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Abstract.  

Recent research in climate variability as a function of temporal or spatial scale has shown that the majority of the 

variance power lies in what has up until now been considered an unimportant background with relatively little power in well-10 

known frequencies, such as daily, seasonal, or orbital oscillations. Atmospheric variability as a function of scale can be 

divided in various dynamical “regimes” with alternating increasing and decreasing fluctuations: weather, macroweather, 

climate, macroclimate, megaclimate. Although a vast amount of data is available at small scales, the larger picture is not well 

constrained due to the scarcity and low resolution of long paleoclimatic time-series. Here, we analyse a unique centimetric 

resolution dust flux series from the EPICA Dome C ice-core in Antarctica that spans the past 800,000 years. The temporal 15 

resolution is 5 years over the last 400 kyrs, and 25 years over the last 800kyrs, enabling the detailed statistical analysis and 

comparison of eight glaciation cycles. The main spectral peak of the complete record is superposed on a scaling (power law) 

process and accounts for only 4-15% of the variability, the rest being in the scaling continuum, thus inverting the classical 

notions of foreground and background processes.  

We analyzed the glacial-interglacial cycles using two definitions: a fixed duration of 100 kyrs (segments) and a 20 

variable duration defined by the interglacial dust minima (cycles). Segments and cycles were further divided into eight 

consecutive “phases”. We found that the first two phases of each segment or cycle showed particularly large macroweather 

to climate transition scale c (around 2 kyrs), whereas later phases feature centennial transition scales (average of 250 kyr). 

This suggests that interglacials and glacial maxima are exceptionally stable when compared with the rest of a glacial cycle. 

The Holocene (with c ≈4 kyrs) had a particularly large c but it was not an outlier when compared with the phase 1 and 2 of 25 

other cycles. For each phase we quantified the drift, intermittency, and extremeness of the variability. Phases close to the 

interglacials (1, 2, 8) show low drift, moderate intermittency, and strong extremes, while the “glacial” middle phases 3-7 

display strong drift, weak intermittency, and weaker extremes.  

1 Introduction 

Over the early Pleistocene - until about 800 kyrs ago – marine sediment paleotemperature reconstructions exhibit 30 

strongly periodic behaviour (Lisiecky & Raymo 2005 Paleoceanography). At (obliquity) frequencies of (41 kyrs)-1, spectra 
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show a strong peak that rises sharply above the spectral “background” by a factor of more than 10 (Huybers, 2007). In 

contrast, in the more recent period, while there is still a fairly cyclic advance and retreat of ice sheets - the “ice ages” – the 

phenomenon is by no means perfectly periodic with the glacial maxima spaced at roughly 100 kyrs intervals (Jouzel et al., 

2007). The corresponding spectral peak appears to be so broad that simple interpretation in terms of Milankovitch forcings 

and responses are not obvious. It has even been suggested (Lovejoy, 2015) that an alternative theorization is of a transition 5 

between two scaling regimes: from the climate to macroclimate. While such a broad transition may still ultimately be 

astronomical in origin, it can no longer be easily viewed as a simple spectral spike overlying an otherwise uninteresting and 

unimportant background. 

One of the difficulties in characterizing the variability is that the most reliable paleo-temperature reconstructions 

(from ice core isotope ratios), rapidly lose their resolutions as we move to the bottom of the ice column. Fig. 1 shows this 10 

visually for the EPICA Antarctic ice core (5787 measurements in all), the curve becomes noticeably smoother as we move 

back in time. In terms of data points, the more recent 100 kyr period has more than 3000 points (≈30 year resolution) 

whereas the most ancient 100 kyr period has only 137 (≈800 year resolution). This implies that while the most recent glacial-

interglacial cycle can be perceived with reasonable detail, it is hard to quantitatively compare it to previous cycles - or to 

deduce any general cycle characteristics.  15 

Following the influential paper by (Mitchell, 1976), the classical approach assumes that there is an unimportant (more 

or less) white noise “background” upon which are superimposed significant quasi-oscillatory processes. However, using 

modern and paleoclimatic data analyzed by spectral methods or by using a more transparent approach, fluctuation analysis 

discussed below, (Lovejoy, 2015) argued that on the contrary, almost all the variability is in the “background” pointing out 

that Mitchell’s early picture greatly differed from the variability determined by modern paleo-data. 20 

Fluctuation analysis (Lovejoy and Schertzer, 2013; Nilsen et al., 2016), gives a relatively simple picture of 

atmospheric variability (Fig. 2). The figure shows a series of regimes each with variability alternately increasing and 

decreasing with scale. From left to right we see weather scale variability, in which fluctuations tend to persist, building up 

with scale - they are unstable - increasing up to the lifetime of planetary structures (about 10 days), followed by a 

macroweather regime with fluctuations tending to cancel each other out, decreasing with scale, displaying stable behaviour.  25 

In the last century, anthropogenically forced temperature changes dominate the natural (internal, macroweather) variability at 

about 10- 20 years; in pre-industrial  periods the lower frequency climate regime starts at scale c between somewhere 100 

and 1000 years.  Further to the right of Fig. 2 we can see the broad peak associated with the glacial cycles at about 50kyrs 

(half the 100 kyr period) and then at very low frequencies, the megaclimate regime again shows increasing variability with 

scale.  In between the climate and megaclimate regimes, the fluctuations decrease with scale over a fairly short range: from 30 

about 100 kyrs to 500 kyrs. 

Figure 2 shows the average fluctuation behaviour, but this can potentially hide large variations from epoch to epoch.  

Of particular importance is the macroweather - climate transition scale c. A particularly large c implies that temperatures 

were stable over long times and some (e.g. (Petit et al., 1999)) have argued that the exceptional Holocene stability (inferred 

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-110
Manuscript under review for journal Clim. Past
Discussion started: 31 August 2018
c© Author(s) 2018. CC BY 4.0 License.



3 

 

from the Antarctic Vostok core) allowed the development of farming and civilisation.  Others (Berner et al., 2008) argued 

the case of Holocene instability on the basis of paleo SST records.   In this paper, we use a unique high resolution and long 

paleo record of dust fluxes to attempt to answer this question.   

In this work, we focus on the EPICA Dome C dust flux record, which has a 55 times higher resolution than the 

temperature record, including high resolution over even the oldest cycle (Lambert et al., 2012). Antarctic dust fluxes are 5 

generally correlated with temperature, but are also affected by climatic conditions at the source and during transport 

(Lambert et al., 2008; Maher et al., 2010). The analysis of the dust record presented here can therefore be thought of as a 

more holistic climatic parameter that includes not only temperature changes, but describes atmospheric variability as a whole 

(including wind strength and patterns, and the hydrological cycle). 

2 The data 10 

Unlike oxygen isotopes that diffuse and lose their temporal resolution at high pressures and densities, the relatively 

large dust particles diffuse much less and have recently been used to estimate the dust flux over every centimetre of the 3.2 

km long EPICA core (298,203 measurements, (Lambert et al., 2012)). The temporal resolution of this series varies from 0.81 

years to 11.1 yrs (the averages over the most recent and the most ancient 100 kyrs respectively). The worst temporal 

resolution of 25 years per centimeter occurs around 3050 m depth, with the result that at that resolution, there are virtually no 15 

missing data points (Fig. 1). 

Fig. 3a shows a succession of 10 factors of 2 “blowdowns” (upper left to lower right), or equivalently, 10 blow-ups 

(lower right to upper left; 11 different resolutions). In order to avoid smoothing, the data was “zoomed” in depth rather than 

time, but the point is clear: the signal is very roughly scale invariant, at no stage is there any sign of obvious smoothing, and 

the quasi-periodic 100 kyr oscillations is the only obvious time scale (we quantify this below). In comparison with more 20 

common paleoclimate signals such as temperature proxies, the dust flux itself is already quite spiky. However, it also 

displays spiky transitions: in Fig. 3b we can note the strong spikiness associated with strongly non Gaussian variability: the 

intermittency. This figure shows the mean absolute difference between neighbouring values normalized by the average over 

each 290 point long segment. At each resolution, the solid red line indicates the maximum spike expected if the process was 

Gaussian, and the upper dashed lines the expected level for a (Gaussian) spike with probability 10-6. Again, without 25 

sophisticated analysis, we can see that the spikes are wildly non Gaussian, frequently exceeding the 10-6 level even though 

each segment has only 290 points, with the spikiness being nearly independent of resolution (for more on spike plots, see 

(Lovejoy, 2018).  

How can we comprehend variability over such wide ranges and with such sharp spikiness? Due to its link to 

temperature, wind, and precipitation, Antarctic dust data is representative of the climatic state of the atmosphere at the 30 

hemispheric level. At large scales, the ice-core dust record is mostly representative of temperature variability, while the 

influence of wind and precipitation variability should become progressively stronger with smaller scales.  

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-110
Manuscript under review for journal Clim. Past
Discussion started: 31 August 2018
c© Author(s) 2018. CC BY 4.0 License.



4 

 

Figure 4 shows various spectral analyses. The figure superposes the spectra of the 25 year resolution flux over the full 

800 kyr period (red) and the spectrum of the log of the flux (blue), each averaged over ten logarithmically spaced bins up to 

frequencies of (1kyr)-1, along with the average spectrum of the 5 year resolution data (green over the last 400 kyrs). For the 

latter, the periodograms of each the four most recent 100 kyr cycles were averaged, but the full spectral resolution (5yrs) -1 

was retained. Since this is a log-log plot, power laws appear as straight lines. Also shown in the figure are fits to the bi-5 

scaling function 

E w( ) =
a

w /wc( )
bh + w /wc( )

bl
 

that smoothly transitions between a spectrum with 
 
E w( ) » w-b

h  at  > c and 
 
E w( ) » w-b

l  at  <c . The figure 

shows the regressions with l =-2.5, h = 1.7, and a = 7.5 (mg/m2/yr)2yr, c ≈ (145kyrs)-1 for the fluxes, and a = 0.375 

(mg/m2/yr)2yr, c ≈ (160kyrs)-1 for the logarithms of fluxes. According to the figure, the high frequency climate regime 10 

scaling continues to about (250 yrs)-1 before flattening to a very high frequency scaling (≈0.4) “macroweather” regime 

(Lovejoy and Schertzer, 2013).  

The plot graphically counterposes two views of the variability. Although we clearly see a spectral maximum at 

around (100 kyrs)-1, the broad bispectral scaling model already accounts for 96% of the spectral energy (variance) leaving 

only 4% for the (extra) contribution from the (near) (100kyrs)-1 Milankovitch frequency. If it is argued that the logarithm of 15 

the flux is more physically relevant - justifying taking the logarithms (blue) - the situation is barely changed. Alternatively, 

we may take a narrow spectral spike model that approximates the spectral spike near (100 kyr)-1 as a Gaussian shaped 

profile. With this model, the spike is localised at (94±0.9 kyrs)-1 and contributes a total of 31% of the total variance, 

however, not all of this is above what we would expect from a scaling background; the exact amount depends on how the 

background is defined. For example, over the range from the 6th to the 11 highest frequencies in this discrete spectrum (from 20 

(133 kyrs)-1 to (72 kyrs)-1), in comparison to the background over this range, there is an enhancement of about 80% due to 

the strong peaks (the enhancement is about 100% for the 7th to the 12th frequencies). This means although the (94±0.9 kyr)-1 

peak represents 31% of the total variability over the range from (800 kyrs)-1 to (25 yrs)-1, it is only about 15% above the 

“background” (note that only 5% of the total variance is between (25yrs)-1 and (1 kyr)-1). The overall conclusion is that the 

background represents between 85% and 96% of the total variance. 25 

Scaling is a statistical symmetry - here, it says that on average the statistics at small, medium and large scales are the 

same in some way. The difficulty is that on a single realization – such as that available here, a single core from a single 

planet earth – the symmetry will necessarily be broken. For example, in the spectrum Fig. 4, in each of the proposed scaling 

regimes, scaling only predicts that the actual spectrum from this single core will vary about the indicated straight lines that 

represent the ensemble behaviour. Since this variability is strong, we made the potential scaling regimes more obvious by 30 
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either averaging the spectrum over frequency bins (the red and blue spectra) – or by breaking the series into shorter parts and 

averaging the spectra over all the parts, effectively treating each segment as a separate realization of a single process (green).  

This already illustrates the general problem: in order to obtain robust statistics we need to average over numerous 

realizations – and since here we have a single series, the best we can do is to break the series into disjoint segments and 

average the statistics over them. Yet at the same time, in order to see the wide-range scaling picture (which also helps to 5 

more accurately estimate the scaling properties/exponents), we need segments that are as long as possible. The compromise 

that we chose between numerous short segments and a small number of long ones was to break the series into 8 glacial-

interglacial cycles, and each cycle into 8 successive phases. As a first approximation, we defined eight successive 100kyr 

periods (hereafter called “segments”, Fig. 5, top set), corresponding fairly closely to the main periodicity of the series. As we 

discussed, the spectral peak is broad implying that the duration of each cycle is variable – the cycles are only “quasi-10 

periodic”. It is therefore of interest to consider an additional somewhat flexible definition of cycles defining them as the 

period from one interglacial to the next (hereafter called “cycle”, Fig. 5, bottom set). The break points were taken at 

interglacial optima: 0.4, 128.5, 243.5, 336, 407.5, 490, 614, 700, 789 kyrs BP, i.e. 96.9±18.7 kyrs per cycle. Using this latter 

definition, the cycles were nondimensionalized so that nondimensional time was defined as the fraction of the cycle, 

effectively stretching or compressing the cycles by ±19%.  15 

With either of these definitions, we have 8 segments or cycles, each with 8 phases. Fig. 6 shows the phase by phase 

information summarized by the average flux over each cycle including the dispersion of each cycle about the mean (for the 

segments in the top set, and the cycles in the bottom set). We see that the variability is highest in the middle of a cycle and 

lowest at the ends.  

3 Results and discussion 20 

3.1 Full Dataset Analysis 

In order to proceed to a further quantitative analysis of the types of statistical variability, and of the macroweather-

climate transition scale, we need to make some definitions. We have discussed a commonly used way of quantifying 

fluctuations: Fourier analysis. It quantifies the contribution of each frequency range to the total variance of the process (Fig. 

4). However, the interpretation of the spectrum is neither intuitive, nor straightforward. We already mentioned that 25 

Mitchell’s classical spectral paradigm implied a massive underestimate of the variability; it turns out that the highly non-

Gaussian spikiness (e.g. Fig. 3b), implies strong Fourier space spikes; indeed, (Lovejoy, 2018) found that the probability 

distribution of spectral amplitudes can themselves be power laws. This has important implications for interpreting spectra, 

especially those estimated from single series (“periodograms”): if the spectral amplitudes are highly non-Gaussian, then we 

will typically see strong spectral spikes that are purely random in origin. This makes it very tempting to attribute quasi-30 

oscillatory processes to what are in fact random spectral peaks. A final reason for considering the real (rather than Fourier) 

space variability (fluctuations) is that the spectrum is a second order statistical moment (the spectrum in the Fourier 
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transform of the autocorrelation function). While second order moments are sufficient for characterizing the variability of 

Gaussian processes, in the more general and usual case - especially with the highly variable dust fluxes - we need to quantify 

statistics of higher orders. In particular, the higher order statistics that characterize the extremes. Here, we will use two 

simple concepts to describe variability and intermittency (or spikiness) of the data. The basic tool is the Haar fluctuation 

which is simply the absolute difference of the mean over the first and second halves of an interval: 5 

 

DF Dt( ) =
2

Dt
F ¢t( )d ¢t

t-Dt/2

t

ò -
2

Dt
F ¢t( )d ¢t

t-Dt

t-Dt/2

ò  

 We can characterize the fluctuations by their statistics.  For example, by analyzing the whole dataset using intervals 

of various lengths, we can thus define the variability as a function of scale (i.e. interval length).  If over a range of time 

scales t, there is no characteristic time, then this relationship is a power law, and the mean absolute fluctuation varies as: 

DF Dt( ) µDtH  10 

where “< >” indicates ensemble average, here an average over all the available disjoint intervals. A positive H implies 

that the average fluctuations increase with scale. This situation corresponds to unstable behavior identified with the climate 

regime. In contrast, when H is negative, variability converges towards a mean state with increasing scale. This is the 

situation found in the stable macroweather regime. 

More generally, we can consider other statistical moments of the fluctuations, the “generalized structure functions”, 15 

Sq(t):  

Sq Dt( ) = DF Dt( )
q

µDt
x q( )

 

  

If the fluctuations are from a Gaussian process, then their exponent function is linear:(q) = qH. More generally 

however, (q) is concave and it is important to characterize this, since the nonlinearity in (q) is due to intermittency, i.e. 20 

sudden, spiky transitions (for more details on Haar fluctuations and intermittency we refer to (Lovejoy and Schertzer, 2012)).  

We therefore decompose(q) into a linear and a nonlinear (convex) part K(q), with K(1)=0: 

 
x q( ) = qH-K q( )  

  

A simple way to quantify the intermittency is thus to compare, the mean and Root Mean Square (RMS) Haar 25 

fluctuations: 

S1 Dt( ) = DF Dt( )( ) µDt
x 1( ) =DtH   (10) 

S2 Dt( )
1/2
= DF Dt( )( )

2
1/2

µDt
x 2( )/2 = Dt

H-K 2( )/2
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with ratio: 

S1 Dt( ) / S2 Dt( )
1/2
= DF Dt( ) / DF Dt( )( )

2
1/2

µDt
K 2( )/2

 

where we estimate S(t) using all available disjoint intervals of size t. These expressions are valid in a scaling regime. 

Since the number of disjoint intervals decreases as t increases, so does the sample size, hence the statistics are less reliable 

at large t, explaining the somewhat “noisy” appearance of plots such as Fig. 7a that shows the result when 
S1 Dt( )

 and 5 

S2 Dt( )
1/2

 are calculated over the entire series at 25 year resolution. The only way to completely quantify this effect is with 

a stochastic model of the process.   

Figure 7a shows that Haar fluctuations have simple interpretations in terms of the variability of the dust flux. For 

example, typical variations over a glacial-interglacial cycle (half cycle ≈ 50 kyrs) are about ±3mg/m2/yr (dashed line). From 

the figure we see there is a short regime with H<0 (up to about 250 yrs), a scaling regime with H >0 (up to glacial-10 

interglacial periods (≈50 kyrs) and finally a long time scale decrease in variability that is possibly (but not obviously) 

scaling. As expected, the regimes correspond to those indicated in Fig. 4 with the relation =1+(2) where E() ≈ 
-

 and 

represent macroweather, climate, and macroclimate, respectively. 

If the intermittency is small (K(q) ≈ 0), then (2)/2 ≈ H and 
S2 Dt( )

1/2
µS1 Dt( )µDtH

 so that the lines in Fig. 7a 

will be parallel. From the figure, we notice the lines slowly converge; the bottom line in Fig. 7a shows the ratio15 

S1 Dt( )
2
/ S2 Dt( )µDt

2x 1( )-x 2( ) µDt
K 2( )

. This non-Gaussian behaviour is a symptom of intermittency. As a first – and 

simple – quantification of the rate of convergence (and hence intermittency) we can take the variance ratio 

S1 Dt( )
2
/ S2 Dt( )

 which is also shown in the figure (whose exponent is 
2x 1( )-x 2( )

= K(2)). A useful approximate 

relationship is K(2) ≈ 2C1, so that the variance ratio indicates that over the intermediate (climate) regime C1 ≈ 0.05, with a 

hint of a transition to a higher intermittency regime with C1 ≈ 0.15 over the range of scales 10-100 kyrs. 20 

For theoretical reasons, it turns out that the intermittency near the mean (q=1) is best quantified by the parameter C1 = 

K’(1).  Since K(1) = 0, it turns out that the ratio exponent K(2)/2≈C1, so that the slope of the bottom curve in Fig. 7a is ≈2C1.  

As expected from the spectra, there are three regimes in the dust data (Fig. 7a). The first (high frequency) regime on 

the left shows fluctuations slowly decreasing to about c ≈ 250 years (with (1) = H ≈ -0.05) beyond which the fluctuations 

start to increase with scale with (1) = H ≈ 0.37. Finally, at scales beyond a broad peak at around 50 kyrs, the amplitude of 25 

the fluctuations rapidly falls corresponding to the far left (low frequency) regime of the spectrum (Fig. 4). The same Haar 

analysis of the ice ages with nondimensional time, averaged over all the ice ages, yields similar results. 
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The overall behavior for variability and intermittency, at high resolution (5 yrs) over the last 4 glacial-interglacial 

cycles can be seen in Fig. 7b and 7c, respectively. While the mean to RMS ratio in Fig. 7a is intuitive, a more accurate 

estimate of C1 uses the intermittency function G(t): 

 

G Dt( ) = DF
DF1-Dq

DF1+Dq

é

ë

ê
ê

ù

û

ú
ú

1/ 2Dq( )

µDt
x 1( )- ¢x 1( )

= Dt
C

1; Dq® 0  

 5 

whose exponent is C1; we use this in fig. 7c. 

From Fig. 7a-c, we see that all cycles display a very similar behavior. Also, due to the higher resolution in Fig. 7b, the 

macro-weather to climate transition time c at centennial time scales is clearer. Fig. 7c shows the corresponding figure for 

G Dt( ) » DtC1
, showing that the intermittency also has consistent cycle to cycle behaviour, although it displays a transition 

at scales of thousands of years; several times longer than for the fluctuations (there is no necessity for the intermittency 10 

transition to be at the same scale as for S1). 

The intermittency exponent C1 quantifies the rate at which the clustering near the mean builds up as a function 

of the range of scales over which the dynamical processes act, it only partially quantifies the spikiness. For this we 

need other exponents, in particular the exponent qD that characterizes the tails of the probability distributions. This is 

because scaling in space and/or time generically gives rise to power law probability distributions (Mandelbrot, 1974; 15 

Schertzer and Lovejoy, 1987). Specifically, the probability (Pr) of a random dust flux fluctuation F exceeding a fixed 

threshold s is: 

Pr DF > s( ) » sqD ; s >>1  

Where the exponent qD characterizes the extremes (for example, qD ≈ 5 has been estimated for wind or temperature 

(Lovejoy and Schertzer, 1986) and qD =3 for precipitation (Lovejoy et al., 2012).   A qualitative classification of probability 20 

distributions describes classical exponential tailed distributions (such as the Gaussian) as “thin tailed”, log normal (and log-

Levy) distributions as “long-tailed”, and power law distributions as “fat tailed”.  Whereas thin and long tailed distributions 

have convergence of all statistical moments, power distributions only have finite moments for orders q<qD.   

Fig. 8 shows the fluctuation probabilities of the entire 800 kyr series at 25 year resolution. We see that the large 

fluctuations (the tail) part of the distribution is indeed quite linear on a log-log plot with exponents qD ≈ 2.75 and 2.98 in 25 

time and depth respectively (both fit to the extreme 0.1% of the distributions). To get an idea of how extreme these 

distributions are, consider the depth distribution with qD = 2.98. With this exponent, dust flux fluctuations 10 times larger 

than typical fluctuations occur only 102.98 ≈ 1000 times less frequently. In comparison, for a Gaussian, they would be ≈1023 
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times less likely; they would never be observed. Similarly, these extremes are much stronger than log-normals that are 

sometimes invoked in this context.  

These power law fluctuations are so large that according to the classical assumptions, they would be outliers. While 

Gaussians are mathematically convenient and can be justified when dealing with measurement errors, in atmospheric science 

thanks to the scaling, very few processes are Gaussian. Extremes occur much too frequently, a fact that has been regularly 5 

underscored starting in the 1980’s (for a review see table 5.1a,b. in (Lovejoy and Schertzer, 2013)).  

At best, Gaussians can be justified for additive processes, with the added restriction that the variance is finite. 

However, once this restriction is dropped, we obtain “Levy distributions” with power law extremes, but with exponents 

qD<2. The Gaussian assumption also fails for the additive but scaling H model (Lovejoy, 2015; Lovejoy and Mandelbrot, 

1985). Most importantly, Gaussians are irrelevant for multiplicative processes: these generally lead to power law extremes 10 

but without any restriction on the value of qD (Mandelbrot, 1974; Schertzer and Lovejoy, 1987). Note that multiplicative 

random variables lead to somewhat less extreme log Levy and lognormal distributions (i.e. the logarithms are Levy or 

Gaussian (Aitchison and Brown, 1957)).  

To underscore the importance of nonclassical extremes, (Taleb, 2010) introduced the terms “grey and black swans”. 

Originally, the former designated Levy extremes, and the latter was reserved for extremes that were so strong that they were 15 

outliers with respect to any existing theory. However, the term “grey swan” never stuck, and the better-known expression 

“black swan” is increasingly used for any power law extremes.  

All of this is important in analyzing the dust flux series where extreme events may be associated with qualitatively 

new phenomena such as Dansgaard-Oescger events or even tipping points. The existence of black swan extremes leads to a 

conundrum: since black swans already lead to exceptionally big extremes, how can we distinguish “mere” black swans from 20 

potentially real outliers? In any event, for each empirical distribution, Fig. 8 shows the Gaussian with the same mean and 

standard deviation. We see that the empirical distributions are generally quite far from Gaussian. 

3.2 Analysis by Phases 

The spectrum (Fig. 4) quantitatively establishes the existence of a broad spectral peak at around (100 kyrs)-1. In this 

section, we will therefore profit from the high resolution nature of the data to examine the statistical properties of 25 

consecutive sections (hereafter called phases) of each glacial-interglacial cycles. Since the spectra showed that there were 

wide scale ranges that are scale invariant – power laws - we are interested in characterizing the scaling properties over the 

different phases. We have seen that there is relatively little cycle to cycle difference in statistical properties, (Fig. 7b,c). 

However, in Fig. 6 we saw that there appeared to be important differences depending on the phase of the cycle. Fig. 9 

compares the statistics averaged over cycles and the statistics averaged over phases. The figure confirms that the phase to 30 

phase differences are much more important than the cycle to cycle differences. Particularly noticeable are the phase to phase 

differences in the average fluctuations 
DF Dt( )( )

 (lower left).  
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From the global statistics (e.g. Figs. 4, 7), it is clear that in each glacial-interglacial cycle there are two regimes, so 

that before characterizing the structure functions by their exponents (e.g. H = (1) for the mean fluctuations), we have to 

determine the macroweather-climate transition time scale c whose average (from Fig. 4, 7) is about 250 years. 

One way of estimating the transition scale c is to make a bilinear fit of log10S1(t) (i.e. Haar with q = 1, the mean 

absolute fluctuation) with the mean slopes -0.05 (small t) and slope +0.25 (large t; the values were chosen because they 5 

are roughly the H estimates from the average over all the cycles) (Fig. 10). Bilinear fits were made for each phase of each 

segment (blue) as well as for each phase of each cycle (black).  For each phase there were thus 8 transition scales, which 

were used to calculate the mean and its standard deviation, (shown here as representative black arrows). From the figure we 

see that at first (phases 1, 2) the transition scale is 1 – 2 kyrs, but that it rapidly moves to shorter (≈250-400 yr) scales for the 

other phases. The average transition scale over all phases is around 300 years. This is very similar to the behaviour shown in 10 

Fig. 7a lower right, calculated from the ensemble slopes (over all segments or cycles).  

The figure shows that our results are robust since the results are not so different using dimensional and 

nondimensional time (segments and cycles). Comparing the blue and black curves we see that in all cases the early phases 

have much larger c than the middle and later phases. Also shown in Fig. 10 (dashed) is a plot of the break points estimated 

by a more subjective method that attempts to visually determine a break point on logS1 – log t plots. Again, we reach the 15 

same conclusion with quantitatively very similar results: a transition of millennia at the beginning, and a few centuries in the 

middle. The cycle average value (c ≈ 300 years) is therefore not representative of the early phases where c is many times 

larger (this includes the Holocene). The Holocene has an even larger transition scale (c ≈ 7.9kyrs, X in Fig. 10), but it lies 

just outside the standard deviation of the first nondimensional phases (red arrows in Fig. 10), and is therefore not an outlier. 

Rather than fix a phase and determine the variation of the mean fluctuation and intermittency function (Fig. 10), we 20 

can consider the variation of the Haar fluctuations at a fixed time scales and see how they vary from phase to phase (Fig. 11; 

for nondimensional time, cycle).  The figure shows the phase to phase variation of Haar fluctuations at 50, 100, 200, 400, 

800, 3300, 7000 years scales (bottom to top).   Low H implies that the curves are bunched up, high H that they are well 

separated as the time interval t is increased.  For every time scale, there is a clear cyclicity (left to right), with fluctuation 

amplitudes largest in the middle phases.   We could note that the cycle to cycle variability is fairly large; about a factor of 2 25 

(for clarity the error bars indicating the cycle to cycle spread were not shown). 

Another useful characterisation of the phases is to directly consider the flux variability at a fixed reference scale, 

taken here as the 25 year resolution; quantifying the amplitude of the variability of each segment by its standard deviation A 

at 25yr time scale (Fig. 12, lower left). This is not the difference between neighbouring values or fluctuation, it is rather the 

variability of the series itself at 25 year resolution. For each of the phases, we have 8 estimates (one from each cycle); these 30 

are used to calculate the mean (black) and standard deviation shown by the error bars. We can see that the amplitude of the 

25 yr scale fluctuations is about four times higher in the middle of the ice age (phase 4) than at the beginning (phase 1). The 

figure clearly shows the strong change of variability across the cycle.  
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We can also estimate the exponents H and C1 .  Figure 12 shows the result on the nondimensional phases of the range 

600 years<t<5000 years, (upper left and right; the range was chosen to be mostly with t>c, and it was fixed so as to avoid 

any uncertainty associated with the algorithm used to estimate c).  Recall that the fluctuation exponent H>0 quantifies the 

rate at which the average fluctuations increase with time scale. Similarly, the exponent C1 characterizes the rate at which the 

spikiness near the mean (the intermittency exponent) increases with scale. We see (upper left) that H is small in the early 5 

phases (with H actually a little bit negative on average in the first phase due to the large c value) with H reaching a fairly 

high value in the later phases. C1 on the other hand (upper right) decreases a bit in the middle the phases. The error bars 

show that there is quite a lot of cycle to cycle variability.  

If H quantifies the “drift” and C1 the “spikiness”, then Fig. 12 shows that the early phases have low drift and medium 

spikiness, the middle phases have high drift and lower spikiness, while phases 5-8 have high drift but medium spikiness. To 10 

understand this better, consider the transition time scales in Fig. 10. The early 2 phases with the low drift and spikiness are 

also the phase with the longest transition scales. This means that the rate at which the variability builds up is small and that it 

only builds up over a short range of scales (from c to roughly t = 50 kyrs, the half cycle duration, this can be checked on 

Fig. 9 that shows the phase by phase structure functions and intermittency functions). Conversely, the phases 3 and 4 with 

high drift and high intermittency also have a smaller c so that both the fluctuations and spikiness build up faster (Fig. 11) 15 

and over a wider range of scales (Fig. 10). 

Whereas C1 characterizes the intermittency near the mean, we have seen that probability exponent qD characterizes 

the extreme spikiness. Fig. 12 lower right, compares qD phase by phase.  Recalling that small qD implies more extreme 

extremes, we see that the extremes are stronger in the beginning and end of the cycle, and somewhat less pronounced in the 

middle phases of the cycle (note the overall mean is 2.62±0.42). Notice that for phase 8, qD=2.03 (the mean); this is close to 20 

the value qD = 2 below which the extremes are so strong that the variance (and hence spectrum) does not converge.  An 

extreme (low) exponent qD phase implies that most of the time the changes in flux are small, but occasionally, there are huge 

transitions.  Conversely, a high (less extreme) qD implies that there is a wider range of different flux changes so that most of 

the changes tend to be in a restricted range.  We can now categorize the phase by phase spikiness as: extremes strong, and 

medium spikiness (phases 1, 2, 8), and extremes intermediate and low spikiness (phases 3-7). For the cycle to cycle 25 

estimates (not shown), the value qD =2.75±0.41, seems to be fairly representative of all the cycles, although there is a slight 

tendency for qD to decrease for the older cycles implying that they may have been a bit more extreme than the recent ones. 

4 Conclusions 

Until now, a systematic comparison of the different glacial-interglacial cycles has been hindered by a limitation of the 

most common paleoclimate indicators – the low resolution of temperature reconstructions from ice or ocean cores. Due to 30 

this intrinsic characteristic, the older cycles are poorly discerned; we gave the example of EPICA paleo temperatures whose 

resolution in the most recent cycle was 25 times higher than the resolution in the oldest one. In this paper, we therefore took 
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advantage of a unique dust flux dataset with 1 cm resolution measuring 320,000 cm. The most recent four cycles were 

discerned at 5 year resolution throughout (20,000 points per cycle) and the entire record of eight glaciations could be 

resolved at 25 year, and this, without signs of over-sampling or smoothing. At this resolution, each 100 kyr segment thus had 

4000 data points allowing glacial-interglacial cycles to be quantitatively compared with each other.  

Our spectral analysis established that the majority of the variability – 85 - 96% depending on the sharp or broad peak 5 

model - was in the macroweather and climate scaling regime “backgrounds” with an average transition scale of about 250 

years. Therefore, the task of statistically characterizing the cycles reduced primarily to the problem of characterizing the 

transition scale c and main exponents H, C1 , qD that characterize respectively the growth (or decay) of fluctuations, the 

intermittency with scale, and their extremes, and then comparing them over different cycles. Since experience has shown that 

spectral analysis of climate series is not always easy to interpret, we characterized the variability using real space (Haar) 10 

fluctuations that can be directly interpreted in terms of differences or anomalies. 

Since the glacial-interglacial cycles were only quasi periodic, we compared the simple fixed duration definition of 

100 kyrs per cycle (which we call segments) with a slightly different nondimensional definition from interglacial to 

interglacial (which we call cycles), potentially better tailored to the dynamics. We then broke each segment and cycle into 8 

consecutive phases; each 12.5 kyrs and (for the 25 year data) with 500 points with the Holocene corresponding to the most 15 

recent phase (for the nondimensional definition, the phases were similarly 1/8 of the cycle length). The main conclusions 

were that cycle to cycle variability of dust fluxes were relatively small compared to the systematic phase to phase variations 

across each cycle. In general, the conclusions were robust with respect to different cycle definitions (dimensional, non-

dimensional). 

Using various techniques, c was found to be systematically larger in the early two phases than in the middle and later 20 

phases; about 2 kyrs but with nearly a factor of 4 cycle to cycle spread and equal to 300 years (with a factor of 2 spread) for 

the six remaining phases (Fig 10). Since the Holocene c was found to be ≈ 3 - 5 kyrs, it would have been an outlier when 

compared to the overall cycle average, but - since it is in phase 1 - it was not an outlier with respect to the typically large 

phase 1 and 2 values. Similarly, the typical (RMS) variation in flux amplitude was smaller in the early phase increases by 

(on average) a factor of 4 from ±0.13 mg/m2/yr to about ±0.5 mg/m2/yr in the middle and later phases. The Holocene (with 25 

an amplitude of ±0.08 mg/m2/yr) was again particularly stable with respect to the phase 1 of other cycles, but it was not an 

outlier. 

Finally, if we characterize the phases’ variability by H, C1 , qD and interpret the former as an index of the drift of the 

process (valid for climate regime time scales >c where by definition H>0), C1 as an index of intermittency (spikiness),  and 

qD as a measure of the strength of the extremes, then we found that the beginning and end phases (1, 2, 8) have low drift, 30 

moderate intermittency, and strong extremes whereas the middle phases 3-7 have strong drift, weak intermittency, and 

weaker extremes (Fig. 12).  
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This paper is an early attempt to understand this unique very high resolution data set. In future work, we will extend 

our methodology to the EPICA paleo temperatures and to the scale by scale statistical relationship between the latter and the 

dust fluxes. 
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Figure 1: Temperature (blue) and dust flux (red) from the EPICA Dome C ice core (Jouzel et al., 2007; Lambert et al., 

2012). The dust flux time series has 32,000 regularly spaced points (25 year resolution), the temperature series, has 5,752 points. 

The temperature data are irregularly spaced, and lose resolution as we go back into the past (number of temperature data points 5 
in successive ice ages: 3022, 1117, 521, 267, 199, 331, 134, 146). In both cases we can make out the glacial cycles but they are at best 

only quasi-periodic. 
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Figure 2: A composite showing root mean square (RMS) Haar fluctuations (T in units of °C) black, and RMS dust 

fluctuations analysed in this paper (red, in units of mg/m2/yr, (Lambert et al., 2012)). From left to right: thermistor temperatures 

at 0.0167s resolution (Lovejoy, 2018) , hourly temperatures from Landers Wyoming (Lovejoy, 2015) , daily temperatures from 75 5 

°N (Lovejoy, 2015), EPICA Dome C temperatures (Jouzel et al., 2007), and two marine benthic stacks (Veizer et al., 1999; Zachos 

et al., 2001). The macroweather-climate transition is not in phase between the different records because the left ones (industrial 

side) are influenced by anthropogenic climate change, while the right data is pre-industrial natural variability. As elsewhere in this 

paper, the fluctuations were multiplied by the canonical calibration constant of 2 so that when the slopes are positive, the 

fluctuations are close to difference fluctuations. The various scaling regimes are indicated at the bottom. Adapted from (Lovejoy, 10 

2017). 
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Figure 3a: Zooming out of the Holocene dust fluxes by octaves, by doubling the depth resolution from 1 cm (upper left) to 

11m (lower right) resolution. Starting at the left and moving to the right and from top to bottom (see the ellipses on the first three 

in the sequence) we zoom out by factors of 2 in depth maintaining exactly 290 data points (effectively nondimensionalizing the 5 

depth; the small number of missing data points were not interpolated so that the final resolution is not exactly 210cm = 10.24m). 

The temporal resolution is not exactly doubled due to the squashing of the ice column, the total duration (in years) of each section 

is indicated in each plot, the average temporal resolution of plots are: 0.24, 0.48, 0.98, 2.02, 4.32, 10.1 24.5, 54.1, 184, 434, 2710 yr. 

In order to fit all the curves on the same vertical scale, the dust fluxes were normalized by their mean over each segment. The 

means (in mg/m2/yr) are: 0.44, 0.38, 0.30, 0.36, 0.35, 0.33, 0.34, 0.39, 2.48, 2.18, 2.41 i.e. the first 8 plots have nearly the same 10 

vertical scales whereas the last three are about 6 times larger range. This means that all the plots except the last three are at nearly 

constant normalization. 
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Figure 3b: Same as Fig. 3a but for the absolute changes in dust flux normalized by the corresponding mean over the 

segment. The horizontal lines indicate the Gaussian probability levels for p = 1/290 (representing the mean extreme for a 290 point 

segment, red), as well as p = 10-6 (orange). We see that each segment has several spikes that have Gaussian probabilities lower than 5 

10-6. 
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Figure 4: Log-log plot of the Fourier spectrum of the (25yr)-1 resolution dust concentration in frequency units of kyrs-1 

(red) and the same but of the logarithms of the flux (blue). Also shown is the average spectrum of the 5 year resolution data over 

the last 400 kyrs (green). There is a clear periodicity at about (100 kyrs)-1. In the double power law fit (line plot), the transition 5 

frequencies are a little lower: c = (160 kyr)-1 (flux) and c = (145 kyr)-1 (log flux), although a Gaussian fit near the max gives a 

spike at (94±9 kyrs)-1. Note that it is actually a little bit “wide” (two peaks) hence it is not perfectly periodic, and the amplitude is 

only about a factor 4 above the background. In comparison, the amplitude of the annual temperature frequency peak is several 

thousand times above the background (depending on the location) and is narrower (not shown). 

The beta parameters are the exponents of the theoretical spectrum (see main text, the negative of the logarithmic slope) for 10 

the macroclimate (-2.5), climate (1.7), and macroweather (0.8) regimes. 
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Figure 5: Top set: successive segments of theoretical 100 kyr–long glacial cycles using usual (dimensional) time (present to 

past: bottom to top, the segment number is at the far right) with the 12.5 kyr phases indicated by vertical dashed lines. The short 

red lines indicate the interglacial dust minima. Each glacial-interglacial cycle is shifted by 25 units in the vertical for clarity.   The 5 

red markers in the upper plot get mapped to the first dashed blue line in the lower plot. 

Bottom set: successive cycles using nondimensional time (interglacial to interglacial) and then shifted by one phase to better 

line up with the usual time segments (the left most phase of the bottom line of the lower plot is zeroed). The average (nominal) 

resolution is 25 years. The interglacial dust minima were taken as 128.5, 243.5, 336, 407.5, 490, 614, 700, 789 kyrs B.P. and the data 

start at 373 yrs B.P. Each cycle is shifted by 25 units in the vertical for clarity. The data older than 789 kyrs were not used in these 10 

nondimensional cycles. 
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Figure 6: Top set: Averaging over the 8 cycles at 25 year resolution, we get the above picture: the mean is brown and the 

one standard deviation cycle to cycle variability is shown by the red. The dashed vertical lines give a further division into 8 x 

12.5kyr segments, the 8 “phases” of the cycle.  5 

Bottom set: the same but for the nondimensional time and shifted one phase to the right. The relative position of the 

interglacial at the first dashed line is indicated. 
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Figure 7a: The Haar fluctuation analysis of the entire 800 kyr dust flux data set. Four curves are shown on this log-log plot. 

The dashed black and solid pink (top pair) represent RMS fluctuations for dimensional and non-dimensional time, respectively. 

The solid black and blue curves are the same but for the mean absolute (q =1) fluctuations. The curves with non-dimensional time 5 

lags have nominal (average) resolutions of 25 years and the fluctuation statistics are averaged over the 8 cycles. We can see that 

there is virtually no difference in the statistics in real time and in nondimensional time; the latter effectively stretches or 

compresses the time axis by ±19% which only implies a small additional fuzziness between the two. 

Note that the peak in the curves occurs as expected at t ≈ 50kyrs i.e. at about a half cycle; and the horizontal dashed line 

shows that at this scale - corresponding to the largest difference in phases – the change in the mean absolute dust flux is about ± 3 10 

mg/m2/yr.  

Also shown (dashed vertical line) is the (average) time scale c at which the transition from macroweather to climate 

occurs. Several reference lines (with the slopes/exponents indicated) are shown showing approximate scaling behaviours. One can 

see that as a general feature, the RMS and mean fluctuations tend to converge at large lags. This is quantified on the bottom curve 

which shows the square of the ratio of the mean to the RMS.  If the statistics were Gaussian, then the ratio would be at the 15 

horizontal dashed line; we see some evidence for such behaviour at the very largest lags (≈> 80 kyrs, lower right where the ratio 

fluctuates about the Gaussian value; the statistics at these scales are poor). 
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Figure 7b: The q=1 structure function (S1) for the most recent 400 kyrs at 5 year resolution (black) and S1 for each of the 5 

100 kyr segments (indicated by the numbers in kyrs). The figure shows the relatively small cycle to cycle variations in S1 as well the 

high frequency H<0 regime more clearly than Fig. 7a (although the variability at the extreme left (t=10 years) is a little low 

probably due to instrumental smoothing of the 1cm data. A reference line slope H = 0.38 is also shown. 

  

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-110
Manuscript under review for journal Clim. Past
Discussion started: 31 August 2018
c© Author(s) 2018. CC BY 4.0 License.



25 

 

 

 

Figure 7c: This shows the intermittency function G(t) whose exponent is the intermittency exponent C1. The curves are 

from the first four successive 100 kyr segments of the 5 year resolution data in Fig. 7b. The intermittencies are compatible with 

those of the variance ratio (Fig. 7a) and are relatively stable from cycle to cycle. Reference lines with slopes C1 = 0.05 and 0.15 are 5 

shown. 
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Figure 8: The probability distribution Pr(F > s) of random changes in dust flux (F) exceeding a fixed threshold s; in time 

at 25 year resolution (brown, 32,000 points), and in depth at 1cm resolution (black, 251,075 points corresponding to the last 400 

kyrs). The straight lines indicate power law probability tails with exponents qD indicated. Also shown are the Gaussians with the 5 

same mean and standard deviations. In time, the maximum change in flux corresponds to about 28 standard deviations (i.e. to a 

Gauss probability ≈ 10-91), in depth, to 51 standard deviations (i.e. to p ≈ 10-455).  As noted in the text, the tails are also much 

stronger than those of log-normal distributions. 
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Figure 9: The top row shows the intermittency function G(t) (whose slope on the log-log plot is C1) and the bottom row, 

the mean absolute Haar fluctuation S1(t) (whose slope on the log-log plot is H), the left column shows the result for each phase 

after averaging over the 8 cycles with the numbers next to each line indicate the phase number; the right hand column shows the 5 

result for each cycle after averaging over the phases. Whereas each cycle is fairly similar to every other cycle (the right column), 

each phase is quite different (the left column). We see the most significant difference is the fluctuation amplitude as a function of 

phase (lower left). 
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Figure 10: The transition scale c estimated in two ways for each of the 8 phases and from two definitions of the phases. The 

first method (solid lines) used a bilinear fit to the (logarithm) of the Haar q=1 structure function (i.e. mean absolute fluctuation) as 

a function of log time lag t. To obtain robust results, a small t region with the slope -0.05 and a large t slope +0.25 was imposed 

with the transition point (c) determined by regression. This was done for each segment and cycle. For each phase there were thus 5 

8 transition scales, which were used to calculate the mean of the logarithm of c and its standard deviation. Results are shown for 

dimensional (segments, blue) and nondimensional time (cycles, black).  

The second method used to estimate c was graphical and relied on a somewhat subjective fitting of scaling regimes and 

transitions, but without imposing small and large t slopes (exponents H). The results are shown in dashed lines, they are quite 

similar although we can note some differences for the first phase (dimensional, blue) and the middle phases (nondimensional, 10 

black). There is also considerable cycle to cycle spread that was quantified by the standard deviations. In order to avoid clutter, 

typical spreads are shown by the double headed black arrows. Dashed horizontal lines show the ensemble mean transition scale 

(about 250 years) as well as ensemble mean for phases 1 and 2  (around 2 kyrs), which stands out compared to the rest of the 

phases. The red arrow shows one standard deviation for the nondimensional first phases, while the X marks the value of the 

Holocene c (7.9 kyr) just outside the 1-sigma limit. Thus the Holocene was a bit extreme, but not an outlier. 15 
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Figure 11:   Using nondimensional time, the Haar fluctuations for t = 50, 100, 200, 400, 800, 1600, 3500, 7000 years 5 

averaged over all the cycles is shown (bottom to top, alternating solid and dashed), dimensions mg/m2/yr.   The cycle to cycle 

variability is about a factor of 2.  We see that the variability is much larger in the middle phases of the cycle than at the beginning 

and end phases and that it increases more rapidly with scale (larger H) in the middle phases. 
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Fig.12:  The fluctuation and intermittency exponents H and C1 (top row), and fluctuation amplitude A and extremeness qD 

(bottom row) are estimated over the range 500 – 3000 years, as a function phase with the standard deviations from the cycle to 

cycle variability (all using nondimensional time).  The upper left (H) plot shows that the cycles start with low drift but become 

driftier in the middle and later phases.  The intermittency (C1, upper right) is moderate at the beginning and end of the cycles, and 5 

a little weaker in the middle.  The lower left shows the amplitude of the fluctuations at 25 years determined by the standard 

deviation of the dust flux (units: mg/m2/yr).  We see that the flux has low amplitude fluctuations at the beginning and end of the 

cycles and 3-4 times higher amplitude fluctuations in the middle.  The lower right shows the probability exponent qD estimated 

from the 25 year resolution data for each phase; the extreme 5% of the flux changes were used to determine the exponent in each 

phase; the cycle to cycle spread is indicated by the error bars (overall average over the phases: qD = 2.62±0.42). This qualitative 10 

interpretation is in accord with the data in Fig. 5.  
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