
Thank you for taking time to carefully read and evaluate our manuscript. We appreciate the comments and 
suggestions made by reviewers. 
 
Reviewer #2 suggested considering another journal, but we still think this journal,  Climate of the Past , is 
the right place to discuss statistical analysis results of paleoclimate data. There is no journal specializing 
in statistical paleoclimate analysis, and this study applies standard statistical methods to paleoclimate 
data, so a purely statistical journal is not appropriate. It is our hope that work such as this one can find a 
home in  Climate of the Past , as we support the open-access and non-profit nature of that journal and 
believe statistical work is an important development in paleoclimatology. 
 
Accordingly we have significantly modified our introduction to emphasize the utility of our approach for 
paleoclimatic analyses and revised the text to give the non-statistical reader a more intuitive grasp of our 
interpretations. 
 
Modified Introduction: 
 
Paleoclimatic time series hold the promise to extend our knowledge of oceanic, atmospheric, and 
ecological variability on the timescale of decades to centuries, a time window poorly constrained by 
instrumental observations.  A frequent assumption of such studies is that significant modes of variability 
detected in the historical record (ENSO- El Nino/Southern Oscillation, PDO- Pacific Decadal Oscillation, 
AMO- Atlantic Meridional Oscillation, etc.) persist into the past and there may also exist other 
fluctuations detectable only through the paleoclimate record, but that resemble modern patterns (Knudsen 
et al., 2011; Koutavas and Joanides, 2012; Newman et al., 2016).  Such patterns often involve an 
ensemble of couplings between aspects such as pressure gradients, surface temperature, and biological 
productivity--all of which might be observed by sediment proxy methods--and couplings or correlations 
might be used to infer that the underlying variability does in fact resemble documented modes of modern 
internal climate variability.  
  
This paper examines statistical aspects of a long-duration, high-resolution, multi-dimensional time series 
that record variations in among sea surface temperature ( SST), phytoplankton productivity, and intensity 
of the oxygen minimum zone (OMZ) over the Holocene epoch (0.60 to 9.44 kA B.P.) along the central 
Peru margin, a region strongly affected by the modern ENSO and PDO cycles (Brink et al., 1983; 
Newman et al., 2016). The sediment is sampled at high-resolution to amount to roughly 3-year averages 
sampled every 7 years under the accumulation rate typical of the region, and the different proxies are 
analyzed using the same core sampling, so that correlations are robust of age model uncertainties. These 
records indicate both surface and subsurface variability in the physical and biological state. Simple 
correlation analyses revealed that proxy associations vary over time; in some intervals following expected 
ENSO-like correlations of low sea surface temperature (SST) and enhanced biological productivity; in 
other intervals this correlation is not apparent (Chazen et al., 2009).  We develop here a statistical 
framework to analyze the evolving relationships over the Holocene in order to  interpret proxy 
correlations, characteristic  timescales of variability (“regimes”), and predictability. 
  



Some of the key questions that may be addressed by time series analysis in this region are whether the 
variability arises from a local or internal source, such as variation in physics through mixing or eddies at 
the surface (Brink et al., 1983, Colas et al. 2012) or changes in the biological makeup of ecosystems in the 
region (e.g., Gooday et al. 2010), or from a remote or external source, such as variations in the water 
properties arriving at the site through large scale modes such as El Nino or the Pacific Decadal Oscillation 
(Mantua et al. 1997, Deser et al. 2010). The site (Fig. 1) is known for wind-driven upwelling (Brink et al. 
1983) at depths shallower than 250m and low oxygen concentrations at depth typical of the eastern 
tropical South Atlantic oxygen minimum zone, which has been highly variable near 250m depth in recent 
times (Stramma et al. 2008). Despite the low oxygen levels at depth, the typical sediment accumulation 
rate over the Holocene during these samples is high (70 cm/kyr), which suggests high, sustained 
biological productivity and presumably a persistent level of oxygen demand. 
  
A visual analysis of the proxy records (Fig. 2) suggests that the variability of four proxies might fall into 
multiple regimes: one state with high variability and another state with low variability. This  biphasic 
behavior guided our initial analysis using a Hidden Markov Model (HMM; Rabiner, 1989). Hidden 
Markov methods are increasingly used as a statistically robust automated method for identifying climate 
regime shifts (e.g., Majda et al. 2006, Franzke & Woollings 2011, Ahn et al. 2017).  A benefit of our 
approach is that it can objectively identify regimes of paleoclimatic behavior in which correlations 
between proxies and proxy variance evolve (and perhaps alternate) over time. We also explored the 
possibility of more than two states, but found that these extra regimes were visited only transiently, so 
parsimony suggested retaining only two modes. 
  
A less common tool in climate modeling is the autoregressive hidden Markov method (AR-HMM, 
Hamilton, 1988, 1989, 1994) which allows for some memory in the system through a dependence on 
previous proxy values as well as correlations in the present proxy value noise. The application of this 
method here, and the insights gained from this application, are a key breakthrough found in our analysis. 
Both our HMM and AR-HMM results show that there exist two regimes of variability in proxy space at 
site MW8708-PC2. Here the AR-HMM technique is used to probe deeper into distinctions between 
causality and correlation, under the premise that a predictive cause should precede its effect in time.  As 
the HMM method examines only simultaneous-in-time correlations, it is not capable of distinguishing 
causation from correlation in this way. A surprising result of this study is that our conception of the 
relationships among these proxies from the HMM analysis changed dramatically when the AR-HMM 
technique was applied and contrasted to the more standard HMM approach. The AR-HMM shows that 
both climatic regimes show high auto-correlation and low cross-correlation, thereby indicating that none 
of the proxies are good predictors of other proxies on interannual to decadal timescales.  Thus, a 
hypothesis of local causality between the variables, such as mixing driving local productivity, is not 
supported by the AR-HMM analysis. This lack of causality is robust to the biphasic regime shifts as well, 
although in a different location where regime change is not present, a simpler autoregressive only 
approach can be used to assess causation versus correlation following a similar approach to the methods 
used here. The software provided with this paper (https://github.com/seonminahn/ARHMM) can be 
applied for the analysis of multi proxy data from a core record.  
 
  



Reviewer #1’s comments and our responses 
 

1. The reviewer commented that the method description is not enough for the general audience of 
Climate of the Past . The reviewer pointed out that the model comparison (Sec 3.3) with Figure 5 
is confusing. The Reviewer #2 also suggested adding more description about the HMM (comment 
5) and comparison to the classical correlation analysis (comment 1). We can add more general 
explanations about the method and also modify Section 3.3 as follow: 

 
Statistical modeling involves developing relationships between one set of predictor variables and 
another set of predictands. Paleoclimate reconstructions likewise develop models to relate proxy 
information (predictors) to past climate variables (predictands). Thus, statistical modeling and 
paleoclimate reconstructions both seek the same goals, and approaches of varying complexity are 
found to infill missing data or to understand relationships among variables.  
 
In paleoclimate studies, as in any set of observations, not all important variables can be observed 
or reconstructed.  It is typical in such situations to hypothesize linkages among observed 
variables, but a more direct observation of the mechanism involved in the linkage are not 
recorded.  So, one might expect that A causes B that causes C, but only A and C are observed. 
Statistical modeling can help identify or quantitatively assess relationships between A and C, 
even in the presence of hidden variables such as B. 
 
The autoregressive (AR) approach adds value by allowing the state at previous times to be among 
the predictors of the present state predictands. Typically, causes precede effects, so the AR 
approach allows for an interpretation of causality--if a predictor precedes the predictand in time, 
then it is the cause rather than  vice versa . Simultaneous correlations among variables are 
frequently interpreted as implying causality, but they can represent a number of 
relationships--cause and effect, effect and cause, or accidental correlations without causal 
relationships.  The greater precision of the AR models allows for examination of causal 
relationships under the assumption of cause preceding effects.  
 
Furthermore, the HMM provides a quantitative justification of transitions between different 
epochs governed by regime shifts in the surrounding climate. Even though these shifts might not 
be directly detectable in any of the recorded variables alone, the HMM provides a technique that 
allows all variables to contribute equally in identifying shifts in the relationships among the 
variables.  

 
 Section 3.3:  

The HMM is a special case of the AR-HMM; The AR-HMM with zero autocovariance term ( θs(t)

) is identical to the HMM. So, if the AR-HMM results in the proxies having weak autocorrelation, 
 should be close to zero, and the other parameters of the AR-HMM (the noise covarianceθs(t)  

matrices ( )) will resemble their equivalents in the HMM. Thus, were the HMM an adequateΣs(t)  
model to describe the proxy data, then allowing the extra degrees of freedom in the AR-HMM 



would result in little extra predictive power, and this result would not change the interpretation of 
the data from the interpretation found using the HMM alone.  However, in this particular dataset, 
the AR-HMM resulted in extremely large auto-correlation relationships (the entries of the 
estimated  are close to one) and furthermore the other model parameters (the estimated noiseθs(t)  
covariance matrices) are quite different between the HMM and the AR-HMM. Fig. 5 visualizes 
and compares the estimated  of the HMM and AR-HMM. The fact that the AR-HMMθs(t)  
coefficients do not resemble the HMM in pattern, magnitude, or implied relationships means that 
a dependence of the data on values at a previous time is a critical aspect of the data. Thus, a key 
conclusion from the statistical models is that the past values of each proxy predicts its own proxy 
variability better than the different proxy-to-proxy cross-correlations at the same time (or indeed 
the cross-correlations among past and present values). This fact implies that the different proxies 
in this particular dataset are not causally related to one another, as is often assumed in multi-proxy 
paleoclimate analyses (e.g., Hu et al. 2017). This result probably does not apply to all muli-proxy 
records, indeed many are probably causally linked, but our methodology for testing that 
assumption by comparing HMM to AR-HMM is generic.  Thus, in this location, the four proxies 
( SST; C 37 ; ∂ 15 N; %N ) are not related to each other in the local sense that variability in any one 
dominates or contributes significantly to variability in another through a local physical or 
biological mechanism . 

  
2. The reviewer commented that a) the Uk’37 proxy may be biased in the region toward warm 

temperatures and that b) associations between alkenone-based temperatures and productivity 
might be erroneously interpreted.  
 
We appreciate these concerns and responded by moving proxy information into the Method 
section and addressing the referees concerns there.  In brief, we can cite two substantial data sets 
that look at the alkenone proxy in the Eastern Equatorial Pacific and argue that there is no 
indication of a SYSTEMATIC bias relative to mean annual SST in the region 
 
We can evaluate the second claim, as we report Uk’37 unsaturation, bulk organic nitrogen and 
C37total, an index of the sediment concentration of alkenones. As we demonstrate, the index of 
bulk phytoplankton production and C37 total are significantly correlated, suggesting that 
haptophyte production indeed follows total ecosystem production. And furthermore, the lack of a 
strong coupling between the Uk’37 index and either productivity proxy--as found by the 
statistical methods used in this paper--argues against the existence of the production-SST bias 
suggested by the reviewer.  The fact that an inorganic proxy (opal, as reported by Chazen et al.) 
does not resemble the organic proxies can most likely be explained by variations in the 
preservation of opal, a notorious confounding influence on interpreting that proxy quantitatively 
  
We now include additional text in 2.1 (Data Collection): 
 
The four records examined are proxies for sea surface temperature ( SST ) through the alkenone 
proxy, biological productivity of a specific phytoplankton group ( C 37 ) through analyses of the 



abundance of alkenones (representing haptophyte algal productivity), subsurface properties 
through analyses of  ∂ 15 N , an index of subsurface oxygenation and denitrification, and the 
percentage of organic nitrogen ( %N ) which is a composite of all biological inputs to the sediment. 
We interpret the alkenone Uk’37 index as an approximation to mean annual sea surface 
temperature. Although anomalies Uk’37 values have been reported in the region (Prahl et al., 
2010; Kienast, 2012), there is no convincing evidence for seasonal bias based on analyses of 
modern sediments over a broad region of the Eastern Equatorial Pacific with very strong 
gradients in the timing of maximum annual biological production (Kienast et al., 2012; 
Timmerman et al., 2014).  Analyses of modern sediments in the region conducted at the Brown 
University laboratory show agreement with mean annual temperatures in the region of our core 
study to within the standard empirical proxy calibration (e.g. subset of data reported in Kienast et 
al, 2012).  Our paleo-productivity interpretations are guided by the presence of a proxy that 
responds to total phytoplanktion production (%N) and to a subset of the haptophyte production 
(C37total); we can therefore assess whether alkenone production is coupled or decoupled to a 
generalized biological response over time. 
 

3. The reviewer suggested considering other factors, such as laminations bioturbation, and sediment 
mixing, to explain more about the decadal predictability.  
 
The reviewer makes a good point about the potential down-core differences in variance being 
driven by variations in oxygenation and bioturbation. In some sense this is a chicken and egg 
question, because the existence of laminations is in fact coupled to some of the variables 
represented by our proxies, such as density stratification and organic matter flux.  It is therefore 
difficult to assess whether the presence/absence of laminations is a confounding factor or part of 
the oceanographic signal represented in our time series. 
 
However, when we compared a visual index of lamination/bioturbation, based on X-radiographs 
of the core, we see the following results. In the HMM, the “calm” state is associated with a 
significantly more negative d15N value, consistent with, although not proof of, a preferential 
smoothing of variance in non-laminated intervals.  However, this association does not persist in 
the AR-HMM results, suggesting that this 2-state model does not  reflect a preservational bias of 
variance. 
 
We thank the reviewer for sharpening our analysis in this regard, and have modified the text in 
Section 3.3 by adding: 
 
A caveat arises in assessing variance in the time series: changes in the  extent of laminations 
down-core, which could introduce differential smoothing of the results.  We can assess the 
possible influence of lamination versus bioturbation in two ways: a visual comparison of 
X-radiographs of the core, which show the presence/absence of laminations, and comparison to 
d15N, which is strongly indicative of lamination (high d15N signifies intense depletion of oxygen 
in the subsurface).  The results of the  HMM and AR-HMM differ significantly in this regard. 
The presence of State 1 versus State 2 correlates strongly with the degree of lamination/d15N 



proxy in the case the HMM model (the “noisy” state occurring much more frequently in 
laminated intervals). This association is confirmed by the significant offset in the mean values of 
d15N for State 1 and 2 (Table 1).  However, the AR-HMM removes any significant dependence 
on the occurrence of the “noisy” versus “calm” states on the status of lamination down-core, and 
is confirmed by the negligible offset in the mean d15N reported for the two states (Table 2). 

 
  



Reviewer #2’s comments and our responses 
 
The reviewer suggested improving the model descriptions:  

1. The reviewer suggested adding a paragraph to describe the disadvantages of the classical 
correlation analysis. See the reply to the Reviewer #1’s first comment. We wrote a paragraph that 
describes the advantages of the method we used in the study and the disadvantages of the 
correlation analysis. 

 
2. Reviewer’s comment:  In the introduction, you should explicitly state that the four proxies come 

from the same core, as it is an important implicit hypothesis. 
In Section 2.1 Data Collection, we state that “... a sediment core retrieved from the central Peru 
margin”. We can also modify the second sentence of Section 1.0 Introduction: “ The sediment 
record is retrieved from a single sediment core located at the central Peru margin and sampled as 
high-resolution to … ”  

 
3. The reviewer suggested describing the age model of the core.  

The age model from [1] is used to estimate the age of the core top and base. We did not estimate 
the age for each sample because we assume a constant accumulation rate. The assumption does 
not affect the HMM and AR-HMM analysis significantly, because the sediment record is 
retrieved from a single sediment core so cross-correlations are not affected significantly by age. 
Modest variations in accumulation would only weakly affect the accuracy of the autocorrelations, 
as those are linkages assessed only between neighboring values of the data rather than long 
sections of the core.  If the constant accumulation rate assumption is not valid, then we would 
consider either direct age assignments via C-14 dating ([2]) or indirect age assignments via 
synchronization based on a global climate variable, such as glacial ice volume using the benthic 

 proxy ([3], [4]). However, the age modeling efforts thus far do suggest that the site has aOδ18  
high and steady sedimentation rate across the Holocene. Therefore, we assumed a constant rate 
and used age estimates only for the top and bottom of the core. 

 
4. The reviewer suggested describing the results when the number of states is assumed to be one or 

more than two. The goal of this study is to reveal the hidden regime changes under the sampled 
data, so we assumed that the number of states is two or more than two. We experimented during 
the early stages of the project by assuming that there might exist four states, which include two 
additional states as intermediate states, and found that the regime changes through the 
intermediate or transitional states was very fast, as shown the figure below. As this methodology 
does not exhibit persistence in the intermediate states, it is not meaningful to consider those 
intermediate states as separate regimes. This approach would also have indicated if there were 
three or four sustained regimes (i.e., nothing about the approach implied that these extra third and 
fourth states had to be transitional, but that was what was found). Therefore, we proceeded on to 
all later calculations assuming the number of states to be two, hence the two-state HMM and 
AR-HMM. 



 

This figure shows the probability of being each state when we assumed four states, 
including 2 intermediate states. The state can change from 1 to 4 through 2u and 3u or 
directly from 1 to 4. Also, the state can change from 4 to 1 through 3d and 2d or directly 
from 4 to 1. Most state changes occur without intermediate states.  

 
5. The reviewer suggested adding more description of the HMM. See the reply to the Reviewer #1’s 

first comment as well. The following paragraph can be added as an introduction of HMM and 
AR-HMM as well.  
 

Both HMM and AR-HMM consist of observed data  X(t)  and two kinds of hidden states 
s(t) . The measured data from the sediment core correspond to  X(t) , and the unobserved 
state for each observed data corresponds to  s(t) . The unobserved hidden states  are 
analogous to the terms “regimes” that are described in climate studies. The states are 
hidden because they are to be determined from relationships within the data by the model, 
rather than indicated directly, e.g., if the value of one variable indicated which regime the 
data was in at any given time. 
The figure below illustrates the dependencies among hidden states (S) and observed data 
(X) of the two models. State dependencies are the same in both models. Both models 



have hidden states that have the Markov property, meaning that the future state does not 
depend on the past states given the present states. The difference between the two models 
is the dependency between observations (X) that are adjacent in time to each other (X(1) 
to X(2)). In the HMM, a current observation is solely dependent on present observations 
and the current state. The HMM assumes that a current observation follows the normal 
distribution with means and variances determined by its state. Thus, a current set of 
observations is independent of other sets of observations at other times, although its state 
does depend on what state was determined at a previous time. In the AR-HMM, a current 
observation depends not only on a current and previous state but also on the previous 
observations. Therefore, the AR-HMM model  allows for examination of causal 
relationships among the observed variables--inferring connections beyond just “regime” 
shifts and into relationships such as SST predicts productivity at at later time.  

 

(a) HMM (b) AR-HMM 

Dependencies among observations X(t) and hidden states S(t) for (a) HMM and (b) 
AR-HMM. Nodes are connected with an arrow if one node at the head of an arrow 
depends on another node at the origin of an arrow. 

 
Also, after the equation (1), we can add the following statement to explicitly state that the 
equation (1) is for both states: “ This equation represents the two-state AR-HMM, where the state 
value  s(t)  can be either 1 (Noisy state) or 2 (Calm state). ” 
The reviewer also suggested investigating other methods that do not require the interpolation 
procedure. There exist some methods that can be applied to irregularly sampled data without the 
interpolation procedure, as the reviewer commented. However, those methods are not easily 
applicable when we consider multiple regimes and regime changes. In this study, we used the first 
order autoregressive model, meaning the model includes one immediately preceding value. To use 
this model, we need an estimated values for each missing observation value. Therefore, we 
estimated the expectation of the missing values by using the Kalman filter. To develop a method 
to analyze irregularly spaced samples with regime changes but without interpolations would be an 
interesting topic for future study, but is outside the scope of this paper and probably also the 
audience of this journal. 
 

6. The reviewer suggested adding more statistical analysis for the conclusion that the four proxies 
are not causally related. If the four proxies are causally related, then the off-diagonal entry values 



of the autocovariance matrix should be similar to the diagonal entry values. If the off-diagonal 
entry values and diagonal entry values are comparable, then further analysis would be required. 
However, the difference in absolute values between diagonal and off-diagonal values are 
extremely large; See the estimated autocovariance regression matrix (θ) values in Table 2. The 
smallest value of the diagonal entries is 13 times larger than the largest value of the off-diagonal 
entries, so we did not conduct a further statistical analysis. Also, it is not desirable to apply a 
frequentists approach when using a Bayesian model. Ideally, we would prefer a full Bayesian 
model comparison. However, that requires summing and integrating over all the unknowns which 
is not possible in this because there exist too many interconnections in the model parameters to 
complete all the sums and integrals simultaneously. 

 
Or, to put it more simply, the AR-HMM results are not quantitatively different from the HMM, 
they are qualitatively different.  The dominant relationships change entirely, not just slightly or 
within the range of statistical uncertainty, the whole nature of the AR-HMM and HMM models is 
different.  We note again that this is not expected, unless the additional degrees of freedom of the 
AR-HMM system have systematically allowed for different behavior.  This change is the nature 
of “Granger causality”, i.e., if the system changes qualitatively when past values are allowed as 
predictors, it implies that same-time correlations cannot be causations. 

 
7. Reviewer’s comment:  In Fig. 2, 3 and 4, please draw in function of the time/age rather than the 

time step. 
The sediment record is retrieved from a single sediment core located at the central Peru margin. 
Also, the site of the sample has a high and steady sedimentation rate across the Holocene, and the 
samples are obtained from 2cm slices taken every 5cm. Therefore, we assumed a constant 
accumulation rate. Because we assumed a constant accumulation rate, we did not use additional 
age model to estimate the age for each sample and used the time step instead of the time or age. 
The accumulation rate does not affect the cross-correlations or autocorrelations directly.  

 
8. Reviewer’s comment:  In Fig. 5, you should indicate state 1 for the top figures and state 2 for the 

bottom ones. 
The top and bottom rows represent the correlation matrices of the state 1 and state 2, respectively. 
We can add this information to the figure and also the figure description. 

 
9. Reviewer’s comment:  In table 1, you should point out and explain why the 4-4 matrices are 

symmetric. 
The 4-by-4 matrix in Table 1 is the covariance matrix of the error term. The ( i,j ) entry of the 
covariance matrix is the covariance of the  i th entry and  j th entry. Because the covariance is 
commutative, meaning that  = , the covariance matrix is symmetric. It canov(ε , )  c i εj ov(ε , )  c j εi  
be seen from the definition of the covariance matrix as well. The ( i,j ) entry of the covariance 
matrix is defined as . Therefore, is equal to ,cov(ε , ) [(ε [ε ])(ε [ε ])]  Σij =  i εj = E i − E i j − E j Σij Σji  
and the matrix is symmetric ([5]).  

 



10. Reviewer’s comment:  In tables 3 and 4, please provide the explicit formulas for the computation 
of those matrices. 
The correlation matrix is defined as , where  cov  means covariance, and orr(x , )c i xj = σ σi j

cov(x ,x )i j σi  

and  are the standard deviations of  and , respectively.σj xi xj  
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