

**Interactive comment on “Re-examining the 4.2 ka BP event in foraminifer isotope records from the Indus River delta in the Arabian Sea” by Alena Giesche et al.**

**Anonymous Referee #3**

Received and published: 23 October 2018

*The authors present fascinating new data from core 63KA from the Arabian Sea to re-construct changes in Indian Summer Monsoon rainfall over the adjacent continent and Indian Winter Monsoon strength. Compared with the original work by Staubwasser et al. (2003) this study presents new d18O records from subsurface and thermocline- dwelling foraminifera species. The difference between subsurface and surface foram- d18O reflects the intensity of surface freshening, whereas the difference between sub- surface and thermocline foram-d18O is a measure of wind-driven vertical mixing. The authors focus on the time period 5.3 to 2.9 ka BP encompassing the major shift in both summer and winter monsoons at ~4.2 ka. This mid-Holocene climate change as seen in the 63KA records is compared with the numerous land and marine data that have been published since Staubwasser et al.’s study. The interpretation of the new data is sound. Taken individually, each subsection of the Results and Discussion is well written and clear.*

We thank reviewer 3 for their thoughtful evaluation and comments on our manuscript.

*The problem of the manuscript is that the study aims have not been sufficiently worked out. The authors provide an overview on the state of knowledge, but they should more clearly work out the problems and "missing pieces". Indicate possible solutions, and then describe your own approach (which exactly follows those "possible solutions"). This information must be more clearly and prominently provided in the Introduction and not postponed until the Discussion; otherwise, the reader has no guideline for following the manuscript. As it stands, the Abstract and Introduction present the manuscript as a replicate of Staubwasser et al. (2003) with some additional data. But actually these additional data (N. dutertrei and G. sacculifer records) and their interpretation make up the core and primary scientific asset of this study.*

The Abstract and Introduction have been edited to clarify the overall study aims. These changes can be viewed in the revised version of the manuscript, at the end of this file. We agree that our new findings were somewhat obscured under the title that implies we are only “re-examining” old data. Based on the comments by both reviewers 2 & 3, we have decided to propose a new title for the manuscript: **“Indian winter and summer monsoon strength over the 4.2 ka BP event in foraminifer isotope records from the Indus River delta in the Arabian Sea”**

*Specific comments*

1. Abstract, lines 64-65: See above. Even though the G. sacculifer and N. dutertrei records provide the key data for this study, they are presented as by-products, and only in the following sentence (line 66) the reader is informed why they have been generated in the first place.

We have now rearranged the order of introducing these datasets in the abstract to make clear that the new G. sacculifer and N. dutertrei records are the focus of the paper. Additionally, the revised title of the paper better describes the new findings of the research.

2. Introduction, lines 124-128: Be more specific on the importance of the IWM. Reconstructing the IWM is one main part of this study, and hence its significance should be sufficiently highlighted.

We have added two sentences in this paragraph to direct the focus to the IWM, as well as a more detailed introduction of the IWM proxy at the end of the Introduction.

3. Lines 146-153: Some explanation on the new *G. ruber* record is required. I guess that the *N. dutertrei* and *G. sacculifer* samples are from different sampling positions than the *G. ruber* samples from Staubwasser et al., and a new *G. ruber* record is necessary for calculating  $Dd18O$  (*ruber-sacculifer*). This is fine, but should be mentioned.

All foraminifera including the new data are from the exact same core, depths, sub-samples reported by Staubwasser et al. (2003). However, the picking of the two size fractions of *G. ruber* foraminifera and their geochemical analysis was done by different people ~15 years apart. Differences for *G. sacculifer* - *G. ruber* are reported for both size fractions of *G. ruber*. The main reason for measuring the *G. ruber* record was to replicate this dataset and assess if the salinity signal could be distinguished from other variability affecting the oxygen isotopes of this species. The correlation of the raw data, as well as the overall agreement of the long-term trends in the two independently measured records, supports the reproducibility of the data sets despite a low signal to noise ratio.

4. Methods, line 317ff, and Fig. 2d: These CTD data are a snapshot from a single day. I would prefer profiles from the World Ocean Atlas, as these are probably more representative. Provide temperature and salinity profiles for two seasons, one covering the main fluxes of *G. ruber* and *G. sacculifer* (July-September), the other the peak occurrence of *N. dutertrei* (December). This will also give the reader an idea on how much seasonality is present at different water depths.

We have now plotted WOA data covering both summer (JAS) and winter (JFM) seasons, and show these in Figure 2. We continue to use the September 1993 CTD profile from the PAKOMIN cruise for the equilibrium calcite calculations (Figure 5), because these data come from one set of measurements directly from the coring location.

5. Line 329: Provide the total number of samples and the average temporal resolution of the raw data.

The total number of depths analyzed was 132 (now added to the Results section). The average temporal resolution (18 years/cm) is given in Section 2.2 and 3.1 (now repeated in the manuscript, because this is crucial information and all reviewers overlooked this from line 222 in the original manuscript). For *N. dutertrei*, we obtained data for all depths, but for *G. sacculifer* there were insufficient foraminifera (gaps) for 3 depths plus one outlier, and for *G. ruber* (400-500 $\mu$ m) we had 14 gaps (one of which is an outlier), and for *G. ruber* (315-400 $\mu$ m) there were 17 gaps. This is noted in section 3.2.

6. Results, line 362 and throughout: What is the number of degrees of freedom when calculating the p-values, do the authors use the number of actually measured data or the number of annually interpolated data?

The number “n” of data points for all t-tests and correlations are now included in the manuscript. All statistical tests were performed on raw data, and interpolated data are generated only for the visualization of the 210-year smoothing in the plots.

7. Discussion, line 454ff: "is confirmed" should be toned down. The authors are correct as far as the main conclusions of the study are concerned, but otherwise the two records are not congruent. Do different test sizes potentially reflect different seasons?

We have now used the word "reflected" and point out the differences visible between both records. Importantly, the increase in  $\delta^{18}\text{O}$  of the larger *G. ruber* size fraction begins much earlier than 4.2 ka BP (rather around 4.8 ka BP), indicating that the summer monsoon and freshwater discharge may have started to weaken earlier than 4.2 ka BP. Additional *G. ruber* trap data from the region would be needed to answer the question about whether the offset between size fractions is due to seasonality (perhaps larger size fractions are biased to the warm season), preferred depth (perhaps larger size fractions live closer to the surface?), or other physical characteristics.

*Minor points*

8. Line 238: Down to 100 m.

Done.

9. Line 253: recording the  $d^{18}\text{O}$  and temperature of the seawater

Done.

10. Line 256-258: Please, rephrase.

This sentence has been simplified.

11. Fig. 2a: Use stronger color contrasts.

Figure 2a now has more strongly contrasting blue shades of color.

12. Line 504: Add small delta (same format as in subsequent sentence).

Done.

Revised manuscript below.

1 **Re-examining Indian winter and summer monsoon strength over the 4.2 ka BP event in**  
2 **foraminifer isotope records from the Indus River delta in the Arabian Sea**

3  
4 Alena Giesche<sup>1</sup>, Michael Staubwasser<sup>2</sup>, Cameron A. Petrie<sup>3</sup>, and David A. Hodell<sup>1</sup>

5  
6 <sup>1</sup> *Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of*  
7 *Cambridge, Cambridge, CB2 3EQ, United Kingdom*

8 <sup>2</sup> *Institute for Geology und Mineralogy, University of Cologne, Zülpicher Str. 49a, 50674 Cologne,*  
9 *Germany*

10 <sup>3</sup> *Department of Archaeology, University of Cambridge, Cambridge, CB2 3DZ, United Kingdom*

11  
12 *Correspondence to:* Alena Giesche (ag927@cam.ac.uk)

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 **Abstract**

53  
54 The plains of northwest South Asia receive rainfall during both the Indian Summer (June-September)  
55 and Winter (December-March) Monsoon. Researchers have long attempted to deconstruct the  
56 influence of both these precipitation regimes in paleoclimate records, in order to better understand  
57 regional climatic drivers and their potential impact on human populations. The Mid-Late Holocene  
58 transition between 5.3-3.3 ka BP is of particular interest in this region because it spans the period of  
59 the Indus Civilization from its early development, through its urbanization and on—to eventual  
60 transformation into a rural society. The An oxygen isotope record of the surface-dwelling planktonic  
61 foraminifer *Globigerinoides ruber* from the northeast Arabian Sea provided evidence for an abrupt  
62 decrease in rainfall and reduction in Indus River discharge at 4.2 ka BP, which the authors linked to  
63 the decline of the urban phase of the Indus Civilization (Staubwasser et al., 2003). Given the  
64 importance of this study, we used the same core (63KA) to replicate the oxygen isotope profiles of a  
65 larger size fraction of *G. ruber* than measured previously and, in addition, we measured measure the  
66 oxygen isotope profiles of two other foraminifer species at decadal resolution over the interval from  
67 5.4 to 3.0 ka BP, and replicate a larger size fraction of *G. ruber* than measured previously. By selecting  
68 both thermocline-dwelling (*Neogloboquadrina dutertrei*) and shallow-dwelling (*Globigerinoides*  
69 *sacculifer*) species, we provide enhanced detail of the climatic changes that occurred over this crucial  
70 time interval. We found evidence for a period of increased surface water mixing, which we suggest  
71 was related to a strengthened winter monsoon with a peak intensity over 200 years from 4.5 to 4.3  
72 ka BP. The time of greatest change occurred at 4.1 ka BP when both the summer and winter monsoon  
73 weakened, resulting in a reduction in rainfall in the Indus region. The earliest phase of the urban  
74 Mature Harappan period coincided with the period of inferred stronger winter monsoon between 4.5-  
75 4.3 ka BP, whereas the end of the urbanized phase followed occurred some time after the decrease  
76 in both the summer and winter monsoon strength by 4.1 ka BP. Our findings provide evidence that  
77 the initial growth of large Indus urban centers was coincident coincided with increased winter rainfall,  
78 whereas the contraction of urbanism and change in subsistence strategies followed a reduction in  
79 rainfall of both seasons.

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101  
102  
103  
104

## 1. Introduction

105 The ~4.2 ka BP event is considered to be a defining event of the Mid-Late Holocene transition  
106 period (Mayewski et al., 2004), and is marked by intense aridity in much of western Asia,  
107 which has been linked to cultural transitions in Mesopotamia, Egypt, and the Indus Civilization  
108 (Staubwasser and Weiss, 2006; Weiss, 2016). Recently, a climate reconstruction from  
109 Mawmluh cave in northeastern India has been used to formally demarcate the post-4.2 ka BP  
110 time as the Meghalayan Age (Letter from the 44<sup>th</sup> International Union of Geological Sciences,  
111 2018; Walker et al., 2012). However, defining the exact timing and extent of aridity at ~4.2 ka  
112 BP remains an open question (Finné et al., 2011; Wanner et al., 2008). In this special issue  
113 devoted to the “4.2 ka event”, we provide new paleoclimate data from a marine core in the  
114 northern Arabian Sea over this critical time interval to better understand the changes that  
115 occurred in both winter and summer hydroclimate over the Indian Subcontinent.

116

117 The  $\delta^{18}\text{O}$  record of *Globigerinoides ruber* from marine core 63KA, obtained from the Arabian  
118 Sea off the coast of Pakistan and produced by Staubwasser et al. (2003), was among the first  
119 well-resolved paleoclimate records to suggest a link between a decrease in Indus River  
120 discharge around 4.2 ka BP and the decline of the urban phase of the Indus Civilization. Since  
121 the publication of this record, several other terrestrial paleoclimate reconstructions from the  
122 region (Berkelhammer et al., 2012; Dixit et al., 2014, 2018; Giosan et al., 2012; Kathayat et  
123 al., 2017; Menzel et al., 2014; Nakamura et al., 2016; Prasad and Enzel, 2006), and a number  
124 of marine reconstructions (Giosan et al., 2018, in review; Gupta et al., 2003; Ponton et al.,  
125 2012) have added to our understanding of the complex relationship between the Indus  
126 Civilization and climate change. New questions have also emerged about the relative  
127 importance of winter rain from the Indian Winter Monsoon (IWM) system and summer rain  
128 from the Indian Summer Monsoon (ISM) during the critical time period from 5.4 to 3.0 ka BP,  
129 which spans the pre-urban, urban, and post-urban phases of the Indus Civilization (Giosan et  
130 al., 2018, in review; Petrie et al., 2017; Prasad and Enzel, 2006). This is because the winter  
131 rain zone partially overlaps with the summer rain zone (Figure 1), and provides a critical  
132 supply of rain and snowfall for the Indus River basin. However, we currently understand much  
133 less about the behavior of the IWM than the ISM.

134

135 At its height, the Indus Civilization spanned a considerable geographical area with a greater  
136 extent than all the other ancient civilizations of its time (Agrawal, 2007; Possehl, 2003;  
137 Wheeler, 1968). Today, the region that was once occupied by Indus populations is marked by  
138 a heterogeneous rainfall pattern, and some sites locations in the central Thar desert receive  
139 as little as 100 mm yr<sup>-1</sup>, which is only about 10% of the amount of direct annual rainfall seen  
140 in the northeastern region close compared to New Delhi. Scarce direct precipitation in the  
141 central regions around the Thar Desert is supplemented in some cases by fluvial or  
142 groundwater sources. In addition, the distribution of winter rain (increasing towards the  
143 northwest) is distinct from summer rain (increasing towards the east), making regions variably  
144 suitable for growing certain crops and grazing (Petrie et al., 2017; Petrie and Bates, 2017).  
145 While many paleoclimate studies from South Asia (references A-C, I, K-M, S, and U in Figure  
146 1) have theorized about the overall climatic impact of drought (and in most cases identified  
147 summer monsoon as the cause), it is important to identify changes in the relative

148 contributions and timing of seasonal rainfall from both the winter and summer monsoons.  
149 Previously, it has not been possible to reliably differentiate winter and summer rain in  
150 reconstructions from the Indus region.

151  
152 In this study, we re-examined the same marine core (63KA) used in the original [research of](#)  
153 Staubwasser et al. (2003)[paper](#). We first assessed the reproducibility of the *Globigerinoides*  
154 *ruber*  $\delta^{18}\text{O}$  record using a larger size fraction of the same species for the time period 5.4-3.0  
155 ka BP. We also measured the  $\delta^{18}\text{O}$  of two additional foraminifer species, *G. sacculifer*  
156 (*Globigerinoides sacculifer*) and *N. dutertrei* (*Neogloboquadrina dutertrei*), which live deeper  
157 than *G. ruber* in the water column. The different ecologies of [these two](#)[three](#) species provide  
158 additional information with which to evaluate the multiple  $\delta^{18}\text{O}$  records and assess seasonal  
159 changes in the paleoceanography of the northeastern Arabian Sea near the mouth of the  
160 Indus River.

161  
162 The  $\delta^{18}\text{O}$  of foraminifera has been widely applied as an indicator of temperature and salinity  
163 changes (Duplessy et al., 1992; Maslin et al., 1995; Wang et al., 1995; Rohling, 2000; [among](#)  
164 [others](#)). Measuring the  $\delta^{18}\text{O}$  of species calcifying at different depths can provide further  
165 information about upper ocean seasonal hydrography such as surface water mixing, depth of  
166 the thermocline, and upwelling (Ravelo and Shackleton, 1995). [Such-Similar](#) methods have  
167 been applied by several other studies (Billups et al., 1999; Cannariato and Ravelo, 1997;  
168 Norris, 1998; Steinke et al., 2010; Steph et al., 2009; [among others](#)), including a reconstruction  
169 of East Asian Winter Monsoon strength in the South China Sea (Tian et al., 2005). [We-Here](#)  
170 [we applied](#) a [similar-comparable](#) method to samples from core 63KA in the northeastern  
171 Arabian Sea because surface waters at this location are influenced by freshwater discharge  
172 from the Indus River and direct precipitation during the summer monsoon months, whereas  
173 enhanced upper ocean mixing occurs during the winter monsoon. [We hypothesized that our](#)  
174 [new measurements of  \$\delta^{18}\text{O}\$  of \*G. sacculifer\* and \*N. dutertrei\* would allow us to track changes](#)  
175 [in upper ocean mixing. Weaker IWM winds are expected to result in a shorter duration and/or](#)  
176 [less intense upper ocean mixing, although how this signal is ultimately related to the amount](#)  
177 [or distribution of winter rainfall in the Indus River catchment has not been demonstrated](#)  
178 [conclusively. Dimri \(2006\) studied Western Disturbances for the time period 1958-1997, and](#)  
179 [noted that surplus-years of surplus winter precipitation are linked to significant heat loss over](#)  
180 [the northern Arabian Sea, which is mainly attributed to intensified westerly moisture flow](#)  
181 [and enhanced evaporation. Such conditions would promote deeper winter mixing, and](#)  
182 [provide a basis for relating thermocline depth with IWM intensity.](#) By comparing the  $\delta^{18}\text{O}$  of  
183 multiple species of foraminifera we seek to infer variations in the relative strengths of the  
184 summer and winter monsoons, and by comparing the 63KA record to other nearby marine  
185 and terrestrial records we evaluate the potential role that climate played in cultural  
186 transformation of the Indus Civilization.

187

## 188 2. Site Description

189

### 190 2.1 Monsoon – land-based processes

191

192 Today, most of the annual precipitation over northwest South Asia stems from the ISM, and  
193 occurs mainly between June and September. The pressure gradient between the low-  
194 pressure Tibetan Plateau and high-pressure Indian Ocean is accompanied by the ITCZ

195 (Intertropical Convergence Zone) reaching its northward maximum in summer, which draws  
196 in moisture over the subcontinent via southwesterly winds from the Indian Ocean ([Fleitmann](#)  
197 [et al., 2007](#); Gadgil, 2003). The summer rainfall gradient increases from the central Thar  
198 Desert (as little as 100 mm direct summer rainfall per year) to the Himalaya mountains in the  
199 north (>1000 mm) and the Aravalli range to the west (>500 mm) (Figure 1b).

200

201 The IWM rain falls between December through March, and is mainly the result of atmospheric  
202 Western Disturbances (Dimri and Dash, 2012; Yadav et al., 2012) originating over the  
203 Mediterranean and Black Sea (Hatwar et al., 2005) that allow for moisture incursion from the  
204 Arabian Sea (Rangachary and Bandyopadhyay, 1987). During the IWM, the pressure gradient  
205 is reversed from the summer condition, allowing the passage of Western Disturbances when  
206 the ITCZ moves southward. As winter transitions to spring, predominantly northeasterly  
207 winds shift to westerly winds (Sirocko, 1991) that result in peak winter rainfall over the plains  
208 of northwest India in February and March. [Anomalously cool, evaporative conditions over the](#)  
209 [northern Arabian Sea \(promoting deeper winter mixing\) also correlates with increased winter](#)  
210 [precipitation in the western Himalayas \(Dimri, 2006\)](#). The winter rainfall gradient increases  
211 from the southern Thar Desert (<10 mm per year) up to the Himalayas in the northwest (>400  
212 mm) (Figure 1c). Overall, the IWM contributes between roughly 10 to 50% of the total annual  
213 rainfall of northwest South Asia today.

214

215  
216  
217  
218  
219  
220  
221  
222

(a) Longterm mean (1981-2010) annual precipitation



(b) Longterm mean (1981-2010) summer precipitation



(c) Longterm mean (1981-2010) winter precipitation



Figure 1. a. Annual b. ISM (JJAS) c. IWM (DJFM) mean precipitation (1981-2010) isohyets taken from the GPCC V7 global gridded dataset ( $0.5^\circ \times 0.5^\circ$  resolution) (Schneider et al., 2015); note the difference in scale for summer and winter precipitation (0-2000 mm vs. 0-500 mm). Rainfall data overlain on GEBCO 2014 ocean bathymetry dataset (Weatherall et al., 2015), and shaded region shows extent of the Indus Civilization. Bold arrows show main wind directions, dashed arrows show ocean surface currents. Other studies discussed in this paper indicated by letters:

A Core 63KA – (this study; Staubwasser et al., 2003)  
B Core 16A – (Ponton et al., 2012)  
C Core Indus 11C – (Giosan et al., 2018, *in review*)  
D Din Gad peat record – (Phadtare, 2000)

E Core 39KG and 56KA – (Doose-Rolinski et al., 2001)  
F Lake Van record – (Wick et al., 2003; Lemcke and Sturm, 1997)  
G Didwana playa lake – (Singh et al., 1990)

- H Sambhar playa lake – (Sinha et al., 2006)
- I Karsandi playa lake – (Dixit et al., 2018)
- J Jeita cave speleothem – (Cheng et al., 2015)
- K Kotla Dahar lake – (Dixit et al., 2014)
- L Lonar lake – (Menzel et al., 2014)
- M Mawmluh cave speleothem – (Berkelhammer et al., 2012)
- N Kanod playa lake – (Deotare et al., 2004)
- O Bap Malar playa lake – (Deotare et al., 2004)
- Q Qunf cave speleothem – (Fleitmann et al., 2003)
- R Rara lake – (Nakamura et al., 2016)
- S Sahiya cave speleothem – (Kathayat et al., 2017)
- T Foraminifer trap EAST – (Curry et al., 1992)
- U Lunkaransar playa lake – (Enzel et al., 1999)
- V Core 723A, RC27-14, RC27-23, RC27-28 – (Gupta et al., 2003), (Overpeck et al., 1996)
- W Soreq cave speleothem – (Bar-Matthews et al., 2003; Bar-Matthews and Ayalon, 2011)
- X Core M5-422 – (Cullen et al., 2000)

223  
 224 The Indus and the other rivers that make up Punjab are partly fed by winter snow and ice melt  
 225 from their upper mountain catchment areas. Melting peaks during the summer months  
 226 around July-August (Yu et al., 2013), which coincides with the peak of ISM rainfall, and Indus  
 227 River discharge reaches its maximum during August (Karim *et al.*, and Veizer, 2002). The  
 228 proportion of winter to summer precipitation contributing to the Indus River is not entirely  
 229 clear, although one study has estimated a 64-72% contribution of winter precipitation from  
 230 the deuterium excess of Indus River water (Karim *et al.*, and Veizer, 2002), whereas a previous  
 231 study estimated a lower 15-44% contribution of snowmelt to Indus tributaries (Ramasastri,  
 232 1999). Since the 1960s, the Indus River has seen ~~a~~ more than ~~a~~ ~~a~~ 50% reduction in discharge  
 233 because of the construction of barrages as well as the diversion of water for agricultural uses  
 234 (Ahmad et al., 2001).

235  
 236 *2.2 Hydrography – core site and ocean-based processes*

237  
 238 Core 63KA was obtained by the PAKOMIN cruise in 1993 (von Rad et al., 1995). The laminated  
 239 core from the northeastern Arabian Sea (24° 37' N, 65° 59' E) was taken at 316 m water depth  
 240 on the continental shelf, ~100 km west of the Indus River delta. The core has high  
 241 sedimentation rates (equivalent to a temporal resolution of around 18 years/cm in the period  
 242 of interest, 5.4-3.0 ka BP), and all foraminifer proxies were produced from the same laminated  
 243 core with no bioturbation. An important aspect of core 63KA is that different components of  
 244 the monsoon system are co-registered in the same sediment core, thereby permitting an  
 245 explicit evaluation of the relative timing of different parts of the climate system (e.g., ISM and  
 246 IWM).

247  
 248 Modern hydrographic conditions in the northeastern Arabian Sea are highly influenced by the  
 249 seasonal monsoon. During summertime, highest sea surface temperatures (SSTs) are  
 250 observed along with a shallow mixed layer depth <25 m (Schulz et al., 2002) (Figure 2a). A low  
 251 salinity plume surrounds the Indus River delta and shoreline extending as far as the coring  
 252 location (Supplemental Figure S1). The reverse occurs in winter when the lowest SSTs are  
 253 accompanied by surface water mixing to >125 m, resulting in warming of the deeper waters  
 254 (Schulz et al., 2002). Northeasterly winds promote convection in the northeastern Arabian  
255 Sea by cooling and evaporation of surface water (Banse, 1984; Madhupratap et al., 1996),  
256 ~~and~~ during the transition from winter to spring, wind directions shift from northeasterly to  
257 westerly (Sirocko, 1991), ~~promoting a period of upwelling in the northeastern Arabian Sea~~  
258 (Staubwasser et al., 2002; Rao, 1981).

259  
 260 The northern Arabian Sea is dominated by highly saline (up to 37 psu) surface waters ~~of~~  
 261 ~~the~~ known as Arabian Sea High Salinity Water Mass (ASHSW), which extends from the surface

262 ~~downup~~ to 100 m depth (Joseph and Freeland, 2005). ~~The~~is high salinity ~~can be is~~ explained  
263 by the high evaporative rates over this region. ~~ASHSW forms in the winter, but is prevented~~  
264 ~~from reaching our coring site on the shelf by northerly subsurface currents until the summer~~  
265 ~~(Kumar and Prasad, 1999)~~. Along coastal areas, the ASHSW is starkly contrasted by the fresh  
266 water discharge of the Indus River, combined with direct precipitation. In contrast, surface  
267 waters in the Bay of Bengal on the eastern side of India have much lower surface water  
268 salinity, because of overall higher precipitation and stronger stratification from weaker winds  
269 (Shenoi et al., 2002). The heightened evaporative conditions and highly saline surface waters  
270 of the northeastern Arabian Sea make it a sensitive study location to observe changes in  
271 discharge of the entire Indus River catchment area – ultimately tracking changes in monsoon  
272 strength. Unlike individual terrestrial records, which may be affected by local climatic  
273 processes, the marine record from core 63KA is more likely to integrate regional changes of  
274 the large-scale ocean-atmosphere system.

275  
276 Planktonic foraminifera complete their life cycle within a few weeks (Bé and Hutson, 1977).  
277 Peak abundances indicate the time of year when each species tends to calcify, thereby  
278 recording the  $\delta^{18}\text{O}$  ~~and temperature~~ of the seawater in their  $\text{CaCO}_3$  shells primarily during  
279 certain seasons. Foraminifer abundances in the eastern Arabian Sea have been studied by  
280 Curry et al. (1992) using sediment traps deployed at shallow (~1400 m) and deep (~2800 m)  
281 water depths ("T" in Figure 1a). ~~Peak abundances for~~ *G. ruber* and *G. sacculifer* ~~occur have~~  
282 ~~peak abundances~~ during the summer months (June-September), whereas *N. dutertrei* ~~peak~~  
283 ~~lives~~ mainly during the winter ~~as well as and has a secondary peak in - with a secondary peak~~  
284 ~~in~~ summer months (Figure 2c). Preferred depth ranges for each species reflect their ecological  
285 niches, including requirements for nutrients and tolerance for ranges of temperature and  
286 salinity (Bé and Hutson, 1977; Hemleben et al., 2012). *G. ruber* lives in the upper surface  
287 waters (0-10 m), *G. sacculifer* is found in slightly deeper surface waters (10-40 m), and *N.*  
288 *dutertrei* inhabits the base of the mixed layer near the thermocline (40-140 m) (estimates  
289 based on ranges from Farmer et al. (2007) and the local CTD profiles~~s~~) (Figure 2d).  
290



291  
292 **Figure 2.** a. Seasonal surface water mixing depth based on station EPT-2 located nearby the coring site  
293 of 63KA (adapted from Schulz et al., 2002 who also used data from Hastenrath and Lamb, 1979) b.  
294 Foraminifer depth ranges based on CTD profile c. Foraminifer abundances from EAST traps  
295 (overlapping peaks indicate data from multiple traps): *G. ruber* (orange), *G. sacculifer* (green), and *N.*  
296 *dutertrei* (blue) (adapted from Curry et al., 1992 using Zaric, 2005) d. CTD-World Ocean Atlas (WOA)  
297 mean (1955-2012) temperature (red) and salinity (yellow) profiles at 24.875°N, 65.875°E from  
298 station 11 at coring location, shown for summer (JAS) and winter (JFM) seasons (Locarnini et al., 2013;  
299 Zweng et al., 2013) taken September 1993 (von Rad, 2013).

300  
301 **3. Materials and Methods**

302  
303 **3.1 Age model**

305 The radiocarbon dates from Staubwasser et al. (2002, 2003) were obtained from 80 samples  
306 of mainly the foraminifer *G. sacculifer* and three samples of *O. universa*. In the interval of  
307 interest (5.4-3.0 ka BP), there are 15 radiocarbon dates with a 95% confidence range of 30-  
308 130 years. The average sample resolution is 18 years/cm. Bayesian age modelling software,  
309 BACON v2.3.3 (Blaauw and Christen, 2011), was used as an R-package to update the age  
310 model of core 63KA. No major difference exists between the old and new age models, except  
311 for the period 13-11 ka BP (Supplemental Figure S5, Table S2). IntCal13 was used for  
312 radiocarbon calibration (Reimer et al., 2013) with marine reservoir ages provided by  
313 Staubwasser et al. (2002, 2003).

314

### 315 3.2 Stable isotope analysis

316

317 Oxygen and carbon isotopes were measured on three species of foraminifera selected from  
318 washed samples at 1-cm intervals throughout 132 cm of the core covering 5.4-3.0 ka BP: *G.*  
319 *ruber* (white, *sensu stricto*), *G. sacculifer*, and *N. dutertrei*. For *G. ruber*, 12 ± 8 foraminifera  
320 were picked from the 400-500 $\mu$ m size fraction with an average weight of 21.4 ± 2.5 $\mu$ g. The  
321 400-500 $\mu$ m size fraction was picked because too few specimens remained in the size fraction  
322 315-400 $\mu$ m used by Staubwasser et al. (2003). For *G. sacculifer*, 34 ± 7 foraminifera were  
323 picked from the 315-400 $\mu$ m size fraction with an average weight of 21.9 ± 2.6 $\mu$ g. For *N.*  
324 *dutertrei*, 34 ± 4 foraminifera were picked from the 315-400 $\mu$ m size fraction with an average  
325 weight of 25.9 ± 2.2 $\mu$ g. At some depth levels in the core there were insufficient foraminifera  
326 for measurement, along with outlier measurements in two cases, leaving 1114 gaps in the *G.*  
327 *ruber* 400-500 $\mu$ m record, 34 gaps in the *G. sacculifer* record, and no gaps for *N. dutertrei*. The  
328 published *G. ruber* is from the 315-400 $\mu$ m size fraction and contains 17 gaps in the depth  
329 range examined (Staubwasser et al., 2003).

330

331 All foraminifera were weighed, crushed, and dried at 50° C. Samples were cleaned for 30  
332 minutes with 3% H<sub>2</sub>O<sub>2</sub>, followed by a few drops of acetone, ultrasonication, and drying  
333 overnight. Where sample weights exceeded 80 $\mu$ g, oxygen and carbon isotopes were  
334 measured using a Micromass Multicarb Sample Preparation System attached to a VG SIRA  
335 Mass Spectrometer. In cases of smaller sample sizes, the Thermo Scientific Kiel device  
336 attached to a Thermo Scientific MAT253 Mass Spectrometer was used in dual inlet mode. This  
337 method adds 100% H<sub>3</sub>PO<sub>4</sub> to the CaCO<sub>3</sub>, water is removed cryogenically, and the dry CO<sub>2</sub> is  
338 analyzed isotopically by comparison with a laboratory reference gas. For both measurement  
339 methods, 10 reference carbonates and 2 control samples were included with every 30  
340 samples. Results are reported relative to VPDB, and internal precisionlong-term  
341 reproducibility of laboratory standards (e.g., Carrara marble) is better than ±0.08‰ for δ<sup>18</sup>O  
342 and ±0.06‰ for δ<sup>13</sup>C. External precisionReproducibility of foraminiferal measurements were  
343 was estimated by five triplicate (three separately picked) measurements of *G. ruber* (400-  
344 500 $\mu$ m) that yielded one standard deviation of ±0.12‰ (δ<sup>18</sup>O) and ±0.10‰ (δ<sup>13</sup>C). For *G.*  
345 *sacculifer* (315-400 $\mu$ m) the standard deviation of eight triplicate measurements werewas  
346 ±0.07‰ (δ<sup>18</sup>O) and ±0.07‰ (δ<sup>13</sup>C), and for *N. dutertrei* (315-400 $\mu$ m) the standard deviation  
347 of nine triplicate measurements was ±0.06‰ (δ<sup>18</sup>O) and ±0.07‰ (δ<sup>13</sup>C).

348

349 To calculate equilibrium values of δ<sup>18</sup>O<sub>calcite(PDB)</sub>, we used the CTD profile from station 11  
350 (24.62° N, 66.07° E) (Figure 2d) taken in September 1993 during PAKOMIN Sonne cruise no.  
351 90 (von Rad, 2013), which is nearly identical to the location of core 63KA (24.62° N 65.98° E).

352 The  $\delta^{18}\text{O}_{\text{water(SMOW)}}$  was calculated from salinity following Dahl and Oppo (2006), and  
353  $\delta^{18}\text{O}_{\text{calcite(SMOW)}}$  was further calculated using the calcite-water equation of Kim and O'Neil  
354 (1997). We also used the equation of Shackleton (1974) as a comparative method for  
355 calculating  $\delta^{18}\text{O}_{\text{calcite(PDB)}}$ .

356

### 357 *3.3 Statistical treatment*

358

359

360 Statistical tests were applied to the raw data from the  $\delta^{18}\text{O}$  and  $\delta^{13}\text{C}$  time series, including the  
361 package SiZer (Chaudhuri and Marron, 1999; Sonderegger et al., 2009) in R software (2016)  
362 that calculates whether the derivative of a time series exhibits significant changes given a  
363 range of timespans. A Pearson's correlation test (confidence level 95%) was done on paired  
364 samples from both size fractions of *G. ruber*. We also conducted a Welch's t-test to determine  
365 if the mean population of  $\delta^{18}\text{O}$  is significantly different before and after 4.1 ka BP~~We applied~~  
366 ~~a range of smoothing windows (bandwidth of 20-500 years) to assess the significance of~~  
367 ~~changes in the isotope records throughout the time series.~~

368

369 As in the original data of Staubwasser et al. (2003), the oxygen isotope results show great  
370 variability and distinguishing long-term trends in these data ~~requires benefits from statistical~~  
371 ~~smoothing for visualization purposes. To reduce the variance in the data and identify~~  
372 ~~trends~~~~After completing all statistical tests and performing the differences on the raw data~~  
373 ~~(132 depths), the  $\delta^{18}\text{O}$  and  $\delta^{13}\text{C}$  data from 5.4-3.0 ka BP were first resampled to constant 1-~~  
374 ~~year intervals using linear interpolation. A~~~~a~~ loess (locally weighted) smoothing function was  
375 ~~then~~ applied to the  $\delta^{18}\text{O}$  and  $\delta^{13}\text{C}$  data from 5.4-3.0 ka BP~~data~~, using a 210-year moving  
376 window as described by Staubwasser et al. (2003). Loess smoothing uses weighted least  
377 squares, which places more importance on the data points closest to the center of the  
378 smoothing interval. The bandwidth of 210 years was considered an ~~optimal~~~~reasonable~~ time  
379 window for capturing the overall trends in the dataset (other time windows are shown for  
380 comparison in Supplemental Figure S2).

381

382 ~~Where step changes occur in  $\delta^{18}\text{O}$  we also conducted a Student's t test to determine if the~~  
383 ~~mean population of  $\delta^{18}\text{O}$  is significantly different before and after the change.~~

384

## 385 **4. Results**

386

387 The new  $\delta^{18}\text{O}$  measurements of *G. ruber* (400-500 $\mu\text{m}$ ) parallel the published record of *G. ruber* (315-400 $\mu\text{m}$ ) (Staubwasser et al., 2003), but the  $\delta^{18}\text{O}$  of the specimens from the larger  
388 size fraction is offset by -0.23‰ on average (Figure 3). The ~~two~~ records from two size  
389 fractions, produced in different laboratories by different investigators, display a weak positive  
390 correlation for the raw data ( $R = 0.25$ ,  $p < 0.01$ ,  $n = 109$ , slope 0.2726, intercept -1.3336), and  
391 the 210-year smoothed records reveal good agreement in the overall trends of the data and  
392 a strong correlation for the 210-year smoothed records ( $R = 0.7$ , slope 0.53, intercept 0.77).  
393 When comparing the two *G. ruber* records, it is apparent that the increasing trend in  $\delta^{18}\text{O}$   
394 starts well before ~4.2 ka BP – perhaps as early as ~4.9 ka BP. This trend is also observed with  
395 the SiZer analysis, which identifies a significant increase in  $\delta^{18}\text{O}$  anywhere from 4.9 to 4.2 ka  
396 BP depending on which smoothing window is selected (Figure 4). The new  $\delta^{18}\text{O}$  record of *G. ruber*  
397 (400-500 $\mu\text{m}$ ) shows additional detail after the ~4.2 ka BP event – i.e. specifically, a

399 double-peak maximum occurring at 4.1 and 3.95 ka BP that is related to seven discrete  
400 measurements with high  $\delta^{18}\text{O}$  values. These maxima are offset from the average  $\delta^{18}\text{O}$  value  
401 by +0.18‰ (smoothed average), or up to +0.38‰ when considering the maximum individual  
402 measurement at 4.1 ka BP. The offsets from the average values exceed one standard  
403 deviation of the entire record from 5.4-3.0 ka BP, which is 0.13‰. Although *G. ruber* shows  
404 an event at 4.1 ka BP, it does not show a permanent step change: A ~~Student's~~ Welch's t-test  
405 comparing the means of pre- and post-4.1 ka BP indicates that the +0.07‰ shift in mean  $\delta^{18}\text{O}$   
406 values of *G. ruber* (315-400 $\mu\text{m}$ ) is statistically significant (t value = 2.9,  $p < 0.01$ , n = 115), and  
407 but the +0.0403‰ shift in mean  $\delta^{18}\text{O}$  values of *G. ruber* (400-500 $\mu\text{m}$ ) is weakly not significant  
408 (t value = 1.75,  $p < 0.12$ , n = 118).  
409



411 **Figure 3.** Core 63KA  $\delta^{18}\text{O}$  *G. ruber* from two size fractions: 400-500 $\mu\text{m}$  (red) (this study), 315-400 $\mu\text{m}$  (orange) (Staubwasser et al., 2003), shown in the context of the original record and also zoomed in over 5.4-3.0 ka BP.  $\delta^{18}\text{O}$  of *G. sacculifer* 315-400 $\mu\text{m}$  (green), and  $\delta^{18}\text{O}$  and  $\delta^{13}\text{C}$  of *N. dutertrei* 315-400 $\mu\text{m}$  (blue) are shown over the interval 5.4-3.0 ka BP. Data are shown with a 210-year loess smoothing, and modern surface values  $\pm 1\sigma$  are plotted for comparison and  $\pm 1\sigma$  error bars. Mean values for all species are denoted by the dotted line, and the pre- and post-4.1 ka BP mean values are indicated by an additional dotted line for *N. dutertrei*. Individual AMS radiocarbon dates are denoted by triangles near the timeline.

412

413

414

415

416

417

418

419



420

421

422

423

424

425

426

427

**Figure 4.** SiZer 1<sup>st</sup> derivative analysis (Chaudhuri and Marron, 1999; Sonderegger et al., 2009) applied to  $\delta^{18}\text{O}$  of a. *G. ruber* 400-500 $\mu\text{m}$ , b. *G. ruber* 315-400 $\mu\text{m}$ , c. *G. sacculifer* 315-400 $\mu\text{m}$ , d. *N. dutertrei* 315-400 $\mu\text{m}$ . The red areas indicate statistically significant increases in  $\delta^{18}\text{O}$ , the blue represent decreases, and the purple no significant change. Black horizontal lines are the smoothing bandwidths ( $h = 50, 80$ , and  $200$  years). The distance between the white lines denotes the change in smoothing bandwidth scaled to the x-axis.

428

429

430

431

432

433

434

435

The relative differences in  $\delta^{18}\text{O}$  of the planktonic species studied (*G. ruber*, *G. sacculifer* and *N. dutertrei*) reflect the temperature and salinity of their habitat in the water column:  $\delta^{18}\text{O}$  *G. ruber* <  $\delta^{18}\text{O}$  *G. sacculifer* <  $\delta^{18}\text{O}$  *N. dutertrei* (Figure 35). *G. sacculifer* is offset from *G. ruber* (315-400 $\mu\text{m}$ ) by approximately +0.57‰, whereas *N. dutertrei* is offset by +1.14‰. The larger size fraction of *G. ruber* (400-500 $\mu\text{m}$ ) is offset from *G. ruber* (315-400 $\mu\text{m}$ ) by -0.23‰. The offsets among species are maintained throughout the entire record (Figure 35). We also measured  $\delta^{18}\text{O}$  values near the top of the core (approximately the last 200 years) for all three species in the 315-400 $\mu\text{m}$  size fraction, which continue to show the same offsets

436 (Supplemental Figure S3). The  $\delta^{18}\text{O}$  of *G. ruber* shows the greatest variance and *N. dutertrei*  
437 shows the least (Supplemental Figure S4, Table S1).

438  
439 Equilibrium calcite calculations based on the salinity and temperature measurements from  
440 the September 1993 CTD profile of station 11 of the PAKOMIN Cruise (von Rad, 2013) show  
441 the expected depth habitats of the three foraminifer species (Figure 65). *G. ruber* is generally  
442 found at 0-30 m, *G. sacculifer* at 15-40 m, and *N. dutertrei* at 60-150 m (Farmer et al., 2007).  
443 Using the CTD profile from our core location, we compare these depth ranges with the  
444 measured  $\delta^{18}\text{O}$  values. The calculated depths ranges agree well with those expected on the  
445 basis of other studies, placing *G. ruber* in the upper 10 m, *G. sacculifer* 10-40 m, and *N.*  
446 *dutertrei* 40-140 m.

447



448  
449 **Figure 65.**  $\delta^{18}\text{O}$  of equilibrium calcite (left) calculated from the CTD temperature and salinity profile  
450 at station 11 (von Rad, 2013) (right) with projected depth ranges of *G. ruber* 400-500 $\mu\text{m}$  (red), *G. ruber*  
451 315-400 $\mu\text{m}$  (orange), *G. sacculifer* 315-400 $\mu\text{m}$  (green), *N. dutertrei* 315-400 $\mu\text{m}$  (blue). We show  
452 estimated values using both the original paleotemperature equation of Shackleton (1974) (dark teal),  
453 and Kim & O'Neil (1997) (turquoise). Horizontal ranges show the measured  $\delta^{18}\text{O}$  values of each species  
454 between 5.4-3.0 ka BP.

455

456 ~~The most obvious trend in the~~ *G. sacculifer*  $\delta^{18}\text{O}$  ~~is the~~ increases around 4.1 ka BP. ~~A, and a~~  
 457 ~~Student's Welch's~~ t-test comparing the means of pre- and post-4.1 ka BP indicates that the  
 458  $+0.0708\text{\textperthousand}$  shift in mean  $\delta^{18}\text{O}$  values is statistically significant (t value = 3.98,  $p < 0.01$ ,  $n =$   
 459 128). SiZer analysis also points to a statistically significant increase at  $\sim$ 4.1-3.9 ka BP, when  
 460 considering all smoothing time windows between 20 and 500 years (Figure 44).

461

462 ~~Likewise, t~~ The dominant ~~trend change~~ in the  $\delta^{18}\text{O}$  of *N. dutertrei* is a mean increase at 4.1 ka  
 463 BP (Figure 37). SiZer analysis also identifies a significant decrease in  $\delta^{18}\text{O}$  occurring mainly  
 464 between 4.45 and 4.35 ka BP, followed by a significant increase between 4.3 and 4.1 ka BP  
 465 (Figure 44). A ~~Student's Welch's~~ t-test comparing the means of pre- and post-4.1 ka BP  
 466 indicates that the  $+0.08\text{\textperthousand}$  shift in mean  $\delta^{18}\text{O}$  values is statistically significant (t value = 6.32,  
 467  $p < 0.01$ ,  $n = 132$ ), along with the  $+0.07\text{\textperthousand}$  shift in mean  $\delta^{13}\text{C}$  (t value = 3.3,  $p < 0.01$ ,  $n = 132$ ).

468

469

470 Differencing  $\delta^{18}\text{O}$  of foraminifera (expressed as  $\Delta\delta^{18}\text{O}$ ) in the same sample can better  
 471 ~~sometimes improve the signal-to-noise ratio emphasize signals of interest~~ (Figure 68). -The  
 472  $\Delta\delta^{18}\text{O}$  of *G. ruber* 400-500 $\mu\text{m}$  and *G. ruber* 315-400 $\mu\text{m}$  size fractions shows increasing  
 473 similarity between  $\sim$ 4.8 and 3.9 ka BP during the period of overall higher  $\delta^{18}\text{O}$ . The  $\Delta\Delta\delta^{18}\text{O}$  of  
 474 *N. dutertrei* and both size fractions of *G. ruber*, designated  $\Delta\delta^{18}\text{O}_{d-r}$ , reveals a period of more  
 475 similar values between  $\sim$ 4.5 and 3.9 ka BP, with two minima at 4.3 and 4.1 ka BP. The  $\Delta\delta^{18}\text{O}$   
 476 of *G. sacculifer* and both size fractions of *G. ruber* ( $\Delta\delta^{18}\text{O}_{s-r}$ ) shows a period of similar values  
 477 between 4.3 and 3.9 ka BP, with a minimum difference at 4.1 ka BP. In contrast, the  $\Delta\delta^{18}\text{O}$   
 478 of *N. dutertrei* and *G. sacculifer* ( $\Delta\delta^{18}\text{O}_{d-s}$ ) shows the most similarity between 4.5 and 4.2 ka  
 479 BP with a minimum at 4.3 ka BP, followed by the maximum differences between 4.2 and 3.9  
 480 ka BP that peaks at 4.1 ka BP.

481



482  
483 **Figure 86.** Core 63KA  $\Delta\delta^{18}\text{O}$  ~~—~~ Data shown with a 210-year loess smoothing. Individual AMS  
484 radiocarbon dates are denoted by triangles near the timeline. *G. ruber* 315-400  $\mu\text{m}$  size fraction data  
485 come from Staubwasser et al. (2003). The green band near the timeline showing EH, MH, and LH refers  
486 to Early Harappan (~5.0-4.6 ka BP), Mature Harappan (~4.6-3.9 ka BP), and Late Harappan (~3.9-3.6  
487 ka BP) periods, respectively.  
488

489 **5. Discussion**

490

491 *5.1 Interpretation of foraminifer  $\delta^{18}\text{O}$* 

492

493 The trends in the original  $\delta^{18}\text{O}$  record of *G. ruber* (315-400 $\mu\text{m}$ ) by Staubwasser et al. (2003) is  
494 confirmed\_reflected by our independent  $\delta^{18}\text{O}$  measurements of *G. ruber* in a larger size  
495 fraction (400-500 $\mu\text{m}$ ), although an important difference exists suggesting a decrease in  
496 freshwater discharge as early as 4.8 ka BP. The larger size fraction is offset by approximately  
497 -0.2‰, which is similar to the size-related fractionation of -0.3‰ per +100 $\mu\text{m}$  for *G. ruber*  
498 reported by Cayre and Bassinot (1998), and could be attributed to size-related vital effects.  
499 Alternatively, part of the offset might be explained by interlaboratory calibration considering  
500 the data were produced using two different methods and mass spectrometers.

501

502 The observed 4.1 ka BP maximum in  $\delta^{18}\text{O}$  of *G. ruber*, living near the surface during summer  
503 months, could be attributed to either decreased SST or increased surface water salinity  
504 (Bemis et al., 1998). Staubwasser et al. (2003) acknowledged that a decrease in SST could  
505 cause the increase in  $\delta^{18}\text{O}$  in the *G. ruber* record, but argued that this explanation is unlikely  
506 because a *G. ruber*  $\delta^{18}\text{O}$  record from core M5-422 in the northwestern Arabian Sea shows  
507 opposing trends over the same time period (Cullen et al., 2000), and a local alkenone SST  
508 proxy record shows relatively higher temperatures in the same period (Doose-Rolinski et al.,  
509 2001). If the ~0.2‰ (relative to mean) increase in  $\delta^{18}\text{O}$  of *G. ruber* at 4.1 ka BP was caused by  
510 temperature change rather than salinity, a ~1°C cooling of surface water is implied would be  
511 required (Kim and O'Neil, 1997).

512

513 Following Staubwasser et al. (2003), we interpret the  $\delta^{18}\text{O}$  variations of *G. ruber* to be  
514 predominantly a salinity signal. Salinity at the core site is dependent on changes in Indus River  
515 discharge, local run-off, and direct precipitation. Although the ISM would be the main  
516 influence on direct precipitation and run-off at the coring location, changes in the IWM could  
517 also influence Indus River discharge, because snowmelt is a significant contributor in the  
518 upper Indus catchment (Karim et al., 2002) and peaks during the summer months (Yu et al.,  
519 2013).

520

521 The thermocline-dwelling foraminifera *N. dutertrei* shows maximum abundances during  
522 winter, and are interpreted to reflect winter mixing. Weaker IWM winds are expected to  
523 result in a shorter duration and/or less intense upper ocean mixing, although how this signal  
524 is ultimately related to the amount or distribution of winter rainfall in the Indus River  
525 catchment has not been demonstrated conclusively. Dimri (2006) studied Western  
526 Disturbances for the time period 1958-1997, and noted that surplus years of winter  
527 precipitation are linked to significant heat loss over the northern Arabian Sea, which is mainly  
528 attributed to intensified westerly moisture flow and enhanced evaporation. Such conditions  
529 would promote deeper winter mixing, and provide a basis for relating thermocline depth with  
530 IWM intensity. During weak IWM conditions, colder unmixed water would result in higher  
531  $\delta^{18}\text{O}$  values of *N. dutertrei*, whereas enhanced mixing and homogenization of the water  
532 column under strong IWM conditions would decrease  $\delta^{18}\text{O}$ . The minimum of  $\delta^{18}\text{O}$  in *N.*  
533 *dutertrei* occurs between 4.5 and 4.3 ka BP, pointing to a period of strengthened IWM. We  
534 interpret the stepped increase in  $\delta^{18}\text{O}$  of *N. dutertrei* at 4.1 ka BP to represent a decrease in  
535 IWM wind-driven mixing. Similarly,  $\delta^{13}\text{C}$  of *N. dutertrei* increases significantly after 4.1 ka BP

536 (Figure 37), which ~~would~~ could also suggest indicate reduced upwelling of low  $\delta^{13}\text{C}$   
537 intermediate water under a weaker IWM (Lynch-Stieglitz, 2006; Ravelo and Hillaire-Marcel,  
538 2007; Sautter and Thunell, 1991); however, the interpretation of  $\delta^{13}\text{C}$  remains uncertain  
539 because of a poor understanding of the controls on the  $\delta^{13}\text{C}$  of planktonic foraminifera in this  
540 region. According to the  $\delta^{18}\text{O}$  signal of *N. dutertrei*, the temperature pattern in the  
541 thermocline implies surface cooling between 4.5 and 4.3 ka BP and surface warming after 4.1  
542 ka BP interrupted only by a period of cooling between 3.7 and 3.3 ka BP, which is in broad  
543 agreement with records of alkenone sea-surface temperature estimates from cores in the  
544 northeastern Arabian Sea (“E” in Figure 1) (Doose-Rolinski et al., 2001; Staubwasser, 2012).

545

## 546 5.2 Interpretation of foraminifer $\Delta\delta^{18}\text{O}$

547

548 By using  $\Delta\delta^{18}\text{O}$  between foraminifer species, we can distinguish additional processes affecting  
549 the surface waters and thermocline (Ravelo and Shackleton, 1995). This technique has been  
550 used previously to infer changes in the strength of the East Asian Winter Monsoon (EAWM)  
551 in the South China Sea (Tian et al., 2005), as well as mixed layer and thermocline depth in  
552 other studies (Billups et al., 1999; Cannariato and Ravelo, 1997; Norris, 1998). Here we use  
553 the difference in the  $\delta\delta^{18}\text{O}$  of *G. ruber* and *N. dutertrei* ( $\Delta\delta^{18}\text{O}_{\text{d-r}}$ ) to track changes in the  
554 surface-to-deep gradient. This gradient can be driven by either  $\delta^{18}\text{O}$  changes in the surface-  
555 dwelling (*G. ruber*) and/or the thermocline-dwelling species (*N. dutertrei*). During times of a  
556 strengthened winter monsoon,  $\Delta\delta^{18}\text{O}_{\text{d-r}}$  will decrease as surface waters are homogenized and  
557 the thermocline deepens. Similarly,  $\Delta\delta^{18}\text{O}_{\text{d-r}}$  will also decrease during times of a weakened  
558 summer monsoon, as decreased Indus River discharge will increase surface water salinity and  
559  $\delta^{18}\text{O}$  of *G. ruber* will become more similar to *N. dutertrei*.

560

561 *G. sacculifer* is also a surface dweller, but has a slightly deeper depth habitat than *G. ruber*.  
562 We thus expect *G. ruber* to be more influenced by surface salinity variations than *G. sacculifer*,  
563 and suggest the  $\delta^{18}\text{O}$  difference between the two species ( $\Delta\delta^{18}\text{O}_{\text{s-r}}$ ) reflects the influence of  
564 Indus River discharge on near surface salinity. The ~~greatest~~ ~~smallest~~ difference in  $\Delta\delta^{18}\text{O}_{\text{s-r}}$   
565 occurs at 4.1 ka BP, which is interpreted as an increase in surface water salinity (Figure 68).

566

567 The difference in  $\delta^{18}\text{O}$  between *G. sacculifer* and *N. dutertrei* ( $\Delta\delta^{18}\text{O}_{\text{d-s}}$ ) also reflects surface  
568 mixing and thermocline depth, but *G. sacculifer* is less affected by surface salinity changes  
569 than *G. ruber*. Thus, the responses of  $\Delta\delta^{18}\text{O}_{\text{sd-ts}}$  and  $\Delta\delta^{18}\text{O}_{\text{d-sf}}$  can be used to differentiate  
570 between surface water salinity changes and wind-driven mixing. Accordingly, simultaneously  
571 low  $\Delta\delta^{18}\text{O}_{\text{d-s}}$  and  $\Delta\delta^{18}\text{O}_{\text{d-r}}$  indicate a period of increased surface water mixing and increased  
572 IWM (such as the period between 4.5 and 4.3 ka BP), but times of relatively low  $\Delta\delta^{18}\text{O}_{\text{d-s}}$  but  
573 high  $\Delta\delta^{18}\text{O}_{\text{d-r}}$  and  $\Delta\delta^{18}\text{O}_{\text{s-r}}$  (around 5.0 ka BP) indicate periods of increased Indus discharge and  
574 strength of the ISM and IWM.

575

576 ~~However, t~~ The following period of low  $\Delta\delta^{18}\text{O}_{\text{d-r}}$  but high  $\Delta\delta^{18}\text{O}_{\text{d-s}}$  from 4.1-3.9 ka BP is likely  
577 driven by increased salinity of surface water. This distinction becomes clearer when  
578 examining the  $\Delta\delta^{18}\text{O}_{\text{s-r}}$ , where increased similarity from 4.8-3.9 ka BP (with a sharp increase  
579 at 4.1 ka BP) reflects the effect of increased sea surface salinity that reduces the  $\delta^{18}\text{O}$   
580 difference between *G. ruber* and *G. sacculifer*. At the same time, weakened winter mixing  
581 increases  $\Delta\delta^{18}\text{O}_{\text{d-s}}$ , which occurs from 4.2-3.9 ka BP. Importantly, the proxies also indicate that  
582 increased IWM mixing is generally positively correlated with increased Indus discharge, and

583 vice versa. The single time period when this does not hold true is 4.5-4.25 ka BP, when  
584 increased IWM mixing is coupled with decreased Indus discharge.

585  
586 In summary, our multi-species approach using  $\delta^{18}\text{O}$  of *G. ruber*, *G. sacculifer*, and *N. dutertrei*  
587 allows us to differentiate between strength of the IWM and freshwater discharge of the Indus  
588 River. We suggest that ISM strength decreased gradually from at least 4.8 ka BP, while the  
589 IWM strength peaked around 4.5-4.3 ka BP and then weakened afterwards. It is unlikely that  
590 the abrupt increase in *G. ruber*  $\delta^{18}\text{O}$  at 4.1 ka BP and low  $\Delta\delta^{18}\text{O}_{\text{s-r}}$  could be caused solely by  
591 the decrease in IWM strength, even though IWM contributes to Indus River discharge.  
592 Weakening of the ISM must have played a substantial role in the 4.1 ka BP shift as well,  
593 indicated by the period 4.5-4.25 ka BP, when Indus discharge reflected a weak ISM ( $\Delta\delta^{18}\text{O}_{\text{s-r}}$ )  
594 despite a phase of strengthened IWM.

595  
596 *5.3 Comparison to marine records*

597  
598 ~~The interpretation of core 63KA relies on proxies that directly link surface water salinity to ISM precipitation and Indus River discharge, and thermocline shifts to related IWM driven mixing. Additionally, there is an established mechanism relating mixing with IWM strength, as anomalously cool and evaporative conditions over the northern Arabian Sea (promoting deeper winter mixing) correlates with increased winter precipitation in the western Himalayas (Dimri, 2006). The strength of the 63KA core lies in its highly resolved age model, high sedimentation rates and its position in particularly saline surface waters (ASHSW) close to highly contrasting freshwater sources. Additionally, both the ISM and IWM are co-registered in proxies in the same laminated core with no bioturbation, thereby permitting an explicit evaluation of the relative timing of the two monsoons.~~

600  
601  
602  
603  
604  
605  
606  
607  
608 Other marine records from the Arabian Sea also suggest a gradual decrease in ISM strength  
609 ~~since from~~ ~~~5 ka BP (Gupta et al., 2003; Overpeck et al., 1996)~~. Cullen et al. (2000) observed  
610 an abrupt peak in aeolian dolomite and calcite in marine sediments in the Gulf of Oman from  
611 4.0-3.6 ka BP, and Ponton et al. (2012) also showed a shift to weaker ISM after 4.0 ka BP in  
612 the Bay of Bengal, based on  $\delta^{13}\text{C}$  of leaf waxes. Marine IWM reconstructions are not  
613 particularly coherent: although Doose-Rolinski et al. (2001) find a decrease in evaporation  
614 and weakening of the ISM between 4.6 and 3.7 ka BP, they argue this was accompanied by a  
615 relative increase in IWM strength. Giosan et al. (2018, *in review*) inferred enhanced winter  
616 monsoon conditions from 4.5-3.0 ka BP based on a planktic paleo-DNA and % *Globigerina*  
617 *falconensis* record close to our coring site ("C" in Figure 1), which ~~contradicts~~ ~~disagrees with~~  
618 our finding of decreased upper ocean mixing after 4.3 ka BP. We suggest ~~the~~ ~~that~~ the high  
619 stratigraphic (i.e., laminated) and chronological (i.e., 15 radiocarbon dates between 5.4-3.0  
620 ka BP) resolution of core 63KA paired with a multi-species foraminifer  $\delta^{18}\text{O}$  record ~~can~~  
621 ~~provides a more detail about~~ ~~robust history of~~ the timing of changes in IWM and ISM strength,  
622 ~~but additional studies are needed to resolve some of the discrepancies among the records.~~

623  
624  
625 *5.4 Comparison to regional terrestrial records*

626  
627 The 63KA  $\delta^{18}\text{O}$  record obtained from three foraminifer species highlights several important  
628 ocean-atmosphere changes over the 5.4-3.0 ka BP time period. First, a sharp decrease  
629 occurred in both summer and winter precipitation at 4.1 ka BP, which is within a broader 300-

630 year period of increased aridity spanning both rainfall seasons between 4.2 and 3.9 ka BP. In  
631 detail, we infer a relative decrease in Indus River discharge and weakened ISM between 4.8  
632 and 3.9 ka BP, peaking at 4.1 ka BP, while a 200-year-long phase interval of strong IWM  
633 interrupted this period from 4.5-4.3 ka BP. Furthermore, the stepped change in  $\delta^{18}\text{O}$  of *N.  
634 dutertrei* suggests an enduring change in ocean-atmosphere conditions after 4.1 ka BP.  
635

636 A relatively abrupt ~4.2 ka BP climate event has been observed in several terrestrial records  
637 on the Indian subcontinent, most notably Mawmluh Cave (~4.1-3.9 ka BP) in northeastern  
638 India (Berkelhammer et al., 2012) and Kotla Dahir (~4.1 ka BP) in northwestern India (Dixit et  
639 al., 2014) (Figure 79). A less abrupt yet still arid period is documented in a peat profile (~4.0-  
640 3.5 ka BP) from northcentral India (Phadtare, 2000), at Lonar Lake (~4.6-3.9 ka BP) in central  
641 India (Menzel et al., 2014), and at Rara Lake (~4.2-3.7 ka BP) in western Nepal (Nakamura et  
642 al., 2016). Finally, a recent study of oxygen and hydrogen isotopes in gypsum hydration water  
643 from Karsandi on the northern margin of the Thar Desert showed wet conditions between 5.1  
644 and 4.4 ka BP, after which the playa lake dried out sometime between 4.4 and 3.2 ka BP (Dixit  
645 et al., 2018). Considering terrestrial records can record more local climatic conditions than  
646 marine records, it is remarkable that the records collectively agree on a regional phase period  
647 of regional aridity between 4.2 and 3.9 ka BP within the uncertainties of the age models that  
648 vary considerably among records.  
649

650 However, not all records support this finding, such as for example, a reconstruction from  
651 Sahiya Cave in northwestern India that shows an abrupt decrease in  $\delta^{18}\text{O}$  interpreted to  
652 reflect an increase in monsoon strength from ~4.3-4.15 ka BP, followed by an arid trend after  
653 4.15 ka BP (Kathayat et al., 2017). In addition, several other Thar Desert records do not  
654 identify a “4.2 ka BP event” *sensu stricto*, but instead suggest that lakes dried out several  
655 centuries earlier (Deotare et al., 2004; Enzel et al., 1999; Singh et al., 1990) or later (Sinha et  
656 al., 2006) than 4.2 ka BP. This discrepancy may relate to non-linear climate responses of lakes,  
657 which would not record a drought at 4.2 ka BP if they had already dried out earlier from the  
658 ongoing decrease in summer rainfall. In addition, there are also significant concerns about  
659 chronological uncertainties when using from the use of radiocarbon of bulk sediment for  
660 dating in some of these records. It is also possible that variations in the timing of climate  
661 change inferred from the terrestrial records may be real, reflecting different sensitivity to ISM  
662 and IWM rain. As a marine record, core 63KA integrates large-scale ocean-atmosphere  
663 changes, and therefore can help inform the interpretation of the more locally sensitive  
664 terrestrial records.  
665

666 More distantly, several terrestrial records in the Middle East also show a decrease in winter  
667 precipitation proxies around 4.2 ka BP: Jeita Cave in Lebanon records a relatively dry period  
668 between 4.4 and 3.9 ka BP (Cheng et al., 2015) and Soreq Cave in Israel shows a period of  
669 increased aridity starting at ~4.3 ka BP (Bar-Matthews et al., 2003; Bar-Matthews and Ayalon,  
670 2011) (Figure 810). Lake Van in eastern Turkey also records reduced spring rainfall and  
671 enhanced aridity after ~4.0 ka BP (Wick et al., 2003; Lemcke and Sturm, 1997). All of these  
672 records suggest a relatively arid phase period in with reduced winter precipitation after ~4.3  
673 ka BP, as inferred from core 63-KA. Qunf Cave in Oman (Fleitmann et al., 2003), which is  
674 outside the range of IWM influence, instead shows a steady mid-Holocene weakening of the  
675 ISM that closely follows trends in summer solar insolation. Core 63 KA also infers a protracted  
676 decrease in ISM since ~4.8 ka BP.

677  
678



679  
680  
681

**Figure 79.** Comparison of the  $\delta^{18}\text{O}$  record of core 63KA with terrestrial records from the Indian Subcontinent, from top to bottom: this study (first two), Berkelhammer et al., 2012; Dixit et al., 2018;

682 Dixit et al., 2014; this study; Nakamura et al., 2016; Kathayat et al., 2017. The mean value for each  
 683 record indicated by the horizontal dashed lines is taken for all available data between 6.0-2.5 ka BP.  
 684



685  
 686 **Figure 810.** Comparison of the  $\delta^{18}\text{O}$  record of core 63KA (topmost records) with more distant records,  
 687 from top to bottom: Bar-Matthews et al., 2003; Cheng et al., 2015; and Fleitmann et al., 2003. Mean  
 688 The mean value for each record indicated by the horizontal dashed lines is taken for all available data  
 689 between 6.0-2.5 ka BP.

690  
 691  
 692

### 5.5 Cultural impacts

693 ~~Based on~~On the basis of our reconstruction of reduced IWM mixing after 4.3 ka BP,  
694 accompanied by decreased freshwater discharge of the Indus River, it is worth considering  
695 what impacts could be expected from a reduction in IWM and ISM precipitation. A weakened  
696 IWM overlying a reduced or more variable ISM would likely result in a distinct climate signal  
697 over the Indus River catchment, with broad implications for seasonal river flow and water  
698 availability throughout the year. The presence of the two rainfall systems creates a complex  
699 and diverse range of environments and ecologies across northwest South Asia (Petrie et al.,  
700 2017). In a situation when rainfall in both seasons is reduced over extended periods, step-  
701 shifts in the natural environment may occur that are difficult to reverse (*e.g.*, desertification,  
702 lake desiccation, regional vegetation changes, decline in overbank flooding and shift in river  
703 avulsion patterns).

704  
705 Societies reliant on IWM, ISM, or a combination of the two would have been vulnerable to  
706 years with monsoon failure, and a shift affecting both seasons will have challenged resilience  
707 and tested sustainability (Green and Bates et al. in prepress-; Petrie et al., 2017).  
708 Archaeological research into the transition from the urban Mature Harappan phase (~4.6-3.9  
709 ka BP) to the post-urban Late Harappan phase (~3.9-3.6 ka BP) notes progressive  
710 deurbanization through the abandonment of large Indus cities and a depopulation of the  
711 most western Indus regions, concurrent with a general trend towards an increase of  
712 concentrations of rural settlements in some areas of the eastern Indus extent (Green and  
713 Petrie, 2018; Petrie et al., 2017; Possehl, 1997) (Figure S6). The relatively limited range of  
714 well-resolved available archaeobotanical data suggests that there was a degree of diversity in  
715 crop choice and farming strategies in different parts of the Indus Civilization across this time  
716 span (Petrie et al., 2016; Petrie and Bates, 2017; Weber, 1999; Weber et al., 2010). Farmers  
717 in southerly regions appear to have focused on summer or winter crops, while the more  
718 northern regions of Pakistan Punjab and Indian Punjab and Haryana were capable of  
719 supporting combinations of winter and summer crops (Petrie and Bates, 2017). Although  
720 there is evidence for diverse cropping practices involving both summer and winter crops in  
721 the northern areas during the urban period, agricultural strategies appeared to favor more  
722 intensive use of drought-resistant summer crops in the Late Harappan period (Madella and  
723 Fuller, 2006; Petrie and Bates, 2017; Pokharia et al., 2017; Weber, 2003; Wright, 2010). It has  
724 previously been suggested that weakened ISM was a major factor in these shifts (*e.g.* Giosan  
725 et al., 2012; Madella and Fuller, 2006). ~~On the basis of~~Based on our reconstruction of  
726 decreased IWM in northwest South Asia after 4.3 ka BP with a step-shift at 4.1 ka BP, we  
727 suggest that both IWM and ISM climatic factors played a role in shaping the human landscape.  
728 This includes the redistribution of population to smaller settlements in eastern regions with  
729 more direct summer rain, as well as the observed shift to more increased summer crop  
730 dominated cropping strategies.

731  
732 **6. Conclusion**

733  
734 This study expanded on the  $\delta^{18}\text{O}$  record of planktonic foraminifer in core 63KA of the  
735 northeastern Arabian Sea, originally published by Staubwasser et al. (2003). Using  $\delta^{18}\text{O}$  of the  
736 surface-dwelling foraminifera *G. ruber*, the original study inferred an abrupt reduction in  
737 Indus River discharge at ~4.2 ka BP. Our further  $\delta^{18}\text{O}$  analysis of a larger size fraction of this  
738 species confirmed corroborates maximum salinity at 4.1 and 3.95 ka BP. In addition, the  $\delta^{18}\text{O}$   
739 difference between the surface-dwelling *G. ruber* and slightly deeper-dwelling *G. sacculifer*

740  $(\Delta\delta^{18}\text{O}_{\text{s-r}})$  reveals that surface waters were more saline than average for the period from 4.8-  
741 3.9 ka BP. By also measuring a thermocline-dwelling planktonic foraminiferal species, *N.*  
742 *dutertrei*, we infer an increase in the strength of the IWM between 4.5 and 4.3 ka BP, followed  
743 by reduction in IWM-driven mixing that peaks-reaches a minimum at 4.1 ka BP.

744  
745 Assuming that weaker IWM mixing implies a reduction in IWM rainfall amount or duration  
746 over northwest South Asia under past climatic conditions, the 63KA core is used to infer  
747 important changes in seasonal hydrology of the Indus River catchment. We propose that a  
748 combined weakening of the IWM and ISM at 4.1 ka BP led to what has been termed the “4.2  
749 ka BP” drought over northwest South Asia. The intersection of both a gradually weakening  
750 ISM since 4.8 ka BP and a maximum decrease in IWM strength at 4.1 ka BP resulted in a  
751 spatially layered and heterogeneous drought over a seasonal to annual timescale. Regions in  
752 the western part of the Indus River basin accustomed to relying mainly on winter rainfall (also  
753 via river run-off) would have been most severely affected by such changes. Regions in the  
754 northeastern and eastern extents benefitted more from summer rainfall, and would have  
755 been less severely affected, particularly as the ISM appears to recover strength by 3.9 ka BP.  
756

757 Relatively strengthened IWM surface water mixing between 4.5 and 4.3 ka BP correlates with  
758 a period of higher precipitation recorded at Karsandi on the northern margin of the Thar  
759 Desert (Dixit et al., 2018), an area within the summer rainfall zone that is also sensitive to  
760 small changes in winter precipitation. This time span also represents the beginnings of the  
761 Mature Harappan phase (Possehl, 2002; Wright, 2010), which implies that increasingly  
762 urbanized settlements may have flourished under a strengthened IWM. With a weakening of  
763 the IWM at ~4.1 ka, eastern regions with more access to ISM rainfall may have been more  
764 favorable locations for agriculture. This may also help explain the broad shift in population  
765 towards more rural settlements in the northeastern extent of the Indus Civilization that  
766 occurred by ~3.9 ka BP (Possehl, 1997; Petrie et al., 2017), and a shift to more drought-  
767 tolerant kharif (summer) season crops in Gujarat (Pokharia et al., 2017) and at Harappa  
768 (Madella and Fuller, 2006; Weber, 2003).

769  
770 Given the importance of the relationships between humans and the environment during the  
771 time of the Indus Civilization, understanding the impact of the IWM on precipitation  
772 variability in northwest South Asia remains a critical area of research. We especially need a  
773 better understanding of the wind patterns and moisture pathways that controlled the IWM  
774 in the past. Disentangling both the length and intensity of seasonal precipitation is a crucial  
775 aspect of understanding the impact of climate change on past societies, particularly in a  
776 diverse region relying on mixed water sources (e.g., fluvial, ground aquifer, direct rainfall).

777  
778 **Data availability**  
779

780 Data presented in the paper can be accessed by contacting the corresponding author at  
781 [ag927@cam.ac.uk](mailto:ag927@cam.ac.uk). After final acceptance of the manuscript, the data will also be uploaded  
782 to an online database.

783  
784 **Author contributions**  
785

786 M.S. supplied core 63KA material, A.G. prepared the material for isotopic measurements, and  
787 A.G. and D.A.H. interpreted the results. A.G., D.A.H., and C.A.P. wrote the manuscript.

788

## 789 Competing interests

790

791 The authors declare that they have no conflict of interest.

792

## 793 Acknowledgements

794

795 This work research was carried out as part of the TwoRains project, which is supported by the  
796 ERC funded TwoRains project funding from the European Research Council (ERC) under the  
797 European Union's Horizon 2020 research and innovation programme (grant agreement no  
798 648609). The authors thank the following persons at the University of Cambridge: Maryline  
799 Vautravers for foraminifera identification, James Rolfe and John Nicolson for  $\delta^{18}\text{O}$   
800 measurements. We also thank our editor and reviewers for comments that improved the  
801 manuscript.

802

## 803 References

804

805 Agrawal, D. P.: The Indus Civilization: an interdisciplinary perspective, Aryan Books  
806 International, New Delhi, India, 2007.

807 Ahmad, N., Mohammad, A., and Khan, S. T.: Country Report on Water resources of Pakistan,  
808 in South Asia Water Balance Workshop. Hansen Institute for World Peace, San Diego,  
809 California, USA, 30 April – 2 May 2001, 2001.

810 Banse, K.: Overview of the hydrography and associated biological phenomena in the Arabian  
811 Sea off Pakistan, in Marine Geology and Oceanography of the Arabian Sea and Coastal  
812 Pakistan, Ed. Haq, B. U., and Milliman, J. D., pp. 273-301, Van Nostrand Reinhold, New  
813 York, 1984.

814 Bar-Matthews, M., and Ayalon, A.: Mid-Holocene climate variations revealed by high-  
815 resolution speleothem records from Soreq Cave, Israel and their correlation with cultural  
816 changes, *The Holocene*, 21, 163-171, 2011.

817 Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C. J.: Sea-land  
818 oxygen isotopic relationships from planktonic foraminifera and speleothems in the  
819 Eastern Mediterranean region and their implication for paleorainfall during interglacial  
820 intervals, *Geochimica et Cosmochimica Acta*, 67, 3181-3199, 2003.

821 Bé, A. W., and Hutson, W. H.: Ecology of planktonic foraminifera and biogeographic patterns  
822 of life and fossil assemblages in the Indian Ocean, *Micropaleontology*, 369-414, 1977.

823 Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the oxygen isotopic  
824 composition of planktonic foraminifera: Experimental results and revised  
825 paleotemperature equations. *Paleoceanography*, 13, 150-160, 1998.

826 Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F. S., and Yoshimura, K.: An  
827 abrupt shift in the Indian monsoon 4000 years ago, *Geophys. Monogr. Ser.*, 198, 2012.

828 Billups, K., Ravelo, A. C., Zachos, J. C., and Norris, R. D.: Link between oceanic heat transport,  
829 thermohaline circulation, and the Intertropical Convergence Zone in the early Pliocene  
830 Atlantic, *Geology*, 27, 319-322, 1999.

831 Blaauw, M., and Christen, J. A.: Flexible paleoclimate age-depth models using an  
832 autoregressive gamma process, *Bayesian analysis*, 6, 457-474, 2011.

833 [Chaudhuri, P., and Marron, J. S.: SiZer for exploration of structures in curves, Journal of the](#)  
834 [American Statistical Association, 94, 807-823, 1999.](#)

835 Cheng, H., Sinha, A., Verheyden, S., Nader, F. H., Li, X. L., Zhang, P. Z., Yin, J. J., Yi, L., Peng., Y.  
836 B., Rao, Z. G., Ning, Y. F., and Edwards, R. L.: The climate variability in northern Levant  
837 over the past 20,000 years, *Geophysical Research Letters*, 42, 8641-8650, 2015.

838 Cannariato, K.G., and Ravelo, A.C.: Pliocene-Pleistocene evolution of eastern tropical Pacific  
839 surface water circulation and thermocline depth. *Paleoceanography*, 12, 805-820, doi:  
840 10.1029/97PA02514, 1997.

841 Cayre, O., and Bassinot, F.: Oxygen isotope composition of planktonic foraminiferal shells  
842 over the Indian Ocean: calibration to modern oceanographic data. *Mineral Mag*, 62, 288-  
843 289, 1998.

844 Curry, W. B., Ostermann, D. R., Guptha, M. V. S., and Ittekkot, V.: Foraminiferal production  
845 and monsoonal upwelling in the Arabian Sea: evidence from sediment traps, *Geological*  
846 *Society, London, Special Publications*, 64, 93-106, 1992.

847 Cullen, H. M., deMenocal, P. B., Hemming, S., Hemming, G., Brown, F. H., Guilderson, T., and  
848 Sirocko, F.: Climate change and the collapse of the Akkadian empire: Evidence from the  
849 deep sea, *Geology*, 28, 379-382, 2000.

850 Dahl, K. A., and Oppo, D. W.: Sea surface temperature pattern reconstructions in the  
851 Arabian Sea, *Paleoceanography*, 21, 2006.

852 Deotare, B. C., Kajale, M. D., Rajaguru, S. N., Kusumgar, S., Jull, A. J. T., and Donahue, J. D.:  
853 Palaeoenvironmental history of Bap-Malar and Kanod playas of western Rajasthan, Thar  
854 desert, *Journal of Earth System Science*, 113, 403-425, 2004.

855 Dimri, A. P.: Surface and upper air fields during extreme winter precipitation over the  
856 western Himalayas, *Pure and Applied Geophysics*, 163, 1679-1698, 2006.

857 Dimri, A. P., and Dash, S. K.: Wintertime climatic trends in the western Himalayas. *Climatic*  
858 *Change*, 111, 775-800, 2012.

859 Dixit, Y., Hodell, D. A., and Petrie, C. A.: Abrupt weakening of the summer monsoon in  
860 northwest India ~4100 yr ago, *Geology*, 42, 339-342, 2014.

861 Dixit, Y., Hodell, D. A., Giesche, A., Tandon, S. K., Gázquez, F., Saini, H. S., Skinner, L. C.,  
862 Mujtaba, S. A. I., Pawar, V., Singh, R.N., and Petrie, C. A.: Intensified summer monsoon  
863 and the urbanization of Indus Civilization in northwest India, *Scientific reports*, 8, 4225,  
864 2018.

865 Doose-Rolinski, H., Rogalla, U., Scheeder, G., Lückge, A., and Rad, U.: High-resolution  
866 temperature and evaporation changes during the late Holocene in the northeastern  
867 Arabian Sea, *Paleoceanography and Paleoclimatology*, 16, 358-367, 2001.

868 Duplessy, J. C., Labeyrie, L., Arnold, M., Paterne, M., Duprat, J., and van Weering, T. C.:  
869 Changes in surface salinity of the North Atlantic Ocean during the last deglaciation.  
870 *Nature*, 358, 485, 1992.

871 Enzel, Y., Ely, L. L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru, S.N., Baker, V. R., and  
872 Sandler, A.: High-resolution Holocene environmental changes in the Thar Desert,  
873 northwestern India, *Science*, 284, 125-128, 1999.

874 Farmer, E. C., Kaplan, A., de Menocal, P. B., and Lynch-Stieglitz, J.: Corroborating ecological  
875 depth preferences of planktonic foraminifera in the tropical Atlantic with the stable  
876 oxygen isotope ratios of core top specimens, *Paleoceanography*, 22, 2007.

877 Finné, M., Holmgren, K., Sundqvist, H. S., Weiberg, E., and Lindblom, M.: Climate in the  
878 eastern Mediterranean, and adjacent regions, during the past 6000 years—A review,  
879 *Journal of Archaeological Science*, 38, 3153-3173, 2011.

880 Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A.:  
881 Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman,  
882 *Science*, 300, 1737-1739, 2003.

883 ~~Fleitmann, D., Burns, S. J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A. A., Buettner, A., Hippler, D., and Matter, A.: Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra), *Quaternary Science Reviews*, 26, 170-188, 2007.~~

887 Gadgil, S.: The Indian monsoon and its variability, *Annual Review of Earth and Planetary Sciences*, 31, 429-467, 2003.

888 Giosan, L., Clift, P. D., Macklin, M. G., Fuller, D. Q., Constantinescu, S., Durcan, J. A., Stevens, T., Duller, G. A. T., Tabrez, A. R., Gangal, K., Adhikari, R., Alizai, A., Filip, F., Van Laningham, S., and Syvitski, J. P. M.: Fluvial landscapes of the Harappan civilization, *Proceedings of the National Academy of Sciences*, 109, E1688-E1694, 2012.

893 Giosan, L., Orsi, W. D., Coolen, M., Wuchter, C., Dunlea, A. G., Thirumalai, K., Munoz, S. E., Clift, P. D., Donnelly, J. P., Galy, V., and Fuller, D. Q.: Neoglacial Climate Anomalies and the Harappan Metamorphosis, *Climate of the Past*, 14, 1669-1686, ~~.Past Discuss., doi:10.5194/cp-2018-37, in review~~, 2018.

897 Green, A. S., Bates, J., Acabado, S., Coutros, P., Glover, J., Miller, N., Sharratt, N., and Petrie, C.A.: How to Last a Millennium; Or a Global Perspective on the Long-Term Dynamics of Human Sustainability, in ~~preparation~~ ~~press (under review)~~ for *Nature Sustainability*.

900 Green, A. S., and Petrie, C. A.: Landscapes of Urbanization and De-Urbanization: A Large-Scale Approach to Investigating the Indus Civilization's Settlement Distributions in Northwest India, *Journal of Field Archaeology*, 1-16, 2018.

903 Gupta, A. K., Anderson, D. M., and Overpeck, J. T.: Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. *Nature*, 421, 354, 2003.

906 Hastenrath, S., and Lamb, P. J.: Climatic atlas of the Indian Ocean. Part II: The oceanic heat budget, Wisconsin University Press, Madison, Wisconsin, USA, 93, 17, 1979.

908 Hatwar, H. R., Yadav, B. P., and Rao, Y. R.: Prediction of western disturbances and associated weather over Western Himalayas, *Current science*, 913-920, 2005.

910 Hemleben, C., Spindler, M., and Anderson, O. R.: Modern planktonic foraminifera. Springer Science and Business Media, 2012.

912 Joseph, S., and Freeland, H. J.: Salinity variability in the Arabian Sea. *Geophysical research letters*, 32, 2005.

914 Karim, A., and Veizer, J.: Water balance of the Indus River Basin and moisture source in the Karakoram and western Himalayas: Implications from hydrogen and oxygen isotopes in river water, *Journal of Geophysical Research: Atmospheres*, 107, ACH-9, 2002.

917 Kathayat, G., Cheng, H., Sinha, A., Yi, L., Li, X., Zhang, H., Li, H., Ning, Y., and Edwards, R. L.: The Indian monsoon variability and civilization changes in the Indian subcontinent, *Science advances*, 3, e1701296, 2017.

920 Kim, S. T., and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, *Geochimica et Cosmochimica Acta*, 61, 3461-3475, 1997.

922 ~~Kumar, S. P., and Prasad, T. G.: Formation and spreading of Arabian Sea high-salinity water mass, *Journal of Geophysical Research: Oceans*, 104, 1455-1464, 1999.~~

924 Lemcke, G., and Sturm, M.:  $\delta^{18}\text{O}$  and trace element measurements as proxy for the reconstruction of climate changes at Lake Van (Turkey): Preliminary results, in *Third*

926 millennium BC climate change and Old World collapse, Springer, Berlin, Heidelberg,  
927 Germany, 653-678, 1997.

928 Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K.,  
929 Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.:  
930 World Ocean Atlas 2013, Volume 1: Temperature. S. Levitus, Ed., A. Mishonov Technical  
931 Ed., NOAA Atlas NESDIS 73, 40 pp., 2013.

932 Lynch-Stieglitz, J.: Tracers of past ocean circulation, in: Treatise on geochemistry, 6,  
933 Elderfield, H., Holland, H. D., and Turekian, K. K. (Eds), Elsevier, 433-451, 2006.

934 Madella, M., and Fuller, D. Q.: Palaeoecology and the Harappan Civilisation of South Asia: a  
935 reconsideration, Quaternary Science Reviews, 25, 1283-1301, 2006.

936 Madhupratap, M., Kumar, S. P., Bhattathiri, P. M. A., Kumar, M. D., Raghukumar, S., Nair, K.  
937 K. C., and Ramaiah, N.: Mechanism of the biological response to winter cooling in the  
938 northeastern Arabian Sea, Nature, 384, 549-552, 1996.

939 Maslin, M. A., Shackleton, N. J., and Pflaumann, U.: Surface water temperature, salinity, and  
940 density changes in the northeast Atlantic during the last 45,000 years: Heinrich events,  
941 deep water formation, and climatic rebounds, Paleoceanography, 10, 527-544, 1995.

942 Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K. A., Meeker, L. D.,  
943 Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack,  
944 F., Staubwasser, M., Schneider, R.R., and Steig, E.J.: Holocene climate variability,  
945 Quaternary research, 62, 243-255, 2004.

946 Menzel, P., Gaye, B., Mishra, P. K., Anoop, A., Basavaiah, N., Marwan, N., Plessen, B., Prasad,  
947 S., Riedel, N., Stebich, M., and Wiesner, M. G.: Linking Holocene drying trends from Lonar  
948 Lake in monsoonal central India to North Atlantic cooling events, Palaeogeography,  
949 palaeoclimatology, palaeoecology, 410, 164-178, 2014.

950 Nakamura, A., Yokoyama, Y., Maemoku, H., Yagi, H., Okamura, M., Matsuoka, H., Miyake,  
951 N., Osada, T., Adhikari, D. P., Dangol, V., Ikehara, M., Miyairi, Y., and Matsuzaki, H.: Weak  
952 monsoon event at 4.2 ka recorded in sediment from Lake Rara, Himalayas, Quaternary  
953 International, 397, 349-359, 2016.

954 Norris, R. D.: Planktonic foraminifer biostratigraphy: eastern equatorial Atlantic, in:  
955 Proceedings of the Ocean Drilling Program: Scientific results, 159, 445-479, 1998.

956 Overpeck, J., Anderson, D., Trumbore, S., and Prell, W.: The southwest Indian Monsoon over  
957 the last 18000 years. Climate Dynamics, 12, 213-225, 1996.

958 Petrie, C. A., and Bates, J.: 'Multi-cropping', Intercropping and Adaptation to Variable  
959 Environments in Indus South Asia. Journal of World Prehistory, 30, 81-130, 2017.

960 Petrie, C. A., Bates, J., Higham, T., and Singh, R. N.: Feeding ancient cities in South Asia:  
961 dating the adoption of rice, millet and tropical pulses in the Indus civilisation. Antiquity,  
962 90, 1489-1504, 2016.

963 Petrie, C. A., Singh, R. N., Bates, J., Dixit, Y., French, C. A., Hodell, D. A., Pandey, A. K., Parikh,  
964 D., Pawar, V., Redhouse, D. I., and Singh, D. P.: Adaptation to variable environments,  
965 resilience to climate change: Investigating land, water and settlement in Indus Northwest  
966 India, Current Anthropology, 58, 2017.

967 Phadtare, N. R.: Sharp decrease in summer monsoon strength 4000–3500 cal yr BP in the  
968 Central Higher Himalaya of India based on pollen evidence from alpine peat, Quaternary  
969 Research, 53, 122-129, 2000.

970 Pokharia, A. K., Agnihotri, R., Sharma, S., Bajpai, S., Nath, J., Kumaran, R. N., and Negi, B. C.:  
971 Altered cropping pattern and cultural continuation with declined prosperity following

972 abrupt and extreme arid event at ~4,200 yrs BP: Evidence from an Indus archaeological  
973 site Khirsara, Gujarat, western India, PLoS one, 12, 2017.

974 Ponton, C., Giosan, L., Eglinton, T. I., Fuller, D. Q., Johnson, J. E., Kumar, P., and Collett, T. S.:  
975 Holocene aridification of India, *Geophysical Research Letters*, 39, 2012.

976 Possehl, G. L.: The transformation of the Indus civilization, *Journal of World Prehistory*, 11,  
977 425-472, 1997.

978 Possehl, G. L.: *The Indus Civilization: a Contemporary Perspective*. Rowman Altamira, 2002.

979 Possehl, G. L.: The Indus Civilization: an introduction to environment, subsistence, and  
980 cultural history. *Indus ethnobiology*, 1-20, 2003.

981 Prasad, S., and Enzel, Y.: Holocene paleoclimates of India. *Quaternary Research*, 66, 442-  
982 453, 2006.

983 Ramasastri, K.S.: Snow melt modeling studies in India, in: *The Himalayan Environment*, S.K.  
984 Dash and J. Bahadur (Eds.), New Age International, 59–70, 1999.

985 Rangachary, N., and Bandyopadhyay, B. K.: An analysis of the synoptic weather pattern  
986 associated with extensive avalanching in Western Himalaya, *Int. Assoc. of Hydrol. Sci.*  
987 *Publ*, 162, 311-316, 1987.

988 Rao, Y.P.: The Climate of the Indian Sub-Continent, in: World Survey of Climatology, 9,  
989 Climates of Southern and Western Asia, Elsevier, Amsterdam, Netherlands, 67 182, 1981.

990 Ravelo, A. C., and Hillaire-Marcel, C.: Chapter Eighteen the use of oxygen and carbon  
991 isotopes of foraminifera in Paleoceanography, *Developments in Marine Geology*, 1, 735-  
992 764, 2007.

993 Ravelo, A.C., and Shackleton, N.J.: Evidence for surface-water circulation changes at Site 851  
994 in the eastern Tropical Pacific Ocean, in: *Proceedings of the Ocean Drilling Program,*  
995 *Scientific Results*, College Station, TX (Ocean Drilling Program), Pisias, N. G.; Mayer, L. A.;  
996 Janecek, T. R.; Palmer-Julson, A.; van Andel, T. H. (Eds.), 138, 503-514, doi:  
997 10.2973/odp.proc.sr.138.126, 1995.

998 Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E.,  
999 Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H.,  
1000 Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F.,  
1001 Kromer, B., Manning, St.W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Sounthor,  
1002 J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13  
1003 radiocarbon age calibration curves 0–50,000 years cal BP, *Radiocarbon*, 55, 1869-1887,  
1004 2013.

1005 Rohling, E. J.: Paleosalinity: confidence limits and future applications, *Marine Geology*, 163,  
1006 1-11, 2000.

1007 Sautter, L. R., and Thunell, R. C.: Seasonal variability in the  $\delta^{18}\text{O}$  and  $\delta^{13}\text{C}$  of planktonic  
1008 foraminifera from an upwelling environment: sediment trap results from the San Pedro  
1009 Basin, Southern California Bight. Paleoceanography, 6, 307-334, 1991.

1010 Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Bruno, R., and Ziese, M.: GPCC  
1011 Full Data Reanalysis Version 7.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-  
1012 Gauges built on GTS-based and Historic Data, Deutscher Wetterdienst/Global  
1013 Precipitation Climatology Centre, 2015.

1014 Schulz, H., von Rad, U., and Ittekkot, V.: Planktic foraminifera, particle flux and oceanic  
1015 productivity off Pakistan, NE Arabian Sea: modern analogues and application to the  
1016 palaeoclimatic record, *Geological Society, London, Special Publications*, 195, 499-516,  
1017 2002.

1018 Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water and the  
1019 benthonic foraminifera genus *Uvigerina*: isotopic changes in the ocean during the last  
1020 glacial, *Colloques Internationaux du C.N.R.S.*, 1974.

1021 Shenoi, S. S. C., Shankar, D., and Shetye, S. R.: Differences in heat budgets of the near-  
1022 surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon, *Journal of*  
1023 *Geophysical Research: Oceans*, 107, 5-1, 2002.

1024 Singh, G., Wasson, R. J., and Agrawal, D. P.: Vegetational and seasonal climatic changes since  
1025 the last full glacial in the Thar Desert, northwestern India, *Review of Palaeobotany and*  
1026 *Palynology*, 64, 351-358, 1990.

1027 Sinha, R., Smykatz-Kloss, W., Stüben, D., Harrison, S. P., Berner, Z., and Kramar, U.: Late  
1028 Quaternary palaeoclimatic reconstruction from the lacustrine sediments of the Sambhar  
1029 playa core, Thar Desert margin, India, *Palaeogeography, Palaeoclimatology,*  
1030 *Palaeoecology*, 233, 252-270, 2006.

1031 Sirocko, F.: Deep-sea sediments of the Arabian Sea: A paleoclimatic record of the  
1032 southwest-Asian summer monsoon, *Geologische Rundschau*, 80, 557-566, 1991.

1033 Sonderegger, D. L., Wang, H., Clements, W. H., and Noon, B. R.: Using SiZer to detect  
1034 thresholds in ecological data, *Frontiers in Ecology and the Environment*, 7, 190-195,  
1035 2009.

1036 Staubwasser, M., Sirocko, F., Grootes, P. M., and Erlenkeuser, H.: South Asian monsoon  
1037 climate change and radiocarbon in the Arabian Sea during early and middle Holocene,  
1038 *Paleoceanography and Paleoclimatology*, 17, 2002.

1039 Staubwasser, M., Sirocko, F., Grootes, P. M., and Segl, M.: Climate change at the 4.2 ka BP  
1040 termination of the Indus valley civilization and Holocene south Asian monsoon variability,  
1041 *Geophysical Research Letters*, 30, 2003.

1042 Staubwasser, M., and Weiss, H.: Holocene climate and cultural evolution in late prehistoric–  
1043 early historic West Asia, *Quaternary Research*, 66, 372-387, 2006.

1044 Staubwasser, M.: Late Holocene Drought Pattern Over West Asia. *Climates, Landscapes, and*  
1045 *Civilizations*, 89-96, 2012.

1046 Steinke, S., Mohtadi, M., Groeneveld, J., Lin, L. C., Löwemark, L., Chen, M. T., and Rendle-  
1047 Bühring, R.: Reconstructing the southern South China Sea upper water column structure  
1048 since the Last Glacial Maximum: Implications for the East Asian winter monsoon  
1049 development, *Paleoceanography and Paleoclimatology*, 25, 2010.

1050 Steph, S., Regenberg, M., Tiedemann, R., Mülitz, S., and Nürnberg, D.: Stable isotopes of  
1051 planktonic foraminifera from tropical Atlantic/Caribbean core-tops: Implications for  
1052 reconstructing upper ocean stratification. *Marine Micropaleontology*, 71, 1-19, 2009.

1053 Tian, J., Wang, P., Chen, R., and Cheng, X.: Quaternary upper ocean thermal gradient  
1054 variations in the South China Sea: Implications for east Asian monsoon climate,  
1055 *Paleoceanography*, 20, 2005.

1056 Von Rad, U., Schulz, H., Khan, A. A., Ansari, M., Berner, U., Čepek, P., Cowie, G., Dietrich, P.,  
1057 Erlenkeuser, H., Geyh, M., Jennerjahn, T., Lückge, A., Marchig, V., Riech, V., Rösch, H.,  
1058 Schäfer, P., Schulte, S., Sirocko, F., and Tahir, M.: Sampling the oxygen minimum zone off  
1059 Pakistan: glacial-interglacial variations of anoxia and productivity (preliminary results,  
1060 SONNE 90 cruise), *Marine Geology*, 125, 7-19, 1995.

1061 Von Rad, U.: Physical oceanography during SONNE cruise SO90, PANGAEA,  
1062 doi:10.1594/PANGAEA.805802, 2013.

1063 Walker, M. J., Berkelhammer, M., Björck, S., Cwynar, L. C., Fisher, D. A., Long, A. J., Lowe, J.  
1064 J., Newnham, R. M., Rasmussen, S. O., and Weiss, H.: Formal subdivision of the Holocene

1065 Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-  
1066 core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy  
1067 (International Commission on Stratigraphy), Journal of Quaternary Science, 27, 649-659,  
1068 2012.

1069 Wang, L., Sarnthein, M., Duplessy, J. C., Erlenkeuser, H., Jung, S., and Pflaumann, U.: Paleo  
1070 sea surface salinities in the low-latitude Atlantic: The  $\delta^{18}\text{O}$  record of *Globigerinoides*  
1071 *ruber* (white), Paleoceanography, 10, 749-761, 1995.

1072 Wanner, H., Beer, J., Bütkofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H.,  
1073 Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, C., Solomina, O.,  
1074 Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid-to Late Holocene climate  
1075 change: an overview, Quaternary Science Reviews, 27, 1791-1828, 2008.

1076 Weatherall, P., Marks, K., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M.,  
1077 Chayes, D., Ferrini, V., and Wigley, R.: A new digital bathymetric model of the world's  
1078 oceans, Earth and Space Science, 2, 331-345, 2015.

1079 Weber, S.: Seeds of urbanism: palaeoethnobotany and the Indus Civilization, Antiquity, 73,  
1080 813-826, 1999.

1081 Weber, S. A.: Archaeobotany at Harappa: indications for change, Indus ethnobiology: new  
1082 perspectives from the field, 175-198, 2003.

1083 Weber, S. A., Barela, T., and Lehman, H.: Ecological continuity: An explanation for  
1084 agricultural diversity in the Indus Civilization and beyond, Man and Environment, 35, 62-  
1085 75, 2010.

1086 Weiss, H.: Global megadrought, societal collapse and resilience at 4.2-3.9 ka BP across the  
1087 Mediterranean and West Asia, Clim. Chang. Cult. Evol, PAGES Mag, 24, 62, 2016.

1088 Wheeler, M.: The Indus Civilization, Cambridge University Press, Great Britain, 1968.

1089 Wick, L., Lemcke, G., and Sturm, M.: Evidence of Lateglacial and Holocene climatic change  
1090 and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and  
1091 geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene,  
1092 13, 665-675, 2003.

1093 Wright, R. P.: The ancient Indus: urbanism, economy, and society, Cambridge University  
1094 Press, Great Britain, 107, 2010.

1095 Yadav, R. K., Kumar, K. R., and Rajeevan, M.: Characteristic features of winter precipitation  
1096 and its variability over northwest India. J. Earth Syst. Sci., 121, 611-623, 2012.

1097 Yu, W., Yang, Y. C., Savitsky, A., Alford, D., Brown, C., Wescoat, J., Debowicz, D., and  
1098 Robinson, S.: The Indus basin of Pakistan: The impacts of climate risks on water and  
1099 agriculture, The World Bank, 2013.

1100 Zaric, S.: Planktic foraminiferal flux of sediment trap EAST-86/90\_trap, PANGAEA, doi:  
1101 10.1594/PANGAEA.264508, 2005.

1102 Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P.,  
1103 Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and Biddle, M. M.: World Ocean  
1104 Atlas 2013, Volume 2: Salinity. Levitus, S. (Ed.), Mishonov, A. (Technical Ed.), NOAA Atlas  
1105 NESDIS 74, 39, 2013.

## 1106 Supplemental figures and tables

1107



Figure S1. Mean surface salinity for 1955–2012, with data from the 2013 World Ocean Atlas (WOA) at 0.25° resolution (Zweng et al., 2013). Salinity contours are shown for **a.** summer (JAS) and **b.** winter (JFM). The Indus River is outlined. Note that over the time window of this dataset, modern Indus River discharge has been reduced by >50% due to barrages and irrigation (Ahmad et al., 2001). Plots created with Ocean Data Viewer (ODV).

1114



1115  
1116  
1117  
1118  
1119



1120  
1121  
1122  
1123  
1124  
1125  
1126

**Figure S3.** Modern  $\delta^{18}\text{O}$  values of calcite, spanning approximately the last 200 years, measured from surface sediment samples for all three species at the size fractions 315-400 $\mu\text{m}$ . Averages values for the last 200 years (~1780-1993 AD) are compared to the period 5.4-3.0 ka BP: -2.01‰ (modern) and -1.90‰ (old) for *G. ruber* (orange), -1.28‰ (modern) and -1.31‰ (old) for *G. sacculifer* (green), and -0.72‰ (modern) and -0.76‰ (old) for *N. dutertrei* (blue).



1127  
1128 **Figure S4.** Frequency distributions of  $\delta^{18}\text{O}$  data during 5.4-3.0 ka BP for *G. ruber* 400-500 $\mu\text{m}$  (red), *G.*  
1129 *ruber* 315-400 $\mu\text{m}$  (orange), *G. sacculifer* 315-400 $\mu\text{m}$  (green), *N. dutertrei* 315-400 $\mu\text{m}$  (blue).  
1130



1131  
1132 **Figure S5. a.** BACON age-depth model with calibrated dates shown in blue **b.** Age-depth model  
1133 comparison with the original published age model from Staubwasser et al. (2003) (orange) and the  
1134 new age model based on BACON software (blue).  
1135



**Figure S6.** Indus site distributions (yellow points) during the **a.** Early Harappan (~5.0-4.6 ka BP), **b.** Mature Harappan (~4.6-3.9 ka BP), and **c.** Late Harappan (~3.9-3.6 ka BP). Orange sites show larger Harappan cities during the Mature Harappan period (Dholavira, Mohenjo Daro, Ganweriwala, Harappa, and Rakhigarhi from bottom to top), core 63KA shown by red circle, background terrain from Google Earth.

**Table S1.** Main statistical parameters of the  $\delta^{18}\text{O}$  data.

|                          | <i>G. ruber</i><br>400-500 $\mu\text{m}$ | <i>G. ruber</i><br>315-400 $\mu\text{m}$ | <i>G. sacculifer</i><br>315-400 $\mu\text{m}$ | <i>N. dutertrei</i><br>315-400 $\mu\text{m}$ |
|--------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------------------|
| <i>n</i>                 | 119                                      | 115                                      | 129                                           | 132                                          |
| Minimum                  | -2.423                                   | -2.190                                   | -1.660                                        | -1.090                                       |
| Maximum                  | -1.752                                   | -1.520                                   | -1.000                                        | -0.590                                       |
| 1 <sup>st</sup> Quartile | -2.232                                   | -1.995                                   | -1.400                                        | -0.810                                       |
| 3 <sup>rd</sup> Quartile | -2.068                                   | -1.830                                   | -1.220                                        | -0.700                                       |
| Mean                     | -2.139                                   | -1.901                                   | -1.312                                        | -0.761                                       |
| Median                   | -2.144                                   | -1.890                                   | -1.320                                        | -0.760                                       |
| Sum                      | -254.58                                  | -218.66                                  | -169.26                                       | -100.46                                      |
| SE Mean                  | 0.012                                    | 0.012                                    | 0.011                                         | 0.007                                        |
| LCL Mean                 | -2.163                                   | -1.926                                   | -1.333                                        | -0.776                                       |
| UCL Mean                 | -2.116                                   | -1.877                                   | -1.291                                        | -0.746                                       |
| Variance                 | 0.016                                    | 0.017                                    | 0.015                                         | 0.007                                        |
| Stdev                    | 0.128                                    | 0.131                                    | 0.122                                         | 0.085                                        |
| Skewness                 | 0.408                                    | 0.288                                    | -0.011                                        | -0.592                                       |
| Kurtosis                 | 0.511                                    | 0.174                                    | -0.364                                        | 0.850                                        |

**Table S2.** Age-Model calibration with BACON software.

| <i>Depth (cm)</i> | $^{14}\text{C}$ date | Error<br>( $\pm 1\sigma$ ) | Reservoir<br>(years) | <i>IntCal13</i><br>min age BP | <i>IntCal13</i><br>max age BP | <i>IntCal13</i><br>mean age BP |
|-------------------|----------------------|----------------------------|----------------------|-------------------------------|-------------------------------|--------------------------------|
| surface           | -                    | -                          | -                    | -                             | -                             | -43                            |
| 47                | 790                  | 30                         | 565                  | 267                           | 309                           | 288                            |
| 87                | 1370                 | 35                         | 565                  | 678                           | 780                           | 729                            |
| 109.5             | 1665                 | 30                         | 565                  | 952                           | 1062                          | 1007                           |
| 128.5             | 1955                 | 25                         | 565                  | 1283                          | 1339                          | 1311                           |
| 143.5             | 2115                 | 35                         | 565                  | 1369                          | 1529                          | 1449                           |
| 157.5             | 2270                 | 25                         | 565                  | 1552                          | 1634                          | 1593                           |
| 169.5             | 2430                 | 25                         | 565                  | 1728                          | 1869                          | 1799                           |
| 180.5             | 2640                 | 25                         | 565                  | 1988                          | 2122                          | 2055                           |
| 186.5             | 2675                 | 35                         | 565                  | 1993                          | 2154                          | 2074                           |
| 191.5             | 2720                 | 30                         | 565                  | 2044                          | 2184                          | 2114                           |
| 211.5             | 3000                 | 35                         | 565                  | 2356                          | 2541                          | 2449                           |

|       |      |    |      |      |      |      |
|-------|------|----|------|------|------|------|
| 221.5 | 3110 | 40 | 565  | 2491 | 2602 | 2547 |
| 224.5 | 3145 | 25 | 565  | 2708 | 2758 | 2733 |
| 238.5 | 3340 | 25 | 565  | 2836 | 2929 | 2883 |
| 257.5 | 3510 | 30 | 565  | 2999 | 3181 | 3090 |
| 274.5 | 3730 | 30 | 565  | 3343 | 3451 | 3397 |
| 287.5 | 3850 | 30 | 565  | 3450 | 3576 | 3513 |
| 304.5 | 4145 | 30 | 565  | 3828 | 3975 | 3902 |
| 315.5 | 4310 | 30 | 565  | 4062 | 4159 | 4111 |
| 336.5 | 4570 | 40 | 565  | 4408 | 4578 | 4493 |
| 349.5 | 4655 | 40 | 565  | 4512 | 4711 | 4612 |
| 353.5 | 4870 | 30 | 565  | 4832 | 4892 | 4862 |
| 357.5 | 5005 | 35 | 565  | 4952 | 5079 | 5016 |
| 360.5 | 4980 | 30 | 565  | 4868 | 5057 | 4963 |
| 363.5 | 5080 | 30 | 565  | 5050 | 5194 | 5122 |
| 366.5 | 5105 | 35 | 565  | 5053 | 5189 | 5121 |
| 370.5 | 5070 | 35 | 565  | 5046 | 5300 | 5173 |
| 374.5 | 5160 | 40 | 565  | 5372 | 5463 | 5418 |
| 378.5 | 5210 | 40 | 565  | 5303 | 5469 | 5386 |
| 381.5 | 5315 | 30 | 565  | 5460 | 5585 | 5523 |
| 385.5 | 5315 | 35 | 565  | 5453 | 5586 | 5520 |
| 389.5 | 5420 | 35 | 565  | 5580 | 5654 | 5617 |
| 395.5 | 5635 | 35 | 565  | 5741 | 5907 | 5824 |
| 398.5 | 5610 | 35 | 565  | 5713 | 5904 | 5809 |
| 402   | 5750 | 40 | 565  | 5891 | 6008 | 5950 |
| 406.5 | 5830 | 35 | 638  | 5899 | 6002 | 5951 |
| 410.5 | 5965 | 40 | 638  | 5994 | 6210 | 6102 |
| 415.5 | 5980 | 45 | 638  | 5997 | 6216 | 6107 |
| 420.5 | 6120 | 45 | 638  | 6201 | 6351 | 6276 |
| 425.5 | 6265 | 45 | 638  | 6311 | 6490 | 6401 |
| 428.5 | 6335 | 55 | 638  | 6395 | 6639 | 6517 |
| 430.5 | 6345 | 60 | 638  | 6396 | 6657 | 6527 |
| 436.5 | 6440 | 40 | 638  | 6495 | 6678 | 6587 |
| 440.5 | 6540 | 55 | 638  | 6627 | 6883 | 6755 |
| 445.5 | 6665 | 45 | 638  | 6773 | 6984 | 6879 |
| 450.5 | 6650 | 40 | 638  | 6749 | 6948 | 6849 |
| 455.5 | 6960 | 45 | 824  | 6912 | 7162 | 7037 |
| 460.5 | 7155 | 45 | 824  | 7166 | 7331 | 7249 |
| 465.5 | 7310 | 45 | 824  | 7308 | 7480 | 7394 |
| 470.5 | 7480 | 55 | 824  | 7438 | 7606 | 7522 |
| 476.5 | 7550 | 50 | 824  | 7551 | 7670 | 7611 |
| 480.5 | 7815 | 55 | 1011 | 7571 | 7743 | 7657 |
| 485.5 | 7920 | 70 | 1011 | 7617 | 7867 | 7742 |
| 490.5 | 8070 | 50 | 1011 | 7788 | 7976 | 7882 |
| 497.5 | 8130 | 55 | 1011 | 7837 | 8027 | 7932 |
| 502.5 | 8115 | 55 | 1011 | 7828 | 8020 | 7924 |
| 507.5 | 8400 | 60 | 1011 | 8148 | 8345 | 8247 |

|       |       |    |      |       |       |       |
|-------|-------|----|------|-------|-------|-------|
| 512.5 | 8350  | 50 | 1011 | 8020  | 8218  | 8119  |
| 517.5 | 8490  | 50 | 1011 | 8194  | 8381  | 8288  |
| 522.5 | 8355  | 60 | 1011 | 8023  | 8312  | 8168  |
| 527.5 | 8510  | 60 | 1011 | 8194  | 8400  | 8297  |
| 539.5 | 8790  | 60 | 1118 | 8384  | 8563  | 8474  |
| 544.5 | 8880  | 55 | 1118 | 8425  | 8631  | 8528  |
| 556.5 | 9060  | 50 | 1118 | 8637  | 8986  | 8812  |
| 564.5 | 9120  | 70 | 1118 | 8636  | 9026  | 8831  |
| 570.5 | 9110  | 50 | 1118 | 8698  | 9007  | 8853  |
| 576.5 | 9060  | 50 | 1118 | 8637  | 8986  | 8812  |
| 581.5 | 9260  | 50 | 1118 | 8999  | 9153  | 9076  |
| 588.5 | 9390  | 50 | 1118 | 9119  | 9430  | 9275  |
| 595   | 9370  | 60 | 1118 | 9076  | 9419  | 9248  |
| 604.5 | 9570  | 50 | 781  | 9602  | 9952  | 9777  |
| 613   | 9660  | 70 | 781  | 9736  | 10194 | 9965  |
| 621.5 | 9670  | 50 | 781  | 9884  | 10189 | 10037 |
| 628   | 9650  | 70 | 781  | 9732  | 10188 | 9960  |
| 633   | 9570  | 80 | 781  | 9581  | 9963  | 9772  |
| 643   | 9770  | 70 | 781  | 9906  | 10251 | 10079 |
| 647.5 | 9920  | 60 | 781  | 10206 | 10436 | 10321 |
| 677   | 10160 | 60 | 781  | 10480 | 10752 | 10616 |
| 791   | 11145 | 50 | 1095 | 11325 | 11806 | 11566 |
| 836   | 12285 | 55 | 1300 | 12726 | 12995 | 12861 |