Supplementary figures and tables for Döring et al.:

Figure S01: Possible accumulation rate scenarios (i), the deviation from the averaged scenario (ii) and resulting modelled lock-in-depth (LID) (a) and δ 15N values (b) and deviations (c), (d), as well as, corresponding temperature uncertainties Δ T (e), for a constant temperature input (I) -45 °C and (II) -31 °C.

Figure S02: Static model behaviour: Two-dimensional (temperature T, accumulation rate Acc) polynomial surface fits. Correlation coefficients (a) and root mean squared error (b) versus polynomial degrees in temperature (T) and accumulation rate (Acc).

Figure S03: (a-c) First guess vs. Monte Carlo δ^{15} N solution for the scenario S1; (a) Synthetic δ^{15} N target (black dotted line), modelled δ^{15} N time series for the first guess input (blue line) and Monte Carlo solution (red line); (b) Histogram shows the pointwise mismatches D_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (c) Time series for the pointwise mismatches D_i for the first guess solution (blue) and the Monte Carlo solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (d-f) First guess vs. Monte Carlo surface temperature solution for the scenario S1; (d) Synthetic surface temperature target (black dotted line), first guess temperature input (blue line) and Monte Carlo solution (red line); (e) Histogram shows the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) Time series for the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) versus the synthetic surface temperature target;

Figure S04: (a-c) First guess vs. Monte Carlo δ^{15} N solution for the scenario S2; (a) Synthetic δ^{15} N target (black dotted line), modelled δ^{15} N time series for the first guess input (blue line) and Monte Carlo solution (red line); (b) Histogram shows the pointwise mismatches D_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (c) Time series for the pointwise mismatches D_i for the first guess solution (blue) and the Monte Carlo solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (d-f) First guess vs. Monte Carlo surface temperature solution for the scenario S2; (d) Synthetic surface temperature target (black dotted line), first guess temperature input (blue line) and Monte Carlo solution (red line). (e) Histogram shows the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) Time series for the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) versus the synthetic surface temperature target;

Figure S05: (a-c) First guess vs. Monte Carlo δ^{15} N solution for the scenario S3; (a) Synthetic δ^{15} N target (black dotted line), modelled δ^{15} N time series for the first guess input (blue line) and Monte Carlo solution (red line); (b) Histogram shows the pointwise mismatches D_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (c) Time series for the pointwise mismatches D_i for the first guess vs. Monte Carlo solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (d-f) First guess vs. Monte Carlo surface temperature solution for the scenario S3; (d) Synthetic surface temperature target (black dotted line), first guess temperature input (blue line) and Monte Carlo solution (red line). (e) Histogram shows the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) Time series for the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) versus the synthetic surface temperature target;

Figure S06: (a-c) First guess vs. Monte Carlo δ^{15} N solution for the scenario S4; (a) Synthetic δ^{15} N target (black dotted line), modelled δ^{15} N time series for the first guess input (blue line) and Monte Carlo solution (red line); (b) Histogram shows the pointwise mismatches D_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (c) Time series for the pointwise mismatches D_i for the first guess vs. Monte Carlo sufface temperature solution for the scenario S4; (d) Synthetic surface temperature target (black dotted line), first guess temperature input (blue line) and Monte Carlo solution (red line). (e) Histogram shows the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (f) Time series for the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) Time series for the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) versus the synthetic surface temperature target;

Figure S07: (a-c) First guess vs. Monte Carlo δ 15N solution for the scenario H1; (a) Synthetic δ ¹⁵N target (black dotted line), modelled δ ¹⁵N time series for the first guess input (blue line) and Monte Carlo solution (red line); (b) Histogram shows the pointwise mismatches D_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (c) Time series for the pointwise mismatches D_i for the first guess vs. Monte Carlo solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (d-f) First guess vs. Monte Carlo surface temperature solution for the scenario H1; (d) Synthetic surface temperature target (black dotted line), first guess temperature input (blue line) and Monte Carlo solution (red line). (e) Histogram shows the pointwise mismatches Δ T_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) Time series for the pointwise mismatches Δ T_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) Time series for the pointwise mismatches Δ T_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) Time series for the pointwise mismatches Δ T_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target;

Figure S08: (a-c) First guess vs. Monte Carlo δ^{15} N solution for the scenario H2; (a) Synthetic δ^{15} N target (black dotted line), modelled δ^{15} N time series for the first guess input (blue line) and Monte Carlo solution (red line); (b) Histogram shows the pointwise mismatches D_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (c) Time series for the pointwise mismatches D_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (d-f) First guess vs. Monte Carlo surface temperature solution for the scenario H2; (d) Synthetic surface temperature target (black dotted line), first guess temperature input (blue line) and Monte Carlo solution (red line). (e) Histogram shows the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo versus the synthetic surface temperature target; (f) Time series for the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo versus the synthetic surface temperature target; for the first guess solution (blue) and the first guess solution (red) versus the synthetic surface temperature target; for the first guess solution (red) versus the synthetic surface temperature target; for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; for the first guess solution (blue) and the Monte Carlo solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; for the first guess solution (blue) and the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target;

Figure S09: (a-c) First guess vs. Monte Carlo δ^{15} N solution for the scenario H3; (a) Synthetic δ^{15} N target (black dotted line), modelled δ^{15} N time series for the first guess input (blue line) and Monte Carlo solution (red line); (b) Histogram shows the pointwise mismatches D_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (c) Time series for the pointwise mismatches D_i for the first guess vs. Monte Carlo solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (d-f) First guess vs. Monte Carlo surface temperature solution for the scenario S5; (d) Synthetic surface temperature target (black dotted line), first guess temperature input (blue line) and Monte Carlo solution (red line). (e) Histogram shows the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) Time series for the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) Time series for the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target; (f) Time series for the pointwise mismatches ΔT_i for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface temperature target;

Figure S10: (a-d): (a) Synthetic $\delta^{15}N$ target (black dotted line), modelled $\delta^{15}N$ time series after adding high frequency information (blue line) and correction (red line) for the scenario S1; (b) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (c) Histogram shows the pointwise mismatches D_i from the synthetic $\delta^{15}N$ target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 4.4 permeg (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (d) Time series for the pointwise mismatches D_i from the synthetic $\delta^{15}N$ target for the high frequency solution (blue) and the correction (red); and the correction (red); (e-h): (e) Synthetic temperature target (black dotted line), modelled temperature time series after adding high frequency information (blue line) and correction (red line); (f) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (g) Histogram shows the pointwise mismatches ΔT_i from the synthetic temperature target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 0.31 K (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (h) Time series for the pointwise mismatches ΔT_i from the synthetic temperature target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 0.31 K (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (h) Time series for the pointwise mismatches ΔT_i from the synthetic temperature target for the high frequency solution (blue) and the correction (red);

Figure S11: (a-d): (a) Synthetic $\delta^{15}N$ target (black dotted line), modelled $\delta^{15}N$ time series after adding high frequency information (blue line) and correction (red line) for the scenario S2; (b) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (c) Histogram shows the pointwise mismatches D_i from the synthetic $\delta^{15}N$ target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 5.3 permeg (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (d) Time series for the pointwise mismatches D_i from the synthetic $\delta^{15}N$ target for the high frequency solution (blue) and the correction (red); (e-h): (e) Synthetic temperature target (black dotted line), modelled temperature time series after adding high frequency information (blue line) and correction (red line); (f) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (g) Histogram shows the pointwise mismatches ΔT_i from the synthetic temperature target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 0.48 K (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (h) Time series for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismate for 2σ uncertainty of the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from

Figure S12: (a-d): (a) Synthetic δ^{15} N target (black dotted line), modelled δ^{15} N time series after adding high frequency information (blue line) and correction (red line) for the scenario S3; (b) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (c) Histogram shows the pointwise mismatches D_i from the synthetic δ^{15} N target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 6.3 permeg (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (d) Time series for the pointwise mismatches D_i from the synthetic δ^{15} N target for the high frequency solution (blue) and the correction (red); (e-h): (e) Synthetic temperature target (black dotted line), modelled temperature time series after adding high frequency information (blue line) and correction (red line); (f) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (g) Histogram shows the decrease of the mismatch after the correction compared to the high frequency solution; (g) Histogram shows the pointwise mismatches ΔT_i from the synthetic temperature target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 0.51 K (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (h) Time series for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the high frequency solution; (b) Time series for

Figure S13: (a-d): (a) Synthetic $\delta^{15}N$ target (black dotted line), modelled $\delta^{15}N$ time series after adding high frequency information (blue line) and correction (red line) for the scenario S4; (b) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (c) Histogram shows the pointwise mismatches D_i from the synthetic $\delta^{15}N$ target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 4.7 permeg (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (d) Time series for the pointwise mismatches D_i from the synthetic $\delta^{15}N$ target for the high frequency solution (blue) and the correction (red); (e-h): (e) Synthetic temperature target (black dotted line), modelled temperature time series after adding high frequency information (blue line) and correction (red line); (f) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (g) Histogram shows the pointwise mismatches ΔT_i from the synthetic temperature target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 0.38 K (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (h) Time series for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the high frequency solution (blue) and the correction (red);

Figure S14: (a-d): (a) Synthetic $\delta^{15}N$ target (black dotted line), modelled $\delta^{15}N$ time series after adding high frequency information (blue line) and correction (red line) for the scenario H1; (b) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (c) Histogram shows the pointwise mismatches D_i from the synthetic $\delta^{15}N$ target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 3.0 permeg (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (d) Time series for the pointwise mismatches D_i from the synthetic $\delta^{15}N$ target for the high frequency solution (blue) and the correction (red); and the correction (red); (e-h): (e) Synthetic temperature target (black dotted line), modelled temperature time series after adding high frequency information (blue line) and correction (red line); (f) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (g) Histogram shows the pointwise mismatches ΔT_i from the synthetic temperature target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 0.23 K (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (h) Time series for the pointwise mismatches ΔT_i from the synthetic temperature target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 0.23 K (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (h) Time series for the pointwise mismatches ΔT_i from the synthetic temperature target for the high frequency solution (blue) and the correction (red); The 95 % quantile is 0.23 K (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (h) Time series for the pointwise mi

Figure S15: (a-d): (a) Synthetic δ^{15} N target (black dotted line), modelled δ^{15} N time series after adding high frequency information (blue line) and correction (red line) for the scenario H2; (b) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (c) Histogram shows the pointwise mismatches D_i from the synthetic δ^{15} N target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 3.4 permeg (yellow line) and used as an estimate for 2 σ uncertainty of the final solution; (d) Time series for the pointwise mismatches D_i from the synthetic δ^{15} N target for the high frequency solution (blue) and the correction (red); (e-h): (e) Synthetic temperature target (black dotted line), modelled temperature time series after adding high frequency information (blue line) and correction (red line); (f) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (g) Histogram shows the pointwise mismatches ΔT_i from the synthetic temperature target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 0.27 K (yellow line) and used as an estimate for 2 σ uncertainty of the final solution; (h) Time series for the pointwise mismatches ΔT_i from the synthetic temperature target for the high frequency solution (blue) and the correction (red);

Figure S16: (a-d): (a) Synthetic δ^{15} N target (black dotted line), modelled δ^{15} N time series after adding high frequency information (blue line) and correction (red line) for the scenario H3; (b) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (c) Histogram shows the pointwise mismatches D_i from the synthetic δ^{15} N target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 3.7 permeg (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (d) Time series for the pointwise mismatches D_i from the synthetic δ^{15} N target for the high frequency solution (blue) and the correction (blue) and the correction (red); (e-h): (e) Synthetic temperature target (black dotted line), modelled temperature time series after adding high frequency information (blue line) and correction (red line); (f) Zoom in for a randomly chosen 500 yr interval shows the decrease of the mismatch after the correction compared to the high frequency solution; (g) Histogram shows the pointwise mismatches ΔT_i from the synthetic temperature target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); The 95 % quantile is 0.30 K (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (h) Time series for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temperature target for the pointwise mismatches ΔT_i from the synthetic temper

Polynomial: (T, Acc)	Coefficients (95% confidence bounds)		Unit	\mathbf{r}^2	RMSE [permeg]
Static behaviour:					
$\delta^{15}N(T,Acc) = p_{00} + p_{10} \cdot T + p_{01} \cdot Acc + p_{20} \cdot T^2 + p_{02} \cdot Acc^2 + p_{30} \cdot T^3 + p_{11} \cdot T \cdot Acc + p_{21} \cdot T^2 \cdot Acc + p_{12} \cdot T + Acc^2$	p ₀₀ :	106.4 (104, 108.7)	[‰]	0.9997	4.5
	<i>p</i> ₁₀ :	-1.253 (-1.283, -1.224)	[%/K]		
	<i>p</i> ₀₁ :	29.16 (27.99, 30.32)	$[yr \cdot \%_0/m]$		
	<i>p</i> ₂₀ :	$\begin{array}{c} 4.949 \cdot 10^{-3} \\ (4.824, 5.074) \cdot 10^{-3} \end{array}$	$[\%_0/K^2]$		
	<i>p</i> ₀₂ :	-6.887 (-7.505, -6.268)	$\left[\frac{yr^2\cdot \%_0}{m^2}\right]$		
	<i>p</i> ₃₀ :	$-6.536 \cdot 10^{-6}$ (-6.711, -6.361) $\cdot 10^{-6}$	$[\%_0/K^3]$		
	<i>p</i> ₁₁ :	-0.2075 (-0.217, -0.198)	$\left[\frac{yr\cdot\%_0}{m\cdot K}\right]$		
	<i>p</i> ₂₁ :	$\begin{array}{c} 3.707 \cdot 10^{-4} \\ (3.51, 3.904) \cdot 10^{-4} \end{array}$	$\left[\frac{yr\cdot\%_0}{m\cdot K^2}\right]$		
	<i>p</i> ₁₂ :	0.02594 (0.02335, 0.02853)	$\left[\frac{yr^2\cdot \%_0}{m^2\cdot K}\right]$		
Dynamic behaviour:					
$\delta^{15}N(T,Acc) = p_{00} + p_{10} \cdot T + p_{01} \cdot Acc + p_{20} \cdot T^2 + p_{02} \cdot Acc^2 + p_{30} \cdot T^3 + p_{11} \cdot T \cdot Acc + p_{21} \cdot T^2 \cdot Acc + p_{12} \cdot T \cdot Acc^2$	<i>p</i> ₀₀ :	-1697 (-1821, -1574)	[‰]	0.6995	34.2
	<i>p</i> ₁₀ :	23.07 (21.44, 24.71)	[%0/K]		
	<i>p</i> ₀₁ :	-2221 (-2332, -2110)	$[yr \cdot \%_0/m]$		
	<i>p</i> ₂₀ :	-0.1044 (-0.1116, -0.09714)	$[\%_0/K^2]$		
	<i>p</i> ₀₂ :	-392.3 (-422.8, -361.8)	$\left[\frac{yr^2\cdot \%_0}{m^2}\right]$		
	p ₃₀ :	$1.571 \cdot 10^{-4} \\ (1.465, 1.677) \cdot 10^{-4}$	$[\%_0/K^3]$		
	p_{11} :	19.47 (18.5, 20.45)	$\left[\frac{yr\cdot\%_0}{m\cdot K}\right]$		
	<i>p</i> ₂₁ :	-0.04268 (-0.04481, -0.04055)	$\left[\frac{yr\cdot\%_0}{m\cdot K^2}\right]$		
	<i>p</i> ₁₂ :	1.699 (1.571, 1.827)	$\frac{yr^2 \cdot \%_0}{m^2 \cdot K}$		

Table S01: Two dimensional polynomial surface fit for the static and dynamic model behaviour: coefficients with units, correlationcoefficient r^2 and root-mean-squared error RMSE for the polynomial of degree 3 in temperature (T) and degree 2 in accumulation rate (Acc). Note: temperature is in Kelvin.

Scenario:	cop [yr]	S
S1	1135	0.2065
S2	1007	0.3967
S3	1177	0.4002
S4	1315	0.2952
S 5	1244	0.2388

Table S02: Cut off periods and s values for creating the smooth temperature scenarios according to the Monte Carlo approach.