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The authors present fascinating new data from core 63KA from the Arabian Sea to re- construct
changes in Indian Summer Monsoon rainfall over the adjacent continent and Indian Winter Monsoon
strength. Compared with the original work by Staubwasser et al. (2003) this study presents new
d180 records from subsurface and thermocline- dwelling foraminifera species. The difference
between subsurface and surface foram- d180 reflects the intensity of surface freshening, whereas
the difference between sub- surface and thermocline foram-d180 is a measure of wind-driven
vertical mixing. The authors focus on the time period 5.3 to 2.9 ka BP encompassing the major shift in

both summer and winter monsoons at ~4.2 ka. This mid-Holocene climate change as seen in the
63KA records is compared with the numerous land and marine data that have been published since

Staubwasser et al.’s study. The interpretation of the new data is sound. Taken individually, each sub-
section of the Results and Discussion is well written and clear.

We thank reviewer 3 for their thoughtful evaluation and comments on our manuscript.

The problem of the manuscript is that the study aims have not been sufficiently worked out. The
authors provide an overview on the state of knowledge, but they should more clearly work out the
problems and "missing pieces". Indicate possible solutions, and then describe your own approach
(which exactly follows those "possible solutions"). This information must be more clearly and
prominently provided in the Introduction and not postponed until the Discussion; otherwise, the
reader has no guideline for following the manuscript. As it stands, the Abstract and Introduction
present the manuscript as a replicate of Staubwasser et al. (2003) with some additional data. But
actually these additional data (N. dutertrei and G. sacculifer records) and their interpretation make
up the core and primary scientific asset of this study.

The Abstract and Introduction have been edited to clarify the overall study aims. These
changes can be viewed in the revised version of the manuscript, at the end of this file. We
agree that our new findings were somewhat obscured under the title that implies we are
only “re-examining” old data. Based on the comments by both reviewers 2 & 3, we have
decided to propose a new title for the manuscript: “Indian winter and summer monsoon
strength over the 4.2 ka BP event in foraminifer isotope records from the Indus River delta
in the Arabian Sea”

Specific comments

1. Abstract, lines 64-65: See above. Even though the G. sacculifer and N. dutertrei records provide the
key data for this study, they are presented as by-products, and only in the following sentence (line
66) the reader is informed why they have been generated in the first place.

We have now rearranged the order of introducing these datasets in the abstract to make
clear that the new G. sacculifer and N. dutertrei records are the focus of the paper.
Additionally, the revised title of the paper better describes the new findings of the research.

2. Introduction, lines 124-128: Be more specific on the importance of the IWM. Reconstructing the
IWM is one main part of this study, and hence its significance should be sufficiently highlighted.



We have added two sentences in this paragraph to direct the focus to the IWM, as well as a
more detailed introduction of the IWM proxy at the end of the Introduction.

3. Lines 146-153: Some explanation on the new G. ruber record is required. | guess that the N.
dutertrei and G. sacculifer samples are from different sampling positions than the G. ruber samples
from Staubwasser et al., and a new G. ruber record is necessary for calculating Dd180 (ruber-
sacculifer). This is fine, but should be mentioned.

All foraminifera including the new data are from the exact same core, depths, sub-samples
reported by Staubwasser et al. (2003). However, the picking of the two size fractions of G.
ruber foraminifera and their geochemical analysis was done by different people ~15 years
apart. Differences for G. sacculifer - G. ruber are reported for both size fractions of G. ruber.
The main reason for measuring the G. ruber record was to replicate this dataset and assess
if the salinity signal could be distinguished from other variability affecting the oxygen
isotopes of this species. The correlation of the raw data, as well as the overall agreement of
the long-term trends in the two independently measured records, supports the
reproducibility of the data sets despite a low signal to noise ratio.

4. Methods, line 317ff, and Fig. 2d: These CTD data are a snapshot from a single day. | would prefer
profiles from the World Ocean Atlas, as these are probably more representative. Provide temperature
and salinity profiles for two seasons, one covering the main fluxes of G. ruber and G. sacculifer (July-
September), the other the peak occurrence of N. dutertrei (December). This will also give the reader
an idea on how much seasonality is present at different water depths.

We have now plotted WOA data covering both summer (JAS) and winter (JFM) seasons, and
show these in Figure 2. We continue to use the September 1993 CTD profile from the
PAKOMIN cruise for the equilibrium calcite calculations (Figure 5), because these data come
from one set of measurements directly from the coring location.

5. Line 329: Provide the total number of samples and the average temporal resolution of the raw
data.

The total number of depths analyzed was 132 (now added to the Results section). The
average temporal resolution (18 years/cm) is given in Section 2.2 and 3.1 (now repeated in
the manuscript, because this is crucial information and all reviewers overlooked this from
line 222 in the original manuscript). For N. dutertrei, we obtained data for all depths, but for
G. sacculifer there were insufficient foraminifera (gaps) for 3 depths plus one outlier, and for
G. ruber (400-500um) we had 14 gaps (one of which is an outlier), and for G. ruber (315-
400um) there were 17 gaps. This is noted in section 3.2.

6. Results, line 362 and throughout: What is the number of degrees of freedom when calculating the
p-values, do the authors use the number of actually measured data or the number of annually
interpolated data?

The number “n” of data points for all t-tests and correlations are now included in the
manuscript. All statistical tests were performed on raw data, and interpolated data are
generated only for the visualization of the 210-year smoothing in the plots.



7. Discussion, line 454ff: "is confirmed" should be toned down. The authors are correct as far as the
main conclusions of the study are concerned, but otherwise the two records are not congruent. Do
different test sizes potentially reflect different seasons?

We have now used the word “reflected” and point out the differences visible between both
records. Importantly, the increase in 680 of the larger G. ruber size fraction begins much
earlier than 4.2 ka BP (rather around 4.8 ka BP), indicating that the summer monsoon and
freshwater discharge may have started to weaken earlier than 4.2 ka BP. Additional G. ruber
trap data from the region would be needed to answer the question about whether the
offset between size fractions is due to seasonality (perhaps larger size fractions are biased
to the warm season), preferred depth (perhaps larger size fractions live closer to the
surface?), or other physical characteristics.

Minor points

8. Line 238: Down to 100 m.

Done.

9. Line 253: recording the d180 and temperature of the seawater

Done.

10. Line 256-258: Please, rephrase.

This sentence has been simplified.

11. Fig. 2a: Use stronger color contrasts.

Figure 2a now has more strongly contrasting blue shades of color.

12. Line 504: Add small delta (same format as in subsequent sentence).

Done.

Revised manuscript below.
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Abstract

The plains of northwest South Asia receive rainfall during both the Indian Summer (June-September)
and Winter (December-March) Monsoon. Researchers have long attempted to deconstruct the
influence of beth-these precipitation regimes in paleoclimate records, in order to better understand
regional climatic drivers and their potential impact on human populations. The Mid-Late Holocene
transition between 5.3-3.3 ka BP is of particular interest in this region because it spans the period of
the Indus Civilization from its early development, through its urbanization and on-to eventual
transformation_into a rural society. Fre-An oxygen isotope record of the surface-dwelling planktonic
foraminifer Globigerinoides ruber from the northeast Arabian Sea provided evidence for an abrupt
decrease in rainfall and reduction in Indus River discharge at 4.2 ka BP, which the authors linked to
the decline of the urban phase of the Indus Civilization (Staubwasser et al., 2003). Given the
|mportance of thls study, we used the same core (63KA) to Fepheafee—the-e*ygaq-usetepe—pmmes-ef—a
: ; ed-measure the
oxygen |sotope proﬂles of two other foraminifer species at decadal resolut|on over the interval from
5.4 to 3.0 ka BP, and replicate a larger size fraction of G. ruber than measured previously. By selecting
both thermocline-dwelling (Neogloboquadrina dutertrei) and shallow-dwelling (Globigerinoides
sacculifer) species, we provide enhanced detail of the climatic changes that occurred over this crucial
time interval. We found evidence for a period of increased surface water mixing, which we suggest
was related to a strengthened winter monsoon with a peak intensity over 200 years from 4.5 to 4.3
ka BP. The time of greatest change occurred at 4.1 ka BP when both the summer and winter monsoon
weakened, resulting in a reduction in rainfall in the Indus region. The earliest phase of the urban
Mature Harappan period coincided with the period of inferred stronger winter monsoon between 4.5-
4.3 ka BP, whereas the end of the urbanized phase fellewed-occurred some time after the decrease
in both the summer and winter monsoon strength by 4.1 ka BP. Our findings provide evidence that
the initial growth of large Indus urban centers was-ceincidentcoincided with increased winter rainfall,
whereas the contraction of urbanism and change in subsistence strategies followed a reduction in
rainfall of both seasons.
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1. Introduction

The ~4.2 ka BP event is considered to be a defining event of the Mid-Late Holocene transition
period (Mayewski et al., 2004), and is marked by intense aridity in much of western Asia,
which has been linked to cultural transitions in Mesopotamia, Egypt, and the Indus Civilization
(Staubwasser and Weiss, 2006; Weiss, 2016). Recently, a climate reconstruction from
Mawmluh cave in northeastern India has been used to formally demarcate the post-4.2 ka BP
time as the Meghalayan Age (Letter from the 44" International Union of Geological Sciences,
2018; Walker et al., 2012). However, defining the exact timing and extent of aridity at ~4.2 ka
BP remains an open question (Finné et al., 2011; Wanner et al., 2008). In this special issue
devoted to the “4.2 ka event”, we provide new paleoclimate data from a marine core in the
northern Arabian Sea over this critical time interval to better understand the changes that
occurred in both winter and summer hydroclimate over the Indian Subcontinent.

The 880 record of Globigerinoides ruber from marine core 63KA, obtained from the Arabian
Sea off the coast of Pakistan and produced by Staubwasser et al. (2003), was among the first
well-resolved paleoclimate records to suggest a link between a decrease in Indus River
discharge around 4.2 ka BP and the decline of the urban phase of the Indus Civilization. Since
the publication of this record, several other terrestrial paleoclimate reconstructions from the
region (Berkelhammer et al., 2012; Dixit et al., 2014, 2018; Giosan et al., 2012; Kathayat et
al., 2017; Menzel et al., 2014; Nakamura et al., 2016; Prasad and Enzel, 2006), and a number
of marine reconstructions (Giosan et al., 2018,-n—+eview; Gupta et al., 2003; Ponton et al.,
2012) have added to our understanding of the complex relationship between the Indus
Civilization and climate change. New questions have also emerged about the relative
importance of winter rain from the Indian Winter Monsoon (IWM) system and summer rain
from the Indian Summer Monsoon (ISM) during the critical time period from 5.4 to 3.0 ka BP,
which spans the pre-urban, urban, and post-urban phases of the Indus Civilization (Giosan et
al., 2018-in—+review; Petrie et al., 2017; Prasad and Enzel, 2006). This is because the winter
rain_zone partially overlaps with the summer rain zone (Figure 1), and provides a critical
supply of rain and snowfall for the Indus River basin. However, we currently understand much
less about the behavior of the IWM than the ISM.

At its height, the Indus Civilization spanned a considerable geographical area with a greater
extent than al-the other ancient civilizations of its time (Agrawal, 2007; Possehl, 2003;
Wheeler,1968). Today, the region that was once occupied by Indus populations is marked by
a heterogeneous rainfall pattern, and some sites-locations in the central Thar desert receive
as little as 100 mm yr1, which is only about 10% of the amount of direct annual rainfall seen
in-thenertheastern—region—<losecompared to New Delhi. Scarce direct precipitation in the
central regions around the Thar Desert is supplemented in some cases by fluvial or
groundwater sources. In addition, the distribution of winter rain (increasing towards the
northwest) is distinct from summer rain (increasing towards the east), making regions variably
suitable for growing certain crops and grazing (Petrie et al., 2017; Petrie and Bates, 2017).
While many paleoclimate studies from South Asia (references A-C, |, K-M, S, and U in Figure
1) have theorized about the overall climatic impact of drought (and in most cases identified
summer monsoon as the cause), it is important to identify changes in the relative
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contributions and timing of seasonal rainfall from both the winter and summer monsoons.
Previously, it has not been possible to reliably differentiate winter and summer rain in
reconstructions from the Indus region.

In this study, we re-examined the same marine core (63KA) used in the original research of
Staubwasser et al. (2003)-paper. We first assessed the reproducibility of the Globigerinoides
ruber 680 record using a larger size fraction of the same species for the time period 5.4-3.0
ka BP. We also measured the 80 of two additional foraminifer species, G. sacculifer
(Globigerinoides sacculifer) and N. dutertrei (Neogloboquadrina dutertrei), which live deeper
than G. ruber in the water column. The different ecologies of these twe-three species provide
additional information with which to evaluate the multiple §'80 records and assess seasonal
changes in the paleoceanography of the northeastern Arabian Sea near the mouth of the
Indus River.

The 880 of foraminifera has been widely applied as an indicator of temperature and salinity
changes (Duplessy et al., 1992; Maslin et al., 1995; Wang et al., 1995; Rohling, 2000; among
others). Measuring the 880 of species calcifying at different depths can provide further
information about upper ocean seasonal hydrography such as surface water mixing, depth of
the thermocline, and upwelling (Ravelo and Shackleton, 1995). Sueh-Similar methods have
been applied by several other studies (Billups et al., 1999; Cannariato and Ravelo, 1997;
Norris, 1998; Steinke et al., 2010; Steph et al., 2009; among others), including a reconstruction
of East Asian Winter Monsoon strength in the South China Sea (Tian et al., 2005). We-Here
we applyied a similar-comparable method to samples from core 63KA in the northeastern
Arabian Sea because surface waters at this location are influenced by freshwater discharge
from the Indus River and direct precipitation during the summer monsoon months, whereas
enhanced upper ocean mixing occurs during the winter monsoon. We hypothesized that our
new measurements of 6§80 of G. sacculifer and N. dutertrei would allow us to track changes
in upper ocean mixing. Weaker IWM winds are expected to result in a shorter duration and/or
less intense upper ocean mixing, although how this signal is ultimately related to the amount
or distribution of winter rainfall in the Indus River catchment has not been demonstrated
conclusively. Dimri (2006) studied Western Disturbances for the time period 1958-1997, and
noted that surplus-years of surplus winter precipitation are linked to significant heat loss over
the northern Arabian Sea, which is mainly attributed to intensified westerly moisture flow
and enhanced evaporation. Such conditions would promote deeper winter mixing, and
provide a basis for relating thermocline depth with IWM intensity. By comparing the 680 of
multiple species of foraminifera we seek to infer variations in the relative strengths of the
summer and winter monsoons, and by comparing the 63KA record to other nearby marine
and terrestrial records we evaluate the potential role that climate played in cultural
transformation of the Indus Civilization.

2. Site Description

2.1 Monsoon — land-based processes
Today, most of the annual precipitation over northwest South Asia stems from the ISM, and
occurs mainly between June and September. The pressure gradient between the low-

pressure Tibetan Plateau and high-pressure Indian Ocean is accompanied by the ITCZ
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(Intertropical Convergence Zone) reaching its northward maximum in summer, which draws
in moisture over the subcontinent via southwesterly winds from the Indian Ocean (Fleitmann
et—at—20074-Gadgil, 2003). The summer rainfall gradient increases from the central Thar
Desert (as little as 100 mm direct summer rainfall per year) to the Himalaya mountains in the
north (>1000 mm) and the Aravalli range to the west (>500 mm) (Figure 1b).

The IWM rain falls between December through March, and is mainly the result of atmospheric
Western Disturbances (Dimri and Dash, 2012; Yadav et al., 2012) originating over the
Mediterranean and Black Sea (Hatwar et al., 2005) that allow for moisture incursion from the
Arabian Sea (Rangachary and Bandyopadhyay, 1987). During the IWM, the pressure gradient
is reversed from the summer condition, allowing the passage of Western Disturbances when
the ITCZ moves southward. As winter transitions to spring, predominantly northeasterly
winds shift to westerly winds (Sirocko, 1991) that result in peak winter rainfall over the plains
of northwest India in February and March. Anomalously cool, evaporative conditions over the
northern Arabian Sea (promoting deeper winter mixing) also correlates with increased winter
precipitation in the western Himalayas (Dimri, 2006). The winter rainfall gradient increases
from the southern Thar Desert (<10 mm per year) up to the Himalayas in the northwest (>400
mm) (Figure 1c). Overall, the IWM contributes between roughly 10 to 50% of the total annual
rainfall of northwest South Asia today.
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Flgure 1. a. Annual b. ISM (JJAS) c. IWM (DJFM) mean preC|p|tat|on (1981-20104) isohyets taken from
the GPCC V7 global gridded dataset (0.5° x 0.5° resolution) (Schneider et al., 2015); note the difference

in scale for summer and winter precipitation (0-2000 mm vs. 0-500 mm). Rainfall data overlain on
GEBCO 2014 ocean bathymetry dataset (Weatherall et al., 2015), and shaded region shows extent of
the Indus Civilization. Bold arrows show main wind directions, dashed arrows show ocean surface
currents. Other studies discussed in this paper indicated by letters:

A Core 63KA — (this study; Staubwasser et al., 2003) E Core 39KG and 56KA — (Doose-Rolinkski et al., 2001)
B Core 16A — (Ponton et al., 2012) F Lake Van record — (Wick et al., 2003; Lemcke and

C CoreIndus 11C — (Giosan et al., 2018-in+eview) Sturm, 1997)

D Din Gad peat record — (Phadtare, 2000) G Didwana playa lake — (Singh et al., 1990)



H Sambhar playa lake — (Sinha et al., 2006) R Raralake — (Nakamura et al., 2016)
| Karsandi playa lake — (Dixit et al., 2018) S Sahiya cave speleothem — (Kathayat et al., 2017)
J Jeita cave speleothem — (Cheng et al., 2015) T Foraminifer trap EAST — (Curry et al., 1992)
K Kotla Dahar lake — (Dixit et al., 2014) U Lunkaransar playa lake — (Enzel et al., 1999)
L Lonar lake — (Menzel et al., 2014) V Core 723A, RC27-14, RC27-23, RC27-28 — (Gupta et
M Mawmluh cave speleothem — (Berkelhammer et al.., al., 2003), (Overpeck et al., 1996)
2012) W Soreq cave speleothem — (Bar-Matthews et al., 2003;
N Kanod playa lake — (Deotare et al., 2004) Bar-Matthews and Ayalon, 2011)
O Bap Malar playa lake — (Deotare et al., 2004) X Core M5-422 — (Cullen et al., 2000)
Q Qunf cave speleothem — (Fleitmann et al., 2003)

223

224  The Indus and the other rivers that make up Punjab are partly fed by winter snow and ice melt
225  from their upper mountain catchment areas. Melting peaks during the summer months
226  around July-August (Yu et al., 2013), which coincides with the peak of ISM rainfall, and Indus
|227 River discharge reaches its maximum during August (Karim et—=al;and Veizer, 2002). The
228  proportion of winter to summer precipitation contributing to the Indus River is not entirely
229  clear, although one study has estimated a 64-72% contribution of winter precipitation from
|230 the deuterium excess of Indus River water (Karim etat;and Veizer, 2002), whereas a previous
231  study estimated a lower 15-44% contribution of snowmelt to Indus tributaries (Ramasastri,
|232 1999). Since the 1960s, the Indus River has seen a-more than a a-50% reduction in discharge
233 because of the construction of barrages as well as the diversion of water for agricultural uses
234  (Ahmad et al., 2001).

235

|236 2.2 Hydrography — core site and ocean-based processes

237

238  Core 63KA was obtained by the PAKOMIN cruise in 1993 (von Rad et al., 1995). The laminated
239  core from the northeastern Arabian Sea (24° 37’ N, 65° 59’ E) was taken at 316 m water depth
240 on the continental shelf, ~100 km west of the Indus River delta. The core has high
241  sedimentation rates (equivalent to a temporal resolution of around 18 years/cm in the period
242  ofinterest, 5.4-3.0 ka BP), and all foraminifer proxies were produced from the same laminated
243  core with no bioturbation. An important aspect of core 63KA is that different components of
244  the monsoon system are co-registered in the same sediment core, thereby permitting an
245  explicit evaluation of the relative timing of different parts of the climate system (e.g., ISM and
E46 IWM).

248  Modern hydrographic conditions in the northeastern Arabian Sea are highly influenced by the
249  seasonal monsoon. During summertime, highest sea surface temperatures (SSTs) are
250 observed along with a shallow mixed layer depth <25 m (Schulz et al., 2002) (Figure 2a). A low
251  salinity plume surrounds the Indus River delta and shoreline extending as far as the coring
252  location (Supplemental Figure S1). The reverse occurs in winter when the lowest SSTs are
253  accompanied by surface water mixing to >125 m, resulting in warming of the deeper waters
54  (Schulz et al., 2002). Northeasterly winds promote convection in the northeastern Arabian
55 Sea by cooling and evaporation of surface water (Banse, 1984; Madhupratap et al., 1996),
56  Band during the transition from winter to spring, wind directions shift from northeasterly to

57  westerly (Sirocko, 1991).; premetingaperiod-of upwellingin-the northeasternArabian-Ses
58 = 7 7
259

60 The northern Arabian Sea is dominated by highly saline (up to 37 psu) surface waters of
61 theknown as Arabian Sea High Salinity Water Mass-(ASHSW), which extends from the surface

7
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downup to 100 m depth (Joseph and Freeland, 2005). Theis high salinity ean-beis explained
by the high evaporative rates over this region. ASHSW forms in the winter, but is prevented
from reaching our coring site on the shelf by northerly subsurface currents until the summer
(Kumar and Prasad, 1999). Along coastal areas, the ASHSW is starkly contrasted by the fresh
water discharge of the Indus River, combined with direct precipitation. In contrast, surface
waters in the Bay of Bengal on the eastern side of India have much lower surface water
salinity, because of overall higher precipitation and stronger stratification from weaker winds
(Shenoi et al., 2002). The heightened evaporative conditions and highly saline surface waters
of the northeastern Arabian Sea make it a sensitive study location to observe changes in
discharge of the entire Indus River catchment area — ultimately tracking changes in monsoon
strength. Unlike individual terrestrial records, which may be affected by local climatic
processes, the marine record from core 63KA is more likely to integrate regional changes of
the large-scale ocean-atmosphere system.

Planktonic foraminifera complete their life cycle within a few weeks (Bé and Hutson, 1977).
Peak abundances indicate the time of year when each species tends to calcify, thereby
recording the 880 and temperature of the seawater in their CaCOs shells primarily during
certain seasons. Foraminifer abundances in the eastern Arabian Sea have been studied by
Curry et al. (1992) using sediment traps deployed at shallow (~1400 m) and deep (~2800 m)
water depths (“T” in Figure 1a). PeakabundancesforG. ruber and G. sacculifer eceurhave
peak abundances during the summer months (June-September), whereas N. dutertrei peak
lives mainly during the winter as-welasand has a secondary peak in -with-a-secendarypeak
m-summer months (Figure 2c). Preferred depth ranges for each species reflect their ecological
niches, including requirements for nutrients and tolerance for ranges of temperature and
salinity (Bé and Hutson, 1977; Hemleben et al., 2012). G. ruber lives in the upper surface
waters (0-10 m), G. sacculifer is found in slightly deeper surface waters (10-40 m), and N.
dutertrei inhabits the base of the mixed layer near the thermocline (40-140 m) (estimates
based on ranges from Farmer et al. (2007) and the local CTD profiles) (Figure 2d).
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291
292 Figure 2. a. Seasonal surface water mixing depth based on station EPT-2 located nearby the coring site

293 of 63KA (adapted from Schulz et al., 2002 who also used data from Hastenrath and Lamb, 1979) b.
94 Foraminifer depth ranges based on CTD profile c¢. Foraminifer abundances from EAST traps
95 (overlapping peaks indicate data from multiple traps): G. ruber (orange), G. sacculifer (green), and N.
96  dutertrei (blue) (adapted from Curry et al., 1992 using Zaric, 2005) d. €FB-World Ocean Atlas (WOA)
97  mean (1955-2012) temperature (red) and salinity (yellow) profiles at 24.875°N, 65.875°E—frem
98  statienltlateoringlocation, shown for summer (JAS) and winter (JEM) seasons (Locarnini et al., 2013;
99  Zweng et al., 2013)-takenSeptember1993{von-Rad,2013).

300

301 3. Materials and Methods
302

303 3.1 Age model

304
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The radiocarbon dates from Staubwasser et al. (2002, 2003) were obtained from 80 samples
of mainly the foraminifer G. sacculifer and three samples of O. universa. In the interval of
interest (5.4-3.0 ka BP), there are 15 radiocarbon dates with a 95% confidence range of 30-
130 years. The average sample resolution is 18 years/cm. Bayesian age modelling software,
BACON v2.3.3 (Blaauw and Christen, 2011), was used as an R-package to update the age
model of core 63KA. No major difference exists between the old and new age models, except
for the period 13-11 ka BP (Supplemental Figure S5, Table S2). IntCall3 was used for
radiocarbon calibration (Reimer et al., 2013) with marine reservoir ages provided by
Staubwasser et al. (2002, 2003).

3.2 Stable isotope analysis

Oxygen and carbon isotopes were measured on three species of foraminifera selected from
washed samples at 1-cm intervals throughout 132 cm of the core covering 5.4-3.0 ka BP: G.
ruber (white, sensu stricto), G. sacculifer, and N. dutertrei. For G. ruber, 12 + 8 foraminifera
were picked from the 400-500um size fraction with an average weight of 21.4 + 2.5ug. The
400-500um size fraction was picked because too few specimens remained in the size fraction
315-400um used by Staubwasser et al. (2003). For G. sacculifer, 34 + 7 foraminifera were
picked from the 315-400um size fraction with an average weight of 21.9 + 2.6ug. For N.
dutertrei, 34 + 4 foraminifera were picked from the 315-400um size fraction with an average
weight of 25.9 + 2.2ug. At some depth levels in the core there were insufficient foraminifera
for measurement, along with outlier measurements in two cases, leaving 1-14 gaps in the G.
ruber 400-500um record, 3-4 gaps in the G. sacculifer record, and no gaps for N. dutertrei. The
published G. ruber is from the 315-400um size fraction and contains 17 gaps in the depth
range examined (Staubwasser et al., 2003).

All foraminifera were weighed, crushed, and dried at 50° C. Samples were cleaned for 30
minutes with 3% H,0,, followed by a few drops of acetone, ultrasonication, and drying
overnight. —Where sample weights exceeded 80ug, oxygen and carbon isotopes were
measured using a Micromass Multicarb Sample Preparation System attached to a VG SIRA
Mass Spectrometer. In cases of smaller sample sizes, the Thermo Scientific Kiel device
attached to a Thermo Scientific MAT253 Mass Spectrometer was used in dual inlet mode. This
method adds 100% H3PO4 to the CaCOs, water is removed cryogenically, and the dry CO; is
analyzed isotopically by comparison with a laboratory reference gas. For both measurement
methods, 10 reference carbonates and 2 control samples were included with every 30
samples. Results are reported relative to VPDB, and internal—precisienlong-term
reproducibility of laboratory standards (e.g., Carrara marble) is better than +0.08%. for 6§20
and +0.06%o for 613C. ExternalprecisionsReproducibility of foraminiferal measurements were
was estimated by five triplicate (three separately picked) measurements of G. ruber (400-
500um) that yielded one standard deviation of +0.12%o (6'80) and +0.10%o (6*3C). For G.
sacculifer (315-400um) the standard deviation of eight triplicate measurements were-was
+0.07%o (680) and +0.07%. (83C), and for N. dutertrei (315-400um) the standard deviation
of nine triplicate measurements was +0.06%o (620) and +0.07%. (63C).

To calculate equilibrium values of 8%®0calcite(poB), We used the CTD profile from station 11
(24.62° N, 66.07° E) {Figure2e)-taken in September 1993 during PAKOMIN Sonne cruise no.
90 (von Rad, 2013), which is nearly identical to the location of core 63KA (24.62° N 65.98° E).
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The 8%0water;smow) Was calculated from salinity following Dahl and Oppo (2006), and
8%80calcite(smow) Was further calculated using the calcite-water equation of Kim and O’Neil
(1997). We also used the equation of Shackleton (1974) as a comparative method for
calculating 6'®0calcite(PDB).

3.3 Statistical treatment

Statistical tests were applied to the raw data from the 680 and 6*3C time series, including the
package SiZer (Chaudhuri and Marron, 1999; Sonderegger et al., 2009) in R software (2016)
that calculates whether the derivative of a time series exhibits significant changes given a
range of timespans. A Pearson’s correlation test (confidence level 95%) was done on paired
samples from both size fractions of G. ruber. We also conducted a Welch’s t-test to determine

if the mean populatlon of 580 is S|gn|f|cantlv different before and after 4.1 ka BPWe—apphed

As in the original data of Staubwasser et al. (2003), the oxygen isotope results show great
variability and distinguishing long-term trends in these data reguires-benefits from statistical
smoothing for visualization purposes. Fo—reduce—the—variance—in—the—data—and—identify
trendsAfter completing all statistical tests and performing the differences on the raw data
(132 depths), the-8**0-and-82C-datafrom-5-4-3.0-ka-BP-were first resampled-toconstant1-

yearintervals-usinglinearinterpolation—Aa loess (locally weighted) smoothing function was
then-applied to the §'®0 and §'3C data from 5.4-3.0 ka BPdata, using a 210-year moving

window as described by Staubwasser et al. (2003). Loess smoothing uses weighted least
squares, which places more importance on the data points closest to the center of the
smoothing interval. The bandwidth of 210 years was considered an eptimal-reasonable time
window for capturing the overall trends in the dataset (other time windows are shown for
comparison in Supplemental Figure S2).

wi | i 5280 I | | Student! I it ol
o of 5280 ic sianificant v i ‘ | afeor .

4. Results

The new 680 measurements of G. ruber (400-500um) parallel the published record of G.
ruber (315-400um) (Staubwasser et al., 2003), but the 880 of the specimens from the larger
size fraction is offset by -0.23%. on average (Figure 3). The twe-records from two size
fractions, produced in different laboratories by different investigators, display a weak positive
correlation for the raw data (R =0.25, p < 0.01, n = 109, slope 0.2726, intercept -1.3336), and
the 210-year smoothed records reveal good agreement in the overall trends of the data-and

When comparmg the two G. ruber records it is apparent that the increasing trend in 6180
starts well before ~4.2 ka BP — perhaps as early as ~4.9 ka BP. This trend is also observed with
the SiZer analysis, which identifies a significant increase in §'80 anywhere from 4.9 to 4.2 ka
BP depending on which smoothing window is selected (Figure 4). The new 60 record of G.
ruber (400-500um) shows additional detail after the ~4.2 ka BP event — i.e. specifically, a
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double-peak maximum occurring at 4.1 and 3.95 ka BP that is related to seven discrete
measurements with high 620 values. These maxima are offset from the average 680 value
by +0.18%. (smoothed average), or up to +0.38%o0 when considering the maximum individual
measurement at 4.1 ka BP. The offsets from the average values exceed one standard
deviation of the entire record from 5.4-3.0 ka BP, which is 0.13%o.. Although G. ruber shows
an event at 4.1 ka BP, it does not show a permanent step change: A Student’'s-Welch’'s t-test
comparing the means of pre- and post-4.1 ka BP indicates that the +0.07%o shift in mean 680
values of G. ruber (315-400um) is statistically significant (t value = 2.9, p <0.01, n = 115), and
but the +0.8403%o shift in mean &80 values of G. ruber (400-500um) is weakhy-not significant
(tvalue=1.75,p<0.42, n=118).
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Figure 3. Core 63KA 80 G. ruber from two size fractions: 400-500um (red) (this study), 315-400um
(orange) (Staubwasser et al., 2003), shown in the context of the original record and also zoomed in
over 5.4-3.0 ka BP. 560 of G. sacculifer 315-400um (green), and &30 and &C of N. dutertrei 315-
400um (blue) are shown over the interval 5.4-3.0 ka BP. Data are shown with a 210-year loess
smoothing, and modern surface values +1c¢ are plotted for comparison-and-+te—errorbars. Mean
values for all species are denoted by the dotted line, and the pre- and post-4.1 ka BP mean values are
indicated by an additional dotted line for N. dutertrei. Individual AMS radiocarbon dates are denoted
by triangles near the timeline.
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Figure 4. SiZer 1% derivative analysis (Chaudhuri and Marron, 1999; Sonderegger et al., 2009) applied
to 680 of a. G. ruber 400-500um, b. G. ruber 315-400um, c. G. sacculifer 315-400um, d. N. dutertrei
315-400um. The red areas indicate statistically significant increases in 6§20, the blue represent
decreases, and the purple no significant change. Black horizontal lines are the smoothing bandwidths
(h =50, 80, and 200 years). The distance between the white lines denotes the change in smoothing
bandwidth scaled to the x-axis.

The relative differences in 620 of the planktonic species studied (G. ruber, G. sacculifer and
N. dutertrei) reflect the temperature and salinity of their habitat in the water column: 880
G. ruber < 60 G. sacculifer < 8'80 N. dutertrei (Figure 35). G. sacculifer is offset from G. ruber
(315-400um) by approximately +0.57%., whereas N. dutertrei is offset by +1.14%o. The larger
size fraction of G. ruber (400-500um) is offset from G. ruber (315-400um) by -0.23%.. The
offsets among species are maintained throughout the entire record (Figure 35). We also
measured 680 values near the top of the core (approximately the last 200 years) for all three
species in the 315-400um size fraction, which continue to show the same offsets
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(Supplemental Figure S3). The 60 of G. ruber shows the greatest variance and N. dutertrei
shows the least (Supplemental Figure S4, Table S1).

Equilibrium calcite calculations based on the salinity and temperature measurements from
the September 1993 CTD profile of station 11 of the PAKOMIN Cruise (von Rad, 2013) show
the expected depth habitats of the three foraminifer species (Figure 65). G. ruber is generally
found at 0-30 m, G. sacculifer at 15-40 m, and N. dutertrei at 60-150 m (Farmer et al., 2007).
Using the CTD profile from our core location, we compare these depth ranges with the
measured 880 values. The calculated depths ranges agree well with those expected on the
basis of other studies, placing G. ruber in the upper 10 m, G. sacculifer 10-40 m, and N.
dutertrei 40-140 m.

Equilibrium calcite §°0 Temperature (°C)

-2.5 -1.5 -0.5 05 16 20 24 28 32
0 v ¥ v ' T LI LI ¥ T I L L) v ' 1 I 1 T 1 1

20

G. sacculifer
40 |
60 +
N. dutertrei
80
100 +

120 ¢+

Water depth (m)

140 ¢
160

180
Kim & O'Neil (1997)

200 t Shackleton (1974)

220 - L 1 1 1 1

35.6 35.8 36 36.236.4
Salinity (psu)

Figure 65. 580 of equilibrium calcite (left) calculated from the CTD temperature and salinity profile
at station 11 (von Rad, 2013) (right) with projected depth ranges of G. ruber 400-500um (red), G. ruber
315-400um (orange), G. sacculifer 315-400um (green), N. dutertrei 315-400um (blue). We show
estimated values using both the original paleotemperature equation of Shackleton (1974) (dark teal),
and Kim & O’Neil (1997) (turquoise). Horizontal ranges show the measured 630 values of each species
between 5.4-3.0 ka BP.-
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The-most-obvicustrend-in-the-G. sacculifer §'80 is-the-increases around 4.1 ka BP-A, and a
Student’s-Welch’s t-test comparing the means of pre- and post-4.1 ka BP indicates that the
+0.8708%o shift in mean 880 values is statistically significant (t value = 3.98, p < 0.01, n =
128). SiZer analysis also points to a statistically significant increase at ~4.1-3.9 ka BP, when
considering all smoothing time windows between 20 and 500 years (Figure 44).

Likewise, tFhe dominant trend-change in the 880 of N. dutertrei is a mean increase at 4.1 ka
BP (Figure 37). SiZer analysis also identifies a significant decrease in 6§80 occurring mainly
between 4.45 and 4.35 ka BP, followed by a significant increase between 4.3 and 4.1 ka BP
(Figure 44). A Student’s-Welch’s t-test comparing the means of pre- and post-4.1 ka BP
indicates that the +0.08%. shift in mean 680 values is statistically significant (t value = 6.32,
p <0.01, n = 132), along with the +0.07%o shift in mean §3C (t value = 3.3, p < 0.01, n = 132).

Differencing 680 of foraminifera (expressed as ASA'80) in the same sample can better
sometimes-prove-the-signal-to-nreiseratioemphasize signals of interest -(Figure 68). -The
ASARO of G. ruber 400-500um and G. ruber 315-400um size fractions shows increasing
similarity between ~4.8 and 3.9 ka BP during the period of overall higher §'80. The AA580 of
N. dutertrei and both size fractions of G. ruber, designated A5'80q.r, reveals a period of more
similar values between ~4.5 and 3.9 ka BP, with two minima at 4.3 and 4.1 ka BP. The ASA'80
of G. sacculifer and both size fractions of G. ruber (A8'80s.); shows a period of similar values
between 4.3 and 3.9 ka BP, with a minimum difference at 4.1 ka BP. In contrast, the ASA80
of N. dutertrei and G. sacculifer (A8'804.s); shows the most similarity between 4.5 and 4.2 ka
BP with a minimum at 4.3 ka BP, followed by the maximum differences between 4.2 and 3.9
ka BP that peaks at 4.1 ka BP.
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5. Discussion
5.1 Interpretation of foraminifer 630

The trends in the original 680 record of G. ruber (315-400um) by Staubwasser et al. (2003) is
confirmed-reflected by our independent 880 measurements of G. ruber in a larger size
fraction (400-500um), although an important difference exists suggesting a decrease in
freshwater discharge as early as 4.8 ka BP. The larger size fraction is offset by approximately
-0.2%o, which is similar to the size-related fractionation of -0.3%. per +100um for G. ruber
reported by Cayre and Bassinot (1998), and could be attributed to size-related vital effects.
Alternatively, part of the offset might be explained by interlaboratory calibration considering
the data were produced using two different methods and mass spectrometers.

The observed 4.1 ka BP maximum in 880 of G. ruber, living near the surface during summer
months, could be attributed to either decreased SST or increased surface water salinity
(Bemis et al., 1998). Staubwasser et al. (2003) acknowledged that a decrease in SST could
cause the increase in 880 in the G. ruber record, but argued that this explanation is unlikely
because a G. ruber 880 record from core M5-422 in the northwestern Arabian Sea shows
opposing trends over the same time period (Cullen et al., 2000), and a local alkenone SST
proxy record shows relatively higher temperatures in the same period (Doose-Rolinski et al.,
2001). If the ~0.2%o (relative to mean) increase in 680 of G. ruber at 4.1 ka BP was caused by
temperature change rather than salinity, a ~1° C cooling of surface water is-smapliedwould be
required (Kim and O’Neil, 1997).

Following Staubwasser et al. (2003), we interpret the 880 variations of G. ruber to be
predominantly a salinity signal. Salinity at the core site is dependent on changes in Indus River
discharge, local run-off, and direct precipitation. Although the ISM would be the main
influence on direct precipitation and run-off at the coring location, changes in the IWM could

also influence Indus River dlscharge—beeaase—%emmqekm—a—&gm#eaqt—een#mu%e#m—the

The thermocline-dwelling foraminifera N. dutertrei shows maximum abundances during
wmter and are mterpreted to reflect wmter mixing.

M#%Durmg weak IWM condltlons colder unmlxed water would resuIt in hlgher
580 values of N. dutertrei, whereas enhanced mixing and homogenization of the water
column under strong IWM conditions would decrease §¥0. The minimum of &0 in N.
dutertrei occurs between 4.5 and 4.3 ka BP, pointing to a period of strengthened IWM. We
interpret the stepped increase in 680 of N. dutertrei at 4.1 ka BP to represent a decrease in
IWM wind-driven mixing. Similarly, 8'3C of N. dutertrei increases significantly after 4.1 ka BP
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(Figure 37), which weuld—could alse—suggestindicate reduced upwelling of low &%3C
intermediate water vhdera-weakerWM-(Lynch-Stieglitz, 2006; Ravelo and Hillaire-Marcel,
2007; Sautter and Thunell, 1991); however, the interpretation of §'3C remains uncertain
because of a poor understanding of the controls on the §3C of planktonic foraminifera in this
region. According to the &0 signal of N. dutertrei, the temperature pattern in the
thermocline implies surface cooling between 4.5 and 4.3 ka BP and surface warming after 4.1
ka BP interrupted only by a period of cooling between 3.7 and 3.3 ka BP, which is in broad
agreement with records of alkenone sea-surface temperature estimates from cores in the
northeastern Arabian Sea (“E” in Figure 1) (Doose-Rolinski et al., 2001; Staubwasser, 2012).

5.2 Interpretation of foraminifer A5'80

By using A8'80 between foraminifer species, we can distinguish additional processes affecting
the surface waters and thermocline (Ravelo and Shackleton, 1995). This technique has been
used previously to infer changes in the strength of the East Asian Winter Monsoon (EAWM)
in the South China Sea (Tian et al., 2005), as well as mixed layer and thermocline depth in
other studies (Billups et al., 1999; Cannariato and Ravelo, 1997; Norris, 1998). Here we use
the difference in the 6880 of G. ruber and N. dutertrei (A6*30q.r) to track changes in the
surface-to-deep gradient. This gradient can be driven by either §'80 changes in the surface-
dwelling (G. ruber) and/or the thermocline-dwelling species (N. dutertrei). During times of a
strengthened winter monsoon, A8'804.r will decrease as surface waters are homogenized and
the thermocline deepens. Similarly, A5*0q.r will also decrease during times of a weakened
summer monsoon, as decreased Indus River discharge will increase surface water salinity and
580 of G. ruber will become more similar to N. dutertrei.

G. sacculifer is also a surface dweller, but has a slightly deeper depth habitat than G. ruber.
We thus expect G. ruber to be more influenced by surface salinity variations than G. sacculifer,
and suggest the 5§80 difference between the two species (A5'80s.); reflects the influence of
Indus River discharge on near surface salinity. The greatest-smallest difference in A0,
occurs at 4.1 ka BP, which is interpreted as an increase in surface water salinity (Figure 68).

The difference in 680 between G. sacculifer and N. dutertrei (A8'804.s) also reflects surface
mixing and thermocline depth, but G. sacculifer is less affected by surface salinity changes
than G. ruber. Thus, the responses of A8'80sa.rs and A6¥0q.s: can be used to differentiate
between surface water salinity changes and wind-driven mixing. Accordingly, simultaneously
low A8'804.s and A8'80q.r indicate a period of increased surface water mixing and increased
IWM (such as the period between 4.5 and 4.3 ka BP), but times of relatively low A§'804.s but
high A8*804.r and A8'80s.r (around 5.0 ka BP) indicate periods of increased Indus discharge and
strength of the ISM and IWM.

However-tThe following period of low A8'0q.r but-high-A8**04.from 4.1-3.9 ka BP is likely
driven by increased salinity of surface water. This distinction becomes clearer when
examining the A8'80s.r, where increased similarity from 4.8-3.9 ka BP (with a sharp increase
at 4.1 ka BP) reflects the effect of increased sea surface salinity that reduces the &0
difference between G. ruber and G. sacculifer. At the same time, weakened winter mixing
increases A8*80q.s, which occurs from 4.2-3.9 ka BP. Importantly, the proxies also indicate that
increased IWM mixing is generally positively correlated with increased Indus discharge, and
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vice versa. The single time period when this does not hold true is 4.5-4.25 ka BP, when
increased IWM mixing is coupled with decreased Indus discharge.

In summary, our multi-species approach using 680 of G. ruber, G. sacculifer, and N. dutertrei
allows us to differentiate between strength of the IWM and freshwater discharge of the Indus
River. We suggest that ISM strength decreased gradually from at least 4.8 ka BP, while the
IWM strength peaked around 4.5-4.3 ka BP and then weakened afterwards. It is unlikely that
the abrupt increase in G. ruber 630 at 4.1 ka BP and low A8%0s., could be caused solely by
the decrease in IWM strength, even though IWM contributes to Indus River discharge.
Weakening of the ISM must have played a substantial role in the 4.1 ka BP shift as well,
indicated by the period 4.5-4.25 ka BP, when Indus discharge reflected a weak ISM (A880s.)
despite a phase of strengthened IWM.

5.3 Comparison to marine records

Other marine records from the Arabian Sea also suggest a gradual decrease in ISM strength
siree-from ~5 ka BP (Gupta et al., 2003; Overpeck et al., 1996). Cullen et al. (2000) observed
an abrupt peak in aeolian dolomite and calcite in marine sediments in the Gulf of Oman from
4.0-3.6 ka BP, and Ponton et al. (2012) also showed a shift to weaker ISM after 4.0 ka BP in
the Bay of Bengal, based on &'3C of leaf waxes. Marine IWM reconstructions are not
particularly coherent: although Doose-Rolinski et al. (2001) find a decrease in evaporation
and weakening of the ISM between 4.6 and 3.7 ka BP, they argue this was accompanied by a
relative increase in IWM strength. Giosan et al. (2018,-n+eview) inferred enhanced winter
monsoon conditions from 4.5-3.0 ka BP based on a planktic paleo-DNA and % Globigerina
falconensis record close to our coring site (“C” in Figure 1), which eentradiets-disagrees with
our finding of decreased upper ocean mixing after 4.3 ka BP. We suggest the-that the high
stratigraphic (i.e., laminated) and chronological (i.e., 15 radiocarbon dates between 5.4-3.0
ka BP) resolution of core 63KA paired with a multi-species foraminifer §'80 record can
provides a mere-detatlabeutrobust history of the timing of changes in IWM and ISM strength,
but additional studies are needed to resolve some of the discrepancies among the records.

5.4 Comparison to regional terrestrial records
The 63KA 60 record obtained from three foraminifer species highlights several important

ocean-atmosphere changes over the 5.4-3.0 ka BP time period. First, a sharp decrease
occurred in both summer and winter precipitation at 4.1 ka BP, which is within a broader 300-
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year period of increased aridity spanning both rainfall seasons between 4.2 and 3.9 ka BP. In
detail, we infer a relative decrease in Indus River discharge and weakened ISM between 4.8
and 3.9 ka BP, peaking at 4.1 ka BP, while a 200-year-long phase-interval of strong IWM
interrupted this period from 4.5-4.3 ka BP. Furthermore, the stepped change in 620 of N.
dutertrei suggests an enduring change in ocean-atmosphere conditions after 4.1 ka BP.

A relatively abrupt ~4.2 ka BP climate event has been observed in several terrestrial records
on the Indian subcontinent, most notably Mawmluh Cave (~4.1-3.9 ka BP) in northeastern
India (Berkelhammer et al., 2012) and Kotla Dahar (~4.1 ka BP) in northwestern India (Dixit et
al., 2014) (Figure 79). A less abrupt yet still arid period is documented in a peat profile (~4.0-
3.5 ka BP) from northcentral India (Phadtare, 2000), at Lonar Lake (~4.6-3.9 ka BP) in central
India (Menzel et al., 2014), and at Rara Lake (~4.2-3.7 ka BP) in western Nepal (Nakamura et
al., 2016). Finally, a recent study of oxygen and hydrogen isotopes in gypsum hydration water
from Karsandi on the northern margin of the Thar Desert showed wet conditions between 5.1
and 4.4 ka BP, after which the playa lake dried out sometime between 4.4 and 3.2 ka BP (Dixit
et al., 2018). Considering terrestrial records can record more local climatic conditions than
marine records, it is remarkable that the records collectively agree on a regienatphaseperiod
of regional aridity between 4.2 and 3.9 ka BP within the uncertainties of the age models that
vary considerably among records.

However, not all records support this finding.; such—asFor example, a reconstruction from
Sahiya Cave in northwestern India that-shows an abrupt decrease in 60 interpreted to
reflect an increase in monsoon strength from ~4.3-4.15 ka BP, followed by an arid trend after
4.15 ka BP (Kathayat et al., 2017). In addition, several other Thar Desert records do not
identify a “4.2 ka BP event” sensu stricto, but instead suggest that lakes dried out several
centuries earlier (Deotare et al., 2004; Enzel et al., 1999; Singh et al., 1990) or later (Sinha et
al., 2006) than 4.2 ka BP. This discrepancy may relate to non-linear climate responses of lakes,
which would not record a drought at 4.2 ka BP if they had already dried out earlier from the
ongoing decrease in summer rainfall. In addition, there are also significant concerns about
chronological uncertainties when—usingfrom the use of radiocarbon of bulk sediment for
dating in some of these records. It is also possible that variations in the timing of climate
change inferred from the terrestrial records may be real, reflecting different sensitivity to ISM
and IWM rain. As a marine record, core 63KA integrates large-scale ocean-atmosphere
changes, and therefore can help inform the interpretation of the more locally sensitive
terrestrial records.

More distantly, several terrestrial records in the Middle East also show a decrease in winter
precipitation proxies around 4.2 ka BP: Jeita Cave in Lebanon records a relatively dry period
between 4.4 and 3.9 ka BP (Cheng et al., 2015) and Soreq Cave in Israel shows a period of
increased aridity starting at ~4.3 ka BP (Bar-Matthews et al., 2003; Bar-Matthews and Ayalon,
2011) (Figure 840). Lake Van in eastern Turkey also records reduced spring rainfall and
enhanced aridity after ~4.0 ka BP (Wick et al., 2003; Lemcke and Sturm, 1997). All of these
records suggest a relatively arid phase-period in-with reduced winter precipitation after ~4.3
ka BP, as inferred from core 63-KA. Qunf Cave in Oman (Fleitmann et al., 2003), which is
outside the range of IWM influence, instead shows a steady mid-Holocene weakening of the

ISM that closely follows trends in summer solar insolation. Cere-63-KA-alse-infersaprotracted
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82 Dixit et al., 2014; this study; Nakamura et al., 2016; Kathayat et al., 2017. The mean value for each
83 record indicated by the horizontal dashed lines is taken for all available data between 6.0-2.5 ka BP.
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Based—en0n the basis of our reconstruction of reduced IWM mixing after 4.3 ka BP,
accompanied by decreased freshwater discharge of the Indus River, it is worth considering
what impacts could be expected from a reduction in IWM and ISM precipitation. A weakened
IWM overlying a reduced or more variable ISM would likely result in a distinct climate signal
over the Indus River catchment, with broad implications for seasonal river flow and water
availability throughout the year. The presence of the two rainfall systems creates a complex
and diverse range of environments and ecologies across northwest South Asia (Petrie et al.,
2017). In a situation when rainfall in both seasons is reduced over extended periods, step-
shifts in the natural environment may occur that are difficult to reverse (e.g., desertification,
lake desiccation, regional vegetation changes, decline in overbank flooding and shift in river
avulsion patterns).

Societies reliant on IWM, ISM, or a combination of the two would have been vulnerable to
years with monsoon failure, and a shift affecting both seasons will have challenged resilience
and tested sustainability (Green and Bates et al. in preppress:; Petrie et al., 2017).
Archaeological research into the transition from the urban Mature Harappan phase (~4.6-3.9
ka BP) to the post-urban Late Harappan phase (~3.9-3.6 ka BP) notes progressive
deurbanization through the abandonment of large Indus cities and a depopulation of the
most western Indus regions, concurrent with a general trend towards an increase of
concentrations of rural settlements in some areas of the eastern Indus extent (Green and
Petrie, 2018; Petrie et al., 2017; Possehl, 1997) (Figure S6). The relatively limited range of
well-resolved available archaeobotanical data suggests that there was a degree of diversity in
crop choice and farming strategies in different parts of the Indus Civilization across this time
span (Petrie et al., 2016; Petrie and Bates, 2017; Weber, 1999; Weber et al., 2010). Farmers
in southerly regions appear to have focused on summer or winter crops, while the more
northern regions of Pakistan Punjab and Indian Punjab and Haryana were capable of
supporting combinations of winter and summer crops (Petrie and Bates, 2017). Although
there is evidence for diverse cropping practices involving both summer and winter crops in
the northern areas during the urban period, agricultural strategies appeared to favor more
intensive use of drought-resistant summer crops in the Late Harappan period (Madella and
Fuller, 2006; Petrie and Bates, 2017; Pokharia et al., 2017; Weber, 2003; Wright, 2010). It has
previously been suggested that weakened ISM was a major factor in these shifts (e.g. Giosan
et al., 2012; Madella and Fuller, 2006). ©a—thebasis—efBased on our reconstruction of
decreased IWM in northwest South Asia after 4.3 ka BP with a step-shift at 4.1 ka BP, we
suggest that both IWM and ISM climatic factors played a role in shaping the human landscape.
This includes the redistribution of population to smaller settlements in eastern regions with
more direct summer rain, as well as the ebserved-shift to mere-increased summer crop
dominated cropping strategies.

6. Conclusion

This study expanded on the &0 record of planktonic foraminifer in core 63KA of the
northeastern Arabian Sea, originally published by Staubwasser et al. (2003). Using 680 of the
surface-dwelling foraminifera G. ruber, the original study inferred an abrupt reduction in
Indus River discharge at ~4.2 ka BP. Our further 6§80 analysis of a larger size fraction of this
species confirmed-corroborates maximum salinity at 4.1 and 3.95 ka BP. In addition, the 8§80
difference between the surface-dwelling G. ruber and slightly deeper-dwelling G. sacculifer
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(A880s.r) reveals that surface waters were more saline than average for the period from 4.8-
3.9 ka BP. By also measuring a thermocline-dwelling planktonic foraminiferal species, N.
dutertrei, we infer an increase in the strength of the IWM between 4.5 and 4.3 ka BP, followed
by reduction in IWM-driven mixing that peaks-reaches a minimum at 4.1 ka BP.

Assuming that weaker IWM mixing implies a reduction in IWM rainfall amount or duration
over northwest South Asia under past climatic conditions, the 63KA core is used to infer
important changes in seasonal hydrology of the Indus River catchment. We propose that a
combined weakening of the IWM and ISM at 4.1 ka BP led to what has been termed the “4.2
ka BP” drought over northwest South Asia. The intersection of both a gradually weakening
ISM since 4.8 ka BP and a maximum decrease in IWM strength at 4.1 ka BP resulted in a
spatially layered and heterogeneous drought over a seasonal to annual timescale. Regions in
the western part of the Indus River basin accustomed to relying mainly on winter rainfall (also
via river run-off) would have been most severely affected by such changes. Regions in the
northeastern and eastern extents benefitted more from summer rainfall, and would have
been less severely affected, particularly as the ISM appears to recover strength by 3.9 ka BP.

Relatively strengthened IWM surface water mixing between 4.5 and 4.3 ka BP correlates with
a period of higher precipitation recorded at Karsandi on the northern margin of the Thar
Desert (Dixit et al., 2018), an area within the summer rainfall zone that is also sensitive to
small changes in winter precipitation. This time span also represents the beginnings of the
Mature Harappan phase (Possehl, 2002; Wright, 2010), which implies that increasingly
urbanized settlements may have flourished under a strengthened IWM. With a weakening of
the IWM at ~4.1 ka, eastern regions with more access to ISM rainfall may have been more
favorable locations for agriculture. This may also help explain the broad shift in population
towards more rural settlements in the northeastern extent of the Indus Civilization that
occurred by ~3.9 ka BP (Possehl, 1997; Petrie et al., 2017), and a shift to more drought-
tolerant kharif (summer) season crops in Gujarat (Pokharia et al., 2017) and at Harappa
(Madella and Fuller, 2006; Weber, 2003).

Given the importance of the relationships between humans and the environment during the
time of the Indus Civilization, understanding the impact of the IWM on precipitation
variability in northwest South Asia remains a critical area of research. We especially need a
better understanding of the wind patterns and moisture pathways that controlled the IWM
in the past. Disentangling both the length and intensity of seasonal precipitation is a crucial
aspect of understanding the impact of climate change on past societies, particularly in a
diverse region relying on mixed water sources (e.g., fluvial, ground aquifer, direct rainfall).
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Supplemental figures and tables
(a) SSS Summer (JAS average 1955-2012) (b) SSS Winter (JFM average 1955-2012)
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Figure S1. Mean surface salinity for 1955-2012, with data from the 2013 World Ocean Atlas (WOA) at
0.25° resolution (Zweng et al., 2013). Salinity contours are shown for a. summer (JAS) and b. winter
(JFM). The Indus River is outlined. Note that over the time window of this dataset, modern Indus River
discharge has been reduced by >50% due to barrages and irrigation (Ahmad et al., 2001). Plots created
with Ocean Data Viewer (ODV).
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Figure S2. Comparison of loess smoothing windows of 50, 100, 210, 300, 500, and 1000 years for G.
ruber in the 400-500um fraction.
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Figure S3. Modern 80 values of calcite, spanning approximately the last 200 years, measured from
surface sediment samples for all three species at the size fractions 315-400um. Averages values for
the last 200 years (~1780-1993 AD) are compared to the period 5.4-3.0 ka BP: -2.01%o (modern) and
-1.90%o (old) for G. ruber (orange), -1.28%o (modern) and -1.31%. (old) for G. sacculifer (green), and -
0.72%o0 (modern) and -0.76%o (old) for N. dutertrei (blue).
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Figure S4. Frequency distributions of 60 data during 5.4-3.0 ka BP for G. ruber 400-500um (red), G.
ruber 315-400um (orange), G. sacculifer 315-400um (green), N. dutertrei 315-400um (blue).
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Figure S5. a. BACON age-depth model with calibrated dates shown in blue b. Age-depth model
comparison with the original published age model from Staubwasser et al. (2003) (orange) and the

new age model based on BACON software (blue).
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Figure S6. Indus site distributions (yellow points) during the a. Early Harappan (~5.0-4.6 ka BP), b.
Mature Harappan (~4.6-3.9 ka BP), and c. Late Harappan (~3.9-3.6 ka BP). Orange sites show larger
Harappan cities during the Mature Harappan period (Dholavira, Mohenjo Daro, Ganweriwala,
Harappa, and Rakhigarhi from bottom to top), core 63KA shown by red circle, background terrain from
Google Earth.

Table S1. Main statistical parameters of the 620 data.

G. ruber G. ruber G. sacculifer  N. dutertrei
400-500um  315-400um  315-400um  315-400um
n 119 115 129 132
Minimum -2.423 -2.190 -1.660 -1.090
Maximum -1.752 -1.520 -1.000 -0.590
1%t Quartile -2.232 -1.995 -1.400 -0.810
3 Quartile -2.068 -1.830 -1.220 -0.700
Mean -2.139 -1.901 -1.312 -0.761
Median -2.144 -1.890 -1.320 -0.760
Sum -254.58 -218.66 -169.26 -100.46
SE Mean 0.012 0.012 0.011 0.007
LCL Mean -2.163 -1.926 -1.333 -0.776
UCL Mean -2.116 -1.877 -1.291 -0.746
Variance 0.016 0.017 0.015 0.007
Stdev 0.128 0.131 0.122 0.085
Skewness 0.408 0.288 -0.011 -0.592
Kurtosis 0.511 0.174 -0.364 0.850

Table S2. Age-Model calibration with BACON software.

Depth (cm)  *C date Error Reservoir IntCall3 IntCall3 IntCall3
(+10) (years) minage BP maxage BP mean age BP

surface - - - = = -43
47 790 30 565 267 309 288
87 1370 35 565 678 780 729
109.5 1665 30 565 952 1062 1007
128.5 1955 25 565 1283 1339 1311
143.5 2115 35 565 1369 1529 1449
157.5 2270 25 565 1552 1634 1593
169.5 2430 25 565 1728 1869 1799
180.5 2640 25 565 1988 2122 2055
186.5 2675 35 565 1993 2154 2074
191.5 2720 30 565 2044 2184 2114
211.5 3000 35 565 2356 2541 2449
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