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Abstract 16 
 17 
Correlation does not necessarily imply a causation, but in climatology and paleoclimatology, correlation 18 
is used to identify potential cause-and-effect relationships because linking mechanisms are difficult to 19 
observe. Confounding by an often unknown outside variable that drives the sets of observables is one of 20 
the major factors that lead to correlations that are not the result of causation. Here we show how 21 
autoregressive (AR) models can be used to examine lead-lag relationships--helpful in assessing cause and 22 
effect--of paleoclimate variables while addressing two other challenges that are often encountered in 23 
paleoclimate data: unevenly spaced data; and switching between regimes at unknown times. Specifically, 24 
we analyze multidimensional paleoclimate proxies, sea surface temperature (SST), C37, ∂15N, and %N 25 
from the central Peru margin to find their correlations and changes in their variability over the Holocene 26 
epoch. The four proxies are sampled at high-resolution but are not synchronously sampled at all possible 27 
locations. The multidimensional records are treated as evenly spaced data with missing parts, and the 28 
missing values are filled by the Kalman filter expected values. We employ hidden Markov models 29 
(HMM) and autoregressive HMM (AR-HMM) to address the potential that the degree of variability and 30 
the correlations between in these proxies appears to show changes over time. The HMM, which is not 31 
autoregressive, shows instantaneous correlations between observables in two regimes. However, our 32 
investigation of lead-lag relationships using the AR-HMM shows that the cross-correlations do not 33 
indicate a causal link. Each of the four proxies has predictability on decadal timescales, but none of the 34 
proxies is a good predictor of any other, so we hypothesize that a common unobserved variable--or a set 35 
of variables--is driving the instantaneous relationships among these four proxies, revealing probable 36 
confounding without prior knowledge of potential confounding variable(s). These findings suggest that 37 
the variability at this site is remotely driven by processes such as those causing the Pacific Decadal 38 
Oscillation, rather than locally driven by processes such as increased or decreased vertical mixing of 39 
nutrients. 40 
  41 
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1.0 Introduction 45 
This paper examines statistical aspects of a long-duration, high-resolution, multi-dimensional time series 46 
of four proxies (SST; C37; ∂15N; %N) that record variations in marine conditions over the Holocene epoch 47 
(0.60 to 9.44 kA B.P.). The sediment is sampled at high-resolution to amount to roughly 3-year averages 48 
sampled every 7 years under the accumulation rate typical of the region. These records indicate both 49 
surface and subsurface variability in the physical and biological state. It is expected that the evolving 50 
relationships among these records over the Holocene reveal aspects of the mechanisms responsible for 51 
variabilities, such as correlations, timescales, and predictability. 52 
 53 
The four records examined are proxies for sea surface temperature (SST) through the alkenone proxy, 54 
biological productivity of a specific phytoplankton group (C37) through analyses of the abundance of 55 
alkenones (representing haptophyte algal productivity), subsurface properties through analyses of ∂15N ,an 56 
index of subsurface oxygenation and denitrification, and the percentage of organic nitrogen (%N) which 57 
is a composite of all biological inputs to the sediment. Interannual and decadal variability is observed in 58 
subsurface oxygen fluxes and concentrations worldwide, but particularly in the eastern tropical South 59 
Pacific oxygen minimum zone where this core is located (Bopp et al. 2002, Stramma et al. 2008). These 60 
studies suggest that a combined examination of 1) warming of the ocean surface (here recorded through 61 
alkenone SST), 2) changes in stratification (here recorded through upwelling as indicated via productivity 62 
C37 and %N), 3) changes in ecological makeup (here recorded through a comparison between %N which 63 
indicates a combined productivity of all organisms and C37 which indicates productivity of only some 64 
organisms), and 4) changes in the oxygen utilization at depth (here proxied through ∂15N) may help 65 
explain the combination of thermal, dynamical, and biogeochemical factors contributing to the variability 66 
in this region. Sediment samples were placed on an age scale based on a polynomial fit to 8 radiocarbon 67 
dates - the resulting age model has an uncertainty on the order of 100 yr.  68 
 69 
Some of the key questions in this region are whether the variability is from a local or internal source, such 70 
as variation in physics through mixing or eddies at the surface (Brink et al., 1983, Colas et al. 2012) or 71 
changes in the biological makeup of ecosystems in the region (e.g., Gooday et al. 2010), or from a remote 72 
or external source, such as variations in the water properties arriving at the site through large scale modes 73 
such as El Nino or the Pacific Decadal Oscillation (Mantua et al. 1997, Deser et al. 2010). The site (Fig. 74 
1) is known for wind-driven upwelling (Brink et al. 1983) at depths shallower than 250m and low oxygen 75 
concentrations at depth typical of the eastern tropical South Atlantic oxygen minimum zone, which has 76 
been highly variable near 250m depth in recent times (Stramma et al. 2008). Despite the low oxygen 77 
levels at depth, the typical sediment accumulation rate over the Holocene during these samples is high (70 78 
cm/kyr), which suggests high, sustained biological productivity and presumably a persistent level of 79 
oxygen demand.  80 
 81 
A visual analysis of the proxy records (Fig. 2) suggests that the variability of four proxies might fall into 82 
multiple regimes: one state with high variability and another state with low variability. This biphasic 83 
behavior guided our initial analysis using a Hidden Markov Model (HMM; Rabiner, 1989). Hidden 84 
Markov methods are increasingly used in identifying climate regime shifts (e.g., Majda et al. 2006, 85 
Franzke & Woollings 2011, Ahn et al. 2017).  86 
 87 
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A less common tool in climate modeling is the autoregressive hidden Markov method (AR-HMM, 88 
Hamilton, 1988, 1989, 1994) which allows for some memory in the system through a dependence on 89 
previous proxy values as well as correlations in the present proxy value noise. Both our HMM and AR-90 
HMM results show that there exist two regimes of variability in proxy space at site MW8708-PC2. Here 91 
the AR-HMM technique will be used to probe deeper into distinctions between causality and correlation, 92 
under the premise that a predictive cause should precede its effect in time. A surprising result of this study 93 
is that our conception of the relationships among these proxies changed dramatically when this technique 94 
was applied and contrasted to the more standard HMM approach. The AR-HMM shows that both regimes 95 
show high auto-correlation and low cross-correlation, thereby indicating that none of the proxies are good 96 
predictors of other proxies on interannual timescales. In cases in which regime change is not present, a 97 
simpler autoregressive only model will be sufficient to assess predictive cause. The software provided 98 
with this paper (https://github.com/seonminahn/ARHMM) can be applied for the analysis of multi proxy 99 
data from a core record. When inferences on predictive cause between cores is of interest, it is essential to 100 
account for uncertainty in age estimates to ascertain the significance to a putative lead/lag  101 
 102 
1.1 Context from Modern Observations  103 
To better understand what processes would affect the variability on the timescales that are sampled, a 104 
brief analysis of the region and related climate indices was carried out. The location is somewhat south of 105 
the region most active during the El Nino/Southern Oscillation (ENSO) cycles (i.e., south of NINO1, 106 
Rasmussen & Carpenter, 1982). On longer timescales, a meridionally broader, yet similarly shaped 107 
pattern of variability has come to be known as the Pacific Decadal Oscillation (PDO) (Deser et al. 2010). 108 
 109 
Fig. 1(a) shows the location of the MW8708-PC2 sediment core that is analyzed for this study. The 110 
location is superimposed on a map of the correlation of global sea surface temperature with the nearest 111 
HadISST data point (15.5S, 75.5W). Warming in this region correlates well with warming along the 112 
central and eastern equatorial Pacific, cooling over most of the extratropical Pacific, and weakly 113 
correlates with temperatures in other basins. The correlated pattern resembles both the El Nino pattern 114 
and the Pacific Decadal Oscillation pattern (Deser et al. 2010). In time, the sediment record (indicated by 115 
circles in Fig.1b) is too infrequent to capture El Nino variability, generally taken to dominate the 2-7 year 116 
band. While some of the biggest El Nino events (1982-3, 1997-8) are still visible in the filtered data, it is 117 
evident that time filtering similar to our sediment sampling has removed most of the high-frequency 118 
ENSO variability. 119 
  120 
Deser et al. (2010) follow Mantua et al. (1997) in tracking the Pacific Decadal Oscillation using the first 121 
empirical orthogonal function (EOF) and principal component (PC) of North Pacific sea surface 122 
temperature (20N to 70N, 100E to 100W) after the removal of seasonal and global mean variability. Its 123 
variability is taken as a PDO index. This index captures much of the low frequency (>7yr) variability near 124 
the sediment location (Fig. 1b), even though the core location is remote from all data included in the PDO 125 
index and the monthly index and core location SST have a correlation coefficient of only 0.16. Running 126 
means over 2 to 22-years of SST at our site correlates with the PDO index all have correlation coefficients 127 
above 0.53, and the peak coefficient is just above 0.6 (for 7-year averages). Thus, we interpret the 128 
dominant mode of variability accurately sampled by the core measurements to be associated the Pacific 129 
Decadal Oscillation. Note that the record described here is significantly longer than extant records of the 130 
PDO (e.g., AD 993-1996 tree-ring compilation by McDonald & Case, 2005).  131 
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 132 
A variety of mechanisms have been used to explain the PDO. Alexander (2010) reviews the mechanisms 133 
and concludes that a variety of causes are consistent with the observations, mainly heat flux and wind 134 
variability, including El Nino variability communicated to the N. Pacific by the “atmospheric bridge”. 135 
This variability is modulated toward lower frequencies by the reddening of “stochastic” variability 136 
(Hasselmann, 1976) by the large heat capacity of the mixed layer (Frankignoul & Hasselmann, 1977), but 137 
also through slow-response phenomena such as the re-emergence of sub-boundary-layer temperature 138 
anomalies during subsequent winters and the slow propagation of baroclinic Rossby waves. The 139 
autoregressive formulation of the AR-HMM is essentially the same as the stochastic model used by 140 
Hasselmann. According to Frankignoul & Hasselmann (1977), forcing amplitude affects response 141 
amplitude, but the damping rate of variability affects both the magnitude of variability and the persistence 142 
timescale, with greater magnitude and longer persistence indicating weaker damping which is a 143 
consequence of a shallower mixed layer and reduced heat capacity. 144 
 145 
2.0 Method 146 
2.1 Data Collection 147 
High-resolution records of four paleoclimate indicators are collectively analyzed for a sediment core 148 
retrieved from the central Peru margin (Site MW8708-PC2: 15.1°S, 75.7°W, water depth of 250m, Fig. 149 
1). This site has an extremely high and steady sedimentation rate (70cm/kyr) across most of the Holocene 150 
(10kA - 1.4 kA), and frequently contains annual laminations. Records are obtained from 2cm (3 years) 151 
slices taken every 5cm (7 years). The age model determined the core top to be located at ~600 years 152 
before present (bp), (gravity coring typically disturbs the upper few decimeters of sedimentation and the 153 
base of the record to lie at ~9440 yr bp. The very gentle curvature in estimated sediment accumulation 154 
rates (Chazen et al., 2009) will be ignored in this study, so depth is proportional to age and time steps are 155 
uniform. 156 
 157 
2.2 Missing Data 158 
The four proxies are measured in high-resolution with fairly uniform depth sampling (2cm about every 159 
5cm), but different proxies are not sampled at all possible locations. In order to compose an evenly-160 
spaced data set that will be used to train discrete-time statistical models described below, the expected 161 
values in an evenly-spaced record are used to fill in the records using a Kalman filter (Little & Rubin, 162 
1986; Viefers, 2011). The Kalman filter finds the expected value of the missing data given the observed 163 
value, and we find the maximum likelihood estimates of the model parameters by using the expectation-164 
maximization algorithm. Before doing so, time from 0 to 563 discrete time steps (each of which 165 
represents 5cm/7yr) is discretized into 1127 discrete half-time-steps (each of which represents 166 
2.5cm/3.5yr, or approximately the width of an analysis slice). Each proxy analysis is then allocated to the 167 
half-time-step nearest its location in depth/age. Not every possible slice was analyzed: there are 526 SST; 168 
526 C37; 727 ∂15N; and 728 %N measurements out of 1127 possible to fill all half-time-steps.  169 
 170 
Each half-time-step is interpreted as a 4-component vector of observations ܺ(ݐ). 171 

(ݐ)ܺ = ൦ݔଵ(ݐ)ݔଶ(ݐ)ݔଷ(ݐ)ݔସ(ݐ)൪ = ێێێۏ
ۍ (ݐ)ܶܵܵ) − (ݐ)ଷ଻ܥ)ௌௌ்ߪ/(〈ܶܵܵ〉 − (ݐ)ଵହܰߜ)஼యళߪ/(〈ଷ଻ܥ〉 − (ݐ)ܰ%)ఋభఱேߪ/(〈ଵହܰߜ〉 − ே%ߪ/(〈ܰ%〉 ۑۑۑے

ې
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In the climate and data assimilation literature, this vector is usually called the “state” vector; here it will 173 
be called the observation vector to distinguish it from the regime or “state” of the hidden Markov model. 174 
After arranging the data in this manner, the expected values estimated using a Kalman filter are used to 175 
fill in missing data (Figs. 3, 4). The mean and standard deviation of each proxy variable have been 176 
removed as a preprocessing step so that the different units of each measurement are not a factor and the 177 
Kalman filter likewise does not depend on the units of measurement. Our preparation of this discrete-time 178 
technique and the discrete-time statistical models below assume that even spacing in depth is sufficiently 179 
uniform in time, i.e., variations in the age-depth relationship were not considered in this imputing 180 
technique. 181 
 182 
2.3 Statistical Models: HMM and AR-HMM 183 
The degree of variability in correlation among these proxies appeared to change at unknown times over 184 
this epoch. Visual analysis suggests that the correlations and variability of the four proxies varied over 185 
time in a potentially abrupt manner (Figs. 2, 3, 4). Indeed, use of a two-state (a.k.a. two-regime) hidden 186 
Markov models (HMM) and a generalization of this approach, autoregressive HMM (AR-HMM), do 187 
detect two distinct states at this site, characterized by different levels of variability and predictability. 188 
Experimentation with higher numbers of states revealed that two states were sufficient for this record. 189 
 190 
Two-state hidden Markov models are considered using two different emission (time-correlation or 191 
memory) models. The first model assumes conditional independence among observations given the state, 192 
regime, and the second model considers direct dependence with adjacent observations (i.e., memory). The 193 
first one is consistent with a general vector, or multivariate Hidden Markov Model (HMM), and the 194 
second one is called the autoregressive hidden Markov model (AR-HMM), which is also known as a 195 
switching autoregressive model (Hamilton, 1988, 1989, 1994). Both models have hidden regimes or 196 
“states” in which it is assumed that the historical dependence of the current hidden (unobserved) state is 197 
entirely accounted by the state of its immediate proceeding neighbor and a transition probability, i.e., the 198 
state-switching process is Markovian. The matrix of state transition probabilities is 199 ܽ௜௝ = ݐ)ݏ)ܲ ൅ 1) = (ݐ)ݏ	|	݆ = ݅) 200 
The difference between the AR-HMM and HMM models is the relationship between the observations at 201 
different times. The equation for the AR-HMM can be written 202 ܺ(ݐ) = 	 ܿ௦(௧) ൅ ݐ)ܺ௦(௧)ߠ − (ݐ߂ ൅  203 (ݐ)߳
 ൦ ଵܺ(ݐ)ܺଶ(ݐ)ܺଷ(ݐ)ܺସ(ݐ)൪ = ቎ܿଵܿଶܿଷܿସ቏ ൅ ൦ߠଵଵ ଵଶߠ ଵଷߠ ଶଵߠଵସߠ ଶଶߠ ଶଷߠ ଷଵߠଶସߠ ଷଶߠ ଷଷߠ ସଵߠଷସߠ ସଶߠ ସଷߠ ସସ൪ߠ ൦

ଵܺ(ݐ − ݐ)ଶܺ(ݐ∆ − ݐ)ଷܺ(ݐ∆ − ݐ)ସܺ(ݐ∆ − ൪(ݐ∆ ൅ ൦߳ଵ(ݐ)߳ଶ(ݐ)߳ଷ(ݐ)߳ସ(ݐ)൪ (1) 

There are two constant vectors ܿ௦(௧), which are selected depending on the state at time ݐ Likewise, the 204 
autocovariance regression matrix (ߠ௦(௧)) that prescribes the deterministic part of the model evolution 205 
based on observations at a previous time and the noise covariance matrix (Ʃ௦(௧)) that prescribes the 206 
stochastic part of the model evolution also have two versions which are selected based on state. The noise 207 
vector (߳(ݐ)) is chosen at each time from a Gaussian white noise distribution with zero mean and 208 
covariance matrices Ʃ௦(௧) that contain all of the information about stochastic variances and covariance of 209 
the observations.  210 
 211 
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The HMM can be written the same way as (1), but removing the deterministic dependence of current 212 
observations on previous observations (ߠ = 0). The HMM assumes that each observation follows 213 
multivariate normal distribution with means (c), (stochastic) variances (Ʃ௜௜), and (stochastic) covariances 214 
(Ʃ௜௝) determined only by present value of the hidden state.  215 
 216 
In both the HMM and AR-HMM models, the unknown parameters including constant parameters in each 217 
two-state model are estimated by the Baum-Welch expectation maximization algorithm (EM; Rabiner, 218 
1989).  219 
 220 
3.0 Parameter Estimation Results 221 
The parameter estimations are done using the EM algorithm for both HMM and AR-HMM. The EM 222 
algorithm updates parameters iteratively using the forward and backward sampling algorithm. The data 223 
augmentation step that uses the Kalman filter is added at the beginning of each iteration to address 224 
missing data. Depending on initial conditions of the EM algorithm, it is possible that the EM algorithm 225 
converges to local maximum estimators instead of global maximum estimators. To avoid local maxima, 226 
parameter estimations are repeated with 100 different initial conditions and the selected parameters are 227 
those that achieve maximum likelihood from this set. 228 
 229 
3.1 HMM Parameters 230 
For a two-state HMM after removal of the overall mean and normalization of the standard deviation of 231 
each proxy, there are five unknown parameters which have 32 degrees of freedom in total: the transition 232 
matrix a, and one version of c and ߑ for each state. Table 1 shows the results of the parameter 233 
estimations. The two states are distinctively different in means and covariance. The mean of each proxy 234 
differs in sign between the two states, which must be the case as the overall mean of each proxy has been 235 
removed. However, the pattern of means among the proxies, e.g., high SST and low C37, is a signature of 236 
each state. The absolute values of the components and eigenvalues of ߑ are larger in state 1 than in state 237 
2. The eigenvalues (the strength of correlated noise components) of ߑ are 2.21, 0.98, 0.57, and 0.18 for 238 
state 1 and 0.82, 0.58, 0.20, and 0.13 for state 2. Thus, we can associate state 1 as a “noisy” state and state 239 
2 as a “calm” state, because the proxies tend to fluctuate more when in state 1 than in state 2. In terms of 240 
transition probability, the diagonal elements of a are close to 1, which implies that there is a high 241 
probability of staying in a state. Table 2 shows that 7 of the 12 correlation coefficients are approximately 242 
0.5 or higher. 243 
 244 
According to the parameter estimations, the most probable state is determined at each time using the 245 
backward sampling (Fig. 3). The median (mean) time to remain in HMM state 1 over 1000 samples is 70 246 
years (128.6 years). The median time to remain in state 2 over 1000 samples is 91 years (189.8 years).  247 
 248 
3.2 AR-HMM Parameters 249 
For a two-state AR-HMM after removal of the overall mean and normalization of the standard deviation 250 
of each proxy, there are seven unknown parameters which have 64 degrees of freedom in total: the 251 
transition matrix a, and one version of c, ߠ, and ߑ for each state. The estimated parameters are shown in 252 
Table 2, and the model state and imputed values are shown in Fig. 4. Again, state 1 can be identified as 253 
the “noisy” state and state 2 is “calm”. In terms of transition probability, the diagonal components of a are 254 
around 0.8, which are smaller than those of the HMM. Thus, there are more frequent state changes in Fig. 255 
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4 than shown by the HMM (Fig. 3). The median (mean) time to remain in state 1 over 1000 samples is 7 256 
years (17.9 years). The median time to remain in state 2 over 1000 samples is 28 years (39.8 years). 257 
 258 
The diagonal entries of ߠ are close to 1 on both states: each variable of state 2 depends strongly on its 259 
own past value. The diagonal entries of ߠ for state 1 are smaller than that of state 2 with both greater than 260 
0.85 for all four proxies. The off-diagonal entries are all smaller than 0.07 for both matrices. Thus, only a 261 
small part of the dependence of each variable on its past value can be attributed to cross-correlations 262 
rather than autocorrelations. The antisymmetric components of ߠ are much smaller than the diagonal 263 
components, so the “probability angular momentum” which lends covariant predictability (Weiss et al. 264 
2016, Zia et al. 2016) is not significant. 265 
 266 
The diagonal entries of ߑ in the AR-HMM are much smaller than they were in the HMM--so that 267 
variability attributed to noise within each variable is considerably lessened by the introduction of 268 
memory. The eigenvalues of the ߑ matrix as well are roughly a factor of 5 to 50 smaller, indicating that 269 
the covariant modes of noise are estimated to be much weaker when the memory of the AR-HMM system 270 
is permitted. 271 
 272 
The mean state c of the HMM and AR-HMM do not resemble one another in its pattern, magnitude or 273 
sign. Thus, while these patterns are a characteristic of the HMM and AR-HMM states, there is no 274 
agreement between the pairs of states in mean, timing of onset, or cross-correlations. 275 
 276 
3.3 Comparison of Models 277 
The HMM is a special case of the AR-HMM. As the HMM may be formed from the AR-HMM, the fact 278 
that the AR-HMM does not resemble the HMM implies that the lagged time information is a critical 279 
aspect of the data. Thus, a key conclusion from the statistical models is that the lagged autocorrelations 280 
are significantly better predictors of proxy variability than the different proxy-to-proxy cross-correlation 281 
either at lagged times or as induced by correlated noise (Fig. 5). This fact implies that the different 282 
proxies are not causally related to one another, as is often assumed in multi-proxy paleoclimate analyses 283 
(Hu et al. 2017). Thus, in this location, the four proxies (SST; C37; ∂15N; %N) are not related to each other 284 
in the local sense that variability in any one dominates or contributes significantly to variability in another 285 
through a local physical or biological mechanism. 286 
 287 
For reference, the mean and variance of each proxy are given for noisy state (state 1) and calm state (state 288 
2) of the HMM and AR-HMM in Tables 1 and 5. While both AR-HMM and HMM attribute a noisy state 289 
and a calm state to the time series, none of the means, variances, or timing of onset of these states agree. 290 
Furthermore, it was noted that the HMM mean states must be opposite in sign in order for the normalized 291 
time series to be zero. The AR-HMM is not constrained by this limit, as the predictions of ߠcan contribute 292 
to the mean. Because the AR-HMM is more general than the HMM, disagreement between these state 293 
identifications indicates that the autoregression memory of the AR-HMM is important. Bolstering this 294 
idea is the fact that the dominant modes of correlation of observations with the previous time observations 295 
are autocorrelations, i.e., the dominant predictor of any of the four proxies is itself at a previous time and 296 
not interactions between the observed variables. 297 
 298 
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For the comparison with the AR-HMM, the correlations of the four proxies in HMM are estimated as in 299 
Tables 3-4. These correlation matrices are calculated using each data set in which the missing parts have 300 
been imputed by their expected value and the state estimation at each time. The signs of correlations are 301 
usually the same between the two model assessments, but the strength of the cross-correlations vary 302 
somewhat. Note that the cross-correlations do not disappear in the AR-HMM. Even though the full model 303 
reveals the underlying autocorrelations, these simple single-time correlations are unable to detect any 304 
inconsistencies that correlations between variables do not reveal causation between variables in this data. 305 
 306 
4.0 Discussion 307 
The preceding statistical model results may be related back to the original science questions that 308 
motivated this collection of data. That is, what changes in physics or biological makeup helps better 309 
understand the mechanisms at play in setting the variability in this region? 310 
 311 
4.1 Implications for Mechanisms 312 
In the introduction, it was argued that potential local mechanisms might be used as causes to explain 313 
correlations and connections among these data. Variability in upwelling, stratification, biological makeup, 314 
oxygen utilization and productivity, and many other mechanisms would be likely to strengthen a 315 
particular set of cross-correlations and levels of variability among these data. Indeed, two different states, 316 
one noisy and calm, were detected with both AR-HMM and HMM model parameter estimation. Tables 1, 317 
3, 4, and 5 show significant cross-correlations and difference in cross-correlations and levels of variability 318 
between these two states. The typical HMM approach confirmed roughly these conclusions. 319 
 320 
However, a closer examination of the dependences of the proxies on AR-HMM autocorrelations with 321 
their previous time values and cross-correlations with previous and synchronous values of other proxies 322 
reveals a very different story. This analysis revealed that the restrictions required to reduce the AR-HMM 323 
to the HMM, i.e., the neglect of memory of past observations, systematically corrupted interpretation of 324 
the system. The magnitude of the components and eigenvalues of the ߑ matrix are significantly smaller in 325 
the AR-HMM than in the HMM. Thus, present observations are caused--in the Granger (1969) sense--by 326 
the previous observations, i.e. the predictive rather than the intervention sense. The small off-diagonal 327 
terms in ߠ indicate that each proxy is not strongly caused by any other proxy, only by its own previous 328 
values. Rather, the apparent correlations found by the HMM model very likely stem from confounding 329 
(https://explorable.com/confounding-variables) by an unobserved mechanism that drives all four 330 
parameters in a coordinated manner. These results are inconsistent with any local mechanism that would 331 
link these proxies to one another causally, e.g., if SST variability were to indicate upwelling that drives 332 
productivity and thus C37 and %N. Because both the past-time cross-correlations and the present-time 333 
correlated noise became less consistent in the AR-HMM when compared to the HMM, it is unlikely that 334 
this lack of cross-predictability is due to the limited temporal resolution. Consistent local mechanisms 335 
would require variability caused by unobserved mechanisms that might affect one or more of the proxies, 336 
so-called confounding variables. A variety of distinct remote causes for variability, e.g., SST driven by the 337 
PDO and other proxies driven by other climate modes or source variability, are a sufficient explanation 338 
for the results here. 339 
 340 
4.2 Implications for Predictability 341 
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One interesting aspect of the AR-HMM model is that it reveals the dependence of the present 342 
observations on previous observations. This implies a sort of predictability of the four proxies based on 343 
the AR-HMM. However, because the predictability is essentially just autocorrelations, the AR-HMM 344 
does not predict significantly differently from persistence (same observations next time as this time). 345 
Nonetheless, some aspects of predictability in this system are of interest. 346 
 347 
One difference between a prediction system and a reanalysis of past events is that a prediction system 348 
should use only the data that precedes the times that will be predicted. Two methods to achieve this were 349 
used here: 1) predict new parameters using the data sequence preceding the points we predict, and 2) 350 
sample values using these parameters.  351 
 352 
Predictability of the AR-HMM was evaluated over two time windows: 236-266 and 535-563 cm depth. 353 
Fig. 6 gives a sense of what behaviors these predictions tend toward in the 236-266 window. The interval 354 
236-266 is chosen because the resolution of the interval 236-266 is relatively higher than other intervals, 355 
and the AR-HMM state is persistently in the (calm) state 2 over this interval. Taking 266 as an endpoint, 356 
the predictability of one-step to thirty-step is assessed. The interval 535-563 includes the most recent data 357 
and tends to remain in the (noisy) state 1. Each prediction is repeated 1000 times.  358 
 359 
Depending on the most probable state of an initial point, the entries of the next step are computed with the 360 
emission model (equation (2)) with parameters estimated in the previous section. The state of the next 361 
step is determined by the transition probability, and then the entries of the following step are computed 362 
with the equation (2) in the same way. State determination and entry computations are repeated until 363 
reaching the endpoint.  364 
 365 
The accuracy of predictability based on the AR-HMM is examined using mean squared errors (MSE). 366 
Predictions up to four-step, which corresponds to approximately three decades, achieve reduction of the 367 
MSE by 40-80%, depending on the proxy. The results do not show a tight range of prediction when the 368 
length of prediction is longer than four steps ahead. However, the probability of remaining in a given state 369 
or regime for the future steps can be predicted from the transition probability, typically for decades based 370 
on the AR-HMM transition probabilities. The noisiest proxies tend to have forecasts that revert to 371 
spanning their climatological range most quickly. The forecasts that begin in the noisy regime of state 1 372 
tend to lose persistence faster as well. 373 
 374 
In order to compare the HMM with the AR-HMM, we assessed the predictability of the HMM is assessed 375 
in the same manner as the that of AR-HMM. While the MSEs increase as the forecast length increases in 376 
AR-HMM predictions, the MSEs of HMM keep the same size regardless of prediction length. In a system 377 
with strong auto-correlations such as this one, useful forecasts require a memory of past states. 378 
 379 
5.0 Conclusions 380 
Multi-proxy records are a potentially powerful tool in strengthening understanding of paleorecords. 381 
However, depending on which variables are observed and where, they may or may not capture direct 382 
evidence of the mechanisms at work. This study was carefully designed to distinguish different types of 383 
local mechanisms that might be causing variability on the Peru margin over the Holocene. However, it is 384 
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our interpretation of the estimates of statistical model parameters found that no local causal mechanisms 385 
were observed to be significant at the roughly decadal scale of sampling employed. 386 
 387 
This study illustrates the importance of assessing predictive (Granger) causation in order to avoid 388 
spurious diagnoses of the mechanism through the use of autoregressive (AR) models for example. AR 389 
algorithms are widely available (in R and MATLAB) for cases not involving regime change. In addition 390 
as pointed out by Hu et al. (2017), when multiple records are involved, age uncertainty can also lead to 391 
spurious associations. 392 
 393 
Before closing, it is interesting to consider broadly the implications of the regime-switching observed 394 
here. While it was shown that similar-sampling-frequency analyses of modern observations at this 395 
location reveal SST variability that is dominated by the PDO, past variability indicates a change in PDO 396 
variability at this site, transient appearance of other dominant modes, or changes in teleconnections. 397 
Stevenson et al. (2012) demonstrate that changes in such remote influences of climate variability are 398 
likely to be common even when the underlying climate mode is unchanging. 399 
 400 
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Figures 481 

 482 

 483 
Figure 1 a) Location of the site MW8708-PC2 (15.1°S, 75.7°W, water depth of 250m), superimposed on 484 
the correlation of the SST gridpoint nearest that location with each SST gridpoint globally (using 485 
HadISST data, Rayner et al. 2003). b) Time series of sea surface temperature with climatological 1900-486 
1914 seasonal cycle removed (blue), 3-year running mean of this SST (red), Pacific Decadal Oscillation 487 
principle component time series (Mantua et al. 1997, Deser et al. 2010) which has been rescaled to have 488 
the same variance as the SST (black). The red circles are exemplars of 3-year averages plotted every 489 
seventh year. c) A schematic of the region, illustrating the proxies examined (SST; C37; ∂15N; %N) and 490 
local physical processes (wind-driven upwelling, thermocline, oxygen minimum zone).  491 
  492 
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 493 
Figure 2 Observed data for time steps 0 to 563 (0.60 to 9.44 kA B.P.), with being the most recent point 494 
(time increasing to the right). 47% SST and C37 are missing, and 65% of ∂15N and %N are missing. 495 
  496 
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 497 
Figure 3 [HMM] State assignments by the HMM (black dots). State 1 is indicated by a black dot near the 498 
lower side of each graph, indicating the probability of being in the noisy state. State 2 is indicated by a 499 
black dot near the upper side of the graph. Indeterminate states are indicated by black dots in the middle 500 
of the graph. Also shown are observations (blue circles) whose missing parts are imputed by expectation 501 
values from the Kalman filter (red lines): SST, C37, ∂15N, and %N (from top to bottom).  502 
  503 
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504 
Figure 4 [AR-HMM] State assignments by the HMM (black dots). State 1 is indicated by a black dot near 505 
the lower side of each graph, indicating the probability of being in the noisy state. State 2 is indicated by a 506 
black dot near the upper side of the graph. Indeterminate states are indicated by black dots in the middle 507 
of the graph. Also shown are observations (blue circles) whose missing parts are imputed by expectation 508 
values from the Kalman filter (red lines): SST, C37, ∂15N, and %N (from top to bottom).  509 
  510 
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(a) (b) 
Figure 5 Dependencies among observations and hidden states through a visual schematic of the 511 
correlation matrices for (a) HMM and (b) AR-HMM. Nodes are connected with an arrow if one node at 512 
the head of an arrow depends on another node at the origin of an arrow. The loopback dependencies in b) 513 
indicate a correlation of the present state of that variable with its value at a previous time. 514 
  515 
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516 
Figure 6 [AR-HMM] Results of 4-step prediction from t=264 to 266. The multiple grey lines indicate 517 
1000 individual forecasts that differ in noise and state transitions. The black errorbars indicate the 1000-518 
forecast 0.05 quantile and 0.95 quantile, and the red circles indicate the observed values. The red dotted 519 
lines indicate the range of the observation data and the solid red lines show the 0.05 quantile to 0.95 520 
quantile of the observed data. 521 
  522 
  523 
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Tables 524 

Table 1 [HMM] Parameters estimated for the HMM. 525 

 526 
 527 
Table 2 [AR-HMM] Parameters estimated for the AR-HMM. 528 

 529 
 530 

Table 3 [HMM] Correlation matrix of SST, C37, ∂15N, and %N for each HMM state. The correlation 531 
matrices are obtained directly from the data set augmented by their expected values once the state at each 532 
time is known. 533 

 534 
  535 
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 536 
Table 4 [AR-HMM] Correlation matrix of SST, C37, ∂15N, and %N for each AR-HMM state. The 537 
correlation matrices are obtained directly from the data set augmented by the Kalman filter imputed 538 
values once the state at each time is known. 539 

 540 
 541 
Table 5 [AR-HMM] Squared bias, variance, and MSE of the prediction up to 266. (The numbers in 542 
parenthesis represent the percentage over the longest prediction.) 543 

 544 
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