Response to the interactive comment on "Pollen-based quantitative land-cover
 reconstruction for northern Asia covering the last 40 ka"

3

4 Dear Editor,

5 As both reviewers raised some comments about the presentation of the reconstructed results, we 6 re-organized Figure 2 into five sub-figures to present the five clusters of reconstructed results 7 including the warm temperate forest margin zone, cool-temperate mixed forest, dark taiga forest, 8 light taiga forest, and the tundra-taiga ecotone, which is consistent with the "Results" part and 9 easier to read. In addition, we have added Prof. Qinghai Xu as a new co-author because of his 10 contribution of pollen data from northern China. We have responded to the reviewers' comments 11 and have revised our manuscript accordingly (major changes are indicated in the response letter 12 below).

13

14 Anonymous Referee #1

15 This paper focuses on past land-cover changes based on pollen data. This study considers the 16 REVEALS model to quantify plant abundances (27 taxa) and related PFTs at the spatial scale of northern Asia and a temporal scale covering the last 40 ka. It is a great paper providing 17 substantial information for the scientific community. One of the major interests of this work is 18 19 the application of the REVEALS model at such spatial scale as it has been done over the last 20 years for Europe. This work is therefore a good contribution for environmental and climate 21 sciences by providing additional quantitative land-cover reconstructions at the continental scale 22 of the Northern Hemisphere, and this is particularly critical for climate modelling. I would highly 23 recommend this manuscript for publication in Climate of The Past. I do have comments and 24 suggestions hereafter.

25

26 Major comments

1, I strongly recommend to revise the presentation of the results (core text) and figures 2 and 3.
The authors use 42 groups for the REVEALS reconstructions and this makes difficult to observe
major trends in vegetation changes, at least as it is presented here. To improve this, I have the
following suggestions. First, I would only situate the pollen archives in figure 1; this figure has

31 already too much information.

Our response: We agree with the comment about Figure 1. In the new version, we have separated it into two figures: one presents the vegetation and permafrost background of the study region, together with the locations of the site-groups as the new Figure 1; and the second presents the locations of the pollen records (with IDs of pollen sites) and has been moved into the appendices as Appendix 1. The old "Appendix 1" (information for all pollen records) is now Appendix 2.

38

39 Second, I suggest to group pollen archives into meaningful data such as vegetation zones, 40 however to be objective I recommend to use the results from the cluster analysis, i.e 5 cluster 41 groups. The 42 groups can be shown in an appendix when in the core text only the PFT results 42 for the 5 cluster groups would presented. This would mean only one figure 2 rather than the 43 duplication of figure 2. This would make easy the reading of the result sections and more 44 useful/meaningful the figures. I further recommend to show the results for the turnover (entire 45 time period and 5 cluster groups); this can be a new figure 3. This means that the result section 46 should be partially revised, and the results of the cluster analysis should be shown in a specific 47 graph; there are no graphs about the results of the cluster analysis in the present version of the 48 manuscript.

Our response: We revised the presentation of the results. We now present the changes of the site-groups that belong to one cluster as a separate figure. However, the results could not be further summarized. The REVEALS approach is suitable to reconstruct the *regional* land-cover change assuming that these regions have similar temporal change patterns. Previous reconstructions in Europe were at a $1^{\circ} \times 1^{\circ}$ spatial scale (c. 100 km × 100 km; Trondman et al., 2016). In Northern Asia, there are not enough available pollen data, thus we had to consider the available data at a larger spatial scale. We feel that summarizing the 56 results into only 5 groups would be an over-simplification.

57

58	three-way dataset. We calculated the distance set for the 34 site-groups using the tsclust
59	function and then performed a simple hclust analysis. The hclust analysis cannot produce
60	cluster means for each cluster; hence we cannot present a general pattern for the five
61	clusters. In the new version, we present the cluster diagram as Appendix 5.
62	Regarding the turnover calculation (DCCA), we cannot perform the DCCA for the entire
63	time span because most site-groups do not cover the entire time span and DCCA cannot
64	deal with missing values. Hence, we can only perform the cluster and turnover analyses for
65	the Holocene.
66	In the new version, we present the reconstructed results for each cluster one by one.
67	replacing the old Figure 2 (which presented reconstructed results by site-group). The new
07	replacing the old right 2 (when presented reconstructed results by site group). The new
68	Figure 2 includes 5 sub-figures, separated by modern vegetation: A) warm temperate forest
69	margin zone, B) cool-temperate mixed forest, C) dark taiga forest, D) light taiga forest, and
70	E) the tundra-taiga ecotone, which is consistent with the "Results" part.
71	2, Through the manuscript, the authors wrote that vegetation changes in northern Asia within the
72	Holocene are "minor with slight changes in PFTs" (e.g. lines 212-213). This conclusion is based
73	on the fact that the turnover is high during the early-Holocene and the numerical analysis based
74	on constrained hierarchical clustering and the brokenstick model provide a timing of the primary
75	change mostly during the early-Holocene. However, changes in PFT abundances can be high (e.g.
76	G7 shows around 20 % fewer abundance of PFT VII between 2 ka and 1 ka). I would suggest to
77	clearly define what the turnover and the timing of the primary change really mean. I am
78	wondering if the identification of a primary change necessary implies that no other changes of
79	similar importance can occurred more recently.

The PFT dataset for the 34 site-groups covering the period between 12 and 1 ka is a

80	Our response: We conclude "minor with slight changes in PFTs" during the period between
81	12 and 1 cal ka BP because the turnover is <i>low</i> throughout the period <i>and</i> because some of
82	the primary change does not pass the broken-stick test during the constrained hierarchical
83	clustering. Most of the insignificant or significant primary changes occur in the early
84	Holocene, hence we conclude that the most important vegetation changes occur in the early
85	Holocene. In the new version, we define what turnover and the timing of the primary
86	change mean.

87 Lines 202-208

- 88 "Constrained hierarchical clustering (using chclust function in rioja package version 0.9-15.1;
- *Juggins*, 2018) was used to determine the timing of primary vegetation changes (i.e. the first split)
- 90 in each site-group. A change was considered to be significant when the split passed the
- 91 broken-stick test. The amount of PFT compositional change (turnover) through time during the
- 92 period between 12 and 1 ka was estimated by detrended canonical correspondence analysis
- 93 (DCCA) for each site-group (ter Braak, 1986) using CANOCO 4.5 (ter Braak and Šmilauer,

94 *2002*)."

95 3, The conclusion is too short and do not show the potential of the present study.

96 *Our response:* we have revised the conclusion in the new version.

97 Lines 558-570

98 "Regional vegetation based on pollen data has been estimated using the REVEALS model for
99 northern Asia during the last 40 ka. Relatively closed land cover was replaced by open
100 landscapes in northern Asia during the transition from MIS 3 to the last glacial maximum.
101 Abundances of woody components increase again from the last deglaciation or early Holocene.
102 Pollen-based REVEALS estimates of plant abundances should be a more reliable reflection of the
103 vegetation as pollen may overestimate turnover and indicates that the vegetation was quite stable

104 during the Holocene as only slight changes in the abundances of PFTs were recorded rather than 105 mass expansion of new PFTs. From comparisons of our results with other data we infer that 106 climate change is likely the primary driving factor for vegetation changes on a 107 glacial-interglacial scale. However, the extension of evergreen conifer trees since ca. 8–7 ka 108 throughout Siberia could reflect vegetation-climate disequilibrium at a long-term scale caused 109 by the interaction of climate, vegetation, fire, and permafrost."

110

111 Minor comments

112 1, Why the turnover has been calculated from PFTs (see lines 203-206) rather than pollen types?
113 This might explain differences between the turnover results in Europe and this study. Lower
114 turnover in the present study than the ones in Europe might be related to the use of less variables
115 here (PFTs) than in Europe (pollen types). The discussion lines 411-417 need to be revised by
116 considering this issue.

Our response: We used the PFT dataset to calculate turnover because both the REVEALS model and our manuscript focus on the changes in PFTs rather than taxa. We have revised the phrase "in the abundance of major taxa rather than by invasions of new taxa" and replaced it by "in the abundance of PFTs rather than by invasions of new PFTs", In addition, we have added a discussion about why there is relatively low turnover in North Asia compared to Europe.

123 Lines 24-28

- 124 "Reconstructed regional plant-functional type (PFT) components for each site-group are
- 125 generally consistent with modern vegetation in that vegetation changes within the regions are
- 126 characterized by minor changes in the abundance of PFTs rather than by invasions of new PFTs,
- 127 particularly during the Holocene."

128 <u>Lines 428-432</u>

5

129 "The fewer parameters used in the turnover calculations for northern Asia (PFTs) compared to

130 Europe (pollen taxa) is a potential reason for the lower turnover obtained in this study. In

131 addition, the PPE-based transformation from pollen percentages to plant abundances may

132 reduce the strength of vegetation changes (Wang and Herzschuh, 2011)."

133 2, The selection of PPE values is critical for this study. The relevance in the present study of 134 using PPEs that have been obtained in Europe or other environmental and ecological conditions 135 in Asia needs to be discussed in more details. Furthermore, more than the 20 PPE studies that the 136 authors refer to have been published, and if they are taken into account they would increase a lot 137 the uncertainties related to the choice of the specific PPEs that have been used by the authors, e.g. 138 Chenopodiaceae, Artemisia and Compositae PPEs in Li et al. (Frontiers in Plant Science 2018). 139 Different species within the Chenopodiaceae family might result in different PPEs, although we 140 do not know how much this play a role in PPE calculation. All of these issues need to be taken 141 into account in the discussion section, specifically for lines 428-452.

142 Our response: We agree with the reviewer. The quality of the PPEs is most relevant for the reliability of reconstruction. However, hitherto only 20 PPE records from Eurasia have 143 144 been published. We applied a consistent approach to calculate the PPEs from the published 145 values. i.e. we used all PPE records of different species within one family or genus in the calculation of the mean PPE for the family or genus. Furthermore, we argue "the regional 146 147 differences in the PPE for each taxon are small compared to the large between-taxa differences ". We have added some further discussion about the reliability of PPEs in the 148 new version. 149

150 Lines 154-155

151 *"We included these PPE values for various species in the mean PPE calculation for their family*152 *or genus."*

153 <u>Lines 451-456</u>

154 *"The available PPEs were estimated from various environmental and ecological settings, which*

155 might cause regional differences in each PPE. Also, PPEs of different species within one family

156 or genus were included in our mean-PPE calculation for the family or genus, ignoring the

157 inter-species differences. Both these aspects can cause uncertainty in the mean PPE to some

158 *extent.*"

159

160 3- The choice of PFT VII (steppe and forb tundra) might be misleading. *Artemisia* pollen type is 161 included in PFT VI (arid-tolerant shrub and herb), however *Artemisia* is an important component 162 of steppe vegetation. Furthermore, tundra vegetation is located north of the study region 163 (vegetation zone A) when steppe are located more south (vegetation zone D), this considers the 164 vegetation zones that the authors provide. It would probably be more relevant to relate steppe to 165 *Artemisia* and therefore PFT VI. This would not affect the results.

Our response: Artemisia pollen at high abundance is found in arid central Asia, while quite low abundances are found in northern Asia (Siberia). As mentioned by the reviewer, *Artemisia* is an important component in arid steppe community. However, in order to separate the tundra forb and the steppe forb, we had to separate the arid-tolerant forb and the wet-favouring forb. The name for PFT VII was misleading and so we have changed it to

- 171 "grassland and tundra forb" in Table 2.
- 172

4- Lines 148-151. Why the authors have selected the specific value of 100 m for all bogs?

174 *Our response*: We had performed test-runs that showed that the different bog radii (i.e. 5 m,

175 10 m, 20 m, 50 m, 100 m, 200 m and 500 m) did not significantly affect the REVEALS

176 estimates, hence a standard radius of 100 m was set for all bogs. We have added the

177 explanation into the new version and a figure as Appendix 3.

178 <u>Lines 148-151</u>

179 "A test-run showed that using different bog radii (i.e. 5 m, 10 m, 20 m, 50 m, 100 m, 200 m and

180 500 m) did not significantly affect the REVEALS estimates (Appendix 3), hence a standard

181 (moderate size) radius of 100 m was set for all bogs."

182

183 5- Lines 193-195. This linear interpolation when it corresponds to a large time gap of missing

time windows might be a source of uncertainties, and it would be good to further discussed this.

185 *Our response*: We agree with the reviewer and have added some discussion.

- 186 Lines 485-488
- 187 "In addition, the linear interpolation of pollen abundances for time windows with few pollen
- 188 data might be another source of uncertainty, particularly for the late Pleistocene and its broad

189 *time windows (Table 1).*"

190

- 6- Lines 372-376. I suggest to be more specific about how the DNA information supports theresults.
- 193 *Our response*: Agree and added.
- 194 Lines 386-394

195 "During the late Pleistocene (40, 25, 21, 14 ka), steppe PFT abundance was high in central

196 Yakutia and north-eastern Siberia (e.g. G25, G36, G37, G39, G40, G41), which may reflect the

- 197 expansion of tundra-steppe, consistent with results from ancient sediment DNA which reveal
- abundant forb species during the period between 46 and 12.5 ka on the Taymyr Peninsula
- 199 (Jørgensen et al., 2012). The tundra-steppe was replaced by light taiga in southern Siberia and

- 200 by tundra in northern Siberia at the beginning of Holocene or the last deglaciation, which is
- 201 consistent with ancient DNA results (forbs-dominated steppe-tundra; Willerslev et al., 2014)."
- 202

203 7- Lines 377-380. This sentence is not clear.

204 *Our response*: Agree and improved.

205 Lines 395-397

206 "During the Holocene, reconstructed land cover for each site-group is generally consistent with

207 their modern vegetation. The slight vegetation changes are represented by changes in PFT

```
208 abundances rather than by changes in PFT presence/absence."
```

209

- 8- The authors should be consistent and use the term PPE through the manuscript; the term PPE
- 211 can be found in several paragraphs.
- 212 *Our response*: Agree and modified.
- 213
- 9- I would suggest to add a global map in a corner of figure 1 to show the location of the studyarea. It is too much information and the reader can be "spatially lost".
- 216 *Our response*: Agree and added.

217

218 10- There is here no discussion about land-use changes for the last millennia. I would be 219 interested in how land-use can be discussed based on these PFTs; I expect that the land-use 220 should have some influences on forest covers at some points (e.g. late-Holocene primary 221 vegetation changes).

222 Our response: Yes, land cover could be modified by humans during the late Holocene.

223 However, in our study area, human impact on vegetation is not very clear, because the

- 224 regional land cover was reconstructed from a multi-record combination. Hence, we cannot
- 225 discuss the land-use history.

2	2	
2	2	ь

227	11- Can the authors give the REVEALS standard errors in an appendix to get an idea about how
228	reliable the reconstructions are?
229	Our response: We will upload the reconstruction datasets including standard errors to
230	Pangaea after this manuscript is accepted. In the new version, we select three site-groups to
231	illustrate the reasonable standard errors of reconstruction as Appendix 8.
232	Lines 439-441
233	"We consider the REVEALS-based regional vegetation-cover estimations in this study as
234	generally reliable with reasonable standard errors (Appendix 8) thanks to the thorough selection
235	of records with high quality pollen data and reliable chronologies."
236	
237	12- I suggest to move Table 3 to Appendix.
238	Our response: Agree and done.
239	
240	13- Lines 464-466. I suggest to give more information about what "riverine" really means here
241	(erosions, water-runoff, temporal lake etc: : :) and how these processes might affect the results.
242	Our response: Agree. We have replaced "riverine" by "water-runoff".
243	Lines 488-491
244	"Finally, pollen signals from certain sites and during certain periods may be of water-runoff
245	origin rather than aerial origin violating the assumption of the REVEALS-model that pollen is
246	transported by wind."
247	
248	14- I would add to the discussion a short sentence about the assumed constant PPE values over
249	the last 40ka.
250	Our response: Agree and done.

251 <u>Lines 138-140</u>

- 252 "The REVEALS model assumes the PPEs of pollen taxa are constant variables over the target
- 253 period, and requires parameter inputs including sediment basin radius (m), fall speed of pollen

- 255
- 256 15- Line 473. I would not use the term "observed" but rather "past". This to avoid a potential
- confusion with modern vegetation that can really be "observed".
- 258 *Our response*: Agree. We had replaced "observed" by "pollen-based reconstructed".
- 259 Lines 493-496
- 260 "On a glacial-interglacial scale, pollen-based reconstructed land-cover changes in northern
- 261 Asia are generally consistent with the global climate signal (e.g. sea-surface temperature:
- 262 Pailler and Bard, 2002; ice-core: Andersen et al., 2004; solar insolation: Laskar et al., 2004;
- 263 *cave deposits: Cheng et al., 2016; Appendix 9).*"
- 264
- 265 16- Line 189. I think the "The end of moisture increase" is confusing or there is a mistake here.
- 266 *Our response*: Agree. We have deleted "The end of".
- 267
- 268 17- The authors might add some climate information via a new summary figure. This could be
- informative and useful to follow the discussion section.
- 270 *Our response*: Agree. We have prepared a figure as Appendix 9.
- 271
- 272 18- Lines 504-505. I disagree with this conclusion. Vegetation-climate relationship can
- be "linear" and no strong effect observed at short time scales (e.g. few decades). It might just be
- a matter of time scales, i.e. long-term responses of vegetation.
- 275 Our response: Agree and modified.
- 276 <u>Lines 568-570</u>
- 277 "However, the extension of evergreen conifer trees since ca. 8–7 ka throughout Siberia could
- 278 reflect vegetation-climate disequilibrium at a long-term scale caused by the interaction of

²⁵⁴ grain (FS, m/s), and PPE with standard error (SE; Sugita, 2007)."

climate, vegetation, fire, and permafrost."

280

281

282Anonymous Referee #2

The aim of the study is to use pollen data for quantifying in very general terms the vegetation change in northern Asia over the last 40 ka. A key element in the study is the use the REVEALS method, which accounts for the differences in pollen productivity and dispersal, hence providing more robust abundance estimates than pollen percentage values. In general, I am in favor of suggesting that the paper can be accepted because it is based on a substantial dataset and presents results over a large area which has not been intensively investigated so far.

289 At the same time, I would urge the authors to amend the paper by making it clearer, more 290 structured and more informative for readers. I found that large sections of the text, especially in 291 Results and Discussion, were hard to follow. One reason is that there are too few references to 292 figures and tables in the paper, making it hard to find out whether the interpretations presented in 293 the text were sound and really supported by the results. For example, on page 10, the first long 294 paragraph presents many types of results, but the only reference to a figure is at the end of the 295 paragraph "(e.g. G"9,G39; Fig. 2)". Similarly, the next paragraph begins "The turnover in PFT 296 composition is <0.7 SD units in almost all site-groups, except G8 (0.88 SD), G9 (0.73 SD), and G24 (0.76 SD) indicating only slight vegetation change during the Holocene" – are these results 297 298 shown somewhere in the paper? I did not find them in the figures or tables.

Most of the results in the paper are shown in Fig. 2., which is a very big figure, divided into three parts. It is not an easy figure to follow together with the text. My suggestion would be to section the figure to smaller parts, either as three separate figures (Figs. 2, 3, 4) or sub-panels (Fig. 2a, 2b, 2c). Fig. 1 shows the study regions and the datapoints, but there are too much data squeezed into the figure, so it is a bit messy.

304 *Our response*: Agree. We have re-organized the manuscript, particularly Figures 1 and 2. In

305 the new version, we present the reconstructed results for each cluster one by one, replacing

306 the old Figure 2 (which presented reconstructing results by site-group). The new Figure 2

307	includes 5 sub-figures (Figure 2A-2E) separated by modern vegetation: warm temperate
308	forest margin zone, cool-temperate mixed forest, dark taiga forest, light taiga forest, and
309	the tundra-taiga ecotone, which is consistent with the discussion part. We have added more
310	references for Figure 2 in the main text. The new Figure 1 presents only the vegetation and
311	permafrost background of site-groups. We put the map of pollen-data locations and IDs in
312	the appendices as the new Appendix 1.

314 While I understand the motivation of using the REVEALS method in the paper, I also notice that the spreads in the estimated PPE values for different pollen types are remarkable. This can be 315 316 best seen by looking at the Appendix 2. Consequently, there must be an enormous error associated with these estimates, and that uncertainty should be kept in mind throughout the 317 318 discussion and conclusions. In addition, in the paper, the PPE value used for Larix is 3.642. But 319 in the Appendix 2 it is indicated that there are two earlier PPE estimates for Larix, 0.00009 and 320 1.4. What is the value 3.642 based on? Note also that both "RPP" and "PPE" are used as 321 abbreviations for the term "pollen productivity estimates", for example in Table 2 and Appendix 322 2.

Our response: We have standardised the abbreviation for "relative pollen productivity estimates" as "PPE", and replaced "RPP" by "PPE" in the text. The old Appendix 2 (Appendix 4 in the new version) is quite a large table to present the PPE records for the 27 pollen taxa, so we separated it into two parts. There is another PPE value for *Larix* in the second part of the table of the new Appendix 4.

328

In addition to the use of the REVEALS method, the pollen types are converted to plant functional types (pft) for defining the vegetation types for the study period. After this conversion, the selected 27 pollen types were reduced to only seven pft. This is sometimes useful because it allows a very generalized presentation of past vegetation types, but it also influences the results of the vegetation turnover rate calculations, which the authors have carried out by applying DCCA with their pft data. This results is an extremely simplified measure, where the resulting turnover values includes errors that stem from the uncertainty in defining the PPE values and from the heavy generalization involved in converting the pollen types to pfts. I would not therefore place too much emphasis for the resulting turnover calculations presented in Fig 3.

338 Our response: The first reviewer also mentioned this issue. Merging from pollen taxa to 339 PFT does ignore some vegetation signal but also reduces the noise in the regional vegetation 340 patterns. In our manuscript, we focus on the general and regional signal of vegetation change. Nevertheless, a spatial comparison of turnover in our study is still necessary to 341 342 show the spatial variation in the density of vegetation changes. In addition, the conclusion of "minor with slight changes in PFTs" during the period between 12 and 1 cal ka BP, is not 343 344 only based on the low turnover, but also on the insignificant primary change for many 345 site-groups, which are also relative to some extent to summarize the taxa in the PFTs.

346

Table 2 shows that *Corylus* is assigned to the plant functional type group "boreal deciduous
trees". A "temperate deciduous tree" would probably be more correct. And how did the authors
handle the pollen types which belong to two different plant functional type groups (for example, *Betula* is in boreal deciduous trees and boreal shrubs).

Our response: The assignment of pollen taxa to PFT was completed follwing previous biome reconstruction literature (Tarasov et al., 1998, 2000; Bigelow et al., 2003; Ni et al., 2010). Pollen taxon "*Corylus*" was assigned to "cool-temperate cold-deciduous malacophyll broad-leaved tree or shrub" by Tarasov et al. (1998; 2000) and Ni et al. (2010), and to two PFTs - "boreal cold-deciduous malacophyll broad-leaved tree" and "temperate (spring-frost tolerant) cold-deciduous malacophyll broad-leaved tree" - by Bigelow et al. 357 (2003; biome reconstruction for north of 55 °N). In this study, pollen taxon "*Corylus*"
358 occurs only in 10 sites at more than 3% abundance and most of these sites are north of
359 50 °N. Hence, we assigned it to "boreal deciduous trees".

As well as *Betula*, the genus *Alnus* also has this problem of including both tree and shrub species within one genus. It is quite difficult to separate the pollen grains of genus *Betula* and *Alnus* into tree or shrub type by optical identification. In our dataset, many pollen records did not separate the tree and shrub type for the two genera, although some did. The undifferentiated *Betula* and *Alnus* grains were assigned to trees in our study, while pollen taxa with clear statements about their identity were separated based on these statements. We have modified Table 1.

367

Finally, the sites with pollen data were divided into 42 site groups. Each site groups includes many subregions, which are scattered around northern Asia. It remains unclear why such a subdivision was considered useful and how the site groups were defined. The description on page 8 says that "we divided the 203 into 42 site groups, based on criteria on geographic location, vegetation type, climate and permafrost. This is a confusing description because one site groups can contain subregions from different parts of Asia, so it is hard to understand how they could have been defined on the basis of geographic location or climate, for example.

Our response: We agree that the description in the manuscript was not very clear and we have modified it in the new version. Site-groups were defined by pollen data with the same vegetation-climate-permafrost conditions and similar pollen components and temporal patterns. In the new version, we re-organized Figure 1 following the results of cluster analysis to make the manuscript easier to read.

380 <u>Lines 165-170</u>

381 "Here, due to the sparse distribution of available sites, we divided the 203 sites into 42 382 site-groups, based on criteria of geographic location, vegetation type (vegetation zone map 383 modified from Tseplyayev, 1961; Dulamsuren et al., 2005; Hou, 2001), climate (based on modern 384 precipitation and temperature contours), and permafrost (Brown, 1997) following the strategy of 385 Li (2016), and the pollen data within one site-group should be of similar components and 386 temporal patterns."

```
387
```

388

389 **References:**

- Bigelow, N.H., Brubaker, L.B., Edwards, M.E., Harrison, S.P., Prentice, I.C., Anderson, P.M.,
- 391 Andreev, A.A., Bartlein, P.J., Christensen, T.R., Cramer, W., Kaplan, J.O., Lozhkin, A.V.,

392 Matveyeva, N.V., Murray, D.F., McGuire, A.D., Razzhivin, V.Y., Ritchie, J.C., Smith, B.,

- Walker, D.A., Gajewski, K., Wolf, V., Holmqvist, B.H., Igarashi, Y., Kremenetskii, K., Paus,
 A., Pisaric, M.F.J., and Volkova, V.S.: Climate change and arctic ecosystems: 1. Vegetation
 changes north of 55 N between the last glacial maximum, mid-Holocene, and present,
 Journal of Geophysical Research, 108, DOI: 10.1029/2002JD002558, 2008.
- Ni, J., Yu, G., Harrison, S.P., and Prentice, I.C.: Palaeovegetation in China during the late
 Quaternary: biome reconstructions based on a global scheme of plant functional types,
 Palaeogeography, Palaeoclimatology, Palaeoecology, 289, 44–61, 2010.
- Sugita, S.: Theory of quantitative reconstruction of vegetation I: pollen from large sites
 REVEALS regional vegetation composition, The Holocene, 17, 229–241, 2007.
- Tarasov, P.E., Volkova, V.S., Webb, T., Guiot, J., Andreev, A.A., Bezusko, L.G., Bezusko, T.V.,
 Bykova, G.V., Dorofeyuk, N.I., Kvavadze, E.V., Osipova, I.M., Panova, N.K., and
 Sevastyanov, D.V.: Last glacial maximum biomes reconstructed from pollen and plant
 macrofossil data from northern Eurasia, Journal of Biogeography, 27, 609–620, 2000.
- 406 Tarasov, P.E., Webb, T., Andreev, A.A, Afanas'Eva, N.B., Berezina, N.A., Bezusko, L.G.,
- 407 Blyakharchuk, T.A., Bolikhovskaya, N.S., Cheddadi, R., Chernavskaya, M.M., Chernova,
- 408 G.M., Dorofeyuk, N.I., Dirksen, V.G., Elina, G.A., Filimonova, L.V., Glebov, F.Z., Guiot, J.,
- 409 Gunova, V.S., Harrison, S.P., Jolly, D., Khomutova, V.I., Kvavadze, E.V., Osipova, I.M.,

410	Panova, N.K., Prentice, I.C., Saarse, L., Sevastyanov, D.V., Volkova, V.S., and Zernitskaya,
411	V.P.: Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil
412	data from the Former Soviet Union and Mongolia, Journal of Biogeography, 25, 1029–1053,
413	1998.
414	Trondman, AK., Gaillard, MJ., Mazier, F., Sugita, S., Fyfe, R.M., Nielsen, A.B., Twiddle, C.,
415	Barratt, P., Birks, H.J.B., Bjune, A.E., Björkman, L., Broström, A., Caseldine, C., David, R.,
416	Dodson, J., Dörfler, W., Fischer, E., van Geel, B., Giesecke, T., Hultberg, T., Kalnina, L.,
417	Kangur, M., van der Knaap, W.O., Koff, T., Kuneš, P., Lagerås, P., Latałowa, M.,
418	Lechterbeck, J., Leroyer, C., Leydet, M., Lindbladh, M., Marquer, L., Mitchell, F.J.G.,
419	Odgaard, B.V., Peglar, S.M., Persoon, T., Poska, A., Rösch, M., Seppä, H., Veski, S., and
420	Wick, L.: Pollen-based quantitative reconstruction of Holocene regional vegetation cover
421	(plant-functional types and land-cover types) in Europe suitable for climate modelling,
422	Global Change Biology, 21, 676–697, 2015.
423	
424	
425	
426	
427	
428	
429	
430	
431	
432	
433	
434	
435	
436	
437	
438	
439	

440 Pollen-based quantitative land-cover reconstruction for northern Asia 441 duringcovering the last 40 ka

442 Xianyong Cao^{a*}, Fang Tian^a, Furong Li^b, Marie-Jos é Gaillard^b, Natalia Rudaya^{a,c,d},
 443 Qinghai Xu^e, Ulrike Herzschuh^{a,d,ef*}

- 444 ^a Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A43, 14473
- 445 Potsdam, Germany
- 446 ^b Department of Biology and Environmental Science, Linnaeus University, Kalmar SE-39182, Sweden
- ^c Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, pr. Akad.
 Lavrentieva 17, Novosibirsk 630090, Russia
- 449 ^d Institute of Earth and Environmental SciencesScience and Geography, University of Potsdam,
- 450 Karl-Liebknecht-Str. 24, 14476 Potsdam, Germany
- 451 ** College of Resources and Environment Science, Hebei Normal University, Shijiazhuang 050024, China
- 452 ^f Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24, Potsdam 14476,
 453 Germany

454

455 ABSTRACT

We collected the available relative pollen productivity (RPP) estimates (PPEs) for 27
major pollen taxa from Eurasia and applied them to estimate plant abundances
during the last 40 cal. ka BP (calibrated thousand-year_years before-the present)
using pollen counts from 203 fossil pollen records in northern Asia (north of 40 N).
These pollen records were organised into 42 site-groups; and regional mean plant
abundances-were calculated using the REVEALS (Regional Estimates of Vegetation

* Corresponding authors. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A43, Potsdam 14473, Germany. X. Cao (present address: Key Laboratory of Alpine Ecology (LAE), CAS Center for Excellence in Tibetan Plateau Earth Sciences, Institute of Tibetan Plateau Research, Chinese Academy of Science, Beijing, China; xcao@itpcas.ac.cn); U. Herzschuh (Ulrike.Herzschuh@awi.de).

Abundance from Large Sites) model. Time-series clustering, constrained hierarchical 462 clustering, and detrended canonical correspondence analysis were performed to 463 investigate the regional pattern, time, and strength of vegetation changes, 464 respectively. Reconstructed regional land coverplant-functional type (PFT) 465 components for each site-group is are generally consistent with in situ modern 466 vegetation, in that vegetation changes within the regions are characterized by minor 467 changes in the abundance of major taxaPFTs rather than by invasions of new 468 taxaPFTs, particularly during the Holocene. We argue that pollen-based REVEALS 469 470 estimates of plant abundances should be a more reliable reflection of the vegetation as pollen may overestimate the turnover, particularly when a high pollen producer 471 dominated by low pollen producers. 472 invades areas Comparisons with vegetation-independent climate records show that climate change is the primary 473 474 factor driving land-cover changes at broad spatial and temporal scales. Vegetation changes in certain regions or periods, however, could not be explained by direct 475 climate change, for example inland Siberia, where a sharp increase in evergreen 476 477 conifer tree abundance occurred at ca. 7-8 cal. ka BP despite an unchanging 478 climate, potentially reflecting their response to complex climate-_permafrost-_fire-_ vegetation interactions and thus a possible long-term-scale lagged climate response. 479

Keywords: boreal forests, China, Holocene, late Quaternary, pollen productivity,
quantitative reconstruction, Siberia, vegetation

482 **1 Introduction**

High northern latitudes such as northern Asia experience above-average temperature increases in times of past and recent global warming (Serreze et al., 2000; IPCC, 2007), known as polar amplification (Miller et al., 2010). Temperature rise is expected to promote vegetation change as the vegetation composition in these areas is assumed to be controlled mainly by temperature (Li J. et al., 2017; Tian et al., 2018). However, a more complex response can occur mainly because vegetation is not linearly related to temperature change (e.g. due to resilience, stable states or time-lagged responses; Soja et al., 2007; Herzschuh et al., 2016) and/or vegetation is
only indirectly limited by temperature andwhile other temperature-related
environmental drivers such as permafrost conditions are more influential
(Tchebakova et al., 2005).

494 Such complex relationships between temperature and vegetation may help explain several contradictory findings of recent ecological change in northern Asia. For 495 example, simulations of vegetation change in response to a warmer and drier climate 496 indicate that steppe should expand in the present-day forest-steppe ecotone of 497 southsouthern Siberia (Tchebakova et al., 2009) but, contrarily, pine forest in south 498 Siberiahas increased during the past 74 years, probably because the warming 499 500 temperature was mediated by improved local moisture conditions (Shestakova et al., 2017). In another example, evergreen conifers, which are assumed to be more 501 susceptible to frost damage than *Larix*, expanded their distribution by 10% during a 502 period with cooler winters from 2001 to 2012, while the distribution of Larix forests 503 504 decreased by 40% on the West SiberiaSiberian Plain as revealed by a remote sensing 505 study (He et al., 2017). Additionally, some field studies and dynamic vegetation 506 models infer a rapid response of the treeline to warming in northern Siberia (e.g., Moiseev, 2002; Soja et al., 2007; Kirdyanov et al., 2012), but combined model- and 507 508 field-based investigations of larch stands in north-central Siberia reveal only a densification of tree-stands, not an areal expansion (Kruse et al., 2016; Wieczorek et 509 al., 2017). 510

These findings on recent vegetation dynamics that contradict a straightforward 511 512 vegetation-temperature relationship may be better understood in the context of vegetation change over longer time-scales. Synthesizing multi-record pollen data is 513 the most suitable approach to investigate quantitatively the past vegetation change at 514 broad spatial and long temporal scales. Broad spatial scale pollen-based land-cover 515 reconstructions have been made for Europe (e.g. Mazier et al., 2012; Nielsen et al., 516 2012; Trondman et al., 2015) and temperate China (Li, 2016) for the Holocene. 517 However, vegetation change studies in northern Asia are restricted to biome 518

reconstructions (Tarasov et al., 1998, 2000; Bigelow et al., 2003; Binney et al. 2017; 519 Tian et al., 2018), which do not reflect compositional change. Syntheses of pure 520 521 pollen percentage data are not appropriate due to differences in pollen productivity, which may result in an overestimation of the strength of vegetation changes (Wang 522 and Herzschuh, 2011). This might be particularly severe when strong pollen 523 producers such as pine (Mazier et al., 2012) invade areas dominated by low pollen 524 producers such as larch (Niemeyer et al, 2015). Marquer et al. (2014, 2017) also 525 526 demonstrated the strength of pollen-based REVEALS estimates of plant abundance in studies of Holocene vegetation change and plant diversity indexesindices in 527 Europe. Accordingly, syntheses of quantitative plant cover derived from the 528 application of **RPPPPEs** to multiple pollen records (Trondman et al., 2015; Li, 2016) 529 should be a better way to investigate Late Glacial and Holocene vegetation change in 530 northern Asia. 531

532 In this study, we employ the taxonomically harmonized and temporally standardized 533 fossil pollen datasets available from eastern continental Asia (Cao et al., 2013, 2015) and Siberia (Tian et al., 2018) covering the last 40 cal. ka BP (henceforth abbreviated 534 535 to ka). We compile all the available RPP estimates PPEs from Eurasia and use the mean of estimates estimate for each taxon. Finally, we quantitatively reconstruct 536 plant cover using the REVEALS model (Sugita, 2007) for 27 major taxa at 18 key 537 538 time slices. Our aims are to (1)We reveal the nature, strength, and timing of vegetation change in northern Asia and its regional peculiarities; and $\frac{2}{2}$ discuss the 539 540 driving factors of vegetation change.

541 **2 Data and methods**

542 2.1. Fossil pollen data process

The fossil pollen records were obtained from the extended version of the fossil pollen dataset for eastern continental Asia containing 297 records (Cao et al., 2013, 2015) and the fossil pollen dataset for Siberia with 171 records (Tian et al., 2017). For the 468 pollen records, pollen names were harmonized and age-depth models

were re-established using the same procedures (further details are described in Cao 547 et al., 2013). We selected 203 pollen records from lacustrine sediments (110 sites) 548 and peat (93 sites) north of 40°N, with chronologies based on \geq 3 dates and <500 549 year/sample temporal resolution generally, following previous studies (Mazier et al., 550 2012; Nielsen et al., 2012; Fyfe et al., 2013; Trondman et al., 2015). Out of the 203 551 pollen records, 170 sites (83 from lakes, 87 from bogs) have original pollen counts, 552 while in the other 33 sites only pollen percentages are available. Due to overall low 553 554 site density, we decided to include these data. The original pollen counts were back calculated from percentages using the terrestrial pollen sum indicated in the original 555 publications. Detailed information (including location, data quality, chronology 556 reliability, and data source) of the selected sites is presented in AppendixAppendices 557 1 and 2. 558

559

Table 1 Selected time windows.

Time window (cal a BP)	Abbreviated name
-60~100	0 ka
100~350	0.2 ka
350~700	0.5 ka
700~1200	1 ka
1700~2200	2 ka
2700~3200	3 ka
3700~4200	4 ka
4700~5200	5 ka
5700~6200	6 ka
6700~7200	7 ka
7700~8200	8 ka
8700~9200	9 ka
9700~10200	10 ka
10500~11500	11 ka
11500~12500	12 ka
13500~14500	14 ka
19000~23000	21 ka
23000~27000	25 ka
36000~44000	40 ka

560

561 We selected 18 key time slices for reconstruction (Table 1) to capture the general 562 temporal patterns of vegetation change during the last 40 ka, i.e. 40, 25, 21, 18, 14,

and 12 ka during the late Pleistocene and 1000-year resolution (i.e. 500-year time 563 windows around each millennium, e.g. 0.7-1.2 ka, 1.7-2.2 ka, etc.) during the 564 565 Holocene. For the 0 ka time slice, the ca. 150-year time window (<0.1 ka) was set to represent the modern vegetation. Since few pollen records have available samples at 566 567 the 0 ka time slice, the 0.2 and 0.5 ka time slices were added with covered a 250-year or 350-year time windows window (0.1~0.35 ka and 0.35~0.7 ka, respectively) to 568 represent the recent vegetation-pattern, following the strategy and time windows 569 570 implemented infor Europe (Mazier et al., 2012; Trondman et al., 2015). For the last glacial period, even broader time windows were chosen to offset the sparsely 571 available samples (Table 1). Pollen counts of all available samples within one time 572 window were summed up to represent the total pollen count for each time slice. In 573 574 this study, we selected 27 major pollen taxa (with available PPE values) that form dominant components in both modern vegetation communities and the fossil pollen 575 spectra with available PPE values and reconstruct their abundances in the past 576 vegetation (Table 2). 577

Table 2 Fall speed of pollen grains (FS) and the means of themean relative pollen
productivity (RPP) estimates estimate (PPE) with their standard error (SE).) for the 27
selected taxa. Plant-functional type (PFT) assignment is according to previous biome
reconstructions (Tarasov et al., 1998, 2000; Bigelow et al., 2003; Ni et al., 2010).

582

PFT	PFT description	pollen type	FS (m/s)	PPE (SE)
Ι	evergreen conifer tree	Pinus	0.031 1	9.629 (0.075)
Ι	evergreen conifer tree	Picea	0.056^{-1}	2.546 (0.041)
Ι	evergreen conifer tree	Abies	0.120 1	6.875 (1.442)
II	deciduous conifer tree	Larix	0.126 1	3.642 (0.125)
III	boreal deciduous tree	Betula_tree	0.024 1	8.106 (0.125)
		Betula undiff.		
ш	boreal deciduous tree	Alnus_tree	0.021 1	9.856 (0.092)
111		<u>Alnus_undiff.</u>		
III	boreal deciduous tree	Corylus	$0.025^{\ 2}$	1.637 (0.065)
IV	temperature deciduous tree	Quercus	0.035 1	6.119 (0.050)
IV	temperature deciduous tree	Fraxinus	0.022^{-1}	2.046 (0.105)
IV	temperature deciduous tree	Juglans	0.037 ³	4.893 (0.221)

IV	temperature deciduous tree	Carpinus	0.042^{-1}	5.908 (0.285)
IV	temperature deciduous tree	Tilia	$0.032^{\ 2}$	1.055 (0.066)
IV	temperature deciduous tree	Ulmus	$0.032^{\ 2}$	6.449 (0.684)
V	boreal shrub	Betula_shrub	0.024^{-1}	1.600 (0.132)
V	boreal shrub	Alnus_shrub	0.021^{-1}	6.420 (0.420)
V	boreal shrub	Salix	0.034 ²	1.209 (0.039)
V	boreal shrub	Ericaceae	0.034 4	0.200 (0.029)
VI	arid-tolerant shrub and herb	Ephedra	0.015 8	0.960 (0.140)
VI	arid-tolerant shrub and herb	Artemisia	0.014 6	9.072 (0.176)
VI	arid-tolerant shrub and herb	Chenopodiaceae	0.019 ⁶	5.440 (0.460)
VII	steppegrassland and forb-tundra forb	Poaceae	0.035 4	1.000 (0.000)
VII	steppegrassland and forb-tundra forb	Cyperaceae	0.035 5	0.757 (0.044)
VII	steppegrassland and forb-tundra forb	Asteraceae	0.051 7	0.465 (0.066)
VII	steppegrassland and forb-tundra forb	Thalictrum	0.007 8	3.855 (0.258)
VII	steppegrassland and forb-tundra forb	Ranunculaceae	0.014 9	2.900 (0.363)
VII	steppegrassland and forb-tundra forb	Caryophyllaceae	0.028 9	0.600 (0.050)
VII	steppegrassland and forb-tundra forb	Brassicaceae	0.002^{-3}	4.185 (0.188)

¹ Eisenhut (1961); ² Gregory (1973); ³ Li et al. (2017); ⁴ Broström et al. (2004); ⁵ Sugita et al. (1999); ⁶ Abraham and Koz akov á (2012); ⁷ Broström et al. (2002); ⁸ Xu et al. (2014); ⁹ Bunting et al. (2013).

586 2.2 The REVEALS model setting

The REVEALS model assumes the PPEs of pollen taxa are constant variables over 587 the target period, and requires parameter inputs including sediment basin radius (m), 588 fall speed of pollen grain (FS, m/s), and PPE with standard error (SE; Sugita, 2007). 589 The areas of the 110 lakes were obtained from descriptions in original publications 590 and validated by measurements on Google Earth. Their basin radii were 591 back-calculated from their areas assuming a circular shape. There are 83 large lakes 592 (radius >390 m; following Sugita, 2007) in our dataset with a fairly even distribution 593 594 across the study area (Fig. 1; Appendix 1), which helps ensure the reliability of the regional vegetation estimations (Sugita, 2007; Mazier et al., 2012). Only 18 bogs 595 have published descriptions about their size and it is infeasible to measure them on 596 Google Earth because of indefinite boundaries, hence an identical. A test-run showed 597 598 that using different bog radii (i.e. 5 m, 10 m, 20 m, 50 m, 100 m, 200 m and 500 m) did not significantly affect the REVEALS estimates (Appendix 3), hence a standard 599 (moderate size) radius of 100 m was set for all bogs. 600

We collected available RPP estimates PPEs for the 27 selected pollen taxa from 20 601 studies in Eurasia (Appendix 24). We calculated the mean PPE from all available 602 PPE values, but excluded records with PPE \leq SE (Mazier et al., 2012). We included 603 these PPEs for various species in the mean PPE calculation for their family or genus. 604 For simplification, we did not evaluate the values and further selected RPPor select 605 PPE values following consistent criteria as was done in Europe (Mazier et al., 2012). 606 WeInstead, we used instead the original values from the studies included in Mazier 607 et al. (2012) and added new RPPPPE values from Europe published since the 608 synthesis of Mazier et al. (2012). SE of the mean PPE was estimated using the delta 609 method (Stuart and Ord, 1994). Fall speeds for each of the 27 pollen taxa were 610 retrieved from previous studies (see Table 2). 611

617 semi-desert and desert; F: warm-temperate deciduous forest.

The REVEALS model generally performs best with pollen records from large lakes, 618 although multiple pollen records from small lakes and bogs (at least two sites) can 619 also produce reliable results where large lakes are absent (Sugita, 2007; Trondman et 620 621 al., 2016). Here, due to the sparse distribution of available sites, we divided the 203 sites into 42 site-groups, based on criteria of geographic location, vegetation type 622 623 (vegetation zone map modified from Tseplyayev, 1961; Dulamsuren et al., 2005; Hou, 2001), climate (based on modern precipitation and temperature contours), and 624 permafrost (Brown, 1997) following the strategy of Li (2016), and the pollen data 625 within one site-group should be of similar components and temporal patterns. To 626 627 ensure the reliability of REVEALS estimates of plant cover, each group includes at 628 least one large lake or two small sites (small lakes or bogs; Fig. 1; Appendix 45).

635 The REVEALS model was run with a mean wind speed set to 3 m/s and neutral atmospheric conditions following e.g. Trondman et al. (2015), and the maximum 636 distance of regional vegetation Zmax was set to 100 km. The lake and bog sites were 637 reconstructed using the models of pollen dispersal and deposition for lakes (Sugita, 638 1993) and bogs (Prentice, 1985), respectively in REVEALS version 5.0 (Sugita, 639 unpublished). The mean estimate of plant abundances from lakes and bogs was 640 calculated for each of the 42 site-groups, which includes both sediment types (using 641 the computer program bog.lake.data.fusion, Sugita, unpublished). Finally, the 27 642 taxa were assigned to seven plant functional types (PFT; Table 1) following the PFT 643 644 definitions for China and Siberia (Tarasov et al. 1998, 2000; Bigelow et al. 2003; Ni et al., 2010; Tian et al., 2017), with the restriction that each pollen taxon is attributed 645 to only one PFT according to the strategy of Li (2016) (Table 2). 646

647 2.2 Numerical analyses of reconstruction

The abundance variations of the seven PFTs during the Holocene (time slices 648 649 between 12 and 1 ka) from 34 site-groups were used in a clustering analysis. Eight site-groups had to be excluded from the analysis due to poor coverage of time slices 650 (G1, G5, G17, G19, G27, G42). For site-groups with <3 missing time slices during 651 the Holocene (G3, G16, G26, G32, G33, G35, G38, G39, G41), linear interpolation 652 653 was employed to estimate the PFT abundances for the missing time slices. Time-series clustering for the three-way dataset was performed to generate a 654 distance matrix among the site-groups using the *tsclust* function in the *dtwclust* 655 package (Sarda-Espinosa, 2018) in R 3.4.1 (R Core Team, 2017). The distance 656 matrix was employed in hierarchical clustering (using the hclust function in R) to 657 cluster the site-groups. Constrained hierarchical clustering (using *chclust* function in 658 rioja package version 0.9-15.1; Juggins, 2018) together with the broken-stick model 659 werewas used to determine the timing of primary vegetation changes (i.e. the first 660 661 split) in each site-group. A change was considered to be significant when the split passed the broken-stick test. The amount of PFT compositional change (turnover)
through time during the Holoceneperiod between 12 and 1 ka was estimated by
detrended canonical correspondence analysis (DCCA) for each site-group (ter Braak,
1986) using CANOCO 4.5 (ter Braak and Šmilauer, 2002).

666 **3. Results**

667 Large-scale pattern

On a glacial-interglacial scale, marked temporal changes in the occurrence and 668 abundance of PFTs are revealed, in particular the high cover of tree PFTs during the 669 Holocene as opposed to the widespread open landscape during the glacial period. In 670 contrast, vegetation changes in northern Asia within the Holocene are rather minor 671 with only slight changes in PFT abundances. Cluster analyses of grouped vegetation 672 673 records from the Holocene find five clusters- (Appendix 6). Their spatial distribution 674 is largely consistent with the distribution of modern vegetation types as characterized by certain PFTs. (1) Records from the forest-steppe ecotone (e.g. G12, G21; Fig. 2A) 675 in north-central China and the Tianshan Mts. (the mentioned geographic locations 676 677 are indicated in Appendix 37) have high tree PFTs during the middle Holocene. (2) Areas in southern and south-western Siberia and north-eastern China were covered 678 by cool-temperate mixed forest or light taiga with a high diversity of trees 679 680 throughout the Holocene (e.g. G2, G7, G14, G29; Fig. 2B). (3) The West Siberian 681 Plain and south-eastern Siberia that are presently covered by open dark taiga forests (e.g. G8, G9, G33; Fig. 2C) had an even higher abundance of evergreen conifer trees 682 683 during the middle Holocene than at present. (4) Larix formed light taiga forests in 684 central Yakutia throughout the Holocene (e.g. G25, G26; Fig. 2D). (5) Northern Siberia, which is presently covered by tundra formed by boreal shrubs and 685 herbs, had a higher share of tree PFTs during the middle Holocene (e.g. G28, G39; 686 Fig. <u>22E</u>). 687

689

690

691

692

The turnover in PFT composition is <0.7 SD units in almost all site-groups, except G8 (0.88 SD), G9 (0.73 SD), and G24 (0.76 SD), indicating only slight vegetation change during the Holocene, (Fig. 3). The three site-groups with higher turnover show a distinct transition from light taiga to dark taiga in the middle Holocene (at ca. 8 ka). This result is consistent with the finding that PFT abundance from 16 site -groups showshows no significant temporal clusters. The primary vegetation changes

(i.e. all significant splits or, if no significant split occurs in a record, the first 699 insignificant split) occur during different intervals in each site-group. Overall, the 700 early Holocene (including 11.5, 10.5, and 9.5 ka time-slices) has the highest 701 frequency of primary vegetation changes. Records from the south-eastern coastal 702 part of the study area are characterized by relatively many early-Holocene splits (e.g. 703 G29, G30, G32, G33, G34, G36, G37). There are 16 site-groups whose primary 704 vegetation changes during the middle Holocene (including 8.5, 7.5, 6.5, and 5.5 ka 705 706 time-slices), and most of them are from inland areas such as the West Siberian Plain, 707 central Yakutia, and northern Mongolia. Only seven site-groups have late-Holocene primary vegetation changes (Fig. 3). 708

709

Warm temperate forest margin zone in vicinity of Tianshan Mts. and north-central
China (G6, G12, G13, G16, G21, G22)

30

G22) and from the lowlands adjacent to mountainous forest in arid central Asia (G12, 717 G13, G16) are clustered together (Fig. 3). Our results indicate that these areas, which 718 are now dominated by arid-tolerant shrub and steppe species, had more arboreal 719 species, mainly evergreen conifer tree taxa, in the middle Holocene (Fig. 22A). For 720 example, north-central China (G21) has a marked mid-Holocene maximum in forest 721 722 cover (7–4 ka; mean 51%). However, certain peculiarities are noted: open landscape 723 is reconstructed between 14 and 7 ka in northern Kazakhstan (G6), followed by an 724 abundance of evergreen conifer trees and an increase in boreal deciduous trees that maintain high values (mean 30%) after 7 ka. In the eastern branch of the Tianshan 725 Mts. (G12), evergreen conifer trees are highly abundant from 10 to 7 ka and after 2 726 ka, while low abundance occurs from 14 to 11 ka and from 6 to 3 ka. In the Gobi 727 desert near the Tianshan Mts. (G16) there was an even higher abundance of 728 arid-tolerant species with no notable temporal trend in abundance of arboreal species. 729 We assume that the high arboreal cover at site-groups G13 and G22 at 14 and 12 ka 730 originates from riverine transport and therefore exclude them from further analyses. 731

broadleaved forest zone (G2, G29, G30, G31) and taiga-steppe transition zone (G7, G14, G15, G18) show similar PFT compositions and temporal evolutions. At these sites, evergreen conifer tree is the dominant PFT intermixed with other arboreal PFTs, such as deciduous conifers (*Larix*) in the Altai Mts. and northern Mongolia,

and/or temperate deciduous trees in northeasternnorth-eastern China-(Fig. 2B).

750

Fig. 2C. Temporal changes of plant functional type (PFT) cover, as proportions, for the
site-groups from dark taiga forest. PFT I: evergreen conifer tree; PFT II: deciduous conifer tree;
PFT III: boreal deciduous tree; PFT IV: temperate deciduous tree; PFT V: boreal shrub; PFT VI:
arid-tolerant shrub and herb; and PFT VII: steppe and tundra forb.

Evergreen conifer tree is the dominant PFT at 40, 25, and 21 ka in the southern part of north-eastern China (G29), *Larix* then becomes the dominant taxa at 14 and 12 ka, and temperate deciduous trees increase thereafter and maintain high cover between 11 and 3 ka. After 2 ka, evergreen conifer trees increase to 32% on average while temperate deciduous trees decrease to 18% on average. While arboreal abundance is lower in the northern part of northeasternnorth-eastern China (G30, G31) than in the southern part (G29), it shows a similar temporal pattern- (Fig. 2B).

Fig. 3. Clustering results of the 34 site-_groups represented by the colour of the boxes, with the age of primary vegetation changes (middle row of each box; data in brackets means the hierarchical clustering failed the broken-stick testingtest) and the compositional change (turnover; lower row) during the Holocene. A summary of the frequency of when the changes occurred is provided below the map.

Open landscape is revealed for the southern Ural region (G2) with high abundances
of herbaceous species at 14 ka. The cover of *Larix* and evergreen conifer trees
increases after 12 ka and maintains high values thereafter with no notable temporal
trend-<u>(Fig. 2B).</u>

In the taiga-steppe transition zone, *Larix* is the dominant arboreal taxon, particularly in the northern Altai Mts. and northern Mongolia (G15, G18). Open landscapes are inferred at 40, 21, and 12 ka on the southern West Siberian Plain (G7); cover of *Larix* increases at 11 ka, and evergreen conifer trees increase from 9 ka and become the dominant forest taxon after 4 ka. The temporal pattern of evergreen conifer trees in the Altai Mts. (G14) is similar to the southern West Siberian Plain, although *Larix*maintains high abundances into the late Holocene. Relative to the Altai Mts., the
abundance of evergreen conifer trees for all time windows are lower in the area north
of the Altai Mts. and in northern Mongolia (G15, G18), but their temporal change
patterns are consistent with those of the Altai Mts. (G14; Fig. 2B).

783 Dark taiga forest in western and southeasternsouth-eastern Siberia (G3, G4, G8, G9,
784 G20, G32, G33, G34)

Site-groups with dark taiga forest from western Siberia (G3, G4, G8, G9), the Baikal
region (G20), and south-eastern Siberia (G32, G33, G34) form one cluster sharing
similar PFT compositions dominated by evergreen conifer trees, with *Larix* and
boreal broadleaved shrubs as the common woody taxa during the Holocene<u>- (Fig.</u>
<u>2C).</u>

On the West Siberian Plain (G8, G9), high cover of *Larix* is reconstructed during the early Holocene as well as high woody cover since the middle Holocene formed by evergreen conifer trees and boreal shrubs. In the Ural region (G3, G4), evergreen conifer trees dominate the arboreal species throughout the Holocene. The absence of *Larix* in the early Holocene in this Ural region is a notable difference to the West Siberian Plain-<u>(Fig. 2C)</u>.

In the Baikal region (G20), relatively closed landscape is revealed at 40 ka; openness then increases to >95% at 25 and 21 ka. Since 14 ka, woody cover increases as shown by a notable rise in evergreen conifer trees from 14 to 8 ka and by increases of *Larix* after 7 ka. (Fig. 2C).

In south-eastern Siberia (G32, G34), arboreal abundance is high in the early and late Holocene, but low in the middle Holocene. South of Sakhalin Island (G33), closed landscape is revealed between 40 and 1 ka with >80% woody cover. Evergreen conifer tree PFT has lower cover than boreal shrub PFT at 25 and 21 ka, but increases in abundance around 14 ka rising to 83% on average between 11 and 3 ka, and reduces thereafter. (Fig. 2C). Light taiga forest in north-western Siberia and central Yakutia (G10, G23, G24, G25,
G26)

Plant composition of this cluster is dominated by Larix with high arboreal cover 808 during the Holocene. Evergreen conifer trees are present at ca. 15% cover between 809 11 and 2 ka, with high arboreal values (mean 73%) during the Holocene in 810 northwesternnorth-western Siberia (G10). In central Yakutia (G23, G24, G25), 811 812 evergreen conifer trees increase markedly from ca. 8 ka, 6 ka, and 7 ka, respectively and maintain high cover thereafter, with ca. 60% arboreal cover throughout the 813 814 Holocene. Evergreen conifer trees are almost absent in the taiga-tundra ecotone (G26; Fig. 2D). 815

Fig. 2D. Temporal changes of plant functional type (PFT) cover, as proportions, for the
site-groups from light taiga forest and taiga-tundra ecotone (G35, G36, G37). PFT I: evergreen
conifer tree; PFT II: deciduous conifer tree; PFT III: boreal deciduous tree; PFT IV: temperate
deciduous tree; PFT V: boreal shrub; PFT VI: arid-tolerant shrub and herb; and PFT VII: steppe
and tundra forb.

shrubs and tundra forbs. *Larix* is the only tree species on the Taymyr Peninsula (G11)
and its abundance increases from 18% at 14 ka to 60% at 10 ka, and then decreases
to 18% at 5 ka. The landscape of the north Siberian coast (G28) is dominated by
shrub tundra from 14 ka to 10 ka, then *Larix* increases sharply and maintains high
values between 9 and 6 ka. After 5 ka, *Larix* reduces, and shrub tundra becomes the
dominant landscape again- (Fig. 2E).

In north-eastern Siberia, arboreal cover shows a decreasing trend from southerly site -groups (G35, G36, G37; Fig. 2D) to northerly ones (G40, G38, G39, G41) following the increasing latitude. In the Olsky District, temporal patterns of vegetation changes in G37 are consistent with G36, with stable vegetation during the Holocene and increases in evergreen conifer tree abundance from ca. 9 ka. Arboreal composition on the southern Kamchatka Peninsula (G35) is dominated by boreal deciduous trees during the first stage of the Holocene, followed by rising abundances 843 of *Larix* and evergreen conifer trees from 5 ka.

In northeasternnorth-eastern Siberia (G40, G38, G39, G41), the landscape is dominated by forb tundra with sparse shrubs between 40 and 21 ka; the cover of shrubs increases at 14 ka and arboreal cover (dominated by boreal deciduous trees) increases in the early Holocene (11 or 10 ka). Shrubs maintain a high abundance throughout the Holocene, while trees peak between 10 and 2 ka generally-<u>(Fig. 2E)</u>.

849 Fig. 2 850 Fig. 3

851 4. Discussion

852 4.1 Land-cover changes and potential biases

853 The overall patterns of pollen-based REVEALS estimates of land cover are generally consistent with previous vegetation reconstructions. Although only a few site-groups 854 cover the period from 40 to 21 ka, a consistent vegetation signal indicates that 855 relatively closed landscapes occurred in south-eastern Siberia, north-eastern China, 856 857 and the Baikal region (Fig. 2), while most of Siberia was rather open, particularly around 21 ka (Fig. 2). These findings are consistent with previous pollen-based 858 (Tarasov et al., 1998, 2000; Bigelow et al., 2003; Binney et al. 2017; Tian et al., 859 2018) and model-estimated biome reconstructions (Tian et al., 2018). During the late 860 Pleistocene (40, 25, 21, 14 ka), steppe PFT abundance was high in central Yakutia 861 and north-eastern Siberia (e.g. G25, G36, G37, G39, G40, G41), which may reflect 862 the expansion of tundra-steppe, consistent with results from ancient sediment DNA 863 which reveal abundant forb species during the period between 46 and 12.5 ka on the 864 865 Taymyr Peninsula (Jørgensen et al., 2012). The tundra-steppe was replaced by light 866 taiga in southern Siberia and by tundra in northern Siberia at the beginning of Holocene or the last deglaciation, which is consistent with ancient DNA results 867 (forbs-dominated steppe-tundra; Willerslev et al., 2014). 868

869 During the Holocene, reconstructed land cover for each site-group is generally

870 consistent with *in situ*their modern vegetation. The slight vegetation changes are represented by changes of in PFT abundanceabundances rather than by changes in 871 872 <u>PFT</u> presence/absence. Minor changes are also indicated in the cluster analysis, which shows that plant compositions and their temporal patterns are consistent 873 among the site-groups within the same modern vegetation zone (Fig. 3). PFT 874 datasets from 16 site-groups fail the broken-stick test for clustering analysis, and 875 most of the remaining site-groups have only one significant vegetation change, 876 877 further supporting the case that only slight changes occurred during the Holocene in northern Asia. In addition, the low total amount of PFT change (turnover) over the 878 Holocene for most site--groups supports the view of slight temporal changes in land 879 880 cover.

Vegetation turnover on the Tibetan Plateau inferred from pollen percentages is 881 documented to overestimate the strength of vegetation changes (Wang and 882 Herzschuh, 2011). This matches with our results. In central Yakutia, the pollen 883 884 percentage data indicate a strong vegetation change during the middle Holocene, 885 represented by a sharp increase of *Pinus* pollen, but the strength of the vegetation 886 change is overestimated because of the high PPE of Pinus. The PPE-corrected arboreal abundances in central Yakutia after ca. 7 ka with ca. 70% Larix and ca. 10% 887 Pinus are consistent with modern light taiga (Katamura et al., 2009). Furthermore, 888 the absence of Pinus macrofossils in central Yakutia throughout the Holocene 889 (Binney et al., 2009) also suggests a restricted distribution of Pinus, possibly to 890 891 sandy places such as river banks (Isaev et al., 2010).

892 Pollen-based turnover estimates from southern Norway range between 0.84 to 1.3 SD (mean 1.02 SD) for ten Holocene pollen spectra (Birks, 2007), and from northern 893 Europe between 0.01 (recent) to 0.99 (start of the Holocene) SD for three sites (N 894 Sweden, NW and SE Finland) (Marquer et al., 2014). Moreover, the 895 896 REVEALS-based turnover estimates (0.3-1) for northern Europe are significantly higher than the pollen-based one (0.2-0.8) from 11 ka to 5.5 ka BP. The same is 897 all regions studied by Marquer et 898 true for other al. (2014)in

northwestern north-western Europe, and the turnover estimates (pollen- and 899 REVEALS-based) are generally higher at lower latitudes from southern Sweden 900 901 down to Switzerland and eastwards to Britain and Ireland. These European values are higher than our REVEALS-based turnover estimates (from 0.37 to 0.88 SD, 902 mean 0.66 SD; G3, G8, G9, G23, G24, G25, G36, G37) from a similar latitudinal 903 904 range (Fig. 3). The fewer parameters used in the turnover calculations for northern Asia (PFTs) compared to Europe (pollen taxa) is a potential reason for the lower 905 906 turnover obtained in this study. In addition, the PPE-based transformation from pollen percentages to plant abundances may reduce the strength of vegetation 907 changes (Wang and Herzschuh, 2011). Aside from the methodological aspects, the 908 lower turnover in northern Asia may, at least partly, originate from differences in the 909 environmental history between northern Europe compared with northern Asia, 910 i.e.that is glaciation followed by postglacial invasion vs. non-glaciated areas with 911 trees in refugia, respectively, and a maritime climate with temperature-limited 912 vegetation distribution vs. a continental climate with temperature-913 and 914 moisture-limited vegetation.

915 We consider the REVEALS-based regional vegetation-cover estimations in this study as generally reliable with reasonable standard errors (Appendix 8) thanks to 916 the thorough selection of records with high quality pollen data and reliable 917 chronologies. In addition, the landscape reconstructions are generally consistent with 918 previous syntheses of past vegetation change (e.g. Tian et al., 2018) and known 919 global climate trends (Marcott et al., 2013), plus the clustering results of PFT 920 abundance are consistent with modern spatial vegetation patterns. That said, this 921 922 study faced two major methodological challenges, discussed below, that may reduce the reliability of the obtained quantitative land-cover reconstructions, i.e.; 1) the low 923 924 number of **RPP** estimates PPEs and their origin and 2) restrictions with respect to the number, distribution, and type of available sites. 925

926 927 (1) Twenty <u>RPPPPE</u> sets were used which mostly originate from Europe and temperate northern China (the typical steppe in north-central China,

928 Xilinhaote, Xu et al., 2014;. The available PPEs were estimated from various environmental and the temperate coniferous and broadleaved mixed forest in 929 930 north-eastern China, Changbai Mt.; Li et al., 2015), but alsoecological settings, which might cause regional differences in each PPE. Also, PPEs of 931 different species within one family or genus were included RPP records from 932 the taiga-tundra ecotone in our mean PPE calculation for the family or genus, 933 ignoring the inter-species differences. Both these aspects can cause 934 uncertainty in arctic Siberia (Niemeyer et al., 2015). We assume the mean 935 PPE to some extent. However, we believe that the compiled RPPPPE sets can 936 be used to extract major broad-scale and long-term vegetation patterns 937 because the regional differences among RPP estimates within onein the PPE 938 for each taxon are small compared to the large between-taxa differences-in 939 RPP estimates. Also, the. The mean values of available RPPs that were PPEs 940 used in thethis REVEALS modelling (Table 2)-and the calculated PPEs are 941 broadly consistent with those obtained from Europe (Mazier et al., 2012). In 942 943 addition, although there is are no PPE records PPEs for the core from the core of the Siberia taiga forest, available studies on modern pollen composition 944 confirmsupport the trendsweightings in the applied RPPPEs for major taxa 945 946 in terms of pollen under- or over-representation of vegetation abundance. For example, modern pollen investigationinvestigations in north-eastern Siberia 947 revealed that pollen records from northern Larix forest often have less than 948 949 13% Larix pollen, confirming the low pollen productivity of Larix relative to 950 over-represented pollen taxa such as Betula and Alnus (Pisaric et al., 2001, Klemm et al., 2016). Similarly, a study on modern pollen in southern Siberia 951 (transitional area of steppe and taiga) finds that Artemisia, Betula, and Pinus 952 are high pollen producers compared to Larix (Pelánková et al., 2008). Also, 953 954 despite *Larix* being the most common tree in taiga forest in north-central 955 Mongolia, the pollen abundance of Larix is generally lower than 3% (Ma et al., 2008), implying its low pollen productivity. 956

(2) In this study, we attempt to reconstruct past landscape changes at a regional 957 scale. Pollen signals from large lakes are assumed to reflect regional 958 959 vegetation patterns (e.g. Sugita et al., 2010; Trondman et al., 2015). If large lakes are absent in a region, multiple small-sized sites can also-be used, 960 although error estimates are usually large (Sugita, 2007; Mazier et al., 2012; 961 Trondman et al., 2016). In our study, 70% of the time slices for the 42 site 962 -groups include pollen data from large lakes (i.e. radii >390m), which 963 supports the reliability of REVEALS estimates (Table 3).reconstructions 964 (Appendix 5). However, sites are unevenly distributed and occasionally sites 965 from different areas were combined into one group (G2, G6, G34), which 966 might produce a different vegetation-change signal because of the broad 967 968 distribution of these sites- (Fig. 1). In addition, the linear interpolation of pollen abundances for time windows with few pollen data might be another 969 source of uncertainty, particularly for the late Pleistocene and its broad time 970 windows (Table 1). Finally, pollen signals from certain sites and during 971 certain periods may be of riverinewater-runoff origin rather than aerial origin 972 violating the assumption of the REVEALS-model that pollen is transported 973 by wind. 974

976 Table 3 Number of pollen records from large lakes (with ≥390 m radius; represented by L), small lakes (with <390 m radius; represented by S), and bogs (B) for
977 each site group used to run REVEALS for each time slice. For example, site group G6 has 2 large lake records, 1 small lake record and 2 bog records at 4 ka
978 (represented by 2L1S2B).

Grou	0 ka	0.2 ka	0.5 ka	1 ka	2 ka	3 ka	4 ka	5 ka	6 ka	7 ka	8 ka	9 ka	10-ka	11 ka	12 ka	14 ka	21 ka	25 ka	40 ka
G1	₩	₩	₩	-	₩	-	₩	₩	₩	₩	₩	₩	-	-	-	-	-	-	-
G2	6B	1S6B	1S6B	1S6B	1S4B	2S6B	2S6B	1S4B	2S2B	1\$	28	2\$	1S2B	1S2B	1S2B	2₿	=	-	=
G3	4₿	4B	8B	8B	6B	8B	8B	8B	8B	6B	6B	4B	4B	4B	-	-	=	-	=
G 4	-	11.	-	11.	11.	11.	11.	11.	11.	1L2B	1L2B	11.	11.	11.	11.	-	-	-	-
G5	4 <u>\$4B</u>	4 <u>54B</u>	4 <u>54B</u>	4 <u>54B</u>	1S4B	1\$4B	1S4B	1S2B	1S2B	1S2B	-	=	-	-	-	-	-	-	-
G6	2L1S2B	1L1S2B	2L1S4B	2L1S4B	2L1S4B	HL1S2B	2L1S2B	15	1L1S	1L2B	1L2B	1L2B	2₿	₽B	2₿	2₿	-	-	-
G7	4 B	10B	12B	12B	1L12B	HL12B	1L10B	1L10B	1L10B	HL10B	6B	8B	8B	1L6B	2₿	-	2₿	-	2₿
68	2B	2B	4B	4 B	2B	4 B	6B	8B	8B	8B	6₿	4B	4B	4B	2₿	-	-	-	-
G9	4 B	4B	6B	6B	4B	6B	6B	2B	6B	4 B	8B	8B	8B	8B	4 B	2₿	-	-	-
G10	₩	1L	₩	₩	2B	1L2B	1L4B	1L6B	1L8B	1L6B	1L6B	1L6B	1L4B	1L2B	₩	₩	₩	-	-
G11	2L1S	2L1S	2L1S	2L1S	1L1S	2L1S	HL15	1L1S	2L1S	2L1S	21.	21.	₩	₩	21.	₩	₩	₩.	-
G12	6L1S2B	5L1S2B	5L1S2B	6L1S2B	5L1S2B	3L1S2B	5L1S2B	4L1S2B	4 L2B	4 L2B	5L2B	4L	4L	3L	4L	1L	-	-	=
G13	₩	₩	₩	21.	21.	21.	21.	21.	21.	21.	21.	21.	₩	₩	₩	₩	-	-	-
G14	4L	₩	4L	4 L1S	5L1S	5L2S	5L1S	4L1S	3L1S	4 L2S	4 L2S	4 L2S	3L1S	4 L2S	4L1S	3L2S	-	-	-
G15	₩	21.	21.	21.	21.	3L	3L	3L	3L	21.	21.	3L	₩	3L	3L	맖	₩	-	-
G16	₩	-	21.	-	21.	21.	21.	₩	1L	21.	21.	21.	21.	21.	3L	₩	21.	3L	-
G17	-	-	-	-	₩	₩	-	₩	1L	₩	₩.	₩	-	₩	-	-	-	-	-
G18	2L2S	3L1S	2L2S	4 L2S	2L1S	4 L1S	5L1S	4L1S	4L1S	4L	5L	4L15	2L1S	3L1S	4L	맖	-	-	-
G19	-	₩	-	₩	₩	-	₩	₩	-	-	-	-	-	-	-	-	-	-	-
G20	6L6B	4L4B	6L8B	5L1S6B	6L1S8B	5L8B	5L6B	5L1S6B	5L1S6B	5L1S4B	4L4B	4 L2B	5L2B	5L2B	6L2B	5L2B	2L2B	2L2B	₩
G21	4L1S2B	2L1S2B	4L1S2B	4L1S2B	3L1S2B	4L2S4B	4 L2S4B	3L2S4B	3L1S4B	4L1S2B	5L1S4B	4L1S2B	5L1S2B	6L1S	5L1S	₩	-	-	-
G22	₩	₩	21.	21.	21.	21.	21.	21.	21.	21.	21.	21.	21.	21.	₩	₩	-	-	-
G23	-	-	-	2₿	2B	2₿	4 B	4B	4B	4 B	4₿	4 B	4B	4B	4 B	-	-	-	-
G24	21.	21	21.	21.	21.	21.	21.	21.	21	₩	₩	₽	₩	₩	₩	-	-	-	-

G25	11.	4L	<u>4L</u>	<u>4L</u>	5L	51.	5L	5L	5L	<u>4L</u>	4L	3L	3L	<u>4L</u>	21.	21.	₩	11.	₩
G26	₩	-	₩	₩	₩	₩	₩	₩	₩	-	-	₩	₩	₩	-	-	-	-	=
G27	-	<u>2₿</u>	4 ₿	4 ₿	4 B	2B	4 B	4B	4 B	4 B	4B	2B	-	-	-	-	-	-	-
G28	21.	2₿	2L2B	1L2B	2L2B	1L2B	2L2B	2B	21.	₩	21.	21.	21	21	₩	₩	=	-	-
G29	1L1S10B	HL1S14B	HL2S14B	HTTP:	1L1S16B	1L2S16B	HL1S10B	HL2S10B	1L1S4B	1L2S4B	1L2S2B	HL1S2B	25	25	15	1\$	1\$	1\$	15
G30	₩	1L2B	1L6B	1L4B	1L8B	1L8B	1L6B	1L10B	1L8B	1L8B	1L4B	1L4B	1L2B	1L4B	1L4B	1L2B	1L4B	1L4B	<u>4₿</u>
G31	₽B	2₿	10B	14B	12B	14B	10B	12B	10B	4 B	₽₽	4B	₽₽	4B	4 B	-	-	-	-
G32	-	-	4 B	4 B	4 B	<u>2₿</u>	<u>2B</u>	<u>2₿</u>	2B	₽B	₽₽	2₿	₽₽	<u>2₿</u>	-	-	-	-	-
G33	-	-	-	4 B	2₿	2₿	4 B	2₿	4B	<u>2₿</u>	2B	-	-	2B	2₿	2B	2₿	₽B	2₿
G34	4 B	4B	4B	6B	10B	8B	8B	6B	6B	6B	6B	4B	4B	4B	4B	2B	2₿	-	-
G35	-	HL1S	1L1S	1L1S	1L1S	2L15	₩	1L1S	₩	1\$	1\$	1\$	1\$	-	-	-	-	-	-
G36	4L4S2B	2L2S	4 L3S	4 <u>L4S</u>	4 <u>L4S</u>	4 L5S	4 <u>L4S</u>	3L2S2B	4 <u>L2S</u>	2L4S4B	3L4S2B	3L4S	2L4S2B	3L2S2B	2L2S2B	<u>2L2S</u>	2L1S	2L1S	2L1S
G37	3L3S	2L1S2B	3L1S2B	1L3S2B	1L3S2B	2L3S2B	HL3S2B	2L2S2B	3L2S2B	3L1S	1L1S	21.	2L1S	2L1S	1L1S	2L1S	2L1S	1L1S	-
G38	-	-	<u>2₿</u>	<u>2₿</u>	-	2₿	2B	2₿	2B	-	2B	2B	2₿	2B	2₿	-	-	-	-
G39	-	-	-	-	-	₩	HL2B	-	1L4B	<u>2₿</u>	1L4B	1L4B	2₿	1L4B	₩	₩	1L2B	₽B	2₿
G40	4 <u>L1S</u>	₩	2L1S	3L1S	3L1S	<u>21</u>	1\$	21.	2L1S	1\$	1L1S	3L1S	21.	21.	3L	21.	2L1S	11.	₩
G41	2L2B	₩	₩	₩	₽B	2₿	-	4 B	-	4B	4 B	4 B	2B	1L2B	2B	1L2B	₩	₩	₩
G42	-	1L2B	-	₩	₩	₩	₩	-	-	-	-	-	₩	1L2B	1L4B	1L4B	-	-	-

980 4.2 Driving factors of vegetation changes

On a glacial-interglacial scale, observedpollen-based reconstructed land-cover 981 changes in northern Asia are generally consistent with the global climate signal (e.g. 982 sea-surface temperature; Pailler and Bard, 2002; ice-core; Andersen et al., 2004; 983 984 solar insolation; Laskar et al., 2004; cave deposits; Cheng et al., 2016; Appendix 9). For example, the relatively high arboreal cover at 40 ka (e.g. G20) corresponds with 985 986 the warm MIS3 recorded inrecord from the Baikal region (Swann et al., 2005). The open landscape at 25 ka and 21 ka (e.g. G25, G36) reflects the cold and dry last 987 glacial maximum (e.g. Swann et al., 2010). Furthermore, the relatively high arboreal 988 cover during the Holocene is consistent with the warm and wet climate (occurring in 989 most site-groups). The primary vegetation change in north-eastern China (G29, G30) 990 occurs in the early Holocene (11.5 and 10.5 ka), caused by the rapid increase in 991 abundance of temperate deciduous trees, which may reflect the warmer climate and 992 enhanced summer monsoon known from that region at the beginning of the Holocene 993 994 (Hong et al., 2009, Liu et al., 2014).

A sensitivity analysis of model-based biome estimation reveals that precipitation plays 995 an important or even dominant role in controlling vegetation changes in arid central 996 Asia (e.g. Tian et al., 2018). The climate of central Asia during the early Holocene is 997 998 inferred to be quite dry and the end of moisture increase occurs at ca. 8 ka by a series of multi-proxy syntheses (Chen et al., 2008, 2016; Xie et al., 2018) and model-based 999 estimations (Jin et al., 2012). In the taiga-steppe transition zone (south-eastern Siberia 1000 1001 and north-central Asia; e.g. G6, G12, G14, G18), relatively open landscape is 1002 reconstructed for the early Holocene and abundances of forest taxa increase after ca. 8 ka, which are consistent with the moisture evolution, and imply the importance of 1003 moisture in controlling vegetation changes. Our results support the prediction of an 1004 expansion of steppe in the present forest-steppe ecotone of southern Siberia in 1005 response to a warmer and drier climate in the future (Tchebakova et al., 2009). 1006

High abundances of *Larix* or boreal deciduous woody taxa (mostly shrubs) pollen
occur in northern Siberia (e.g. G28, G38, G39, G40) during the middle Holocene,

which is now covered by tundra. This is consistent with non-vegetation climate records of a mid-Holocene temperature maximum (e.g. Biskaborn et al, 2012; Nazarova et al., 2013). This result indicates that the boreal treeline in northern Siberia reacts sensitively to warming on millennial time-scales, which contrasts with the observed lack of response on a decadal time-scale (Wieczoreck et al., 2017). This may point to a highly non-linear vegetation–climate relationship in northern Siberia.

1015 Our results indicate that climate change is the major factor driving land-cover change in northern Asia on a long temporal scale. However, climate change cannot fully 1016 1017 explain the changes in arboreal taxa abundance for the West Siberian Plain (G8, G9) and sandy places in central Yakutia (G23, G24, G25). In addition to climate, changes 1018 1019 in permafrost condition (Vandenberghe et al., 2014) and fire regime may have played 1020 a central role in vegetation change. *Larix* is the dominant arboreal taxon during the 1021 early Holocene (ca. between 12 and 8 ka), which is replaced by evergreen conifer 1022 trees, mostly pine and spruce at 8 or 7 ka. Larix can survive on permafrost with an 1023 active-layer depth of <40 cm (Osawa et al., 2010) and a high fire frequency, while 1024 pine trees can only grow on soil with >1.5m active-layer (Tzedakis and Bennett, 1995) 1025 and spruce is a fire-avoider. Probably the compositional change of boreal trees was not in equilibrium with climate but rather driven by changes in the permafrost and fire 1026 characteristics that were themselves affected by forest composition, resulting in 1027 1028 complex feedbacks. This explanation would be in agreement with the finding of Herzschuh et al. (2016) that the boreal forest composition of nearby refugia during 1029 1030 thea glacial influences the initial interglacial forest composition that is then only slowly replaced by a forest composition that is in equilibrium with climate. 1031

Population changes of herbivores could also be an important factor for vegetation change at a regional scale during certain intervals (Zimov et al., 1995; Guthrie, 2006). As with our pollen-based land-cover reconstruction, a circumpolar ancient DNA metabarcoding study confirms the replacement of steppe-like tundra by moist tundra with abundant woody plants at the Pleistocene–Holocene transition (Willerslev et al., 2014). According to Zimov et al., (1995, 2012), such a change cannot be explained by climate change alone, and thus a reduced density of herbivores is considered to be a major driving factor of steppe composition reduction, since a reduced number of herbivores is insufficient to maintain the open steppe landscapes and so causes a decrease in steppe area (Zimov et al., 1995; Guthrie, 2006). Our land-cover reconstruction fails to address the contribution of herbivores to vegetation changes, but the extinction of herbivorous megafauna would add to the complexity of the interactions among vegetation, climate and permafrost.

1045 **5. Conclusions**

Regional vegetation based on pollen data has been estimated using the REVEALS 1046 model for northern Asia during the last 40 ka. Relatively closed land cover was 1047 1048 replaced by open landscapes in northern Asia during the transition from MIS 3 to the 1049 last glacial maximum. Abundances of woody components increase again from the 1050 early Holocene or last deglaciation. Our numerical analyses indicate or early Holocene. Pollen-based REVEALS estimates of plant abundances should be a more 1051 reliable reflection of the vegetation as pollen may overestimate the turnover, and 1052 1053 indicates that the vegetation was quite stable during the Holocene, i.e. as only slight changes in the abundances of taxaPFTs were recorded rather than mass expansion of 1054 new taxa.PFTs. From comparisons of our results with other data we infer that climate 1055 change is likely the primary driving factor for vegetation changes on a 1056 1057 glacial-interglacial scale. However, the extension of evergreen conifer trees since ca. 1058 8-7 ka throughout Siberia could reflect a-vegetation-climate disequilibrium at a long-term scale caused by the interaction of climate, vegetation, fire, and permafrost. 1059

1060 Data availability. The used fossil pollen dataset with the re-established age-depth
1061 model for each pollen record, and its full description will be made publicly available
1062 in <u>the</u> journal Earth System Science Data (ESSD).

Acknowledgements. The authors would like to express their gratitude to all the
 palynologists who, either directly or indirectly, contributed their pollen records and
 RPPPPE results to our study. This research was supported by the German Research

Foundation (DFG) and PalMod project (BMBF). FL and MJG thank the Faculty of
Health and Life Science of Linnaeus University (Kalmar, Sweden), the
China-Swedish STINT Exchange Grant 2016-2018 and the Swedish Strategic
Research Area on ModElling the Regional and Global Earth system (MERGE) for
financial support. This study is a contribution to the Past Global Changes (PAGES)
LandCover6k working group project.

1072 **References**

- Abaimov, A.P., Prokushkin, S.G., Matssura, Y., Osawa, A., Takenaka, A., and
 Kajimoto, T.: Wildfire and cutting effect on larch ecosystem permafrost dynamics
 in central Siberia, in Shibuya, M., Takanashi, K., Inoue, G. (eds.), Proceedings of
 the Seventh Symposium on the Joint Siberian Permafrost Studies between Japan
 and Russia in 1998, Tsukuba, Japan, 48–58pp., 1999.
- Abraham, V. and Koz & Kov & R.: Relative pollen productivity estimates in the modern
 agricultural landscape of Central Bohemia (Czech Republic), Review of
 Palaeobotany and Palynology, 179, 1–12, 2012.
- 1081 Andersen, K.K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H.B., Dahl-Jensen, D., Fischer, H., Flückiger, J., 1082 1083 Fritzsche, D., Fujii, Y., Goto-Azuma, K., Grenvold, K., Gundestrup, N.S., Hansson, M., Huber, C., Hvidberg, C.S., Johnsen, S.J., Jonsell, U., Jouzel, J., 1084 Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson,-Delmotte, V., 1085 Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S.O., Raynaud, D., 1086 Rothlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H., 1087 Siggard-Andersen, M.-L., Steffensen, J.P., Stocker, T., Sveinbjörnsdóttir, A.E., 1088 Svensson, A., Takata, M., Tison, J.-L., Thorsteinsson, Th., Watanabe, O., 1089 1090 Wilhelms, F., and White, J.W.C.: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004. 1091 Beermann, F., Langer, M., Wetterich, S., Strauss, J., Boike, J., Fiencke, C., 1092 1093 Schirrmeister, L., Pfeiffer, E.-M., and Kutzbach, L.: Permafrost thaw and release

- of inorganic nitrogen from polygonal tundra soils in eastern Siberia,
 Biogeosciences Discussions, <u>https://doi.org/10.5194/bg-2016-117</u>, 2016.
- Bigelow, N.H., Brubaker, L.B., Edwards, M.E., Harrison, S.P., Prentice, I.C., 1096 Anderson, P.M., Andreev, A.A., Bartlein, P.J., Christensen, T.R., Cramer, W., 1097 Kaplan, J.O., Lozhkin, A.V., Matveyeva, N.V., Murray, D.F., McGuire, A.D., 1098 Razzhivin, V.Y., Ritchie, J.C., Smith, B., Walker, D.A., Gajewski, K., Wolf, V., 1099 Holmqvist, B.H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M.F.J., and 1100 1101 Volkova, V.S.: Climate change and arctic ecosystems: 1. Vegetation changes north of 55 N between the last glacial maximum, mid-Holocene, and present, Journal of 1102 Geophysical Research, 108, DOI: 10.1029/2002JD002558, 2008. 1103
- Binney, H.A., Edwards, M.E., Macias-Fauria, M., Lozhkin, A., Anderson, P., Kaplan,
 J.O., Andreev, A.A., Bezrukova, E., Blyakharchuk, T., Jankovska, V., Khazina, I.,
 Krivonogov, S., Kremenetski, K., Nield, J., Novenko, E., Ryabogina, N.,
 Solovieva, N., Willis, K.J., and Zernitskaya, V.: Vegetation of Eurasia from the
 last glacial maximum to present: key biogeographic patterns, Quaternary Science
 Reviews, 157, 80–97, 2017.
- Binney, H.A., Willis, K.J., Edwards, M.E., Bhagwat, S.A., Anderson, P.M., Andreev,
 A.A., Blaauw, M., Damblon, F., Haesaerts, P., Kienast, F., Kremenetski, K.V.,
 Krivonogov, S.K., Lozhkin, A.V., MacDonald, G.M., Novenko, E.Y., Oksane, P.,
 Sapelko, T.V., Väliranta, M., and Vazhenina, L.: The distribution of
 late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil
 database, Quaternary Science Reviews, 28, 2445–2464, 2009.
- Birks, H.J.B.: Estimating the amount of compositional change in late-Quaternary
 pollen-stratigraphical data, Vegetation History and Archaeobotany, 16, 197–202,
 2007.
- Biskaborn, B.K., Herzschuh, U., Bolshiyanov, D., Savelieva, L., and Diekmann, B.:
 Environmental variability in northeastern Siberia during the last ~13,300 yr
 inferred from lake diatoms and sediment-geochemical parameters,
 Palaeogeography, Palaeoclimatology, Palaeoecology, 329–330, 22–36, 2012.
- 1123 Brewer, S., Cheddadi, R., de Beaulieu, J.L., Reille, M., and 154 data contributors: The

- spread of deciduous *Quercus* throughout Europe since the last glacial period,
 Forest Ecology and Management, 156, 27–48, 2002.
- Broström, A.: Estimating source area of pollen and pollen productivity in the cultural
 landscapes of southern Sweden developing a palynological tool for quantifying
 past plant cover, Quaternary Geology, Department of Geology, Lund University,
 116 pp, 2002.
- Broström, A., Sugita, S., and Gaillard, M.-J.: Pollen productivity estimates for the
 reconstruction of past vegetation cover in the cultural landscape of southern
 Sweden, The Holocene, 14, 368–381, 2004.
- Brown, J., Ferrians, Jr., O.J., Heginbottom, J.A., and Melnikov, E.S.: Circum-Arctic
 map of permafrost and ground-ice conditions. Washington, DC: U.S. Geological
 Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral
 Resources, Circum-Pacific Map Series CP-45, scale 1:10,000,000, 1 sheet, 1997.
- Bunting, M.J., Schofield, J.E., and Edwards, K.J.: Estimates of relative pollen
 productivity (RPP) for selected taxa from southern Greenland: A pragmatic
 solution, Review of Palaeobotany and Palynology, 190, 66–74, 2013.
- Cao, X., Herzschuh, U., Ni, J., Zhao, Y., and Böhmer, T.: Spatial and temporal
 distributions of major tree taxa in eastern continental Asia during the last 22,000
 years, The Holocene, 25, 79–91, 2015.
- 1143 Cao, X., Ni, J., Herzschuh, U., Wang, Y., and Zhao, Y.: A late Quaternary pollen
 1144 dataset in eastern continental Asia for vegetation and climate reconstructions:
 1145 set-up and evaluation, Review of Palaeobotany and Palynology, 194, 21–37,
 1146 2013.
- Cheng, H., Edwards, R.L, Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat,
 G., Wang, X., Li, X., Kong, X., Wang, Y., Ning, Y., and Zhang, H.: The Asian
 monsoon over the past 640,000 years and ice age terminations, Nature, 534, 640–
 646, 2016.
- Chen, F., Jia, J., Chen, J., Li, G., Zhang, X., Xie, H., Xia, D., Huang, W., and An, C.:
 A persistent Holocene wetting trend in arid central Asia, with wettest conditions
 in the late Holocene, revealed by multi-proxy analyses of loess-paleosol

- sequences in Xingjiang, China, Quaternary Science Reviews, 146, 134–146,
 2016.
- Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D.B., Huang, X., Zhao, Y., Sato,
 T., Birks, H.J.B., Boomer, I., Chen, J., An, C., and Wünnemann, B.: Holocene
 moisture evolution in arid central Asia and its out-of-phase relationship with
 Asian monsoon history, Quaternary Science Reviews, 27, 351–364, 2008.
- Dulamsuren, C., Welk, E., Jäger, E.J., Hauck, M., and Mühlenberg, M.: Range-habitat
 relationships of vascular plant species at the taiga forest-steppe borderline in the
 western Khentey Mountains, northern Mongolia, Flora 200, 376–397, 2005.
- Eisenhut, G.: Untersuchung über die Morphologie und Ökologie der Pollenkörner
 heimischer und fremdländischer Waldbäume, Parey, Hamburg, 1961.
- Frost, G.V., and Epstein, H.E.: Tall shrub and tree expansion in Siberian tundra
 ecotones since the 1960s, Global Change Biology, 20, 1264–1277, 2014.
- Fyfe, R.M., Twiddle, C., Sugita, S., Gaillard, M.-J., Barratt, P., Caseldine, C.J.,
 Dodson, J., Edwards, K.J., Farrell, M., Froyd, C., Grant, M.J., Huckerby, E., Innes,
- J.B., Shaw, H., and Waller, M.: The Holocene vegetation cover of Britain and
 Ireland: overcoming problems of scale and discerning patterns of openness,
 Quaternary Science Reviews, 73, 132–148, 2013.
- Gregory, P.H.: The microbiology of the atmosphere, 2nd ed., Leonard Hill, Aylesbury,
 252 pp, 1973.
- Guthrie, R.D.: New carbon dates link climatic change with human colonization and
 Pleistocene extinctions, Nature, 441, 207–209, 2006.
- He, Y., Huang, J., Shugart, H.H., Guan, X., Wang, B., and Yu, K.: Unexpected
 evergreen expansion in the Siberia forest under warming hiatus, Journal of
 Climate, 30, 5021–5037, 2017.
- Herzschuh, U., Birks, H.J.B., Laepple, T., Andreev, A., Melles, M., and
 Brigham-Grette, J.: Glacial legacies on interglacial vegetation at the
 Pliocene-Pleistocene transition in NE Asia, Nature Communications, 11967, DOI:
 10.1038/ncomms11967, 2016.
- Hong, B., Liu, C., Lin, Q., Yasuyuki, S., Leng, X., Wang, Y., Zhu, Y., and Hong, Y.:

- 1184 Temperature evolution from the δ^{18} O record of Hani peat, Northeast China, in the
- last 14000 years, Science in China Series D: Earth Science, 52, 952–964, 2009.

Hou, X.: Vegetation Atlas of China, Beijing: Science Press, 2001.

- Intergovernmental Panel on Climate Change (IPCC): Climate change 2007: the
 physical science basis summary for policymakers, Geneva, Switzerland: World
 Meteorological Organization, 2007.
- 1190 Isaev, A.P., Protopopov, A.V., Protopopova, V.V., Egorova, A.A., Timofeyev, P.A.,
- 1191 Nikolaev, A.N., Shurduk, I.F., Lytkina, L.P., Ermakov, N.B., Nikitina, N.V.,

1192 Efimova, A.P., Zakharova, V.I., Cherosov, M.M., Nikolin, E.G., Sosina, N.K.,

- Troeva, E.I., Gogoleva, P.A., Kuznetsova, L.V., Pestryakov, B.N., Mironova, S. I.,
 and Sleptsova, N.P.: Vegetation of Yakutia: Elements of Ecology and Plant
 Sociology, in: The Far North, vol. 3, edited by: Troeva, E.I., Isaev, A.P., Cherosov,
- 1196 M.M., and Karpov, N.S., Springer Netherlands, Dordrecht, 143–260, 2010.
- Jackson, S.T., Overpeck, J.T., Webb, T., Keattch, S.E., and Anderson, K.H.: Mapped
 plant-macrofossil and pollen records of late Quaternary vegetation change in
 eastern North America, Quaternary Science Reviews, 16, 1–70, 1997.
- Jin, L., Chen, F., Morrill, C., Otto-Bliesner, B.L., and Rosenbloom, N.: Causes of
 early Holocene desertification in arid central Asia, Climate Dynamics, 38, 1577–
 1591, 2012.
- Jørgensen, T., Haile, J., Möller, P., Andreev, A., Boessenkool, S., Rasmussen, M.,
 Kienast, F., Coissac, E., Taberlet, P., Brochmann, C., Bigelow, N.H., Andersen, K.,
 Orlando, L., Gilbert, M.T.P., and Willerslev, E.: A comparative study of ancient
 sedimentary DNA, pollen and macrofossils from permafrost sediments of
 northern Siberia reveals long-term vegetational stability, Molecular Ecology, 21,
 1989–2003, 2012.
- Juggins, S.: rioja: Analysis of Quaternary Science Data. version 0.9-15.1, Available at:
 http://cran.r-project.org/web/packages/rioja/index.html, 2018.
- 1211 Katamura, F., Fukuda, M., Bosikov, N.P., and Desyatkin, R.V.: Forest fires and
 1212 vegetation during the Holocene in central Yakutia, eastern Siberia, Journal of
 1213 Forest Research, 14, 30–36, 2009.

- 1214 Kharuk, V.I., Ranson, K.J., Dvinskaya, M.L., and Im, S.: Siberian pine and larch
 1215 response to climate warming in the southern Siberian mountain forest: tundra
 1216 ecotone. In: Balzter, H. (eds) Environmental Change in Siberia, Springer
 1217 Netherlands, 40, 115–132, 2010.
- 1218 Kirdyanov, A.V., Hagedorn, F., Knorre, A.A., Fedotova, E.V., Vaganov, E.A.,
 1219 Naurzbaev, M.M., Moiseev, P.A., and Rigling, A.: 20th century tree-line advance
 1220 and vegetation changes along an altitudinal transect in the Putorana Mountains,
 1221 northern Siberia, Boreas, 41, 56–67, 2012.
- Klemm, J., Herzschuh, U., and Pestryakova, L.A.: Vegetation, climate and lake
 changes over the last 7000 years at the boreal treeline in north-central Siberia,
 Quaternary Science Reviews, 147, 422–434, 2016.
- Kruse, S., Wieczorek, M., Jeltsch, F., and Herzschuh, U.: Treeline dynamics in Siberia
 under changing climates as inferred from an individual-based model for *Larix*,
 Ecological Modelling, 338, 101–121, 2016.
- Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., and Levrard, B.: A
 long-term numerical solution for the insolation quantities of the Earth, Astronomy
 and Astrophysics, 428, 261–285, 2004.
- Li, F.: Pollen productivity estimates and pollen-based reconstructions of Holocene
 vegetation cover in northern and temperate China for climate modelling, PhD
 thesis, Linnaeus University, 2016.
- Li, F., Gaillard, M.-J., Sugita, S., Mazier, F., Xu, Q., Zhou, Z., Zhang, Y., Li, Y., and
 Laffly, D.: Relative pollen productivity estimates for major plant taxa of cultural
 landscapes in central eastern China, Vegetation History and Archaeobotany, 26,
 587–605, 2017.
- Li, J., Fan, K., and Zhou, L.: Satellite observations of El Niño impacts on Eurasian
 spring vegetation greenness during the period 1982–2015, Remote Sensing, 9,
 628, 2017.
- Li, Y., Nielsen, A.B., Zhao, X., Shan, L., Wang, S., Wu, J., and Zhou, L.: Pollen production estimates (PPEs) and fall speeds for major tree taxa and relevant source areas of pollen (RSAP) in Changbai Mountain, northeastern China,

- 1244 Review of Palaeobotany and Palynology, 216, 92–100, 2015.
- Liu, Z., Wen, X., Brady, E.C., Otto-Bliesner, B., Yu, G., Lu, H., Cheng, H., Wang, Y.,
 Zheng, W., Ding, Y., Edwards, R.L., Cheng, J., Liu, W., and Yang, H.: Chinese
 cave records and the East Asia Summer Monsoon, Quaternary Science Reviews,
 83, 115–128, 2014.
- Lloyd, A.H., Bunn, A.G., and Berner, L.: A latitudinal gradient in tree growth
 response to climate warming in the Siberian taiga, Global Change Biology, 17,
 1935–1945, 2010.
- Ma, Y., Liu, K., Feng, Z., Sang, Y., Wang, W., and Sun, A.: A survey of modern pollen
 and vegetation along a south–north transect in Mongolia, Journal of Biogeography,
 35, 1512–1532, 2008.
- MacDonald, G.M., Kremenetski, K.V., and Beilman, D.W.: Climate change and the
 northern Russian treeline zone, Philosophical Transactions of the Royal Society,
 363, 2285–2299, 2008.
- MacDonald, G.M., Velichko, A.A., Kremenetski, C.V., Borisova, O.K., Goleva, A.A.,
 Andreev, A.A., Cwynar, L.C., Riding, R.T., Forman, S.L., Edwards, T.W.D.,
 Aravena, R., Hammarlund, D., Szeicz, J.M., and Gattaulin, V.N.: Holocene
 treeline history and climate change across northern Eurasia, Quaternary Research,
 53, 302–311, 2000.
- Marcott, S.A., Shakun, J.D., Clark, P.U., and Mix, A.C.: A reconstruction of regional
 and global temperature for the past 11,300 years, Science, 339, 1198–1201, 2013.
- Marquer, L., Gaillard, M.J., Sugita, S., Trondman, A.K., Mazier, F., Nielsen, A.B.,
 Fyfe, R.M., Odgaard, B.V., Alenius, T., Birks, H.J.B, Bjune, A.E., Christiansen, J.,
- Dodson, J., Edwards, K.J., Giesecke, T., Herzschuh, U., Kangur, M., Lorenz, S.,
 Poska, A., Schult, M., and Seppä, H.: Holocene changes in vegetation
 composition in northern Europe: why quantitative pollen-based vegetation
 reconstructions matter, Quaternary Science Reviews, 90, 199–216, 2014.
- Marquer, L., Gaillard, M.-J., Sugita, S., Poska, A., Trondman, A.-K., Mazier, F.,
 Nielsen, A.B., Fyfe, R.M., Jönsson, A.M., Smith, B., Kaplan, J.O., Alenius, T.,
 Birks, H.J.B., Bjune, A.E., Christiansen, J., Dodson, J., Edwards, K.J., Giesecke,

- 1274 T., Herzschuh, U., Kangur, M., Koff, T., Latałowa, M., Lechterbeck, J., Olofsson,
- J., and Sepp ä, H.: Quantifying the effects of land use and climate on Holocene
 vegetation in Europe, Quaternary Science Reviews, 171, 20-37, 2017.
- Mazier, F., Gaillard, M.-J., Kuneš, P., Trodmann, A.-K., and Broström, A.: Testing the
 effect of site selection and parameter setting on REVEALS-model estimates of
 plant abundance using the Czech Quaternary Palynological Database, Review of
 Palaeobotany and Palynology, 187, 38–49, 2012.
- Miller, G.H., Alley, R., Brigham-Grette, J., Fitzpatrick, J.J., Polyak, L., Serreze, M.C.,
 and White, J.W.C.: Arctic amplification: can the past constrain the future?
 Quaternary Science Reviews, 29, 1779–1790, 2010.
- Moiseev, P.A.: Climate-change impacts on radial growth and formation of the age
 structure of highland larch forests in Kuznetsky Alatau, Russian Journal of
 Ecology, 1, 10–16, 2002.
- Monserud, R.A., Denissenko, O.V., and Tchebakova, N.M.: Comparison of Siberian
 paleovegetation to current and future vegetation under climate change, Climate
 Research, 3, 143–159, 1993.
- Nazarova, L., Lüpfert, H., Subetto, D., Pestryakova, L., and Diekmann, B.: Holocene
 climate conditions in central Yakutia (Eastern Siberia) inferred from sediment
 composition and fossil chironomids of Lake Temje, Quaternary International,
 290–291, 264–274, 2013.
- Ni, J., Yu, G., Harrison, S.P., and Prentice, I.C.: Palaeovegetation in China during the
 late Quaternary: biome reconstructions based on a global scheme of plant
 functional types, Palaeogeography, Palaeoclimatology, Palaeoecology, 289, 44–61,
 2010.
- Nielsen, A.B., Giesecke, T., Theuerkauf, M., Feeser, I., Behre, K.-E., Beug, H.-J.,
 Chen, S.-H., Christiansen, J., Dörfler, W., Endtmann, E., Jahns, S., de Klerk, P.,
 Kühl, N., Latałowa, M., Odgaard, B.V., Rasmussen, P., Stockholm, J.R., Voigt, R.,
 Wiethold, J., and Wolters, S.: Quantitative reconstructions of changes in regional
 openness in north-central Europe reveal new insights into old questions,
 Quaternary Science Reviews, 47, 131–149, 2012.

- Niemeyer, B., Klemm, J., Pestryakova, J.A., and Herzschuh, U.: Relative pollen
 productivity estimates for common taxa of the northern Siberian Arctic, Review
 of Palaeobotany and Palynology, 221, 71–82, 2015.
- 1307 Osawa, A., Zyryanova, O. A., Matsuura, Y., Kajimoto, T., and Wein, R. W.:
 1308 Permafrost Ecosystems: Siberian Larch Forests, Springer, Auflage, 502, 2010.
- 1309 Pailler, D., and Bard, E.: High frequency paleoceanographic changes during the past
- 140,000 years recorded by the organic matter in sediments off the Iberian Margin,
 Palaeogeography, Palaeoclimatology, Palaeoecology, 181, 431–452, 2002.
- Parsons, R.W., and Prentice, I.C.: Statistical approaches to R-values and the pollen–
 vegetation relationship, Review of Palaeobotany and Palynology, 32, 127–152,
 1314 1981.
- Pearson, R.G., Phillips, S.J., Loranty, M.M., Beck, P.S.A., Damoulas, T., Knight, S.J.,
 and Goetz, S.J.: Shifts in arctic vegetation and associated feedbacks under climate
 change, Nature Climate Change, 3, 673–677, 2013.
- Pelánková, B., Kuneš, P., Chytrý, M., Jankovská, V., Ermakov, N., and
 Svobodov á Svitavsk á H.: The relationship of modern pollen spectra to vegetation
 and climate along a steppe-forest-tundra transition in southern Siberia, explored
 by decision trees, The Holocene, 18, 1259–1271, 2008.
- Pisaric, M.F.J., MacDonald, G.M., Cwynar, L.C., and Velichko, A.A.: Modern pollen
 and conifer stomates from north-central Siberian lake sediments: their use in
 interpreting late Quaternary fossil pollen assemblages, Arctic, Antarctic, and
 Alpine Research, 33, 19–27, 2001.
- Prentice, I.C.: Pollen representation, source area, and basin size: toward a unified
 theory of pollen analysis, Quaternary Research, 23, 76–86, 1985.
- Prentice, I.C., and Parsons, R.W.: Maximum likelihood linear calibration of pollen
 spectra in terms of forest composition, Biometrics, 39, 1051–1057, 1983.
- R Core Team: R: A Language and Environment for Statistical Computing, R
 Foundation for Statistical Computing, Vienna, 2017.
- 1332 Sarda-Espinosa, A.: dtwclust: Time series clustering along with optimizations for the1333 dynamic time warping distance, version 5.2.0, Available at:

- Schuur, E.A.G., Vogel, J.G., Crummer, K.G., Lee, H., Sickman, J.O., and Osterkamp,
 T.E.: The effect of permafrost thaw on old carbon release and net carbon
 exchange from tundra, Nature, 459, 556–559, 2009.
- Serreze, M.C., Walsh, J.E., Chapin III, F.S., Osterkamp, T., Dyurgerov, M.,
 Romanovsky, V., Oechel, W.C., Morison, J., Zhang, T., and Barry, R.G.:
 Observational evidence of recent change in the northern high-latitude
 environment, Climatic Change, 46, 159–207, 2000.
- Shestakova, T.A., Voltas, J., Saurer, M., Siegwolf, R.T.W., and Kirdyanov, A.V.:
 Warming effects on *Pinus sylvestris* in the cold-dry Siberian forest-steppe:
 positive or negative balance of trade? Forests, 8, 490, doi: 10.3390/f8120490.,
 2017.
- Soja, A.J., Tchebakova, N.M., French, N.H.F., Flannigan, M.D., Shugart, H.H., Stocks,
 B.J., Sukhinin, A.I., Parfenova, E.I., Chapin III, F.S., and Stackhouse Jr, P.W.:
 Climate-induced boreal forest change: predictions versus current observations,
 Global and Planetary Change, 56, 274–296, 2007.
- 1350 Stuart, A., and Ord, J.K.: Kendall's Advanced Theory of Statistic. Volume 1:1351 Distribution Theory, Edward Arnold, London, 1994.
- Sugita, S.: A model of pollen source area for an entire lake surface, Quaternary
 Research, 39, 239–244, 1993.
- Sugita, S.: Pollen representation of vegetation in Quaternary sediments: theory and
 method in patchy vegetation, Journal of Ecology, 82, 881–897, 1994.
- Sugita, S.: Theory of quantitative reconstruction of vegetation I: pollen from large
 sites REVEALS regional vegetation composition, The Holocene, 17, 229–241,
 2007.
- Sugita, S., Gaillard, M.-J., and Broström, A.: Landscape openness and pollen records:
 a simulation approach, The Holocene, 9, 409–421, 1999.
- 1361 Sugita, S., Parshall, T., Calcote, R., and Walker, K.: Testing the landscape
 1362 reconstruction algorithm for spatially explicit reconstruction of vegetation in
 1363 northern Michigan and Wisconsin, Quaternary Research, 74, 289–300, 2010.

¹³³⁴ http://cran.r-project.org/web/packages/dtwclust/index.html, 2018.

- Swann, G.E.A., Mackay, A.W., Leng, M.J., and Demory, F.: Climate change in
 Central Asia during MIS 3/2: a case study using biological responses from Lake
 Baikal, Global and Planetary Change, 46, 235–253, 2005.
- Swann, G.E.A., Leng, M.J., Juschus, O., Melles, M., Brigham-Grette, J., and Sloane,
 H.J.: A combined oxygen and silicon diatom isotope record of Late Quaternary
 change in Lake El'gygytgyn, North East Siberia, Quaternary Science Reviews, 29,
 774–786, 2010.
- Tarasov, P.E., Williams, J.W., Andreev, A.A., Nakagawa, T., Bezrukova, E.,
 Herzschuh, U., Igarashi, Y., Müller, S., Werner, K., and Zheng, Z.: Satellite- and
 pollen-based quantitative woody cover reconstructions for northern Asia:
 Verification and application to late-Quaternary pollen data, Earth and Planetary
 Science Letters, 264, 284–298, 2007.
- Tarasov, P.E., Volkova, V.S., Webb, T., Guiot, J., Andreev, A.A., Bezusko, L.G.,
 Bezusko, T.V., Bykova, G.V., Dorofeyuk, N.I., Kvavadze, E.V., Osipova, I.M.,
 Panova, N.K., and Sevastyanov, D.V.: Last glacial maximum biomes
 reconstructed from pollen and plant macrofossil data from northern Eurasia,
 Journal of Biogeography, 27, 609–620, 2000.
- Tarasov, P.E., Webb, T., Andreev, A.A, Afanas'Eva, N.B., Berezina, N.A., Bezusko, 1381 L.G., Blyakharchuk, T.A., Bolikhovskaya, N.S., Cheddadi, R., Chernavskaya, 1382 M.M., Chernova, G.M., Dorofeyuk, N.I., Dirksen, V.G., Elina, G.A., Filimonova, 1383 L.V., Glebov, F.Z., Guiot, J., Gunova, V.S., Harrison, S.P., Jolly, D., Khomutova, 1384 V.I., Kvavadze, E.V., Osipova, I.M., Panova, N.K., Prentice, I.C., Saarse, L., 1385 Sevastyanov, D.V., Volkova, V.S., and Zernitskaya, V.P.: Present-day and 1386 1387 mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the Former Soviet Union and Mongolia, Journal of Biogeography, 25, 1029–1053, 1388 1998. 1389
- Tchebakova, N.M., Parfenova, E., and Soja, A.J.: The effects of climate, permafrost
 and fire on vegetation change in Siberia in a changing climate, Environmental
 Research Letters, 4, 045013. doi:10.1088/1748-9326/4/4/045013, 2009.
- 1393 Tchebakova, N.M., Rehfeldt, G., and Parfenova, E.I.: Impacts of climate change on

- the distribution of *Larix* spp. and *Pinus sylvestris* and their climatypes in Siberia,
 Mitigation and Adaptation Strategies for Global Change, 11, 861–882, 2005.
- 1396 ter Braak, C.J.F.: Canonical correspondence analysis: a new eigenvector technique for
- 1397 multivariate direct gradient analysis, Ecology, 67, 1167–1179, 1986.
- ter Braak, C.J.F., and Šmilauer, P.: CANOCO reference manual and CanoDraw for
 Windows user's guide: software for canonical community ordination (version 4.5),
 Microcomputer Power, 2002.
- Tian, F., Cao, X., Dallmeyer, A., Lohmann, G., Zhang, X., Ni, J., Andreev, A.A.,
 Anderson, P.M., Lozhkin, A.V., Bezrukova, E., Rudaya, N., Xu, Q., and
 Herzschuh, U.: Biome changes and their inferred climatic drivers in northern and
 eastern continental Asia at selected times since 40 cal ka BP, Vegetation History
 and Archaeobotany, 27: 365–379, 2018.
- Trondman, A.-K., Gaillard, M.-J., Mazier, F., Sugita, S., Fyfe, R.M., Nielsen, A.B., 1406 Twiddle, C., Barratt, P., Birks, H.J.B., Bjune, A.E., Björkman, L., Broström, A., 1407 Caseldine, C., David, R., Dodson, J., Dörfler, W., Fischer, E., van Geel, B., 1408 1409 Giesecke, T., Hultberg, T., Kalnina, L., Kangur, M., van der Knaap, W.O., Koff, T., Kuneš, P., Lagerås, P., Latałowa, M., Lechterbeck, J., Leroyer, C., Leydet, M., 1410 Lindbladh, M., Marquer, L., Mitchell, F.J.G., Odgaard, B.V., Peglar, S.M., 1411 Persoon, T., Poska, A., Rösch, M., Seppä, H., Veski, S., and Wick, L.: 1412 Pollen-based quantitative reconstruction of Holocene regional vegetation cover 1413 (plant-functional types and land-cover types) in Europe suitable for climate 1414 1415 modelling, Global Change Biology, 21, 676–697, 2015.
- Trondman, A.-K., Gaillard, M.-J., Sugita, S., Björkman, L., Greisamn, A., Hultberg, T.,
 Lager ås, P., Lindbladh, M., and Mazier, F.: Are pollen records from small sites
 appropriate for REVEALS model-based quantitative reconstructions of past
 regional vegetation? An empirical test in southern Sweden, Vegetation History
 and Archaeobotany, 25, 131–151, 2016.
- Tseplyayev, V.P.: The forests of the U.S.S.R.: an economic characterisation, Lesa
 SSSR, Moscow, 1961.
- 1423 Tzedakis, P.C., and Bennett, K.D.: Interglacial vegetation succession: a view from

- 1425 Vandenberghe, J., French, H.M., Gorbunov, A., Marchenko, S., Velichko, A.A., Jin, H.,
- Cui, Z., Zhang, T., and Wan, X.: The Last Permafrost Maximum (LPM) map of
 the Northern Hemisphere: permafrost extent and mean annual air temperatures,
 25–17 ka BP, Boreas, 43, 652–666, 2014.
- Wang, Y., and Herzschuh, U.: Reassessment of Holocene vegetation change on the
 upper Tibetan Plateau using the pollen-based REVEALS model, Review of
 Palaeobotany and Palynology, 168, 31–40, 2011.
- Wieczorek, M., Kruse, S., Epp, L.S., Kolmogorov, A., Nikolaev, A.N., Heinrich, I.,
 Jeltsch, F., Pestryakova, L.A., Zibulski, R., and Herzschuh, U.: Dissimilar
 responses of larch stands in northern Siberia to increasing temperatures—a field
 and simulation based study, Ecology, 98, 2343–2355, 2017.
- Willerslev, E., Davison, J., Moora, M., Zobel, M., Coissac, E., Edwards, M.E.,
 Lorenzen, E.D., Vesterg ård, M., Gussarova, G., Haile, J., Craine, J., Gielly, L.,
 Boessenkool, S., Epp, L.S., Pearman, P.B., Cheddadi, R., Murray, D., Br åthen,
- 1439 K.A., Yoccoz, N., Binney, H., Cruaud, C., Wincker, P., Goslar, T., Alsos, I.G.,
- 1440 Bellemain, E., Brysting, A.K., Elven, R., Sønstebø, J.H., Murton, J., Sher, A.,
- 1441 Rasmussen, M., Rønn, R., Mourier, T., Cooper, A., Austin, J., Möller, P., Froese,
- 1442 D., Zazula, G., Pompanon, F., Rioux, D., Niderkorn, V., Tikhonov, A., Savvinov,
- 1443 G., Roberts, R.G., MacPhee, R.D.E., Gilbert, M.T.P., Kjær, K.H., Orlando, L.,
- 1444 Brochmann, C., and Taberlet, P.: Fifty thousand years of Arctic vegetation and 1445 megafaunal diet, Nature, 506, 47–51, 2014.
- Xie, H., Zhang, H., Ma, J., Li, G., Wang, Q., Rao, Z., Huang, W., Huang, X., and
 Chen, F.: Trend of increasing Holocene summer precipitation in arid central Asia:
 Evidence from an organic carbon isotopic record from the LJW10 loess section in
 Xinjiang, NW China, Palaeogeography, Palaeoclimatology, Palaeoecology, DOI:
 10.1016/j.palaeo.2018.04.006, 2018.
- 1451 Xu, Q., Cao, X., Tian, F., Zhang, S., Li, Y., Li, M., Liu, Y., and Liang, J.: Relative
 1452 pollen productivities of typical steppe species in northern China and their
 1453 potential in past vegetation reconstruction, Science China: Earth Sciences, 57,

southern Europe, Quaternary Science Reviews, 14, 967–982, 1995.

1454 1254–1266, 2014.

- Zhang, N., Yasunari, T., and Ohta, T.: Dynamics of the larch taiga permafrost coupled
 system in Siberia under climate change, Environmental Research Letters, 6,
 24003–24006, 2011.
- Zimov, S.A., Chuprynin, V.I., Oreshko, A.P., Chapin III, F.S., Reynolds, J.F., and
 Chapin, M.C.: Steppe-tundra transition: an herbivore-driven biome shift at the end
 of the Pleistocene, The American Naturalist, 146, 765–794, 1995.
- 1461 Zimov, S.A., Zimov, N.S., Tikhonov, A.N., and Chapin III, F.S.: Mammoth steppe: a
 high-productivity phenomenon, Quaternary Science Reviews, 57, 26–45, 2012.

Appendix 1 Distribution of the 203 fossil pollen sites together with the modern permafrost extent in northern Asia. The number of each site is used as its site ID in Appendix 2.

1484 <u>Appendix 2</u> Metadata for all pollen records used in this study.

Group	Site ID	Site	Lat.	Long.	Elev. (m)	Basin type	Pollen count	Area (ha)	Radius (m)	Dating method	Num. of dating	Time span (cal ka BP)	Resol. (year)	Reference
G1	294	Aral Lake	44.42	59.98	53	Lake	Yes	330000	32410	¹⁴ C	4U	8.7-0	260	Aleshinskaya, Z.V. unpublished.
G2	372	Mokhovoye	53.77	64.25	178	Bog	Yes	20	252	¹⁴ C	4C+1E	6.0-0	180	Kremenetskii et al., 1994
G2	439	Novienky peat bog	52.24	54.75	197	Bog	Yes	-	-	¹⁴ C	1U	4.5-0	270	López-Garc á et al., 2003
G2	422	Zaboinoe Lake	55.53	62.37	275	Lake	Yes	6	138	¹⁴ C	1U	12.3-0.1	220	Khomutova and Pushenko, 1995
G2	434	Lake Fernsehsee	52.83	60.50	290	Lake	Yes	0	38	¹⁴ C	10A	9.1-0.4	220	Stobbe et al., 2015
G2	390	Pobochnoye	53.03	51.84	81	Bog	No	79	500	¹⁴ C	10C+6E	14.4-0	540	Kremenetski et al., 1999
G3	311	Chesnok Peat	60.00	66.50	42	Bog	Yes	-	-	¹⁴ C	7C	10.6-0.5	280	Volkova, 1966
G3	347	Komaritsa Peat	57.50	69.00	42	Bog	Yes	-	-	¹⁴ C	10C	10.5-0.5	350	Volkova, 1966
G3	447	UstMashevskoe	56.32	57.88	220	Bog	Yes	30	309	¹⁴ C	5C	7.8-0	150	Panova et al., 1996
G3	339	Karasieozerskoe	56.77	60.75	230	Bog	Yes	914	1706	¹⁴ C	3A	5.9-0.1	190	Panova, 1997
G4	378	Nulsaveito	67.53	70.17	57	Bog	Yes	-	-	¹⁴ C	4A+1C	8.4-6.4	70	Panova, 1990
G4	367	Lyadhej-To Lake	68.25	65.75	150	Lake	Yes	197	792	¹⁴ C	14A+6E	12.5-0.3	170	Andreev et al., 2005
G5	169	Nizhnee Lake	41.30	72.95	1371	Lake	No	-	70	¹⁴ C	4E	1.5-0	100	Beer et al., 2008
G5	228	Verkhnee Lake	41.30	72.95	1440	Lake	No	1	60	¹⁴ C	5E	1.5-0	100	Beer et al., 2008
G5	3	Ak Terk Lake	41.28	72.83	1748	Bog	No	-	-	¹⁴ C	2A	7.5-0	200	Beer et al., 2008
G5	133	Kosh Sas	41.85	71.97	1786	Bog	No	-	-	¹⁴ C	1A	3.5-0	100	Beer et al., 2008
G5	170	Ortok Lake	41.23	73.25	1786	Lake	No	-	60	¹⁴ C	5A	1-0	100	Beer et al., 2008
G5	13	Bakaly Lake	41.87	71.97	1879	Lake	No	1	50	¹⁴ C	4A	7-0	195	Beer et al., 2008
G6	425	Big Yarovoe Lake	52.85	78.63	79	Lake	Yes	6362	4500	inclination with Lake Biwa	-	4.3-0	190	Rudaya et al., 2012
G6	172	Ozerki	50.40	80.47	210	Bog	Yes	-	-	¹⁴ C	3A+13C	14.5-0	300	Tarasov et al., 1997
G6	127	Karas'e Lake	53.03	70.22	435	Lake	Yes	17	235	¹⁴ C	6U	5.5-0	170	Tarasov and Kremenetskii. 1995
G6	136	Kotyrkol	52.97	70.42	439	Bog	Yes	-	-	¹⁴ C	8U	4.5-0.5	180	Tarasov and Kremenetskii. 1995

I

G6	173	Pashennoe Lake	49.37	75.40	871	Lake	Yes	64	451	¹⁴ C	5D+5E	9.5-0	280	Tarasov and Kremenetskii. 1995
G7	81	Gladkoye Bog	55.00	83.33	80	Bog	Yes	-	-	¹⁴ C	13C	11-0.5	170	Firsov et al., 1982
G7	308	Chaginskoe Mire	56.45	84.88	80	Bog	Yes	10	175	¹⁴ C	2C	8.8-0	320	Blyakharchuk, 2003.
G7	345	Kirek Lake	56.10	84.22	90	Lake	Yes	52	407	¹⁴ C	3G	10.5-1.5	190	Blyakharchuk, 2003
G7	413	Tom' River Peat	56.17	84.00	100	Bog	Yes	-	-	¹⁴ C	6C	10.1-0.2	390	Arkhipov and Votakh, 1980
G7	423	Zhukovskoye mire	56.33	84.83	106	Bog	Yes	-	-	¹⁴ C	9C+6H	11.2-0	130	Borisova et al., 2011
G7	219	Tolmachevsko	55.00	84.00	110	Bog	Yes	-	-	¹⁴ C	1A+3C	13-1.5	400	Volkov and Arkhipov, 1978
G7	207	Suminskoye	55.00	80.25	135	Bog	Yes	-	-	¹⁴ C	8A	3-0	200	Klimanov, 1976
G7	129	Kayakskoye	55.00	81.00	150	Bog	Yes	-	-	¹⁴ C	5C	6.5-0	210	Levina et al., 1987
G7	448	Kalistratikha	53.33	83.25	190	Bog	Yes	-	-	¹⁴ C	4A	39.0-12.7	1870	Zudin and Votakh, 1977
G8	389	Petropavlovka	58.33	82.50	100	Bog	Yes	-	-	¹⁴ C	4C+1E	10.5-0.1	160	Blyakharchuk, 1989
G8	304	Bugristoe	58.25	85.17	130	Bog	Yes	-	-	LSC	4C+1E	11.5-5.0	100	Blyakharchuk, 1989
G8	369	Maksimkin Yar	58.33	88.17	150	Bog	Yes	-	-	¹⁴ C	4C	8.3-0.2	170	Blyakharchuk, 1989
G8	412	Teguldet	57.33	88.17	150	Bog	Yes	-	-	LSC	3C	7.3-2.4	90	Blyakharchuk, 1989
G9	374	Nizhnevartovsk	62.00	76.67	54	Bog	Yes	-	-	¹⁴ C	3A+7C	11.1-0	300	Neustadt and Zelikson, 1985
G9	375	Nizhnevartovskoye	61.25	77.00	55	Bog	Yes	-	-	¹⁴ C	1A+12C+1E	12.6-0	380	Neishtadt, 1976
G9	327	Entarnoye Peat	59.00	78.33	65	Bog	Yes	-	-	¹⁴ C	5C	14.9-0.9	460	Neishtadt, 1976
G9	366	Lukaschin Yar	61.00	78.50	65	Bog	Yes	-	-	¹⁴ C	13C	10.9-0.3	430	Neishtadt, 1976
G10	334	Igarka Peat	67.67	86.00	45	Bog	Yes	244	881	¹⁴ C	1A+2C	10.9-5.9	230	Kats, 1953
G10	392	Pur-Taz Peatland	66.70	79.73	50	Bog	Yes	5	126	¹⁴ C	5A	10.3-4.7	80	Peteet et al., 1998
G10	340	Karginskii Cape	70.00	85.00	60	Bog	Yes	-	-	¹⁴ C	13C	8.9-3.5	290	Firsov et al., 1972
G10	421	Yenisei	68.17	87.15	68	Bog	No	-	-	¹⁴ C	7C	6.5-1.6	110	Andreev and Klimanov 2000
G10	357	Lake Lama	69.53	90.20	77	Lake	Yes	64245	14300	¹⁴ C	26A+4D+4E	19.5-0	170	Andreev et al., 2004
G11	471	11-CH-12A Lake	72.40	102.29	60	Lake	Yes	3	100	¹⁴ C+Pb/Cs	8A+7E	7.0-0.1	110	Klemm et al., 2015

G11	364	Levinson-Lessing Lake	74.47	98.64	26	Lake	Yes	2145	2613	¹⁴ C	29A+1B+19E	35.3-0	390	Andreev et al., 2003
G11	395	SAO1	74.55	100.53	32	Lake	Yes	456000	38098	¹⁴ C	6A+5C	57.9-0	1320	Andreev et al., 2003
G12	462	Aibi Lake	45.02	82.83	200	Lake	Yes	100885	17920	¹⁴ C	8E	12.6-0	65	Wang et al., 2013
G12	69	Ebinur Lake	44.55	82.45	212	Lake	Yes	46421	12156	¹⁴ C	7U	13-0	900	Wen and Qiao, 1990
G12	70	Ebinur Lake_SW	45.00	82.80	212	Lake	Yes	46421	12156	¹⁴ C	6U	8.5-1.5	780	Lin, 1994
G12	26	Caotanhu Lake	44.42	86.02	380	Bog	Yes	2760	2964	¹⁴ C	5C	8.5-0	150	Zhang Y. et al., 2008
G12	63	Dongdaohaizi Lake	44.70	89.56	430	Lake	Yes	20	252	¹⁴ C	8U	5.5-0	85	Yan et al., 2004
G12	201	Sichanghu Lake	44.31	89.14	589	Lake	Yes	2000	2523	¹⁴ C	4U	1-0	50	Zhang Y. et al., 2004b
G12	22	Bosten Lake	41.97	86.55	1050	Lake	No	96608	17536	¹⁴ C	5U	13-0	420	Xu, 1998
G12	28	Chaiwopu Lake	43.55	87.78	1100	Lake	No	3101	3142	¹⁴ C	2U	10-0	845	Li and Yan, 1990
G12	278	Sayram Lake	44.57	81.15	2072	Lake	Yes	45800	12074	¹⁴ C	12E	13.8-0.1	90	Jiang et al., 2013
G13	153	Manas Lake	45.83	85.92	251	Lake	Yes	55000	13231	¹⁴ C	7C	13.5-1	210	Sun et al., 1994
G13	235	Wulungu Lake	47.22	87.30	479	Lake	Yes	67019	430	¹⁴ C+Pb/Cs	1C	9-0	80	Liu X.Q. et al., 2008
G14	214	Teletskoye Lake	51.72	87.65	1900	Lake	Yes	16610	7271	¹⁴ C+Pb/Cs	6E	1-0	20	Andreev et al., 2007
G14	227	Uzunkol Lake	50.48	87.11	1985	Lake	No	123	625	¹⁴ C	2A	17.5-0	210	Blyakharchuk et al., 2004
G14	130	Kendegelukol Lake	50.51	87.64	2050	Lake	No	5	130	¹⁴ C	7E	16-1	260	Blyakharchuk et al., 2004
G14	105	Hoton Nur Lake	48.62	88.35	2083	Lake	Yes	5021	3998	¹⁴ C	4A	6-0	60	Rudaya et al., 2009
G14	213	Tashkol Lake	50.45	87.67	2150	Lake	No	-	150	¹⁴ C	3C	16-3	250	Blyakharchuk et al., 2004
G14	4	Akkol Lake	50.25	89.63	2204	Lake	No	388	1111	¹⁴ C	12E	13.5-0	250	Blyakharchuk et al., 2007
G14	83	Grusha Lake	50.38	89.42	2413	Lake	No	130	644	¹⁴ C	3A+13E	14-1.5	250	Blyakharchuk et al., 2007
G15	274	Bayan Nuur	50.00	93.00	932	Lake	No	2968	3073	¹⁴ C	7E	15.7-0.2	210	Krengel, 2000
G15	1	Achit Nur Lake	49.50	90.60	1435	Lake	No	29700	9723	¹⁴ C	4E	14-0.5	700	Gunin et al., 1999
G15	461	Achit Nuur	49.42	90.52	1444	Lake	No	29700	9723	¹⁴ C	10E	20.2-0	250	Sun et al., 2013
G16	148	Lop Nur_1998	40.28	90.25	780	Lake	No	535000	41267	¹⁴ C	3U	22-2	2000	Yan et al., 1998

G16	147	Lop Nur_1983	40.33	90.25	800	Lake	Yes	535000	41267	¹⁴ C	3U	22-0.5	1600	Yan et al., 1983
G16	16	Barkol Lake	43.62	92.80	1575	Lake	Yes	11300	5997	¹⁴ C	1A+10E	10-0	115	Tao et al., 2009
G16	466	Balikun Lake	43.68	92.80	1575	Lake	Yes	7897	5014	¹⁴ C	1D+5E	30.5-9	250	An et al., 2013
G17	126	Juyan Lake	41.89	101.85	892	Lake	Yes	72000	15139	¹⁴ C	5E	10.5-1.5	140	Herzschuh et al., 2004
G18	88	Gun Nur Lake	50.25	106.60	600	Lake	No	33	325	¹⁴ C	7E	11-0	320	Gunin et al., 1999
G18	249	Yamant Nur Lake	49.90	102.60	1000	Lake	No	58	430	¹⁴ C	4E	15.5-0.5	360	Gunin et al., 1999
G18	224	Ugii Nuur Lake	47.77	102.77	1330	Lake	No	2456	2796	¹⁴ C	2C	9-0	85	Wang et al., 2011
G18	66	Dood Nur Lake	51.33	99.38	1538	Lake	No	6400	4514	¹⁴ C	2E	14-0	740	Gunin et al., 1999
G18	106	Hovsgol Lake	51.10	100.50	1645	Lake	Yes	276000	29640	¹⁴ C	5E	12-2.5	190	Prokopenko et al., 2007
G18	276	Khuisiin Lake	46.60	101.80	2270	Lake	Yes	4	118	¹⁴ C+Pb/Cs	6E	1.2-0	17	Tian et al., 2013
G18	41	Daba Nur Lake	48.20	98.79	2465	Lake	No	157	707	¹⁴ C	5E	13-0	520	Gunin et al., 1999
G19	328	Bolshoe Eravnoe Lake	52.58	111.67	947	Lake	Yes	9503	5500	¹⁴ C	3E	7.3-0.2	710	Vipper, 2010
G20	10	Baikel Lake	52.08	105.87	130	Lake	No	3150000	100134	¹⁴ C	12A	22-0	370	Demske et al., 2005
G20	296	Baikal Lake-CON01-603-5	53.95	108.91	446	Lake	Yes	3150000	100134	¹⁴ C	10D	15.8-0	270	Demske et al., 2005
G20	135	Lake Kotokel_2010	52.78	108.12	458	Lake	Yes	6900	4687	¹⁴ C	11E	47-0	220	Bezrukova et al., 2010
G20	134	Lake Kotokel_2009	52.78	108.12	458	Lake	Yes	6900	4687	¹⁴ C	3E	15-0	500	Tarasov et al., 2009
G20	310	Chernoe Lake	50.95	106.63	500	Lake	Yes	-	250	¹⁴ C	4E	7-0.7	620	Vipper, 2010
G20	297	Baikal Lake-CON01-605-3	51.59	104.85	675	Lake	Yes	3150000	100134	¹⁴ C	5D	17.7-0	200	Demske et al., 2005
G20	380	Okunayka	55.52	108.47	802	Bog	Yes	-	-	¹⁴ C	6C	8.3-2.0	120	Bezrukova et al., 2011
G20	446	Ukta Creek mouth	55.80	109.70	906	Bog	Yes	-	-	¹⁴ C	3U	5.1-0	160	Bezrukova et al., 2006
G20	450	Cheremushka Bog	52.75	108.08	1500	Bog	Yes	-	-	¹⁴ C	6C	33.5-0	460	Shichi et al., 2009
G20	298	Baikal Lake-CON01-605-5	51.58	104.85	492	Lake	Yes	3150000	100134	¹⁴ C	12D	11.5-0	130	Demske et al., 2005
G20	341	Khanda-1	55.44	107.00	867	Bog	Yes	-	-	¹⁴ C	3C	3.1-0.3	50	Bezrukova et al., 2011
G20	342	Khanda	55.44	107.00	867	Bog	Yes	-	-	¹⁴ C	6C	5.8-0	140	Bezrukova et al., 2011

G21	275	Qiganhu Lake	42.90	119.30	600	Lake	Yes	190	778	^{14}C	5E	12.1-6.7	35	Hu et al., 2016
G21	232	Wangyanggou	42.07	119.92	751	Lake	No	13	200	¹⁴ C	1A+3E	5-0	85	Li et al., 2006
G21	230	Wangguantun	40.27	113.67	800	Bog	Yes	-	-	¹⁴ C	1A+4F	8-3	310	Kong and Du, 1996
G21	6	Anguli Nur Lake	41.33	114.37	1000	Lake	Yes	4264	3684	¹⁴ C	2U	14-10.5	520	Li et al., 1990
G21	178	Qasq	40.67	111.13	1000	Bog	Yes	-	-	¹⁴ C	2E	10-0	90	Wang et al., 1997
G21	47	Daihai Lake_2004	40.58	112.67	1220	Lake	Yes	16000	7136	¹⁴ C	8E	11.5-0	215	Xiao et al., 2004
G21	80	Gaoximage Lake	42.95	115.37	1253	Lake	No	100000	17841	¹⁴ C	4E	6-0	150	Li C.Y. et al., 2003
G21	95	Haoluku Lake	42.96	116.76	1295	Lake	No	1384	2099	¹⁴ C	4E	11.5-0	250	Wang et al., 2001
G21	17	Bayanchagan Lake	41.65	115.21	1355	Lake	Yes	636	1423	¹⁴ C	2B+7E	11.5-0	250	Jiang et al., 2006
G21	144	Liuzhouwan Lake	42.71	116.68	1365	Lake	No	288	957	¹⁴ C	3E	13-0.5	470	Wang et al., 2001
G21	60	Diaojiaohaizi Lake	41.30	112.35	1800	Lake	Yes	30	309	¹⁴ C	4U	11.5-2.5	95	Song et al., 1996
G22	112	Hulun Nur Lake_1995	49.28	117.40	544	Lake	No	233900	27286	¹⁴ C	7U	19-0.5	190	Yang et al., 1995
G22	113	Hulun Nur Lake_2006	49.13	117.51	545	Lake	Yes	233900	27286	¹⁴ C	13E	11-0	65	Wen et al., 2010
G23	314	Derput	57.03	124.12	700	Bog	Yes	1	56	¹⁴ C	1A+4C	11.7-0.8	210	Andreev and Klimanov, 1991
G23	409	Suollakh	57.05	123.85	811	Bog	Yes	-	-	¹⁴ C	8C	12.8-3.7	180	Andreev et al., 1991
G24	379	Nuochaga Lake	61.30	129.55	260	Lake	Yes	120	618	¹⁴ C	4E	6.5-0	140	Andreev and Klimanov, 1989
G24	307	Chabada Lake	61.98	129.37	290	Lake	Yes	210	818	¹⁴ C	15U	13-0	110	Andreev and Klimanov, 1989
G25	305	Boguda Lake	63.67	123.25	120	Lake	Yes	2500	2821	¹⁴ C	7E	10.9-0.4	180	Andreev et al., 1989
G25	344	Khomustakh Lake	63.82	121.62	120	Lake	Yes	440	1183	¹⁴ C	9E	12.3-0.1	170	Andreev et al., 1989
G25	368	Madjaga Lake	64.83	120.97	160	Lake	Yes	1440	2141	LSC	7E	8.2-0.2	120	Andreev and Klimanov, 1989
G25	302	Billyakh Lake	65.30	126.78	340	Lake	Yes	1678	2311	¹⁴ C	7A	14.1-0	180	Müller et al., 2009
G25	426	Lake Billyakh_PG1755	65.27	126.75	340	Lake	Yes	1634	2281	¹⁴ C	1A+10E	50.6-0.2	470	Müller et al., 2010
G26	440	Lake Kyutyunda PG2022	69.63	123.65	66	Lake	Yes	468	1220	¹⁴ C	10E	10.8-0.3	360	Biskaborn et al., 2015
G27	435	Khocho	71.05	136.23	6	Bog	Yes	10	178	¹⁴ C	1C	10.4-0.4	300	Velichko et al., 1994

G27	441	Samandon	70.77	136.25	10	Bog	Yes	100	564	¹⁴ C	3A+8C+4E	7.9-0.2	280	Velichko et al., 1994
G28	299	Barbarina Tumsa	73.57	123.35	10	Bog	Yes	-	-	¹⁴ C	4C	4.9-0.3	240	Andreev et al., 2004
G28	373	Lake Nikolay	73.67	124.25	35	Lake	Yes	1500	2185	¹⁴ C	6A	12.5-0	600	Andreev et al., 2004
G28	318	Dolgoe Ozero	71.87	127.07	12	Lake	Yes	84	517	¹⁴ C	1A+9B	15.3-0	210	Pisaric et al., 2001
G29	152	Maili	42.87	122.88	155	Bog	No	-	-	¹⁴ C	5A	3-0	115	Ren and Zhang, 1997
G29	54	Dashan	44.88	124.85	200	Bog	Yes	-	-	¹⁴ C	5U	7.5-1	160	Xia et al., 1993
G29	240	Xiaonan	43.88	125.22	209	Bog	Yes	-	-	¹⁴ C	5U	5.5-0	290	Wang and Xia, 1988
G29	197	Shuangyang	43.45	125.75	215	Bog	Yes	-	-	¹⁴ C	12E	2.5-0	30	Qiu et al., 1981
G29	34	Charisu	42.95	122.35	249	Bog	Yes	-	-	¹⁴ C	10A	5.5-0	170	Li Y.H. et al., 2003b
G29	463	Jingbo Lake	43.91	128.75	350	Lake	Yes	9500	5499	¹⁴ C+LSC	3E+4	8.8-0	40	Li et al., 2011
G29	96	Harbaling	43.63	129.20	600	Bog	Yes	-	-	¹⁴ C	3U	3-0	150	Xia, 1988b
G29	122	Jinchuan	42.35	126.38	620	Bog	Yes	-	-	¹⁴ C	7A	5.5-0	105	Li Y.H. et al., 2003a
G29	72	Erhailongwan Lake	42.30	126.37	724	Lake	Yes	30	309	¹⁴ C	2A+14E	22-0	760	Liu Y.Y. et al., 2008
G29	288	Sihailongwan Lake	42.28	126.60	797	Lake	Yes	41	360	¹⁴ C+varve	40A	16.9-0.2	47	Stebich et al., 2015
G29	94	Hani	42.21	126.52	899	Bog	Yes	1800	2394	¹⁴ C	1C	9.5-0	455	Qiao, 1993
G29	37	Chichi Lake	42.03	128.13	1800	Bog	Yes	0	40	¹⁴ C	1C	1-0	140	Xu et al., 1994
G30	21	Belaya Skala	43.25	134.57	4	Bog	Yes	-	-	¹⁴ C	2A+1C	6.5-3	250	Korotky et al., 1980
G30	36	Chernyii Yar	43.18	134.43	4	Bog	Yes	-	-	¹⁴ C	4C	10-0.5	260	Korotky et al., 1980
G30	218	Tikhangou	42.83	132.78	4	Bog	Yes	-	-	¹⁴ C	5U	12-0	500	Korotky et al., 1980
G30	5	Amba River	43.32	131.82	5	Bog	Yes	-	-	¹⁴ C	1A+1C+1U	5-2.5	300	Korotky et al., 1980
G30	186	Ryazanovka	42.83	131.37	6	Bog	Yes	-	-	¹⁴ C	7A	6-0.5	540	Shilo, 1987
G30	171	Ovrazhnyii	43.25	134.57	8	Bog	Yes	-	-	¹⁴ C	3A	7-1	200	Shilo, 1987
G30	175	Peschanka	43.30	132.12	12	Bog	Yes	-	-	¹⁴ C	3U	22-11	965	Anderson et al., 2002
G30	464	Xingkai Lake	45.21	132.51	69	Lake	Yes	419000	36520	¹⁴ C+Pb/Cs	3E	28.5-0	150	Ji et al., 2015

G31	220	Tongjiang	47.65	132.50	49	Bog	Yes	-	-	¹⁴ C	5C	6-0	130	Zhang and Yang, 2002
G31	40	Chuangye	48.33	134.47	50	Bog	Yes	-	-	¹⁴ C	3U	12-1	400	Xia, 1988a
G31	161	Minzhuqiao	47.53	133.87	52	Bog	Yes	-	-	¹⁴ C	4U	6.5-0.5	420	Xia, 1988a
G31	180	Qindeli	47.88	133.67	52	Bog	Yes	-	-	¹⁴ C	1F+7U	13.5-0.5	380	Xia, 1988a
G31	18	Beidawan	48.13	134.70	60	Bog	Yes	8	157	¹⁴ C	3U	5.5-0.5	350	Xia, 1988a
G31	234	Wuchanghai	47.22	127.33	200	Bog	Yes	-	-	¹⁴ C	9E	7-0	250	Xia, 1988b
G31	212	Tangbei	48.35	129.67	486	Bog	Yes	-	-	¹⁴ C	2A	5.5-1	160	Xia, 1996
G32	418	Venyukovka-3	47.12	138.58	5	Bog	Yes	-	-	¹⁴ C	1A+2C	5.8-3.2	140	Korotky et al., 1980
G32	417	Venyukovka-2	47.03	138.58	6	Bog	Yes	-	-	¹⁴ C	1A+1C	3.6-0.4	140	Korotky et al., 1980
G32	384	Oumi	48.22	138.40	990	Bog	Yes	-	-	¹⁴ C	5C	2.6-0.4	80	Anderson et al., 2002
G32	382	Opasnaya River	48.23	138.48	1320	Bog	Yes	-	-	¹⁴ C	7C	13.3-6.7	360	Korotky et al., 1988
G33	335	Il'inka Terrace	47.97	142.17	3	Bog	Yes	-	-	¹⁴ C	2C+1F	2.6-1.1	360	Korotky et al., 1997
G33	371	Mereya River	46.62	142.92	4	Bog	Yes	-	-	¹⁴ C	2C+2F	42.0-0.8	1530	Anderson et al., 2002
G33	401	Sergeevskii	49.23	142.08	6	Bog	Yes	-	-	¹⁴ C	8A+1C	8.4-2.2	110	Korotky et al., 1997
G34	332	Gurskii Peat	50.07	137.08	15	Bog	Yes	-	-	¹⁴ C	7C	13.1-1.5	380	Korotky, 1982
G34	453	Gur Bog	50.00	137.05	35	Bog	No	-	-	¹⁴ C	13C	22.1-0	340	Mokhova et al., 2009
G34	223	Tuqiang	52.23	122.80	400	Bog	Yes	-	-	¹⁴ C	10A+14E+8F	3-1	125	Xia, 1996
G34	398	Selitkan-2	53.22	135.03	1300	Bog	Yes	-	-	¹⁴ C	4C	6.4-1.9	260	Volkov and Arkhipov, 1978
G34	397	Selitkan-1	53.22	135.05	1320	Bog	Yes	-	-	¹⁴ C	6C	7.9-0	140	Korotky et al., 1985
G35	443	Two-Yurts Lake PG1856-3	56.82	160.04	275	Lake	Yes	1168	1928	¹⁴ C	5A	6.0-2.8	140	Hoff et al., 2015
G35	444	Two-Yurts Lake PG1857-2	56.82	160.07	275	Lake	Yes	1168	1928	¹⁴ C	5A	2.5-0.1	130	Hoff et al., 2015
G35	445	Two-Yurts Lake PG1857-5	56.82	160.07	275	Lake	Yes	1168	1928	¹⁴ C	5A	4.4-2.5	120	Hoff et al., 2015
G35	455	Lake Sokoch	53.25	157.75	495	Lake	Yes	41	363	¹⁴ C	8E	9.7-0.3	250	Dirksen et al., 2012.
G36	330	Glukhoye Lake	59.75	149.92	10	Bog	Yes	-	-	¹⁴ C	5C	9.4-3.4	1000	Lozhkin et al., 1990
	200													
G36	312	Chistoye Lake	59.55	151.83	91	Bog	Yes	-	-	^{14}C	5C	7.0-0	540	Anderson ey al., 1997
-----	-----	-----------------------	-------	--------	------	------	-----	------	------	-----------------	----------	----------	------	--------------------------------
G36	363	Lesnoye Lake	59.58	151.87	95	Lake	Yes	13	200	¹⁴ C	8A	15.5-0	400	Anderson et al., 1997
G36	388	Pepel'noye Lake	59.85	150.62	115	Lake	Yes	0	18	¹⁴ C	2A	4.3-0	180	Lozhkin et al., 2000
G36	290	Alut Lake	60.14	152.31	480	Lake	Yes	63	448	¹⁴ C	16A+9B	50.4-0	430	Anderson et al., 1998
G36	391	Podkova Lake	59.96	152.10	660	Lake	Yes	114	602	¹⁴ C	5A	6.0-0	220	Anderson et al., 1997
G36	370	Maltan River	60.88	151.62	735	Bog	Yes	-	-	¹⁴ C	4A+7C	12.0-9.4	120	Lozhkin and Glushkova, 1997
G36	411	Taloye Lake	61.02	152.33	750	Lake	Yes	16	227	¹⁴ C	7A	10.3-0	290	Lozhkin et al., 2000
G36	323	Elikchan 4 Lake	60.75	151.88	810	Lake	Yes	329	1023	¹⁴ C	16U	55.5-0	440	Lozhkin and Anderson, 1995
G36	331	Goluboye Lake	61.12	152.27	810	Lake	Yes	12	192	¹⁴ C	11A+2B	9.7-0	240	Lozhkin et al., 2000
G36	470	Julietta Lake	61.34	154.56	880	Lake	Yes	11	189	¹⁴ C	2A+4E+1I	36.1-1.4	270	Anderson et al., 2010
G36	321	Elgennya Lake	62.08	149.00	1040	Lake	Yes	455	1204	¹⁴ C	6A	16.0-0	310	Lozhkin et al., 1996
G37	405	Smorodinovoye Lake	64.77	141.12	800	Lake	Yes	27	293	¹⁴ C	6A+5F	27.1-0	360	Anderson et al., 1998
G37	416	Vechernii River	63.28	147.75	800	Bog	Yes	-	-	¹⁴ C	1F	14.4-0.1	380	Anderson et al., 2002
G37	338	Jack London Lake	62.17	149.50	820	Lake	Yes	1213	1965	¹⁴ C	7F	19.5-0.2	320	Lozhkin et al., 1993
G37	406	Sosednee Lake	62.17	149.50	822	Lake	Yes	82	510	¹⁴ C	4E+1F	26.3-0	640	Lozhkin et al., 1993
G37	393	Rock Island Lake	62.03	149.59	849	Lake	Yes	5	124	¹⁴ C	2E	6.6-0	470	Lozhkin et al., 1993
G37	381	Oldcamp Lake	62.04	149.59	853	Lake	Yes	7	150	¹⁴ C	2E	3.7-0	370	Anderson, unpublished
G37	329	Gek Lake	63.52	147.93	969	Lake	Yes	2392	2759	¹⁴ C	8A+1B	9.6-0	440	Stetsenko, 1998
G37	433	Figurnoye Lake	62.10	149.00	1053	Lake	Yes	439	1182	¹⁴ C	4A	1.3-0	30	Lozhkin et al., 1996
G38	353	Kuropatoch'ya_Kurop7	70.67	156.75	7	Bog	Yes	-	-	¹⁴ C	3C	5.7-0.4	760	Anderson et al., 2002
G38	354	Kuropatoch'ya_Kurpeat	69.97	156.38	47	Bog	Yes	-	-	^{14}C	1A+4C	11.7-7.5	430	Lozhkin and Vazhenina, 1987
G39	322	Elgygytgyn Lake	67.50	172.10	496	Lake	No	9503	5500	polarity	-	20.2-1.5	650	Melles et al., 2012
G39	325	Enmynveem_mammoth	68.17	165.93	400	Bog	Yes	50	399	¹⁴ C	2C+2F	36.4-9.3	2470	Lozhkin et al., 1988
G39	326	Enmyvaam River	67.42	172.08	490	Bog	Yes	18	239	¹⁴ C	1A+4C	10.6-4.3	630	Lozhkin and Vazhenina, 1987

	G39		Enmynyeem River	68 25	166.00	500	Bog	Yes	_	_	¹⁴ C	4C	10.7-4.0	420	Anderson et al 2002
	0.57	324		00.25	100.00	500	505	105			14		10.7 1.0	120	Lozhkin and Anderson
	G40	454	Malyi Krechet Lake	64.80	175.53	32	Lake	Yes	125	630	¹⁴ C	12A	9.6-0	400	2013
	G40	456	Melkoye Lake	64.86	175.23	36	Lake	Yes	1870	2440	¹⁴ C	21E	39.1-0	1260	Lozhkin and Anderson, 2013
	G40	460	Sunset Lake	64.84	175.30	36	Lake	Yes	240	874	¹⁴ C	7A	14.0-0	260	Lozhkin and Anderson, 2013
	G40	333	Gytgykai Lake	63.42	176.57	102	Lake	Yes	99	561	¹⁴ C	1A+8E	32.3-0	470	Lozhkin et al., 1998
	G40	457	Patricia Lake	63.33	176.50	121	Lake	Yes	40	357	^{14}C	3A+7E	19.1-0	290	Anderson and Lozhkin, 2015
	G41	436	Konergino	65.90	-178.90	10	Bog	Yes	-	-	¹⁴ C	1C	9.8-0	900	Ivanov et al., 1984
	G41	365	Lorino	65.50	-171.70	12	Bog	Yes	-	-	¹⁴ C	3C	17.9-5.1	850	Ivanov, 1986
	G41	317	Dlinnoye Lake	67.75	-178.83	280	Lake	Yes	71	476	¹⁴ C	3A	1.3-0	130	Anderson et al., 2002
	G41	431	Dikikh Olyenyeii Lake	67.75	-178.83	300	Lake	Yes	64	450	¹⁴ C	1A+4C	50.3-0	1050	Anderson et al., 2002
	G42	427	Blossom Cape	70.68	178.95	6	Bog	Yes	-	-	¹⁴ C	1C	13.8-0.2	3400	Oganesyan et al., 1993
	G42	420	Wrangle Island_Jack London Lake	70.83	-179.75	7	Lake	Yes	69	469	¹⁴ C	5A+1E	16.1-0.3	790	Lozhkin et al., 2001
_	G42	419	Wrangel Island	71.17	-179.75	200	Bog	Yes	-	-	¹⁴ C	17A+3C	13.7-10.2	110	Lozhkin et al., 2001
1486	LSC: 1	iquid-s	cintillation counting	g; A: te	rrestrial	plant ma	crofossil;	B: non-te	rrestrial plai	nt macrofoss	sil; C: peat;	D: pollen; U:	unknown;	E: total	l organic matter from
1487	silt; F:	animal	l remains or shell; G	: charc	oal; H: C	CaCO ₃ ; I	: tephra.								
1488															
1489															
1490															
1450															
1491															
1492															
1493															

1495 Appendix 2 RPP estimates (3 Slight percentage changes for five major plant taxa reconstructed by REVEALS model with different bog radii (5 m, 10 m, 20 m, 50

1501 excluded $\frac{PPE (SE \ge PPE)}{from the calculation of mean PPE and are shown in italics.}$

Country	Poland	Russia	Sweden	Sweden	Swiss	Swiss	Switzerland	Sweden	Finland	Estonia
Region	Białowieża Forest	Khatanga region	Southern Sweden	Southern Sweden	Swiss Plateau	Alps	Jura Mountains	west-central	Fennoscandia	Southeast
sample type	Moss	Moss	Moss	Moss	Lake	Trap	Moss	Moss	Moss	Lake
Reference	Baker et al., 2016	Niemeyer et al., 2015	Broström et al., 2004	Sugita et al., 1999	Soepboer et al., 2007	Sjögren et al., 2008	Mazier et al., 2008	von Stedingk et al., 2008	R äs änen et al., 2007	Poska et al., 2011
Model	ERV-3	ERV-2	ERV-3	ERV-3	ERV-3	-	ERV-1	ERV-3	ERV-3	ERV-1
Poaceae	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)	1 (0.00)
Abies					9.92 (2.86)		3.83 (0.37)			
Pinus	23.12 (0.24)			5.66 (0.00)	1.35 (0.45)	9 (0.00)		21.58 (2.87)	8.4 (1.34)	5.07 (0.06)
Picea				1.76 (0.00)	0.57 (0.16)	0.5 (0.00)	7.1 (0.2)	2.78 (0.21)		4.73 (0.13)
Larix		0.00009 (0.1)				1.4 (0.00)				
Alnus_tree	15.95 (0.66)			4.2 (0.14)		20 (0.00)				13.93 (0.15)
Betula_tree	13.94 (0.23)			8.87 (0.13)	2.42 (0.39)			2.24 (0.2)	4.6 (0.7)	1.81 (0.02)
Juglans										
Fraxinus				0.67 (0.03)	1.39 (0.21)					
Quercus	18.47 (0.10)			7.53 (0.08)	2.56 (0.39)					7.39 (0.2)
Tilia	0.98 (0.03)			0.8 (0.03)						
Ulmus										
Alnus_shrub		6.42 (0.42)								
Betula_shrub		1.8 (0.26)								
Carpinus	4.48 (0.03)				4.56 (0.85)					
Corylus	1.35 (0.05)			1.4 (0.04)	2.58 (0.25)					
Salix		0.03 (0.03)		1.27 (0.31)				0.09 (0.03)		2.31 (0.08)
Ericaceae		0.33 (0.03)						0.07 (0.04)		
Ephedra										
Cyperaceae		0.53 (0.06)	1 (0.16)				0.68 (0.01)	0.89 (0.03)	0.002 (0.0022)	1.23 (0.09)

	wto.	1117	CT	~
	1111	,,,,	N/1	
			~ ~ ~ ~	~
-P	rie	m	SU	и

Chenopodiaceae Asteraceae *Thalictrum*

Ranunculaceae

Caryophyllaceae

Brassicaceae

1503

Country Czech Norway Greenland England England Germany China China China China Changbai Region Central Bohemia Wheatfen Brandenburg Tibetan Plateau Xilinhaote South Southern Calthorpe Shandong Mt. Lake Lake sample type Moss Moss Moss Moss Lake Soil Moss moss Abraham and Hjelle and Sugita, Bunting et al., Bunting et al., Matthias et al., Wang and Xu et al., Li et al., Li et al., Reference Bunting et al., 2005 Koz ákov á, 2012 2012 2013 2005 2012 Herzschuh, 2011 2014 2017 2015 Model ERV-1 ERV-3 ERV-1 Average allFIDage_ERV3 ERV-2 ERV2 ERV-3 Average -Poaceae 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) Abies 15.2079 Pinus 6.17 (0.41) 5.73 (0.07) 5.2 (0.00) 8.96 (0.23) (0.489)Picea 1.2 (0.04) 1.456 (0.05) Larix 8.06 (0.32) 1.47 (0.19) 2.56 (0.32) 3.22 (0.22) 10.564 (0.00) 4.028 (0.00) 14.248 (0.22) Alnus_tree Betula_tree 3.7 (0.4) 9.804 (0.00) 8.84 (0.34) 24.65 (0.73) Juglans 0.3 (0.05) 9.49 (0.44) Fraxinus 1.11 (0.09) 1.14 (0.00) 0.076 (0.00) 6.188 (0.12) 3.72 (0.68) 4.89 (0.16) Quercus 1.76 (0.2) 1.3 (0.1) 7.6 (0.00) 7.6 (0.00) 1.976 (0.03) Tilia 1.352 (0.04) 0.78 (0.19) 1.36 (0.26) Ulmus 11.5 (1.09) 1 (0.31) 6.85 (1.71) Alnus_shrub Betula_shrub 1.4 (0.05)

0.17 (0.03)

3.48 (0.19)

0.24 (0.06)

3.85 (0.72)

	Carpinus						8.684 (0.09)			
	Corylus					1.216 (0.00)				
	Salix	1.19 (0.12)	0.62 (0.11)	0.8 (0.002)	1.748 (0.00)	2.736 (0.00)				
	Ericaceae									
	Ephedra								0.96 (0.14)	
	Cyperaceae		1.37 (0.21)	0.95 (0.05)				0.65 (0.4)	0.94 (0.079)	0.21 (0.07)
	Artemisia	2.77 (0.39)						3.2 (0.6)	11.21 (0.31)	24.7 (0.36)
	Chenopodiaceae	4.28 (0.27)						5.3 (1.1)	6.74 (0.79)	
	Asteraceae								0.39 (0.16)	1.06 (0.21)
	Thalictrum			4.65 (0.3)					3.06 (0.42)	
	Ranunculaceae			1.95 (0.1)						
	Caryophyllaceae			0.6 (0.05)						
	Brassicaceae								7.48 (0.33)	0.89 (0.18)
1504										
1505										
1506										
1507										
1508										
1500										
1309										
1510										
1511										
1512										
1513										
1514										

1515	Appe	endix <u>5 N</u>	lumber of	f pollen re	ecords fro	om large l	<u>akes (≥39</u>	<u>90 m radi</u>	us; repres	ented by	<u>L), sma</u>	<u>ll lakes (</u>	<u>(<390 m</u>	radius;	represen	ted by S), and [bogs (l	<u>3) for e</u>	each
1516	<u>site-g</u>	roup use	d to run	REVEAL	LS for ea	ch time s	slice. For	example	, site-grou	u <u>p G6 h</u>	<u>as 2 lar</u> g	ge lake 1	ecords,	<u>1 small</u>	lake rec	ord, and	2 bog	g recor	<u>ds at 4</u>	<u>4 ka</u>
1517	(repre	esented by	<u>y 2L1S2E</u>	<u>B).</u>																
	Grou	<u>0 ka</u>	<u>0.2 ka</u>	<u>0.5 ka</u>	<u>1 ka</u>	<u>2 ka</u>	<u>3 ka</u>	<u>4 ka</u>	<u>5 ka</u>	<u>6 ka</u>	<u>7 ka</u>	<u>8 ka</u>	<u>9 ka</u>	<u>10 ka</u>	<u>11 ka</u>	<u>12 ka</u>	<u>14 ka</u>	<u>21 ka</u>	<u>25 ka</u>	<u>40 ka</u>
	<u>G1</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	Ξ	<u>1L</u>	=	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	=	=	E	Ξ	Ē.	E	=
	<u>G2</u>	<u>6B</u>	<u>1S6B</u>	<u>1S6B</u>	<u>1S6B</u>	<u>1S4B</u>	<u>2S6B</u>	<u>2S6B</u>	<u>1S4B</u>	<u>2S2B</u>	<u>1S</u>	<u>2S</u>	<u>2S</u>	<u>1S2B</u>	<u>1S2B</u>	<u>1S2B</u>	<u>2B</u>	÷	=	÷
	<u>G3</u>	<u>4B</u>	<u>4B</u>	<u>8B</u>	<u>8B</u>	<u>6B</u>	<u>8B</u>	<u>8B</u>	<u>8B</u>	<u>8B</u>	<u>6B</u>	<u>6B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	÷.	Ξ	÷.	÷.	÷.
	<u>G4</u>	≞	<u>1L</u>	≡	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L2B</u>	<u>1L2B</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	Ξ	≘	≞	≞
	<u>G5</u>	<u>4S4B</u>	<u>4S4B</u>	<u>4S4B</u>	<u>4S4B</u>	<u>1S4B</u>	<u>1S4B</u>	<u>1S4B</u>	<u>1S2B</u>	<u>1S2B</u>	<u>1S2B</u>	⊒	Ξ.	Ξ.	⊒	≞	Ę	Ē	=	⊒
	<u>G6</u>	<u>2L1S2B</u>	<u>1L1S2B</u>	<u>2L1S4B</u>	<u>2L1S4B</u>	2L1S4B	<u>1L1S2B</u>	<u>2L1S2B</u>	<u>1S</u>	<u>1L1S</u>	<u>1L2B</u>	<u>1L2B</u>	<u>1L2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	Ē	=	⊒
	<u>G7</u>	<u>4B</u>	<u>10B</u>	<u>12B</u>	<u>12B</u>	<u>1L12B</u>	<u>1L12B</u>	<u>1L10B</u>	<u>1L10B</u>	<u>1L10B</u>	<u>1L10B</u>	<u>6B</u>	<u>8B</u>	<u>8B</u>	<u>1L6B</u>	<u>2B</u>	Ę	<u>2B</u>	=	<u>2B</u>
	<u>G8</u>	<u>2B</u>	<u>2B</u>	<u>4B</u>	<u>4B</u>	<u>2B</u>	<u>4B</u>	<u>6B</u>	<u>8B</u>	<u>8B</u>	<u>8B</u>	<u>6B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>2B</u>	Ę	Ē	=	⊒
	<u>G9</u>	<u>4B</u>	<u>4B</u>	<u>6B</u>	<u>6B</u>	<u>4B</u>	<u>6B</u>	<u>6B</u>	<u>2B</u>	<u>6B</u>	<u>4B</u>	<u>8B</u>	<u>8B</u>	<u>8B</u>	<u>8B</u>	<u>4B</u>	<u>2B</u>	⊒	E	E .
	<u>G10</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>2B</u>	<u>1L2B</u>	<u>1L4B</u>	<u>1L6B</u>	<u>1L8B</u>	<u>1L6B</u>	<u>1L6B</u>	<u>1L6B</u>	<u>1L4B</u>	<u>1L2B</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	E	E .
	<u>G11</u>	<u>2L1S</u>	<u>2L1S</u>	<u>2L1S</u>	<u>2L1S</u>	<u>1L1S</u>	<u>2L1S</u>	<u>1L1S</u>	<u>1L1S</u>	<u>2L1S</u>	<u>2L1S</u>	<u>2L</u>	<u>2L</u>	<u>1L</u>	<u>1L</u>	<u>2L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	≞.
	<u>G12</u>	<u>6L1S2B</u>	<u>5L1S2B</u>	<u>5L1S2B</u>	<u>6L1S2B</u>	<u>5L1S2B</u>	<u>3L1S2B</u>	<u>5L1S2B</u>	<u>4L1S2B</u>	<u>4L2B</u>	<u>4L2B</u>	<u>5L2B</u>	<u>4L</u>	<u>4L</u>	<u>3L</u>	<u>4L</u>	<u>1L</u>	⊒	E	≞.
	<u>G13</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	E .	=	⊒
	<u>G14</u>	<u>4L</u>	<u>1L</u>	<u>4L</u>	<u>4L1S</u>	<u>5L1S</u>	<u>5L2S</u>	<u>5L1S</u>	<u>4L1S</u>	<u>3L1S</u>	<u>4L2S</u>	<u>4L2S</u>	<u>4L2S</u>	<u>3L1S</u>	<u>4L2S</u>	<u>4L1S</u>	<u>3L2S</u>	⊒	E	≞.
	<u>G15</u>	<u>1L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>3L</u>	<u>3L</u>	<u>3L</u>	<u>3L</u>	<u>2L</u>	<u>2L</u>	<u>3L</u>	<u>1L</u>	<u>3L</u>	<u>3L</u>	<u>2L</u>	<u>1L</u>	=	⊒
	<u>G16</u>	<u>1L</u>	Ē	<u>2L</u>	Ξ.	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>1L</u>	<u>1L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>3L</u>	<u>1L</u>	<u>2L</u>	<u>3L</u>	÷.
	<u>G17</u>	E	Ē	⊒	Ξ.	<u>1L</u>	<u>1L</u>	Ξ	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	Ξ.	<u>1L</u>	Ē	E .	E .	=	÷.
	<u>G18</u>	<u>2L2S</u>	<u>3L1S</u>	<u>2L2S</u>	<u>4L2S</u>	<u>2L1S</u>	<u>4L1S</u>	<u>5L1S</u>	<u>4L1S</u>	<u>4L1S</u>	<u>4L</u>	<u>5L</u>	<u>4L1S</u>	<u>2L1S</u>	<u>3L1S</u>	<u>4L</u>	<u>2L</u>	E .	=	÷.
	<u>G19</u>	Ξ.	<u>1L</u>	E	<u>1L</u>	<u>1L</u>	E	<u>1L</u>	<u>1L</u>	⊒	⊒	÷.	E	Ξ.	Ē	⊒	Ξ	Ē	=	.≘
	<u>G20</u>	<u>6L6B</u>	<u>4L4B</u>	<u>6L8B</u>	<u>5L1S6B</u>	<u>6L1S8B</u>	<u>5L8B</u>	<u>5L6B</u>	<u>5L1S6B</u>	<u>5L1S6B</u>	<u>5L1S4B</u>	<u>4L4B</u>	<u>4L2B</u>	<u>5L2B</u>	<u>5L2B</u>	<u>6L2B</u>	<u>5L2B</u>	<u>2L2B</u>	<u>2L2B</u>	<u>1L</u>
	<u>G21</u>	<u>4L1S2B</u>	<u>2L1S2B</u>	<u>4L1S2B</u>	<u>4L1S2B</u>	<u>3L1S2B</u>	4L2S4B	4L2S4B	<u>3L2S4B</u>	<u>3L1S4B</u>	<u>4L1S2B</u>	<u>5L1S4B</u>	<u>4L1S2B</u>	<u>5L1S2B</u>	<u>6L1S</u>	<u>5L1S</u>	<u>1L</u>	Ē	=	.≘
	<u>G22</u>	<u>1L</u>	<u>1L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>1L</u>	<u>1L</u>	Ē	=	.≘
	<u>G23</u>	E	Ē	⊒	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	E .	E .	=	÷.
	<u>G24</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	Ξ	E .	÷.	E .
	<u>G25</u>	<u>1L</u>	<u>4L</u>	<u>4L</u>	<u>4L</u>	<u>5L</u>	<u>5L</u>	<u>5L</u>	<u>5L</u>	<u>5L</u>	<u>4L</u>	<u>4L</u>	<u>3L</u>	<u>3L</u>	<u>4L</u>	<u>2L</u>	<u>2L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>
	G26	<u>1L</u>	=	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	-	-	<u>1L</u>	<u>1L</u>	<u>1L</u>	-	-	=	-	=

	G27	E	<u>2B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>2B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>2B</u>	5	E	E .	E.	=	=	=
	G28	<u>2L</u>	<u>2B</u>	<u>2L2B</u>	<u>1L2B</u>	<u>2L2B</u>	<u>1L2B</u>	<u>2L2B</u>	<u>2B</u>	<u>2L</u>	<u>1L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>2L</u>	<u>1L</u>	<u>1L</u>	E	=	±.
	G29	<u>1L1S10B</u>	<u>1L1S14B</u>	<u>1L2S14B</u>	<u>1L1S16B</u>	<u>1L1S16B</u>	<u>1L2S16B</u>	<u>1L1S10B</u>	1L2S10B	<u>1L1S4B</u>	<u>1L2S4B</u>	<u>1L2S2B</u>	<u>1L1S2B</u>	<u>2S</u>	<u>2S</u>	<u>1S</u>	<u>1S</u>	<u>1S</u>	<u>1S</u>	<u>1S</u>
	G30	<u>1L</u>	<u>1L2B</u>	<u>1L6B</u>	<u>1L4B</u>	<u>1L8B</u>	<u>1L8B</u>	<u>1L6B</u>	<u>1L10B</u>	<u>1L8B</u>	<u>1L8B</u>	<u>1L4B</u>	<u>1L4B</u>	<u>1L2B</u>	<u>1L4B</u>	<u>1L4B</u>	<u>1L2B</u>	<u>1L4B</u>	<u>1L4B</u>	<u>4B</u>
	G31	<u>2B</u>	<u>2B</u>	<u>10B</u>	<u>14B</u>	<u>12B</u>	<u>14B</u>	<u>10B</u>	<u>12B</u>	<u>10B</u>	<u>4B</u>	<u>2B</u>	<u>4B</u>	<u>2B</u>	<u>4B</u>	<u>4B</u>	E .	E .	÷.	÷.
	G32	Ē.	E	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>-</u>	E .	E .	÷.	÷.
	G33	Ē.	E	÷.	<u>4B</u>	<u>2B</u>	<u>2B</u>	<u>4B</u>	<u>2B</u>	<u>4B</u>	<u>2B</u>	<u>2B</u>	E.	E	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>
	G34	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>6B</u>	<u>10B</u>	<u>8B</u>	<u>8B</u>	<u>6B</u>	<u>6B</u>	<u>6B</u>	<u>6B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>2B</u>	<u>2B</u>	÷.	÷.
	G35	Ξ.	<u>1L1S</u>	<u>1L1S</u>	<u>1L1S</u>	<u>1L1S</u>	<u>2L1S</u>	<u>1L</u>	<u>1L1S</u>	<u>1L</u>	<u>1S</u>	<u>1S</u>	<u>1S</u>	<u>1S</u>	÷.	E.	÷	÷	E .	E .
	G36	<u>4L4S2B</u>	<u>2L2S</u>	<u>4L3S</u>	<u>4L4S</u>	<u>4L4S</u>	<u>4L5S</u>	<u>4L4S</u>	<u>3L2S2B</u>	<u>4L2S</u>	<u>2L4S4B</u>	<u>3L4S2B</u>	<u>3L4S</u>	<u>2L4S2B</u>	<u>3L2S2B</u>	<u>2L2S2B</u>	<u>2L2S</u>	<u>2L1S</u>	<u>2L1S</u>	<u>2L1S</u>
	G37	<u>3L3S</u>	<u>2L1S2B</u>	<u>3L1S2B</u>	<u>1L3S2B</u>	1L3S2B	<u>2L3S2B</u>	<u>1L3S2B</u>	<u>2L2S2B</u>	<u>3L2S2B</u>	<u>3L1S</u>	<u>1L1S</u>	<u>2L</u>	<u>2L1S</u>	<u>2L1S</u>	<u>1L1S</u>	<u>2L1S</u>	<u>2L1S</u>	<u>1L1S</u>	E .
	G38	Ξ.	E	<u>2B</u>	<u>2B</u>	=	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	E .	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	<u>2B</u>	÷	÷	E .	E .
	G39	E	E	=	E	=	<u>1L</u>	<u>1L2B</u>	=	<u>1L4B</u>	<u>2B</u>	<u>1L4B</u>	<u>1L4B</u>	<u>2B</u>	<u>1L4B</u>	<u>1L</u>	<u>1L</u>	<u>1L2B</u>	<u>2B</u>	<u>2B</u>
	G40	<u>4L1S</u>	<u>1L</u>	<u>2L1S</u>	<u>3L1S</u>	<u>3L1S</u>	<u>2L</u>	<u>1S</u>	<u>2L</u>	<u>2L1S</u>	<u>1S</u>	<u>1L1S</u>	<u>3L1S</u>	<u>2L</u>	<u>2L</u>	<u>3L</u>	<u>2L</u>	<u>2L1S</u>	<u>1L</u>	<u>1L</u>
	G41	<u>2L2B</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>2B</u>	<u>2B</u>	Ξ	<u>4B</u>	Ξ	<u>4B</u>	<u>4B</u>	<u>4B</u>	<u>2B</u>	<u>1L2B</u>	<u>2B</u>	<u>1L2B</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>
	<u>G42</u>	=	<u>1L2B</u>	=	<u>1L</u>	<u>1L</u>	<u>1L</u>	<u>1L</u>	=	=		=	=	<u>1L</u>	<u>1L2B</u>	<u>1L4B</u>	<u>1L4B</u>	<u> </u>	<u> </u>	Ξ
3	2																			

<u>Appendix 7</u> Map of the study area showing the geographic locations mentioned in the text.

Appendix 8 Selected examples of standard errors for seven plant functional type (PFT) reconstructions at site-groups G21 G20 and G36 at 6 ka

Appendix 9 Proxy-based climate reconstructions from the Northern Hemisphere and insolation variations during the last 40 cal ka BP discussed in the paper. NGISP: the North Greenland Ice-Core Project (Andersen et al. 2004); Sanbao cave (Cheng et al. 2016); Alkenone-derived sea-surface temperatures (SST) from deep-sea cores SU8118 and MD952042 (Pailler and Bard 2002); solar insolation in July at 60 % (Laskar et al. 2004).

