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Abstract 10 

The species composition of many groups of marine plankton appears well predicted by sea surface 

temperature (SST). Consequently, fossil plankton assemblages have been widely used to reconstruct 

past SST. Most applications of this approach make use of the highest possible taxonomic resolution. 

However, not all species are sensitive to temperature and their distribution may be governed by 

other parameters. There are thus reasons to question the merit of including information about all 15 

species, both for transfer function performance and for its effect on reconstructions. 

Here we investigate the effect of species selection on planktonic foraminifera transfer functions. We 

assess species importance for transfer function models using a random forest technique and 

evaluate the performance of models with increasing number of species. Irrespective of using models 

that use the entire training set (weighted averaging) or models that use only a subset of the training 20 

set (modern analogue technique), we find that the majority of foraminifera species does not carry 

useful information for temperature reconstruction. Less than one third of the species in the training 

set is required to provide a temperature estimate with a prediction error comparable to a transfer 

function that uses all species in the training set. However, species selection matters for 

paleotemperature estimates. We find that transfer function models with different number of species 25 

but with the same error may yield different reconstructions of sea surface temperature when applied 

on the same fossil assemblages. This ambiguity in the reconstructions implies that fossil assemblage 

change reflects a combination of temperature and other environmental factors. The contribution of 

the additional factors is site and time specific, indicating ecological and geological complexity in the 

formation of the sedimentary assemblages. The possibility of obtaining multiple different 30 

reconstructions from a single sediment record presents a previously unrecognised source of 

uncertainty for sea surface temperature estimates based on planktonic foraminifera assemblages. 

This uncertainty can be evaluated by determining the sensitivity of the reconstructions to species 

pruning. 

 35 
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1 Introduction 

Any method to infer quantitative paleoenvironmental information from (fossil) species assemblages 

relies on the use of a modern (or near modern) training set to identify a statistical relationship 

between the species assemblage and the environmental variable to be reconstructed. A range of 

methods exists, varying broadly in the way the training set is used to define the relation between the 40 

species community and the environmental parameter of interest. In this context, one aspect of the 

training set design that has received little formal attention, is species selection. In applications based 

on marine microfossils, the assumption has been that (nearly) all species potentially carry useful 

information and training sets have been designed to include as many species as practically possible 

(Kucera et al., 2005). However, there are fundamental, theoretical reasons to question if full 45 

taxonomic resolution is necessary for accurate reconstructions. Firstly, species may respond to other 

environmental variables than the one of interest and therefore confound the reconstruction. Such 

species would negatively impact the predictive power of the transfer function model. Secondly, 

species could be opportunistic or have a wide ecological niche and hence provide little information 

on the environmental variable to be reconstructed. These species would add no, or very little, 50 

information to constrain the reconstruction. The premise of full taxonomic resolution has been 

recently tested by Juggins et al. (2015), who demonstrated that transfer function techniques are 

variably sensitive to the influence of non-informative taxa. These authors used highly diverse 

assemblages from coastal and lacustrine environments, where the proportion of uninformative or 

confounding taxa can be expected to be high and where species selection for transfer function 55 

models is intuitively appropriate. 

However, marine microfossil assemblages (notably planktonic foraminifera) are less diverse and the 

species display a low degree of endemicity. In these circumstances, it would appear important to 

retain as many species in the training set as possible. Indeed, up to now, species pruning in marine 

microplankton applications has been done, if at all, for practical, rather than ecological reasons. 60 

Species were removed or lumped because of low abundance, preservation or taxonomic issues 

(Hayes et al., 2005; Vernal et al., 2001; Zielinski et al., 1998). However, the minimum number of taxa 

required for a robust transfer function model, or the influence of non-informative or nuisance taxa 

on such models, has never been formally evaluated. This is remarkable, considering that many 

species of marine microplankton appear to have similar response to the modelled variables and that 65 

there is also evidence for responses to multiple variables (Telford et al., 2013; Siccha et al., 2009; 

Steinke et al., 2008). Furthermore, from a practical point of view, reducing the number of species in 

the model may improve counting statistics and reduce counting time. Moreover, reducing taxonomic 

resolution may also be beneficial for application of automated identification and counting systems 

(e.g. Beaufort and Dollfus, 2004; Hsiang et al., 2016) and enable the use of legacy datasets with 70 
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incomplete taxonomy. The lack of a formal evaluation of species pruning in marine microfossil 

studies is also relevant because of the prolific use of different transfer function techniques. The 

evaluation of species pruning by Juggins et al. (2015) was carried out for ‘global models’ where the 

entire training set is used to define the species response curve to an environmental variable. Such 

methods are used on marine microfossil applications as well (e.g. Imbrie and Kipp method (Imbrie 75 

and Kipp, 1971), weighted averaging (WA) or artificial neural networks  (Malmgren and Nordlund, 

1997)). However, in the marine studies the most popular approach is the modern analogue 

technique (MAT). This approach uses similarity measures to identify a small ‘local’ subset of samples 

from the training set to derive the environmental variable to be reconstructed. Such a ‘local’ 

approach is fundamentally different and could be sensitive to species pruning in the training set in a 80 

different way. 

Here we evaluate species importance for transfer function performance for two widely differing 

methods (WA and MAT), representing both ends of the spectrum between local and global methods. 

We start by assessing species importance to determine the ranking of species for transfer function 

performance. We then investigate why some species are more important than others. Finally, 85 

because the behaviour of transfer functions models cannot be assessed within the modern training 

set only, we assess the influence of species selection on paleotemperature reconstructions. 

We use planktonic foraminifera as a model group, but the results from this study are likely of wider 

relevance to paleoecological reconstructions based on marine microfossils. Planktonic foraminifera 

are ideal for this purpose because of the existence of a large global training set (Siccha and Kucera, 90 

2017) and because of strong evidence that their distribution in surface sediments can be predicted 

by sea surface temperature alone (Bé and Hutson, 1977; Morey et al., 2005). 

 

2 Data and Methods 

To derive the transfer functions, we use planktonic foraminifera assemblage data from core top 95 

sediments recently compiled in the ForCenS dataset (Siccha and Kucera, 2017). Multi-species 

categories and morphotypes were removed and in case of replicate samples (at the same location) 

one sample was randomly selected. Annual mean temperature was assigned to each sample in the 

training set based on data from climatology (Stephens et al., 2002) averaged over the upper 50 m 

and within a 100 km radius of each core top sample. To test the effect of species selection on the 100 

performance of the transfer function outside of the calibration dataset, we analysed three fossil 

datasets. To evaluate the effect on assemblages with different diversity, we use two downcore 

records from the Atlantic: M35003-4 from the Caribbean (Hüls and Zahn, 2000), which spans 0-55 ka 

BP, and a longer,  0-180 ka BP, record from the Iberian Margin: MD95-2040 (De Abreu et al., 2003). 

And to evaluate the effect on past spatial SST patterns, we reanalyse the MARGO Last Glacial 105 
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Maximum (LGM) dataset from the North Atlantic Ocean (Kucera et al., 2005). The taxonomy of all 

fossil samples was harmonised with the ForCenS dataset following the same criteria as in Siccha and 

Kucera (Siccha and Kucera, 2017). Species not reported to be present in the downcore assemblages 

were assumed to be absent. 

To determine how many and which species are needed for the transfer function models we start 110 

with assessing species importance following the approach described by Juggins et al. (2015). Briefly, 

this involves randomly selecting 1/3 of the species in the training set and dividing this reduced 

training set in a part that is used to build the transfer function model including approximately 63 % of 

the samples and an out-of-bag (OOB) part that is used to evaluate the model. The proportion of each 

species in the OOB selection is then randomly permuted and the performance of the model is 115 

reassessed. Species for which the permutation leads to an increase in the prediction error are 

considered important. The species importance is derived from the average difference in prediction 

between the OOB and the permuted OOB samples across 1,000 bootstrap samples of the training 

set. The entire approach is repeated 10 times in order to get an error estimate on the species 

importance. For WA we use inverse deshrinking to obtain the environmental variables and for MAT 120 

we use the 5 closest analogues determined using squared chord distance. We note that the way the 

species importance is assessed and the transfer function models with different numbers are designed 

is implicitly using a rest group of non-included species. This is because the calculations are based on 

the relative abundances of the species in the training set with the full taxonomic resolution. This 

procedure simulates a situation where the total number of fossils of the studied group has been 125 

determined, but only a subset of the species has been counted. 

Next, we use the species importance to build transfer function models with successively increasing 

number of species. We start with the two most important species and increase the number 

according to the species importance ranking. The performance of each model (i.e the prediction 

error) was assessed using h-block cross validation to account for the effect of spatial autocorrelation 130 

in the training set (Telford and Birks, 2009). We used a cut off distance of 850 kilometres, which was 

shown to be appropriate for the North Atlantic (Trachsel and Telford, 2016). Because of the presence 

of cryptic species with specific ecological preferences, we have carried out the analyses separately 

for individual ocean basins following Kucera et al. (2005), assigning the new Red Sea samples of 

ForCenS to the Indian Ocean. The discussion below focusses on the North Atlantic Ocean because of 135 

the abundance of both core top and down core data, but the species ranking for the other oceans is 

provided in the supplementary information. All calculations were carried out in R (R core team, 2016) 

using the packages rioja (Juggins, 2017), raster (Hijmans, 2017), vegan (Oksanen et al., 2018) and 

ggplot (Wickham, 2016). 

 140 
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3 Results and discussion 

3.1 Species importance ranking 

Irrespective of which regional training set is used, for both WA and MAT only a small number of 

species appears important (Fig. 1, supplement). As shown by the example of the North Atlantic, cross 

validation of the transfer function models with increasing number of species shows that there is a 145 

large tail of low-importance species that do not add information and hence do not lead to improved 

transfer function performance (Fig. 1). In general, it appears that reconstructions with similar errors 

to the full species reconstruction can be achieved with less than a third or the total number of 

species. To reach prediction errors at, or very close to, the possible minimum, fewer species are 

needed for MAT than for WA. The species importance ranking varies somewhat by method and 150 

region, but is generally similar (supplement). In the North Atlantic there is a ninety percent overlap of 

the species in the top ten. 

To understand why some species are more important than others, we consider their overall 

maximum abundance, the width of their thermal niche in the training set and their temperature 

sensitivity as potential predictors of importance. We define temperature sensitivity based on how 155 

well the species abundance in temperature space can be described by a simple Gaussian curve. This 

analysis reveals that abundance (Fig. 2) is the best predictor of species importance (Table 1). Indeed, 

multiple regression models that include all three variables perform only marginally better than a  

model using abundance alone. However, we note that all three variables are correlated to some 

degree. Interestingly, abundance and temperature sensitivity are positively correlated (r = 0.84), 160 

implying that the thermal niche of abundant species is better defined compared to rare species (Fig. 

3A). We also observe that temperature sensitivity and thermal niche width are correlated. 

Counterintuitively, this correlation is positive: species with a narrow thermal niche appear less 

temperature-sensitive (r = 0.60; Fig. 3B). We attribute this pattern to a combination of low 

abundance of species with narrow thermal niches (sensitivity being correlated with abundance) and 165 

the possibility that their distribution is not primarily governed by temperature, assuming that the 

narrow thermal niche may be an artefact of adaptation to specific oceanic regions or regimes, only 

secondarily correlated with temperature. 

 

 There are nevertheless differences between the two methods: for MAT inclusion of warm-water 170 

species only appears sufficient to obtain a minimum prediction error, whereas for WA cold-water 

species are also required. This is in line with ‘global’ nature of the technique, which requires 

characterisation of thermal niches of the species across the entire temperature range of the training 

set. The former likely reflects the implicit inclusion of information on the abundance of the remaining 
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(cold-water) species and analogues are found because the similarity is based on relative abundances 175 

with respect to all species. 

 

The analysis also reveals that there are many uninformative species, but very few – if any – real 

nuisance species, i.e. species that lead to an increase in the prediction error when included in the 

transfer function model. The single possible species in this category are G. glutinata in the case of 180 

WA (Fig. 1). Globoconella inflata is a species with a very wide thermal tolerance and a high degree of 

cryptic diversity (Darling et al., 2017; André et al., 2014) suggesting that its response to temperature 

may be complex. 

 

3.2 Effect on reconstructions 185 

Despite the apparent lack of importance of many species in the transfer function model 

development, their inclusion matters for the reconstruction based on fossil assemblages. Transfer 

function models with pruned species numbers yield reconstructions that are systematically different 

from reconstructions with all species included (Fig. 4). The differences can be up to several degrees 

celsius and variable in time and space, with important implications for paleoceanographic 190 

interpretations. As expected, the average difference between a reconstruction with all species 

included and pruned species reconstructions, decreases with increasing number of species (Fig. 5). 

Importantly, species pruning does not only result in more variability in the reconstructions, but leads 

to a real bias towards either lower or higher temperatures than a reconstruction with all species (Fig. 

5).  195 

Inclusion of the most important species leads to rapid decrease in the difference between species-

pruned and all-species reconstructions, but unlike the species importance assessment (Fig. 1), adding 

more species leads to further stepwise decreases in the difference (Fig. 5). Importantly, steps in 

reconstruction difference occur with the addition of different species in different cores, indicating 

that they result from specific downcore changes in the assemblage composition. The exception 200 

appears to be G. glutinata in the case of WA, which leads to an increase both in the prediction error 

and the difference of the reconstruction, supporting its potential rating as a nuisance species. 

When adding species to the transfer function model, the reduction in the difference from the 

reconstruction with all species is initially accompanied by a reduction in the prediction error (Fig. 6). 

However, once the most important species are included, the prediction error stabilises whilst the 205 

difference continues to decrease. This means that for the same fossil assemblage, multiple different 

reconstructions with the same prediction error are possible. This pattern is visible in data sets from 

different faunistic and climatic regions and different time spans. Moreover, it holds for both 

methods, suggesting that it is a general pattern of the effect of species selection on SST 
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reconstructions using planktonic foraminifera assemblages. In WA species pruning has a greater 210 

effect on the reconstruction error than in MAT, but for both methods species pruning leads to 

different reconstruction with the same error. Taken at face value, and in the absence of independent 

evidence, such inherent ambiguity renders it impossible to decide which of the reconstructions is 

more realistic. This adds a previously unrecognised source of uncertainty to quantitative assemblage-

based reconstructions. 215 

 

3.3 Sensitivity to species pruning 

To evaluate the cause of the sensitivity of reconstructions to species selection, we calculate for each 

fossil sample a sensitivity measure based on the standard deviation of the reconstructions using 

different number of species and evaluate its predictability by properties of the assemblages (Fig. 7). 220 

The pruning sensitivity is all fossil datasets higher for MAT than for WA (Fig. 7) despite the fact that 

the minimum number of essential species is higher for MAT. This suggests that MAT is inherently 

more sensitive to species pruning, perhaps because the method does not rely on extrapolation to 

define a species’ niche. 

Intuitively, it would be expected that the effect of species pruning will be larger in low-diversity 225 

assemblages. However, for both techniques and all datasets, pruning sensitivity is unrelated to the 

number of species present in the fossil sample (Fig. 7). The fact that pruning sensitivity is not related 

to richness confirms that diverse assemblages contain many unimportant (redundant or 

uninformative) species. Especially for MAT, it could be expected that fossil samples with a 

composition that differs most from the training set will be most sensitive to pruning. This could be so 230 

if some species that are judged as uninformative in the training set carry environmentally relevant 

information downcore. Indeed, we observe such effect of analogue quality, with poorer analogue 

assemblages being more sensitive to pruning (Fig. 7). As expected, the effect is stronger for MAT, but 

it is most clear in the downcore records. However, the fact that the effect is generally weak and the 

absence of a clear common pattern in species pruning sensitivity (Fig. 7) highlights the difficulty in 235 

attributing assemblage changes to a single environmental factor and suggests that each site, or time 

slice, has unique species turnover dynamics. The uniqueness of species dynamics in each dataset is 

also reflected in the different position of the distinct steps in the difference between the 

reconstructions with all species and the pruned reconstructions (Fig. 4). Because these steps are not 

accompanied with a change in the transfer function performance, they indicate changes in the fossil 240 

assemblages that either reflect a temperature sensitivity of the species that is not captured in the 

training set (inadequate training set) or are not related to temperature (non-analogue condition 

(Hutson, 1977)). Non-analogue situations could arise either secondarily from post-depositional 

changes in the assemblages, or primarily and reflect a biological response to another environmental 
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variable than temperature, which is not apparent in the training set because of temporally variable 245 

covariation between this predictor variable and temperature.  

Post-depositional changes in species assemblages could arise from processes like dissolution (Berger, 

1968) or sediment (and thus fossil) mixing due to bioturbation (Hutson, 1977; Kucera et al., 2005). 

The effect of mixing should be most pronounced around intervals of assemblage change and may 

create fossil species assemblages with poor analogues in the training set. We have assessed to what 250 

degree analogue quality (dissimilarity from the training set) varies as a function of change in the 

assemblages for the downcore records investigated here (Fig. 8). The observed relationship has the a 

sign consistent with our hypothesis, but is weak and not apparent in each time series, suggesting that 

analogue quality varies as a function of multiple parameters and does not simply reflect sediment 

mixing. In the analysed fossil samples, dissolution should be negligible and since expatriation is 255 

unlikely to have changed considerably between the training set and fossil samples. We thus infer that 

the major reason for the observed ambiguity of the reconstructions is the effect of nuisance (non-

temperature) variables on fossil assemblage composition. 

 

3.4 Implications for paleoecological reconstructions 260 

Despite its intuitive simplicity and in spite of apparent statistical support (Morey et al., 2005), relating 

species assemblage change to a single environmental variable is not trivial (Juggins, 2013; Telford 

and Birks, 2009; Telford and Birks, 2005; Telford et al., 2013). This means that quantitative 

reconstructions based on transfer functions must be interpreted with caution and evaluated in view 

of additional, independent evidence. Our analysis provides further proof for the temporal emergence 265 

of apparently non-temperature related changes in fossil planktonic foraminifera assemblages that 

are not captured by calibration (Telford et al., 2013; Steinke et al., 2008; Siccha et al., 2009). The 

ambiguity in reconstruction due to species selection thus highlights the potential of environmental 

variables that appear unimportant in shaping species communities today, in explaining changes in 

past assemblages. An important question is therefore: how can this ambiguity be considered when 270 

interpreting individual reconstructions? We recommend as a first step to use the approach outlined 

here (ranking of species importance for each basin is provided in SI) to quantify the sensitivity of 

reconstructions to pruning and use this as an indication of the influence of secondary/nuisance 

variables on the reconstruction. This requires that the data are available at full taxonomic resolution 

and we explicitly do not encourage researchers to only count the apparently important species. 275 

 Although a method to translate the effect of pruning into a mechanistic and quantifiable uncertainty 

estimate is not available, one may conclude that reconstructions that are highly sensitive to species 

pruning indicate that the observed assemblage changes cannot be attributed solely to the 

environmental variable that is to be reconstructed. 
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Ultimately, we need a more mechanistic understanding of the factors that determine species 280 

assemblage composition in the sediment. Importantly, planktonic foraminifera species inhabit 

vertically and seasonally distinct habitats (Jonkers and Kučera, 2015; Rebotim et al., 2017). Thus, in 

many cases the species in a sediment assemblage have never actually lived together and their 

abundance is thus unlikely to reflect the same forcing. Moreover, the controls on vertical and 

seasonal abundance variability are species specific, adding even more complexity to deriving a single 285 

environmental variable from an assemblage of different species. Ecological models that explicitly 

simulate assemblages from multiple environmental variables (Kretschmer et al., 2018; Lombard et 

al., 2011) may aid to improve our capabilities to quantitatively reconstruct past environmental 

change from species assemblages. In a climate modelling context, such forward modelling of fossil 

assemblages is likely more fruitful than directly comparing the inferred temperatures. 290 

 

Conclusions 

There are both theoretical and practical reasons to investigate whether full taxonomic resolution is 

required to infer paleoenvironmental data from microfossil assemblages. We have addressed this 

issue using planktonic foraminifera, but we believe that our results are relevant to other groups of 295 

(marine) microfossils too. We have ranked species according to their importance for transfer 

function model development and shown that less than a third of the species is needed to derive a 

model that performs as good (or better than) a model with full taxonomic resolution. Nevertheless, 

even though addition of more species has little effect on the transfer function model performance, 

sea surface temperature reconstructions with increasing number of species, are different. Thus, 300 

multiple different reconstructions are possible and their reliability cannot be assessed by transfer 

function performance in the training set. Our analysis suggests that fossil assemblages do not 

uniquely reflect a single environmental variable (sea surface temperature in this case), but rather 

provide an integrated response to biotic (but not temperature related) and abiotic (sediment mixing) 

factors. We have identified a new way to detect uncertainty (ambiguity) in transfer-function 305 

reconstructions due to nuisance variables. The sensitivity of reconstructions to species selection can 

be quantified using the approach outlined here, facilitating an assessment of the robustness of the 

reconstruction. 
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https://doi.pangaea.de/10.1594/PANGAEA.55756; MARGO LGM: 

https://doi.pangaea.de/10.1594/PANGAEA.227329. 

Code is available at https://github.com/lukasjonkers/species_selection 
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Figure 1: species importance (black) and transfer function performance (red) for models including all 

species to the left of the point (e.g. the first red point for the MAT transfer function for the North 330 

Atlantic denotes the prediction error (RMSE) of a model with G. ruber (white) and T. sacculifer). Error 

bars on the species importance show the standard deviation of 10 replicates; see methods for 

details. The dark vertical lines indicate the species needed for a transfer function model where 

including more species only leads to an marginal reduction in the reconstruction error (arbitrarily set 

at when the prediction error is within 10 % of the minimum). Note that for display purposes the 335 

species importance for MAT has been divided by a factor 5. 

  

0

2

4

6

Im
po

rta
nc

e/
5 

| R
M

SE
 [°

C
]

0

2

4

6

Im
po

rta
nc

e 
| R

M
SE

 [°
C

]MAT WA

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

N
. p

ac
hy

de
rm

a
G

. w
hi

te
T.

 s
ac

cu
life

r
N

. i
nc

om
pt

a
G

. i
nf

la
ta

G
. b

ul
lo

id
es

G
. r

ub
er

G
. s

ip
ho

ni
fe

ra
G

. m
en

ar
di

i
G

. g
lu

tin
at

a
G

. t
ru

nc
at

ul
in

oi
de

s
T.

 q
ui

nq
ue

lo
ba

N
. d

ut
er

tre
i

G
. t

um
id

a
O

. u
ni

ve
rs

a
P.

 o
bl

iq
ui

lo
cu

la
ta

G
. c

al
id

a
G

. f
al

co
ne

ns
is

G
. r

ub
es

ce
ns

G
. c

on
gl

ob
at

us
G

. h
irs

ut
a

G
. c

ra
ss

af
or

m
is

G
. s

ci
tu

la
G

. t
en

el
lu

s
T.

 h
um

ilis
B.

 d
ig

ita
ta

S.
 d

eh
is

ce
ns

C
. n

iti
da

G
. u

vu
la

T.
 io

ta
G

. c
av

er
nu

la
D

. a
nf

ra
ct

a
G

. t
he

ye
ri

H
. p

el
ag

ic
a

N
. p

ac
hy

de
rm

a
G

. w
hi

te
N

. i
nc

om
pt

a
T.

 s
ac

cu
life

r
G

. b
ul

lo
id

es
T.

 q
ui

nq
ue

lo
ba

G
. r

ub
er

G
. i

nf
la

ta
G

. m
en

ar
di

i
G

. s
ip

ho
ni

fe
ra

N
. d

ut
er

tre
i

G
. t

um
id

a
G

. t
ru

nc
at

ul
in

oi
de

s
P.

 o
bl

iq
ui

lo
cu

la
ta

G
. f

al
co

ne
ns

is
O

. u
ni

ve
rs

a
G

. c
al

id
a

G
. c

on
gl

ob
at

us
G

. c
ra

ss
af

or
m

is
G

. r
ub

es
ce

ns
G

. h
irs

ut
a

G
. t

en
el

lu
s

G
. s

ci
tu

la
B.

 d
ig

ita
ta

S.
 d

eh
is

ce
ns

T.
 h

um
ilis

C
. n

iti
da

G
. g

lu
tin

at
a

D
. a

nf
ra

ct
a

G
. u

vu
la

T.
 io

ta
G

. t
he

ye
ri

G
. c

av
er

nu
la

H
. p

el
ag

ic
a



 12 

 
 

Figure 2: species thermal niche, ranked by average sedimentary abundance (top to bottom). Colours 340 

indicate average abundance (on a logarithmic scale) within one-degree centigrade bins. The essential 

species (see Fig. 1) for MAT are marked in bold and those for WA are underlined. Despite their 

extremely well-defined thermal niche, rare species are not essential for transfer functions and those 

that are important are all abundant. 
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Figure 3: Relationships between temperature sensitivity and (A) maximum relative abundance and 
(B) thermal niche width of planktonic foraminifera species in the ForCenS dataset. The positive 
correlation between temperature sensitivity and abundance suggests that the thermal niche of 
abundant species is better defined than that of rare species, rendering abundance a good predictor 350 
of species importance. Panel B suggests that species with a narrow thermal niche are relatively 
unsensitive to temperature, suggesting the distribution of these, often rare, species is not primarily 
governed by temperature. 
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 355 

 
 

Figure 4: species selection affects SST reconstructions, examples from two independent data sets, 

showing the effect on temporal and spatial patterns in reconstructed SST. A: SST reconstructions for 

core MD95-2040 from the Iberian Margin using 33 possible transfer function models with the 360 

number of species increasing according to their ranking. Red lines show the reconstructions with 

essential species only, dark grey lines the reconstructions with more species and the black line is the 

‘final’ reconstruction with all species. B: Spatial pattern of the difference between the SST 

reconstruction for the LGM with the minimum and with all species included. 
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Figure 5: effect of species selection on SST reconstruction. Graphs show mean difference between 

reconstructions using species-pruned transfer function models and the model that includes all 

species. The results are ordered according to species importance, with each dot representing the 370 

result from a transfer function model with the species up to the marked point (similar to Fig. 1). Grey 

symbols are the reconstructions with fewer than the minimum number of species and red symbols 

the reconstructions with the minimum number of species. Dots are the average of the mean absolute 

difference, diamonds the mean difference. 
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Figure 6: general effect of species pruning on reconstructions and on the prediction error. Each dot 

represents a reconstruction with n species and its associated prediction error; arrows indicate 

direction of increasing species numbers and decreasing species importance. The first point details a 380 

transfer function model with two species and one species is added at each subsequent point. Open 

symbols highlight reconstructions with the essential species of which the inclusion leads to a 

reduction in the prediction error. The reconstruction with minimum error and minimum number of 

species is marked by a star. All other reconstructions are plotted as dots. Note that for MAT and WA 

the inclusion of the essential species leads to a reduction of the prediction error, but that once these 385 

species are included there are still multiple reconstructions with the same error possible. 
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Figure 7: exploring the effect of species richness and analogue quality on the sensitivity to species 390 

pruning. This sensitivity is defined as the standard deviation of the reconstructions with more than 

the minimum required number of species (i.e. based on transfer function models with uninformative 

species, those to the right of the red dot in Fig. 4). Analogue quality is defined as the average 

dissimilarity from the five most similar samples in the training set; zero values thus mean perfect 

analogues. A clear effect of richness cannot be observed, yet for some of the downcore 395 

reconstructions (MD95-2040 and M35003-4) poor analogues appear associated with higher pruning 

sensitivity, particularly for MAT. 
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 400 

Figure 8: a possible role for sediment mixing in determining analogue quality (dissimilarity, see Fig. 

6). Sediment mixing would create poor analogue assemblages when different species communities 

are mixed. The difference between subsequent species communities in the sediment core is here 

defined in two ways, i) as the difference in inferred temperature (top and middle row) and ii) as the 

first derivative of the loadings of the first axis of a PCA on the species abundances. Linear regression 405 

including 95 % confidence interval, is shown as a red line with grey shading. Only for core M35004-3 

a weak positive relationship is visible, indicating that sediment mixing is a possible contributor to 

creating poor analogue assemblages, but cannot explain them entirely. 
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Table 1: Factors explaining species importance. Correlation coefficients of linear regression between 410 

species importance and maximum abundance, thermal niche width and temperature sensitivity. 

Method Abundance Temperature 

sensitivity 

Niche 

width 

Abundance 

+ niche 

width 

Abundance 

+ niche 

width + 

temperature 

sensitivity 

MAT 0.79 0.66 0.21 0.83 0.84 

WA 0.91 0.74 0.31 0.93 0.94 
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