ka	6 ka	7 ka	8 ka	9 ka	10 ka	11 ka	12 ka	14 ka	21 ka	25 ka	40 ka
G1	1L	1L	1L	-	1L	-	1L	1L	1L	1L	1L	1L	-	-	-	-	-	-	-
G2	6B	1S6B	1S6B	1S6B	1S4B	2S6B	2S6B	1S4B	2S2B	1 S	2S	2S	1S2B	1S2B	1S2B	2B	-	-	-
G3	4B	4B	8B	8B	6B	8B	8B	8B	8B	6B	6B	4B	4B	4B	-	-	-	-	-
G4	-	1L	-	1L	1L	1L	1L	1L	1L	1L2B	1L2B	1L	1L	1L	1L	-	-	-	-
G5	4S4B	4S4B	4S4B	4S4B	1S4B	1S4B	1S4B	1S2B	1S2B	1S2B	-	-	-	-	-	-	-	-	-
G6	2L1S2B	1L1S2B	2L1S4B	2L1S4B	2L1S4B	1L1S2B	2L1S2B	1S	1L1S	1L2B	1L2B	1L2B	2B	2B	2B	2B	-	-	-
G7	4B	10B	12B	12B	1L12B	1L12B	1L10B	1L10B	1L10B	1L10B	6B	8B	8B	1L6B	2B	-	2B	-	2B
G 8	2B	2B	4B	4B	2B	4B	6B	8B	8B	8B	6B	4B	4B	4B	2B	-	-	-	-
G9	4B	4B	6B	6B	4B	6B	6B	2B	6B	4B	8B	8B	8B	8B	4B	2B	-	-	-
610	1L	1L	1L	1L	2B	1L2B	1L4B	1L6B	1L8B	1L6B	1L6B	1L6B	1L4B	1L2B	1L	1L	1L	-	-
11	2L1S	2L1S	2L1S	2L1S	1L1S	2L1S	1L1S	1L1S	2L1S	2L1S	2L	2L	1L	1L	2L	1L	1L	1L	-
612	6L1S2B	5L1S2B	5L1S2B	6L1S2B	5L1S2B	3L1S2B	5L1S2B	4L1S2B	4L2B	4L2B	5L2B	4L	4L	3L	4L	1L	-	-	-
G13	1L	1L	1L	2L	2L	2L	1L	1L	1L	1L	-	-	-						
14	4L	1L	4L	4L1S	5L1S	5L2S	5L1S	4L1S	3L1S	4L2S	4L2S	4L2S	3L1S	4L2S	4L1S	3L2S	-	-	-
15	1L	2L	2L	2L	2L	3L	3L	3L	3L	2L	2L	3L	1L	3L	3L	2L	1L	-	-
G16	1L	-	2L	-	2L	2L	2L	1L	1L	2L	2L	2L	2L	2L	3L	1L	2L	3L	-
17	-	-	-	-	1L	1L	-	1L	1L	1L	1L	1L	-	1L	-	-	-	-	-
G18	2L2S	3L1S	2L2S	4L2S	2L1S	4L1S	5L1S	4L1S	4L1S	4L	5L	4L1S	2L1S	3L1S	4L	2L	-	-	-
G19	-	1L	-	1L	1L	-	1L	1L	-	-	-	-	-	-	-	-	-	-	-
520	6L6B	4L4B	6L8B	5L1S6B	6L1S8B	5L8B	5L6B	5L1S6B	5L1S6B	5L1S4B	4L4B	4L2B	5L2B	5L2B	6L2B	5L2B	2L2B	2L2B	1L
G21	4L1S2B	2L1S2B	4L1S2B	4L1S2B	3L1S2B	4L2S4B	4L2S4B	3L2S4B	3L1S4B	4L1S2B	5L1S4B	4L1S2B	5L1S2B	6L1S	5L1S	1L	-	-	-
322	1L	1L	2L	2L	2L	2L	2L	1L	1L	-	-	-							
3 23	-	-	-	2B	2B	2B	4B	4B	4B	4B	4B	4B	4B	4B	4B	-	-	-	-
324	2L	1L	1L	1L	1L	1L	1L	-	-	-	-								
325	1L	4L	4L	4L	5L	5L	5L	5L	5L	4L	4L	3L	3L	4L	2L	2L	1L	1L	1L
G26	1L	-	1L	-	-	1L	1L	1L	-	-	-	-	-						

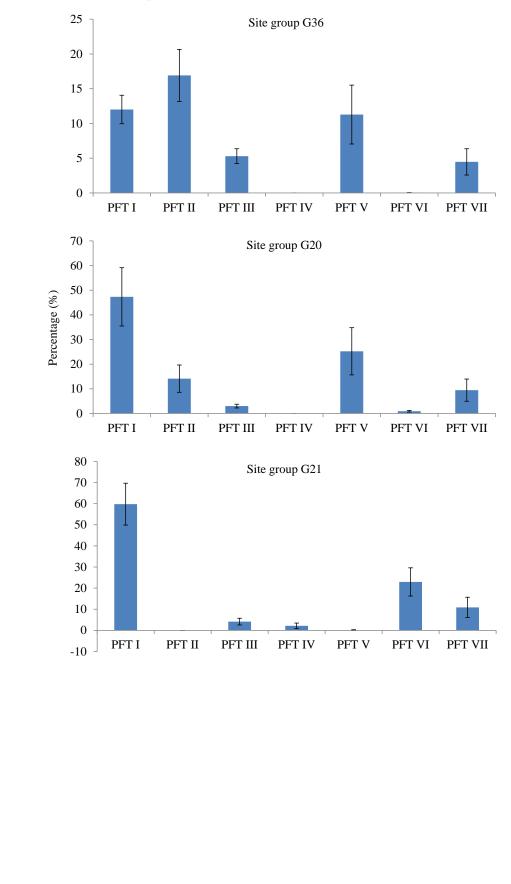

1509 Appendix 5 Number of pollen records from large lakes (≥390 m radius; represented by L), small lakes (<390 m radius; represented by S), and bogs (B) for each

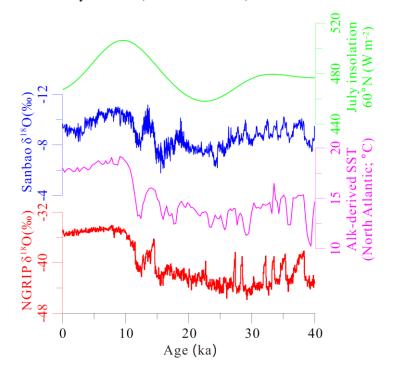

1510 site-group used to run REVEALS for each time slice. For example, site-group G6 has 2 large lake records, 1 small lake record, and 2 bog records at 4 ka

1511 (represented by 2L1S2B).


G27	-	2B	4B	4B	4B	2B	4B	4B	4B	4B	4B	2B	-	-	-	-	-	-	-
G28	2L	2B	2L2B	1L2B	2L2B	1L2B	2L2B	2B	2L	1L	2L	2L	2L	2L	1L	1L	-	-	-
G29	1L1S10B	1L1S14B	1L2S14B	1L1S16B	1L1S16B	1L2S16B	1L1S10B	1L2S10B	1L1S4B	1L2S4B	1L2S2B	1L1S2B	2S	2S	1 S	1 S	1 S	1S	1 S
G30	1L	1L2B	1L6B	1L4B	1L8B	1L8B	1L6B	1L10B	1L8B	1L8B	1L4B	1L4B	1L2B	1L4B	1L4B	1L2B	1L4B	1L4B	4B
G31	2B	2B	10B	14B	12B	14B	10B	12B	10B	4B	2B	4B	2B	4B	4B	-	-	-	-
G32	-	-	4B	4B	4B	2B	2B	2B	2B	2B	2B	2B	2B	2B	-	-	-	-	-
G33	-	-	-	4B	2B	2B	4B	2B	4B	2B	2B	-	-	2B	2B	2B	2B	2B	2B
G34	4B	4B	4B	6B	10B	8B	8B	6B	6B	6B	6B	4B	4B	4B	4B	2B	2B	-	-
G35	-	1L1S	1L1S	1L1S	1L1S	2L1S	1L	1L1S	1L	1S	1S	1 S	1 S	-	-	-	-	-	-
G36	4L4S2B	2L2S	4L3S	4L4S	4L4S	4L5S	4L4S	3L2S2B	4L2S	2L4S4B	3L4S2B	3L4S	2L4S2B	3L2S2B	2L2S2B	2L2S	2L1S	2L1S	2L1S
G37	3L3S	2L1S2B	3L1S2B	1L3S2B	1L3S2B	2L3S2B	1L3S2B	2L2S2B	3L2S2B	3L1S	1L1S	2L	2L1S	2L1S	1L1S	2L1S	2L1S	1L1S	-
G38	-	-	2B	2B	-	2B	2B	2B	2B	-	2B	2B	2B	2B	2B	-	-	-	-
G39	-	-	-	-	-	1L	1L2B	-	1L4B	2B	1L4B	1L4B	2B	1L4B	1L	1L	1L2B	2B	2B
G40	4L1S	1L	2L1S	3L1S	3L1S	2L	1 S	2L	2L1S	1 S	1L1S	3L1S	2L	2L	3L	2L	2L1S	1L	1L
G41	2L2B	1L	1L	1L	2B	2B	-	4B	-	4B	4B	4B	2B	1L2B	2B	1L2B	1L	1L	1L
G42	-	1L2B	-	1L	1L	1L	1L	-	-	-	-	-	1L	1L2B	1L4B	1L4B	-	-	-

1519 Appendix 6 Cluster diagram of the site-groups based on the plant functional type1520 dataset




Appendix 7 Map of the study area showing the geographic locations mentioned in the text.

Appendix 8 Selected examples of standard errors for seven plant functional type (PFT)
reconstructions at site-groups G21, G20, and G36 at 6 ka.

Appendix 9 Proxy-based climate reconstructions from the Northern Hemisphere and insolation
variations during the last 40 cal ka BP discussed in the paper. NGRIP: the North Greenland
Ice-Core Project (Andersen et al. 2004); Sanbao cave (Cheng et al. 2016); Alkenone-derived
sea-surface temperatures (SST) from deep-sea cores SU8118 and MD952042 (Pailler and Bard
2002); solar insolation in July at 60 N (Laskar et al. 2004).

