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Abstract. Greenland past temperature history can be reconstructed by forcing the output of a firn-densification and heat-10 

diffusion model to fit multiple gas-isotope data (δ15N or δ40Ar or δ15Nexcess) extracted from ancient air in Greenland ice cores 

using published accumulation-rate (Acc) data-sets. We present here a novel methodology to solve this inverse problem, by 

designing a fully-automated algorithm. To demonstrate the performance of this novel approach, we begin by intentionally 

constructing synthetic temperature-histories and associated δ15N datasets, mimicking real Holocene data that we use as “true 

values” (targets) to be compared to the output of the algorithm. This allows us to quantify uncertainties originating from the 15 

algorithm itself. The presented approach is completely automated and therefore minimizes the “subjective” impact of manual 

parameter-tuning, leading to reproducible temperature-estimates. In contrast to many other ice-core-based temperature-

reconstruction methods, the presented approach is completely independent from ice-core stable-water-isotopes, providing the 

opportunity to validate water-isotope-based reconstructions or reconstructions where water isotopes are used together with 

δ15N or δ40Ar. We solve the inverse problem T(δ15N, Acc) by using a combination of a Monte-Carlo-based iterative approach 20 

and the analysis of remaining mismatches between modelled and target data, based on cubic-spline-filtering of random 

numbers and the laboratory-determined temperature-sensitivity for nitrogen isotopes. Additionally, the presented 

reconstruction approach was tested by fitting measured δ40Ar and δ15Nexcess data, which leads as well to a robust agreement 

between modelled and measured data. The obtained final mismatches follow a symmetric standard-distribution-function. For 

the study on synthetic data, 95 % of the mismatches compared to the synthetic target-data are in an envelope between 25 

3.0 permeg to 6.3 permeg for δ15N and 0.23 K to 0.51 K for temperature (2σ, respectively). In addition to Holocene 

temperature-reconstructions, the fitting approach can also be used for glacial temperature-reconstructions. This is shown by 

fitting of NGRIP δ15N data for two Dansgaard-Oeschger events using the presented approach, leading to results comparable 

to other studies.  
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1 Introduction 

Holocene climate variability is of key interest to our society, since it represents a time of moderate natural variations prior to 

anthropogenic disturbance, often referred to as a baseline for today’s increasing greenhouse effect driven by mankind. Yet, 

high-resolution studies are still very sparse and therefore limit the investigation of decadal and even centennial climate 

variations over the course of the Holocene. One of the first studies about changes in the Holocene climate was conducted in 5 

the early 1970s by Denton and Karle´n (1973). The authors investigated rapid changes in glacier extents around the globe 

potentially resulting from variations of Holocene climatic conditions. Mayewski et al. (2004) used these data as the base of a 

multiproxy study identifying rapid climate changes (so called RCCs) globally distributed over the whole Holocene time 

period. Although not all proxy data are showing an equal behaviour in timing and extent during the quasi-periodic RCC 

patterns, the authors found evidence for a highly variable Holocene climate controlled by multiple mechanisms, which 10 

significantly affects ecosystems (Beaulieu et al., 2017; Crausbay et al., 2017; Pál et al., 2016) and human societies 

(Holmgren et al., 2016; Lespez et al., 2016). Precise high-resolution temperature-estimates can contribute significantly to the 

understanding of these mechanisms. Ice-core proxy-data offer multiple paths for reconstructing past climate and temperature 

variability. The studies of Cuffey et al. (1995), Cuffey and Clow (1997) and Dahl-Jensen et al. (1998) demonstrate the 

usefulness of inverting the measured borehole-temperature profile for surface-temperature-history estimates for the 15 

investigated drilling site using a coupled heat- and ice-flow model. Because of smoothing effects due to heat-diffusion within 

an ice sheet, this method is unable to resolve fast temperature oscillations and leads to a rapid reduction of the time 

resolution towards the past. Another approach to reconstruct past temperature is based on the calibration of water-stable-

isotopes of oxygen and hydrogen (δ18Oice, δDice) from ice-core water-samples assuming a constant (and mostly linear) 

relationship between temperature and isotopic composition due to fractionation effects during ocean evaporation, cloud 20 

formation and snow and ice precipitation (Johnsen et al., 2001; Stuiver et al., 1995). This method provides a rather robust 

tool for reconstructing past temperature for times where large temperature excursions occur when an adequate relationship is 

used (Dansgaard-Oeschger events, Glacial-Interglacial transitions (Dansgaard et al., 1982; Johnsen et al., 1992)). Also, in the 

Holocene where Greenland temperature variations are comparatively small, seasonal changes of precipitation as well as of 

evaporation conditions at the source region may contribute to water-isotope-data variations (Huber et al., 2006; Kindler et 25 

al., 2014; Werner et al., 2001). A relatively new method for ice-core-based temperature reconstructions uses the thermal 

fractionation of stable isotopes of air compounds (nitrogen and argon) within a firn layer of an ice sheet (Huber et al., 2006; 

Kindler et al., 2014; Kobashi et al., 2011; Orsi et al., 2014; Severinghaus et al., 1998, 2001). The measured nitrogen- and 

argon-isotope records of air enclosed in bubbles in an ice core can be used as a paleothermometer due to (i) the stability of 

isotopic compositions of nitrogen and argon in the atmosphere at orbital timescales and (ii) the fact that changes are only 30 

driven by firn processes (Leuenberger et al., 1999; Mariotti, 1983; Severinghaus et al., 1998). To robustly reconstruct the 

surface temperature for a given drilling site, the use of firn models describing gas- and heat-diffusion throughout the ice 

sheet is necessary to decompose the gravitational from the thermal-diffusion influence on the isotope signals. 
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This work addresses two issues relevant for temperature reconstructions based on nitrogen and argon isotopes. First, we 

introduce a novel, entirely automated approach for inverting gas-isotope data to surface-temperature estimates. For that, we 

force the output of a firn-densification and heat-diffusion model to fit gas-isotope data. This methodology can be used for 

many different optimization tasks not restricted to ice-core data. As we will show, the approach works besides δ15N for all 

relevant gas-isotope quantities (δ15N, δ40Ar, δ15Nexcess) and for Holocene and glacial data as well. Furthermore, the possibility 5 

of fitting all relevant gas-isotope quantities, individually or combined, makes it possible for the first time to validate the 

temperature solution gained from one single isotope species by comparison to the solution calculated from other isotope 

quantities. This approach is a completely new method which enables the automated fitting of gas-isotope data without any 

manual tuning of parameters, minimizing any potential “subjective” impacts on temperature estimates as well as working 

hours. Also, except for the model spin-up, the presented temperature-reconstruction approach is completely independent 10 

from water stable-isotopes (δ18Oice, δDice), which provides the opportunity to validate water-isotope-based reconstructions 

(e.g. Masson-Delmotte, 2005) or reconstructions where water isotopes are used together with δ15N or δ40Ar (e.g. Capron et 

al., 2010; Huber et al., 2006; Landais et al., 2004). To our knowledge, there are only two other reconstruction methods 

independent from water stable-isotopes that have been applied to Holocene gas-isotope data, without a priori assumption on 

the shape of a temperature change. The studies from Kobashi et al. (2008a, 2017) use the second order parameter δ15Nexcess to 15 

calculate firn-temperature gradients, which are later temporally integrated from past to future over the time-series of interest 

using the firn-densification and heat-diffusion model from Goujon et al. (2003). Additionally Orsi et al. (2014) use a 

linearized firn-model approach together with δ15N and δ40Ar data to extract surface-temperature histories. The method 

presented here can be used when no δ40Ar data are available, which is often the case because δ40Ar is a more analytically 

challenging measurement and is not as commonly measured as δ15N and further allows a comparison among solutions 20 

obtained from any of the available isotope quantities. 

Second, we investigate the accuracy of our novel fitting approach by examining the method on different synthetic nitrogen-

isotope and temperature scenarios. The aim of this work is to study the uncertainties emerging from the algorithm itself. 

Furthermore the focal question in this study is: what is the minimal mismatch in δ15N for Holocene-like data we can reach 

and what is the implication for the final temperature mismatches. Studying and moreover answering these questions makes it 25 

mandatory to create well defined δ15N targets and related temperature histories. It is impossible to answer these questions 

without using synthetic data in a methodology study. The aim is to evaluate the accuracy and associated uncertainty of the 

inverse method itself to then later apply this method to real δ15N, δ40Ar or δ15Nexcess datasets, for which of course the original 

driving temperature histories are unknown. 

  30 
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2. Methods and data 

2.1 Reconstruction approach 

The problem that we deal with is an inverse problem, since the effect, observed as δ15N variations, is dependent on its 

drivers, i.e. temperature and accumulation-rate changes. Hence, the temperature that we would like to reconstruct depends on 

δ15N and accumulation-rate changes. To solve this inverse problem, the firn-densification and heat-diffusion model (from 5 

now on referred to as firn model), which is a non-linear transfer function of temperature and accumulation rate to firn states 

and relates to δ15N values, is run iteratively to match the modelled and measured δ15N values (or other gas species). The 

automated procedure is significantly more efficient and less time-consuming than a manual approach. The Holocene 

temperature-reconstruction is implemented by the following four steps (Fig. 01):  

 10 

Step 1: A prior temperature input (first guess) is constructed, which serves as the starting point for the optimization. 

 

Step 2: A long-term solution which passes through the δ15N data (here synthetic target data) is generated following a 

Monte-Carlo approach. It is assumed that the smooth solution contains all long-term temperature trends (centuries to 

millennial) as well as firn-column-height changes (temperature and accumulation-rate dependent) that drive the 15 

gravitational background signal in δ15N. 

 

Step 3: The long-term temperature solution is complemented by superimposing short-term information directly extracted 

from the δ15N data (here synthetic target data). This step adds short-term temperature changes (decadal) in the same time 

resolution as the data. 20 

 

Step 4: The gained temperature solution is further corrected using information extracted from the mismatch between the 

synthetic target and modelled δ15N time-series. 

 

The functionality of the presented inversion algorithm is schematically displayed in Fig. 01. It guides the reader through 25 

chapters and documents which variables, listed in Table 01, are in use. In the following a detailed description of each step is 

given. 

Step 1: prior input 

The starting point of the optimization procedure is the first-guess. To construct the first-guess temperature-input Tg,0(t), a 

constant temperature of -29.6 °C is used for the complete Holocene section, which corresponds to the last value of the 30 

temperature spin-up (Fig. 02b).  
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Step 2: Monte-Carlo-type input-generator - Generating long-term solutions 

During the second step of the optimization, the prior temperature-input Tg,0(t) from step 1 is iteratively (j) changed following 

a Monte-Carlo approach. The basic idea of the Monte-Carlo approach is to generate smooth temperature-inputs Tmc,j(t) by 

superimpose low-pass-filtered values P��⃗ j of uniformly-distributed random values P��⃗ r,j on the prior input Tmc,j-1. Then, the new 

input is fed to the firn model and the mismatch Dδ15N,mc,j (with X ≡ δ15Nmc,j) between the modelled δ15Nmc,j (here Xmod), 5 

calculated from the model output, and the synthetic δ15Nsyn (here Xtarget) is computed for every time step (i) of the target data 

δ15Nsyn according to:  

DX =  1
n
∑ �DX,i�n
i=1  =  1

n
∑ �Xtarget,i −  Xmod,i�n
i=1         (1) 

(Note: If not otherwise stated, all mismatches in this study labelled with “D” are calculated similar to eq. (1)) 

Dδ15N,mc serves as the criterion which is minimised during the optimization in step 2. If the mismatch Dδ15N,mc,j decreases 10 

compared to the prior input (Tmc,j-1, Dδ15N,mc,j-1), the new input is saved and used as new guess (Tg,j = Tmc,j). This procedure is 

repeated until convergence is achieved leading to the final long-term temperature Tmc,fin(t). Table 02 lists the number of 

improvements and iterations performed for the different synthetic datasets. 

The perturbation of the current guess Tg,j is conducted in the following way: Let T��⃗ g,0 =  Tg,0(t) be the vector containing the 

prior temperature-input. A second vector P��⃗ r,1  with the same number of elements nmc as T��⃗ g,0  is generated containing nmc 15 

uniformly-distributed random numbers within the limits of an also randomly (equally-distributed) chosen standard deviation 

s. s is chosen from a range of 0.05-0.50, which means that the maximum allowed perturbation of a single temperature value 

T(t0) is in a range of ±5 % to ±50 %. Creating the synthetic frequencies, P��⃗ r,1 is low-pass filtered using cubic-spline-filtering 

(Enting, 1987) with an equally distributed random cut-off-period (COP) in the range of 500 yr to 2000 yr generating the 

vector P��⃗1 . Hereby the low-pass filtering of P��⃗ r,1  reduces the amplitudes of the perturbation of T��⃗ g,0 . The new surface 20 

temperature input T��⃗ mc,1 is calculated from P��⃗1 according to: 

T��⃗ mc,1 = T��⃗ g,0
T ∙ (1� + P��⃗1)           (2) 

The superscript “T” stands for transposed and 1�  is the n by 1 matrix of ones.  

This approach provides a high potential for parallel computing. In this study, an eight-core computer was used, generating 

and running eight different inputs of T��⃗ mc simultaneously, minimizing the time to find an improved solution. For example, 25 

during the 706 iterations for scenario S2, about 5600 different inputs were created and tested, leading to 351 improvements 

(see Table 02). Since it is possible to find more than one improvement per iteration step due to the parallelization on eight 

CPU’s, the solution giving the minimal misfit Dδ15N,mc,j is chosen as new first-guess for the next iteration step. This leads to a 

decrease of the used improvements for the optimization (e.g. for S2, 172 of the 351 improvements were used). Additionally, 

a first gas-age scale (Δagemc,fin(t)) is extracted from the model using the last improved conditions, which will then be used in 30 

step 3. 
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Step 3: Adding short-term (high frequency) information 

In step 3 the missing short-term temperature history providing a suitable fit between modelled and synthetic δ15N data is 

directly extracted from the pointwise mismatch Dδ15N,mc,fin(t), between the modelled δ15Nmc,fin(t) obtained in step 2 and the 

synthetic δ15Nsyn target. Note that for a real reconstruction, this mismatch is calculated using the measured δ15Nmeas dataset 

instead of the synthetic one. Dδ15N,mc,fin(t) can be interpreted in first order as the detrended high-frequency signal of the 5 

synthetic δ15Nsyn target. Dδ15N,mc,fin(t) is transferred to the gas-age scale using Δagemc,fin(t) provided by the firn-model output 

for the smooth temperature input Tmc,fin(t). This is needed to insure synchroneity between the high-frequency temperature 

variations ΔT(t) extracted from the mismatch Dδ15N,mc,fin(t) on the ice-age scale and the smooth temperature solution Tmc,fin(t). 

Additionally, the signal is shifted by about 10 yr towards modern values to account for gas diffusion from the surface to the 

lock-in-depth (Schwander et al., 1993), which is not yet implemented in the firn model. This is necessary for adding the 10 

calculated short-term temperature changes ∆T(t) to the smooth signal Tmc,fin(t). The ∆T values are calculated according to 

eq. (3): 

∆Ti =   Dδ15N,mc,fin,i
ΩN2,i

,           (3) 

using the thermal-diffusion sensitivity ΩN2,i for nitrogen-isotope fractionation from Grachev and Severinghaus (2003): 

ΩN2,i =  8.656 ‰
T�i

− 1232 ‰∙K

T�i
2           (4) 15 

T�i is the mean firn temperature in Kelvin which is calculated by the firn model for each time point i. To reconstruct the final 

(high frequency) temperature input Thf(t), the extracted short-term temperature signal ∆T(t) is simply added to the long-term 

temperature input Tmc,fin(t): 

Thf,i =  Tmc,fin,i + ∆Ti           (5) 

Step 4: final correction of the surface temperature solution 20 

For a further improvement of the remaining δ15N and resulting surface-temperature misfits (Dδ15N,hf(t), DT,hf(t)), it is 

important to find a correction method that contains information that is also available when using measured data. The benefit 

of the synthetic data study is that several later unknown quantities can be calculated, and used for improving the 

reconstruction approach (see Sect. 3 and 4). For instance, it is possible to split the synthetic δ15Nsyn data in the gravitational 

and thermo-diffusion parts or to use the temperature misfit, which is unknown in reality. The idea underlying the correction 25 

algorithm explained hereafter is that the remaining misfits of δ15N (Dδ15N,hf(t)) and temperature (DT,hf(t)) are connected to the 

Monte-Carlo (step 2) and high-frequency part (step 3) of the reconstruction algorithm. In the present inversion framework, it 

is not possible to find a long-term solution δ15Nmc,fin (or Tmc,fin) which exactly passes through the δ15Nsyn (or Tsyn) target in the 

middle of the variance in all parts of the time-series. This leads to a slightly over- or underestimation of δ15Nmc,fin(t) and their 

corresponding temperature values Tmc,fin(t). For example, a slightly too low (or too high) smooth temperature estimate Tmc,fin 30 

leads to a small increase (or decrease) of the firn-column-height, creating a wrong gravitational background signal in 
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δ15Nmc,fin on a later point in time (because the firn column needs some time to react). An additional error in the thermal-

diffusion signal is also created due to the high-frequency part of the reconstruction (step 3), because the high-frequency 

information is directly extracted from the deviation of the synthetic target δ15Nsyn(t) and the modelled δ15Nmc,fin(t) from the 

final long-term solution Tmc,fin(t) of the Monte-Carlo part. Therefore, this error is transferred into the next step of the 

reconstruction and partly creates the remaining deviations. 5 

To investigate this problem, the deviations Dδ15N,mc,fin(t) of the synthetic target data δ15Nsyn to δ15Nmc,fin of the Monte-Carlo 

part are numerically integrated over a time window of 200 yr (Sect. 4, Supple. S3), and thereafter the window is shifted from 

past to future in 1 yr steps resulting in a time-series called IF(t). IF(t) equals a 200 yr running-mean of Dδ15N,mc,fin(t). For t, the 

mid position of the window is allocated. The time evolution of IF(t) is a measure for the deviation of the long-term solution 

δ15Nmc,fin(t) (or Tmc,fin(t)) from the perfect middle passage through the target data δ15Nsyn(t) (or Tsyn(t)) and for the slightly 10 

over- and underestimation of the resulting temperature. 

IF(t) =  1
200 ∫ �δ15Nsyn(t) −  δ15Nmc,fin(t)�t+100

t−100 dt =  1
200 ∫ Dδ15N,mc,fin(t)t+100

t−100 dt     (6) 

Next, the sample-cross-correlation-function (xcf) (Box et al., 1994) is applied to IF(t) and the remaining misfits Dδ15N,hf(t) of 

δ15N after the high-frequency part. The xcf shows two extrema (Fig. 03a), a maximum (xcfmax) and a minimum (xcfmin) at 

two certain lags (lagmax,δ15N at xcfmax,δ15N and lagmin,δ15N at xcfmin,δ15N). Now, the same analysis is conducted for IF(t) versus 15 

the temperature mismatch DT,hf(t) (Fig. 03b), which shows an equal behaviour (two extrema, lagmax,T at xcfmax,T and lagmin,T at 

xcfmin,T). Comparing the two cross correlations show that lagmax,δ15N equals the negative lagmin,T and lagmin,δ15N corresponds to 

the negative lagmax,T (Fig. 03d,e). The idea for the correction is that the extrema in the cross-correlation IF(t) vs. Dδ15N,hf(t) 

with the positive lag (positive means here that Dδ15N,hf(t) has to be shifted to past values relative to IF(t)) creates the misfit of 

temperature DT,hf(t) on the negative lag (modern direction) of IF(t) vs. DT,hf(t) and vice versa. So IF(t) yields information 20 

about the cause and allows us to correct this effect between the remaining mismatches Dδ15N,hf(t) and DT,hf(t) over the whole 

time-series. The lags are not sharp signals, due to the fact that (i) the cross-correlations are conducted over the whole 

analysed record, leading to an averaging of this cause and effect relationship as well as that (ii) IF(t) is a smoothed quantity 

itself. The correction of the reconstructed temperature after the high-frequency part is conducted in the following way: From 

the two linear relationships between IF(t) and Dδ15N,hf(t) at the two lags (lagmax,δ15N at xcfmax,δ15N, lagmin,δ15N at xcfmin,δ15N) two 25 

sets of δ15N correction values (Δδ15Nmax(t) from xcfmax,δ15N and Δδ15Nmin(t) from xcfmin,δ15N) are calculated. Then the lags are 

being inverted (Fig. 03c,e) shifting the two sets of the δ15N correction values to the attributed lags of the cross correlation 

between IF(t) and DT,hf(t) (e.g. Δδ15Nmin(t) to lag from xcfmax,T from the cross correlation between IF(t) and DT,hf(t)) therefore 

changing the time assignments of Δδ15Nmin(t) and Δδ15Nmax(t) to Δδ15Nmin(t+lagmax,T) and Δδ15Nmax(t+lagmin,T). Now, the 

Δδ15Nmax(t) and Δδ15Nmin(t) are component-wise summed up leading to the time-series Δδ15Ncv(t). From eq. (3) with Δδ15Ncv,i 30 

instead of Dδ15N,mc,fin,i the corresponding temperature correction values are calculated and added to the high-frequency 

temperature solution Thf(t) giving the corrected temperature Tcorr(t). Finally, Tcorr(t) is used to run the firn model to calculate 

the corrected δ15Ncorr(t) time-series. This cause and effect relationship found in the cross-correlations between IF(t) and 
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Dδ15N,hf(t), and IF(t) and DT,hf(t), is exemplarily shown in Fig. 03 for scenario S1 and was found for all eight synthetic 

scenarios. The derived correction algorithm leads to a further reduction of the mismatches of about 40 % in δ15N and 

temperature (see Sect. 3.2). 

2.2 Firn densification and heat diffusion model 

Surface-temperature reconstruction relies on firn densification combined with gas- and heat-diffusion (Severinghaus et al., 5 

1998). In this study, the firn-densification and heat-diffusion model, developed by Schwander et al. (1997) is used to 

reconstruct firn parameters for calculating synthetic δ15N values depending on the input time-series. It is a semi-empirical 

model based on the work of Herron and Langway (1980), Barnola et al. (1991), and implemented using the Crank and 

Nicholson algorithm (Crank, 1975) and was also used for the temperature reconstructions by Huber et al. (2006) and Kindler 

et al. (2014). Besides surface-temperature time-series, accurate accumulation-rate data are needed to run the model. The 10 

model then calculates the densification and heat-diffusion history of the firn layer and provides parameters for calculating 

the fractionation of the nitrogen isotopes for each time step, according to the following equations: 

δ15Ngrav (zLID, t) =  �e
∆m∙g∙zLID(t)

R∙T�(t) − 1� ∙ 1000        (7) 

δ15Ntherm(t) =  �� Tsurf(t)
Tbottom(t)

�
αT
− 1� ∙ 1000        (8) 

δ15Nmod(t) = δ15Ngrav(t) + δ15Ntherm(t)         (9) 15 

δ15Ngrav(t) is the component of the isotopic fractionation due to the gravitational settling (Craig et al., 1988; Schwander, 

1989) and depends on the lock-in-depth (LID) zLID(t) and the mean firn temperature T�(t) (Leuenberger et al., 1999). g is the 

gravitational acceleration, ∆m the molar mass-difference between the heavy and light isotopes (equals 10-3 kg per mol for 

nitrogen) and R the ideal gas-constant. zLID is defined as a density threshold ρLID, which is slightly sensitive to surface 

temperature, following the formula from Martinerie et al. (1994), with a small offset correction of 14 kg m-3 to account for 20 

the presence of a non-diffusive zone (Schwander et al., 1997): 

ρLID(kg ∙ m−3) =  1
1

ρice
−6.95∙10−7∙T�−4.3∙10−5

− 14        (10) 

where 

ρice(kg ∙ m−3) = 916.5 − 0.14438 ∙ T� − 1.5175 ∙ 10−4 ∙ T�2       (11) 

The thermal-fractionation component of the δ15N signal (Severinghaus et al., 1998) is calculated using eq. (8), where Tsurf(t) 25 

and Tbottom(t) stand for the temperatures at the top and the bottom of the diffusive firn-layer. In contrast to Tsurf(t) which is an 

input parameter for the model, Tbottom(t) is calculated by the model for each time step. The thermal-diffusion constant αT was 

measured by Grachev and Severinghaus (2003) for nitrogen (eq. (12)): 

αT = �8.656 −  1323 K
T

� ∙ 10−3          (12) 
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The firn model used here behaves purely as a forward model, which means that for the given input time-series the output 

parameters (here finally δ15Nmod(t)) can be calculated, but it is not easily possible to construct from measured isotope data the 

related surface-temperature or accumulation-rate histories. The goal of the presented study is an automatization of this 

inverse-modelling procedure for the reconstruction of the rather small Holocene temperature variations. 

2.3 Measurement, input data and time scale 5 

Time scale 

For the entire study the GICC05 chronology is used (Rasmussen et al., 2014; Seierstad et al., 2014). During the whole 

reconstruction procedure the two input time-series (surface temperature and accumulation rate) are split into two parts. The 

first part ranges from 20 yr to 10520 yr b2k (called “Holocene section”) and the second one from 10520 yr to 35000 yr b2k 

(“spin-up section”). The entire accumulation-rate input, as well as the spin-up section of the surface-temperature input 10 

remains unchanged during the reconstruction procedure. 

 

Accumulation-rate data 

Besides surface temperatures, accumulation-rate data are needed to drive the firn model. In this study we use the original 

accumulation rates, reconstructed in Cuffey and Clow (1997) produced using an ice-flow model adapted to the GISP2 15 

location, but adapted to the GICC05 chronology (Rasmussen et al., 2008; Seierstad et al., 2014). A detailed description of 

the adaption procedure can be found in supplement S1. The raw accumulation-rate data for the main part of the spin-up 

section (12000 yr to 35000 yr b2k) are linearly interpolated to a 20 yr grid and low-pass filtered with a 200 yr cut-off-period 

(COP) using cubic-spline-filtering (Enting, 1987). For the Holocene section (20-10520 yr b2k) and the transition part 

between Holocene and spin-up section (10520 yr to 12000 yr b2k) the raw accumulation-rate data are linearly interpolated to 20 

a 1 yr grid to obtain equidistant integer point-to-point distances which are necessary for the reconstruction, and to preserve as 

much information as possible for this time period (Fig. 02a). Except for these technical adjustments, the accumulation-rate 

input remains unmodified, assuming high reliability of these data during the Holocene. The accumulation data were 

reconstructed using annual-layer-counting, and a thinning model which should lead to maximum relative uncertainty of 10 % 

for the first 1500 m of the 3000 m ice core (Cuffey and Clow, 1997). From the three accumulation-rate scenarios 25 

reconstructed in Cuffey and Clow (1997) and adapted here to the GICC05 chronology, the intermediate one is chosen (red 

curves in Fig. S01). Since the differences between the scenarios are not important for the evaluation of the reconstruction 

approach, they are not taken into account for this study. 

Additionally, two sensitivity experiments were conducted (see supplement S2) in order to investigated (i) the influence of 

low-pass-filtering of the high-resolution accumulation rates on the model outputs and (ii) the possible contribution of the 30 

accumulation-rate variability on the δ15N data during the Holocene. The first experiment shows that filtering the 

accumulation-rates with cut-off-periods in the range of 20 yr to 500 yr has nearly no influence on the modelled δ15N or lock-

in-depth as long as the major trends are being conserved. The second experiment leads to the finding that the accumulation-
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rate variability explains about 12 % to 30 % of δ15N variability. 30 % corresponds to the 8.2 kyr event and 12 % for the mean 

of the whole Holocene period including the 8.2 kyr event. Hence the influence of accumulation changes, excluding the 

extreme 8.2 kyr event, is generally below 10 % during most parts of the Holocene. 

 

δ18Oice data 5 

Oxygen-isotope data from the GISP2 ice-core-water samples measured at the University of Washington’s Quaternary 

Isotope Laboratory are used to construct the surface-temperature input of the model spin-up (12 yr to 35 kyr b2k, Grootes et 

al., 1993; Grootes and Stuiver, 1997; Meese et al., 1994; Steig et al., 1994; Stuiver et al., 1995; data availability: Grootes and 

Stuiver, 1999). The raw δ18Oice data are filtered and interpolated in the same way as the accumulation-rate data for the spin-

up part. 10 

 

Surface-temperature spin-up 

The surface-temperature history of the spin-up section (Fig. 02a) is obtained by calibrating the filtered and interpolated 

δ18Oice data (eq. (13)) using the values for the temperature sensitivity α18O and offset β found by Kindler et al. (2014) for the 

NGRIP ice core assuming a linear relationship of δ18Oice with temperature. 15 

Tspin(t) = 1
α18O(t)

∙ [δ18Oice(t) +  35.2 ‰] − 31.4°C + β(t)       (13) 

The values 35.2 ‰ and -31.4 °C are modern-time parameters for the GISP2 site (Grootes and Stuiver, 1997; Schwander et al., 

1997). The spin-up is needed to bring the firn model to a well-defined starting condition that takes possible memory effects 

(influence of earlier conditions) of firn states into account. 

 20 
Generating synthetic target data 

In order to develop and evaluate the presented algorithm, eight temperature scenarios were constructed and used to model 

synthetic δ15N data, which serve later as targets for the reconstruction. From these eight synthetic surface-temperature and 

related δ15N scenarios (S1-S5 and H1-H3), three data sets (later called Holocene like scenarios H1-H3) were constructed in 

such a way that the resulting δ15N time-series are very close to the δ15N values measured by Kobashi et al. (2008b) in terms 25 

of variability (amplitudes) and frequency (data resolution) of the GISP2 nitrogen-isotope data (Fig. 04, Fig. 05). 

The synthetic surface-temperature scenarios S1-S5 are created by generating a long-term temperature time-series (Tsyn,smooth) 

analogous to the Monte-Carlo part of the reconstruction procedure for only one iteration step (see Sect. 2.1). The values for 

the cut-off-period used for the filtering of the random values, and the s values (standard deviation of the random values, see 

Sect. 2.1) for the first five scenarios can be found in Table 03. The long-term temperatures (Fig. 04I) are calculated on a 30 

20 yr grid, which is nearly similar to the time resolution of the GISP2 δ15N measurement values of about 17 yr (Kobashi et 

al., 2008b). For the Holocene-like scenarios, the smooth temperature time-series were generated from the temperature 

reconstruction for the GISP2 δ15N data (not shown here). The final Holocene surface-temperature solution was filtered with a 

100 yr cut-off to obtain the long-term temperature scenario. 
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Following this, high frequency information is added to the long-term temperature histories. A set of normally-distributed 

random numbers with a zero mean and a standard deviation (1σ) of 1 K for scenarios S1-S5 and 0.3 K for Holocene-like 

scenarios H1-H3 is generated on the same 20 yr grid and added up to the long-term temperature time-series. Finally, the 

resulting synthetic target-temperature-scenarios (Fig. 04II, Fig. 05I) are linearly interpolated to a 1 yr grid. 

These synthetic temperatures are combined with the spin-up temperature and are used together with the accumulation-rate 5 

input to feed the firn model. From the model output the synthetic δ15N targets are calculated according to section 2.1. The 

firn-model output provides ice-age as well as gas-age information. The final synthetic δ15N target time-series (δ15Nsyn) are set 

intentionally on the ice-age scale to mirror measured data, because no prior information is available for the gas-ice-age 

difference (Δage) for ice-core data. 

3. Results 10 

3.1 Monte Carlo type input generator 

Figure 06 shows the evolution of the misfit Dδ15N,mc,j between the synthetic target data (δ15Nsyn) versus the modelled output 

δ15Nmc,j of the Monte-Carlo part (step 2) as a function of the applied iterations (j) for all synthetic scenarios. One can easily 

see that all scenarios show a steep decline of the mismatch during the first 50 to 200 iterations followed by a rather moderate 

decrease, which finally leads to a constant value. During the Monte-Carlo part, it was possible to reduce the misfit Dδ15N,mc 15 

compared to the first-guess solution Dδ15N,g,0 by about 15 % to 75 % depending on the scenario and the mismatch of the first-

guess solution (see Table 02). This leads to a reduction of the temperature mismatches DT,mc compared to the first-guess 

temperature DT,g,0 mismatch of about 51 % to 87 %. 

Figure 07 provides the comparison between the first-guess (g,0; step 1) and Monte-Carlo (mc,fin; step 2) solution versus the 

synthetic target data (syn) for the modelled δ15N (a-c) and surface-temperature values (d-f) for scenario S5. Subplots (a) and 20 

(d) show the time-series of the synthetic target (black dotted line), the first-guess solution (blue line) and the Monte-Carlo 

solution (red line) for δ15N and temperature. In subplots (b) and (e), the distribution of the pointwise mismatch Di of the first-

guess (blue) and the Monte-Carlo solution (red) versus the synthetic target data for δ15N (Dδ15N) and temperature (DT) can be 

found. Subplots (c) and (f) contain the time-series for Dδ15N,i and DT,i. The Dδ15N,mc,fin(t) data (red) are used to calculate the 

high-frequency signal, that is superimposed to the long-term temperature solution Tmc,fin according to eq. (3) and eq. (5) (see 25 

Sect. 2.1, step 3). From Fig. 07 it can be concluded that the Monte-Carlo part of the reconstruction algorithm (step 2) leads to 

two major improvements of the first-guess solution. First, it is obvious that the Monte-Carlo approach corrects the offsets of 

the first-guess input (g,0), which shifts the midpoint of the distributions of Dδ15N,mc,i and DT,mc,i to zero (see blue against red 

in Fig. 07b,e). The second improvement is that the distributions become more symmetric and the misfit is overall reduced 

(the distributions become narrower) compared to the first-guess, due to the middle passage through the δ15Nsyn targets. These 30 

improvements can be observed for all eight synthetic scenarios, showing the robustness of the Monte-Carlo part (see 

Table 02, Fig. 07). 
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3.2 High frequency step and final correction 

Figure 08 provides the comparison between the Monte-Carlo (mc,fin; step 2), the high-frequency (hf; step 3) and the 

correction (corr; step 4) parts of the reconstruction procedure for the scenarios S5. Additional data for all other scenarios can 

be found in Table 04. The upper four plots (a-d) illustrate each reconstruction step and their effect on the modelled δ15N; the 

bottom four plots (e-h) show the corresponding results on the temperature. Plots (a) and (e) contain the time-series of the 5 

synthetic δ15Nsyn or Tsyn target (syn; black dotted line), the high-frequency solution (hf; blue line), and the final solution after 

the correction part (corr; red line). For visibility reasons, subplots (b) and (f) display a zoom-in for a randomly chosen time-

window of about 500 yr for the same quantities, which shows the excellent agreement in timing and amplitudes of the 

modelled δ15N and temperature compared to the synthetic target data. Histograms (c) and (g) and subplots (d) and (h) show 

the distribution and the time-series of the pointwise mismatches (Dδ15N,i for δ15N; DT,i for temperature) between the modelled 10 

and the synthetic target data in δ15N and temperature for each reconstruction step. 

Compared to the Monte-Carlo solution, the high-frequency part leads to a large refinement of the reconstructions. For the 

mean δ15N misfits Dδ15N, the improvement between the Monte-Carlo and the high-frequency parts is in the range of 64 % to 

76 % (see Table 04). This leads to a reduction of the temperature mismatches DT of 43 % to 67 %. The standard deviations 

(1σ) of the pointwise mismatches (Fig. 08c,d,g,h) in δ15N and temperature after the high-frequency parts are in the range of 15 

about 2.7 permeg to 5.4 permeg (one permeg equals 10-6) for δ15N and 0.22 K to 0.40 K for the reconstructed temperatures 

depending on the scenario, which is clearly visible in the decreasing width of the histograms (subplots (c) and (g) of Fig. 08, 

blue against grey). 

The mismatches after the correction part of the reconstruction approach show clearly a further decrease of the misfits. This 

means that the width of the distributions of the pointwise mismatches Dδ15N,i as well as DT,i is further reduced, and the 20 

distributions become more symmetric (long tales disappear; see histogram (c) and (g); red against blue of Fig. 08). The time 

series of the mismatches (subplots (d) and (h) of Fig.08) clearly illustrate that the correction approach mainly tackles the 

extreme deviations (sharp reduction of extreme values occurrence in the red distribution compared to the blue distribution) 

leading to a further improvement of about 40 % in δ15N and temperature. Finally, the 95 % quantiles (2σδ15N,corr,95, 2σT,corr,95) 

of the remaining pointwise mismatches of δ15N and temperature (Dδ15N,i or DT,i) were calculated for the final solutions for all 25 

scenarios and are used as an estimate for the 2σ uncertainty of the reconstruction algorithm (see Fig. 08c,g and Table 04). 

The final uncertainties (2σ) are in the order of 3.0 permeg to 6.3 permeg for δ15N and 0.23 K to 0.51 K for the surface 

temperature misfits. It is noteworthy that the measurement uncertainties (per point) of state of the art δ15N measurements are 

in the same order of magnitude, i.e. 3 permeg to 5 permeg (Kobashi et al., 2008b), highlighting the effectiveness of the 

presented fitting approach. Table 05 contains the final mismatches (2σ) in Δage between the synthetic target and the final 30 

modelled data after the correction step for all scenarios and shows that with a known accumulation rate and assumed perfect 

firn physics, it is possible to fit the Δage history in the Holocene with mean uncertainties better than 2 yr. In other words, the 

uncertainty in Δage reconstruction due to the inversion algorithm alone is in the order of 2 yr. 
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4. Discussion 

4.1 Monte Carlo type input generator 

Figure 09 shows the distribution of the cut-off-periods (COP) (I) and s values (II) used to create the improvements (Sect. 2.1, 

step 2) for all scenarios. The cut-off-periods are more or less evenly distributed, which shows that nearly the whole of the 

allowed frequency range (500 yr to 2000 yr) was used to create the improvements during the iterations. In contrast, the 5 

distributions of the s values show clearly that mostly small s values are used to create the improvements, which implies that 

iterations with small perturbations more likely lead to an improvement than larger ones. 

Figure 06 reveals a weak point of the Monte-Carlo part, namely the absence of a suitable termination criterion for the 

optimization. The implementation until now is conducted such that the maximum number of iterations is given by the user or 

the iterations are terminated after a certain time (e.g. 15 h). Figure 06 shows that for nearly all scenarios it would be possible 10 

to stop the optimization after about 400 iterations, due to rather small additional improvements later on. This would decrease 

the time needed for the Monte-Carlo part to about 10 h (a single iteration needs about 90 s). Since the goal of the Monte-

Carlo part is to find a temperature realisation that leads to an optimal middle passage through the δ15N target data, it would 

be possible to use the mean difference between the δ15N target and spline-filtered δ15N data using a certain cut-off-period as 

a termination criterion. This issue is under investigation at the moment. Another possibility to decrease the time needed for 15 

the Monte-Carlo part could be an increase in the numbers of CPUs used for the parallelization of the model runs. For this 

study an eight-core parallelization was used. A further increase in numbers of workers would improve the speed of the 

optimization. 

4.2 High frequency step and final correction 

To investigate the timing and contributions of the remaining mismatches in δ15N and temperature for scenario S1 after the 20 

high-frequency (step 3) and correction part (step 4), different cross-correlation experiments were conducted (see supplement 

S3). The experiments lead to equal results. The major fraction of the final mismatches of δ15N emerges from mismatches in 

the thermal-diffusion component Dδ15Ntherm. Also a cancelation effect between the gravitational component Dδ15Ngrav and 

Dδ15Ntherm of the total mismatch in δ15N became obviously, affecting the calculation of lagmax,δ15N and lagmin,δ15N and most 

likely leading to a fundamental residual uncertainty in the low-permeg level for the corrected δ15N data. The same analyses 25 

were conducted for all synthetic scenarios, leading to similar results. 

Additionally, the influence of the window length, used for the calculation of IF(t), on the correction was analysed, showing 

that for all investigated window lengths the correction reduces the mismatches of δ15N and temperature, whatever correction 

mode was used (calculated with xcfmax, xcfmin, or both quantities). Moreover, the correction is most efficient for window 

lengths in the range of 100 yr to 300 yr with an optimum at 200 yr for all cases. 30 
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4.3 Key points to be considered for the application to real data  

Benefits of the novel gas isotope fitting approach 

In addition to the fitting of δ15N data, the algorithm is able to fit δ40Ar and δ15Nexcess data as well using the same basic 

concepts (Fig. 10). Here the δ40Ar and δ15Nexcess data from Kobashi et al. (2008b) were used as the fitting targets. We reach 

final mismatches (2σ) of 4.0 permeg for δ40Ar/4 and 3.7 permeg for δ15Nexcess, which are for both quantities below the 5 

analytical measurement uncertainty of 4.0 permeg to 9.0 permeg for δ40Ar/4 and 5.0 permeg to 9.8 permeg for δ15Nexcess 

measured data (Kobashi et al., 2008b).  

The automated inversion of different gas-isotope quantities (δ15N, δ40Ar, δ15Nexcess) provides a unique opportunity to study 

the differences in the gained solutions using different targets and to improve our knowledge about the uncertainties of gas-

isotope-based temperature reconstructions using a single firn model. Next, the presented algorithm is not dependent on the 10 

firn model, which leads to the implication that the algorithm can be coupled to different firn models describing firn physics 

in different ways. Furthermore, an automated reconstruction algorithm avoiding manual manipulation and leading to 

reproducible solutions makes it possible for the first time, to study and learn from the differences between solutions 

matching different targets. Finally, differences obtained by applying different firn physics (densification equations, 

convective zone, etc.) but the very same inversion algorithm may help to assess firn model shortcomings, resulting in more 15 

robust uncertainty estimates than it was ever possible before.  

In this publication we show the functionality and the basic concepts of the automated inversion algorithm using well known 

synthetic δ15N fitting targets. In this “perfect world scenario” the forward problem, converting surface temperature to δ15N, 

as well as the inverse problem, converting δ15N to surface temperature, is completely described by the used firn model. 

Consequently all sources of signal noise are ignored. For the later use of the algorithm on δ15N, δ40Ar or δ15Nexcess measured 20 

data this will not be the case anymore due to different sources of signal noise in the used measured data. As a result, 

differences between temperature solutions obtained from individual targets (δ15N, δ40Ar, δ15Nexcess) will become obvious. 

These differences will allow to quantify the uncertainties associated with different unconstrained processes. Next, we will 

list and discuss potential sources of uncertainties and try to provide suggestions for their handling and quantification in our 

approach. 25 

 
Measurement uncertainty and firn heterogeneity (cm-scale variability): 

Many studies have investigated the influence of firn heterogeneity (or density fluctuations) on measurements of air 

compounds and quantities (e.g. δ15N, δ40Ar, CH4, CO2, O2/N2 ratio, air content) extracted from ice cores resulting in cm-scale 

variability and leading to additional noise on the measured data (e.g. Capron et al., 2010; Etheridge et al., 1992; Fourteau et 30 

al., 2017; Fujita et al., 2009; Hörhold et al., 2011; Huber and Leuenberger, 2004; Rhodes et al., 2013, 2016). Using discrete 

measurement technique instead of continuous sampling methods makes it difficult to quantify these effects. However, during 

discrete analyses of ice-core air-data it is common to measure replicates for given depths, from which the measurement 

uncertainties of the gas-isotope data are calculated using pooled-standard-deviation (Hedges L. V., 1985). Often it is not 
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possible to take real replicates (same depth) and instead the replicates are taken from nearby depths. Hence, any potential 

cm-scale variability is to some degree already included in the measurement uncertainty, because each measurement point 

represents the average over a few centimetres of ice. This is especially the case for low-accumulation sites or glacial ice 

samples for which the vertical length of a sample (e.g., 10-25 cm long for the glacial part of the NGRIP ice core, Kindler et 

al., 2014) covers the equivalent of 20 yr to 50 yr of ice at approximately 35 kyr b2k. Increasing the depth resolution of the 5 

samples would increase our knowledge of cm-scale variability, for e.g. identifying anomalous entrapped gas-layers that 

could have been rapidly isolated from the surface due to an overlying high-density layer (e.g., Rosen et al., 2014). As this 

variability is likely due to heterogeneity in the density profile, modelling such heterogeneities (if possible at all) may not 

help to better reconstruct a meaningful temperature history, but rather to reproduce the source of noise. This means that the 

potential cm-scale variability, in many cases, is already incorporated in the analytical noise obtained from gas-isotope 10 

measurements, due to analytical techniques themselves. Assuming the measurement uncertainty as Gaussian distributed, it is 

easy to incorporate this source of uncertainty in the inverse-modelling approach presented here. This will increase the 

uncertainty of the temperature according to eq. (3).The same equation can also be used for the calculation of the uncertainty 

in temperature related to measurement uncertainty in general. 

To answer the pertinent question of how to better extract a meaningful temperature history from a noisy ice-core record, an 15 

excellent – but costly – solution is of course to use multiple ice cores. For example, a δ15N-based temperature reconstruction 

from the combination of data from the GISP2 ice core with the “sister ice core” GRIP drilled 30 kilometres apart is likely 

one of the best ways to overcome potential cm-scale variability. A comparison of ice cores that were drilled even closer 

might be even more advantageous. 

 20 

Smoothing effects due to gas diffusion and trapping: 

It is known that gas-diffusion and trapping processes in the firn can smooth out fast signals and result in a damping of the 

amplitudes of gas-isotope signals (e.g. Grachev and Severinghaus, 2005; Spahni, 2003). The duration of gas diffusion from 

the top of the diffusive column to the bottom where the air is closed off in bubbles is for Holocene conditions in Greenland 

approximately in the order of 10 yr (Schwander et al. 1997), whereas the data resolution of the synthetic targets was set to 25 

20 yr to mimic the measurement data from Kobashi et al. (2008b) with a mean data resolution of about 17 yr (see Sect. 2.3: 

“Generating synthetic target data”). In the study of Kindler et al. (2014) it was shown that a glacial Greenland lock-in-depth 

leads to a damping of the δ15N signal of about 30 % for a 10 K temperature rise in 20 yr. We further assume that the 

smoothing according to the lock-in process is negligible for Greenland Holocene conditions according to the much smaller 

amplitude signals and shallower LID. Yet, for glacial conditions it requires attention. 30 

 

Accumulation rate uncertainties: 

For the synthetic data study presented in this paper it is assumed that the used accumulation-rate data are well known with 

zero uncertainty. This simplification is used to show the functionality and basic concepts of the presented fitting algorithm in 
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every detail on well-known δ15N and temperature targets and to focus on the final uncertainties originating from the 

presented fitting algorithm itself. For the later reconstruction using measured gas-isotope data together with the published 

accumulation-rate scenarios shown in supplement S1 this will not be the case anymore. Uncertainties in layer-counting and 

corrections for ice thinning lead to a fundamental uncertainty. Especially in the early Holocene, this can easily exceed 10 %. 

As the accumulation-rate data are used to run the firn model, all potential accumulation uncertainties are in part incorporated 5 

into the temperature reconstruction. On the other hand, as we discussed in supplement S2, the accumulation rate variability 

has a minor impact compared to the input temperature on the variability of δ15N data in the Holocene. The influence of these 

quantities, accumulation rate or temperature, on the temperature reconstruction is not equal; during the Holocene, 

accumulation-rate variability explains about 12 % to 30 % of δ15N variability. 30 % corresponds to the 8.2 kyr event and 

12 % for the mean of the whole Holocene period including the 8.2 kyr event. Hence the influence of accumulation changes, 10 

excluding the extreme 8.2 kyr event, is generally below 10 % during the Holocene. If the accumulation is assumed to be 

completely correct then the missing part will be assigned to temperature variations. Nevertheless for the fitting of the 

Holocene measurement-data we will use all three accumulation-rate scenarios as shown in S1. The difference in the 

reconstructed temperatures arising from the differences of these three scenarios will be used for the uncertainty calculation as 

well and is most likely higher than the uncertainty arising from uncertainties due to the process of producing the 15 

accumulation-rate data and from the conversion of the accumulation-rate data to the GICC05 timescale. 

 

Convective zone variability: 

Many studies have shown the existence of a well-mixed zone at the top of the diffusive-firn-column, called convective zone 

(CZ). The CZ is formed by strong katabatic winds and pressure gradients between the surface and the firn (e.g. Kawamura et 20 

al., 2006, 2013; Severinghaus et al., 2010). The existence of a CZ changes the gravitational background signal in δ15N and 

δ40Ar as it reduces the diffusive-column-height. The presented fitting algorithm was used together with the two most 

frequently used firn models for temperature reconstructions based on stable isotopes of air, the Schwander et al. (1997) 

model which has no CZ build in (or better a constant CZ of 0 m) and the Goujon firn model (Goujon et al., 2003) (which 

assumes a constant convective zone over time, that can easily be set in the code). This difference between the two firn 25 

models only changes significantly the absolute temperature rather than the temperature anomalies as it was shown by other 

studies (e.g., Guillevic et al., 2013, Fig. 3). In the presented work, we show the results using the model from Schwander et al. 

(1997), because the differences between the obtained solutions using the two models are negligible besides a constant 

temperature offset. Also, noteworthy is that there is no firn model at the moment which uses a dynamically changing CZ. 

Indeed, this should be investigated but requires additional intense work. Additionally, the knowledge of the time-evolution 30 

of CZ changes for time periods of millennia to several hundreds of millennia (in frequency and magnitude) is too poor to 

estimate the influence of this quantity on the reconstruction. In principle it is possible to cancel-out the influence of a 

potentially changing CZ by using δ15Nexcess data for temperature reconstruction, as due to the subtraction of δ40Ar/4 from 

δ15N the gravitational term of the signals is eliminated. From that point of view it will be interesting to compare temperature 
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solutions gained from δ15Nexcess fitting with the solutions based on δ15N or δ40Ar alone. This can offer a useful tool for 

quantifying the magnitude and frequency of CZ changes in the time interval of interest.  

It is known that for some very low accumulation-rate sites in areas with strong katabatic winds (e.g. “Megadunes”, 

Antarctica) extremely deep CZs can occur, which are potentially able to smooth-out even decadal-scale temperature 

variations (Severinghaus et al., 2010). For this its deepness would need to be of several dozens of meters, which is highly 5 

unrealistic even for glacial Summit conditions (Guillevic et al., 2013, see discussion in Annex A4, p. 1042) as well as for the 

rather stable Holocene period in Greenland for which no low accumulation and strong katabatic-wind situations are to be 

expected.  

4.4 Proof of concept for glacial data 

For glacial conditions the task of reconstructing temperature (with correct frequency and magnitude) without using δ18Oice 10 

information is much more challenging due to the highly variable gas-age - ice-age differences (Δage) between stadial and 

interstadial conditions. Here, contrary to the rather stable Holocene period, the Δage can vary by several hundreds of years. 

Also the accumulation-rate data are more uncertain than for the Holocene. To prove that the presented fitting algorithm also 

works for glacial conditions we inverted the δ15N data measured for the NGRIP ice core by Kindler et al. (2014) for two 

Dansgaard-Oeschger events, namely DO6 and DO7. Since the magnitudes of those events are higher and the signals are 15 

smoother than in the Holocene we only had to use the Monte-Carlo-type input-generator (see Sect. 2.3.2) for changing the 

temperature inputs. To compare our results to the δ18Oice based and manually calibrated values from Kindler et al. (2014) we 

use the ss09sea06bm time scale (NGRIP members: Andersen et al., 2004; Johnsen et al., 2001) as it was done in the Kindler 

et al. publication. For the model spin-up we use the accumulation-rate and temperature data from Kindler et al. (2014) for the 

time span 36.2 kyr to 60 kyr. The reconstruction window (containing DO6 and DO7) is set to 32 kyr to 36.2 kyr. As the first-20 

guess (starting point) of the reconstruction we use the accumulation-rate data (Accg,0) for NGRIP from the ss09sea06bm 

time-scale together with a constant temperature of about -49 °C for this time window. As minimization-criterion Dg for the 

reconstruction we simply use the sum of the root-mean-squared-errors of the δ15N and Δage mismatches weighted with their 

uncertainties (wRMSE) according to the following equation, instead of the mean δ15N misfit alone as used for the Holocene 

(eq. (1)). 25 

Dgl =  wRMSE(δ15N) +  wRMSE(Δage)         (14) 
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Here εδ15N,i and εΔage,k are the uncertainties in δ15N and Δage for the measured values i or k (Δage match points: Guillevic, 

M. (2013), p.65, Tab. 3.2) and N, M the number of measurement values. We set εδ15N,i = 20 permeg for all i (Kindler et al., 

2014) and εΔage,k = 50 yr for all k. The relative uncertainties in Δage can easily reach up to 50 % and more in the Glacial 

using the ss09sea06bm time-scale which results in a pre-eminence of the δ15N misfits over the Δage misfits (10 % to 20 % 30 
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when using GICC05 time-scale; Guillevic, M., 2013, p. 65 Tab. 3.2). Due to this issue we have to set Δage uncertainties to 

50 yr to make both terms equally important for the fitting algorithm. In Fig. 11 we show preliminary results. The δ15N and 

Δage fitting (a, b) and the resulting gained temperature and accumulation-rate solutions (c, d) using the presented algorithm 

are completely independent from δ18Oice which provides the opportunity to evaluate the δ18Oice-based reconstructions. In this 

study the algorithm was used in three steps. First, starting with the first-guess (constant temperature), the temperature was 5 

changed as explained before. The accumulation rate was changed in parallel to the temperature allowing a random offset 

shift (up and down) together with a stretching or compressing (in y direction) of the accumulation-rate signal over the whole 

time-window (32 kyr to 36.2 kyr). This first step leads to the “Monte-Carlo Solution 0” (MCS0) which provides a first 

approximation and is the base for the next step. For the next step, we fixed the accumulation rate and let the algorithm only 

change the temperature to improve the δ15N-fit (MSC1). Finally, we allow the algorithm to change the temperature together 10 

with the accumulation rate using the Monte-Carlo-type input-generator for both quantities. This allows to change the shape 

of the accumulation-rate data. This final step can be seen as a fine tuning of the gained solutions from the steps before. The 

obtained mismatches in δ15N and Δage of all steps are at least of the same quality or better than the δ18Oice-based manual 

method from Kindler et al. (2014) (see Table 06). The gained temperature solutions show a very good agreement in timing 

and magnitude compared to the reconstruction of Kindler et al. (2014). Also the accumulation-rate solutions show that the 15 

accumulation has to be reduced significantly compared to the ss09sea06bm data to allow a suitable fit of the δ15N and Δage 

target data, a result highly similar to Guillevic et al. (2013) and Kindler et al. (2014). The mismatches in δ15N and Δage of 

the final MCS FIN solution show a 15 % smaller misfit of δ15N (2σ) and an about 31 % smaller misfit of Δage (2σ) 

compared to the Kindler et al. (2014) solution. Keeping in mind that the used approach is completely independent from 

δ18Oice strengthens the functionality and quality of the presented gas-isotope fitting approach also for glacial reconstructions. 20 

As this section contains a proof-of-concept of the presented automated gas-isotope fitting algorithm on glacial data, 

preliminary results and ongoing work were shown here. Furthermore as the presented fitting algorithm was developed and 

tested in first order for Holocene-like data, it is highly probable that the functionality of the algorithm using glacial data will 

be further extended and adjusted in future studies. 

5. Conclusion 25 

A novel approach is introduced and described for inverting a firn-densification and heat-diffusion model to fit small gas-

isotope-data variations as observed throughout the Holocene. From this new fitting method, it is possible to extract the 

surface-temperature history that drives the firn status which in turn leads to the gas-isotope time-series. The approach is a 

combination of a Monte-Carlo-based iterative method and the analysis of remaining mismatches between modelled and 

target data. The procedure works fully automated and provides a high potential for parallel computing for time consumption 30 

optimization. Additional sensitivity experiments have shown that accumulation-rate changes have only a minor influence on 

short-term variations of δ15N, which themselves are mainly driven by high-frequency temperature variations. To evaluate the 
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performances of the presented approach, eight different synthetic δ15N time-series were created from eight known 

temperature histories. The fitting approach leads to an excellent agreement in timing and amplitudes between the modelled 

and synthetic δ15N and temperature data. The obtained final mismatches follow a symmetric standard-distribution-function. 

95 % of the mismatches compared to the synthetic data are in an envelope between 3.0 permeg to 6.3 permeg for δ15N and 

0.23 K to 0.51 K for temperature, depending on the synthetic temperature scenarios. These values can therefore be used as a 5 

2σ estimate for the reconstruction uncertainty arising from the presented fitting algorithm itself. For δ15N the obtained final 

uncertainties are in the same order of magnitude as state of the art measurement uncertainty. The presented reconstruction 

approach was also successfully applied to δ40Ar and δ15Nexcess measured data. Moreover, we have shown that the presented 

fitting approach can also be applied to glacial temperature reconstructions with minor algorithm modifications. Based on the 

demonstrated flexibility of our inversion methodology, it is reasonable to adapt this approach for reconstructions of other 10 

non-linear physical processes. 

Data availability 

The synthetic δ15N and temperature targets, the reconstructed δ15N and temperature data (using the synthetic δ15N as fitting-

targets), and the used accumulation rates can be found in the data supplement of this paper available at Döring, M.; 

Leuenberger, M. C. (2018), PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.888997. The GISP2 δ18Oice data used in 15 

this study for calculating the temperature spin-up can be found in Grootes and Stuiver (1999). The source code for the 

inversion algorithm and additional auxiliary data are available upon request. 
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Figure 01:  Schematic illustration of the presented gas-isotope fitting algorithm. The algorithm is implemented in four steps: Step 1: first-
guess input calculation; Step 2: iteratively Monte-Carlo-based input change (indicated by the open half-cycles); Step 3: signal 
complementation with high-frequency information; Step 4: final correction. In contrast to the synthetic data study on Holocene-like data 
where the accumulation input Acc(t) was fixed, for the proof-of-concept on glacial data the acccumulation and temperature input was 
iteratively changed in parallel indicated by the grey variables Accg,0 and Accmc,fin. For the glacial study only step 1 and 2 were used.
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Figure 02: (a) Used accumulation-rate input time-series divided in a Holocene and a spin-up section, with time resolution 
in the Holocene section (20 yr to 10520 yr b2k) of 1 yr. The time resolution for the transition between the Holocene and 
the spin-up section (10520 yr to 12000 yr b2k) is 1 yr as well. This is in opposition to the rest of the spin-up section which 
has a time resolution of 20 yr. (b) Surface-temperature spin-up calculated from δ18Oice calibration. Time resolution equals 
the accumulation-rate spin-up section. First-guess surface temperature input is simply a constant value.
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(a) (b)

(c) (d) (e)

28 

Figure 03: Scenario S1: (a) Cross-correlation-function (xcf) between IF(t) and the remaining mismatch in δ15N (Dδ15N,hf(t)) after the high- 
frequency part, shows two extrema: the maximum correlation (max xcf) and the minimum correlation (min xcf). (b) Cross-correlation-
function (xcf) between IF(t) and the remaining mismatch in temperature (DT,hf(t)) after the high-frequency part shows two extrema: the 
maximum correlation (max xcf) and the minimum correlation (min xcf). (c) Inverting of (a) in x (lag) and y (correlation coefficient) 
direction. (d) Comparison between (a) and (b). (e) Comparison between (a) and (c). The temperature-correction values are calculated 
from the linear dependency between IF(t) and Dδ15N,hf(t). After shifting IF(t) to max xcf (lag max) and to min xcf (lag min), Δδ15Nmax(t) 
and Δδ15Nmin(t)  are calculated. Next, Δδ15Nmax(t) and Δδ15Nmin(t) are inverted. That means for Δδ15Nmax(t) that the values are shifted 
back (-lag max) and shifted further to lag min. After inverting, Δδ15Nmax(t) and Δδ15Nmin(t) are summed-up componentwise to calculate 
Δδ15Ncv(t). Using Δδ15Ncv(t) in eq. (3) leads to the temperature-correction values which are added to the temperature Thf.
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Figure 04: (I) S1-S5: Synthetic smooth temperature-scenarios for the construction of the target-temperature data. 
(II) S1-S5: Synthetic target surface-temperature scenarios. (III) S1-S5: Corresponding synthetic δ15N target time- 
series.

29



-30

-28

-26

Scenario H1
T

s
y

n
 [

°C
]

-30

-28

-26

Scenario H2

Age [yr b2k]

012345678910

-30

-28

-26

Scenario H3

(I)

(II)

(III)

Figure 05: (I) Synthetic target surface-temperature scenarios H1-H3. (II) Corresponding synthetic δ15N target time-series 
H1-H3. (III) GISP2 δ15N measured data (Kobashi et al., 2008).
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Figure 06: Evolution of the mean misfit (Dδ15N,mc) of the modelled δ15Nmc vs. synthetic δ15Nsyn target as function of the 
number of iterations (j) for the Monte-Carlo approach for all synthetic target scenarios.
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(a)
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(d)

(e) (f)

Figure 07: (a-c) First-guess (g,0) vs. Monte-Carlo (mc,fin) δ15N-solution for the scenario S5: (a) Synthetic δ15Nsyn target (black dotted line), 
modelled δ15N time series for the first-guess input (blue line) and Monte-Carlo solution (red line). (b) Histogram shows the pointwise 
mismatches of Dδ15N for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target. (c) Time-series for the 
pointwise mismatches of Dδ15N for the first-guess solution (blue) and the Monte-Carlo solution (red) versus the synthetic target. (d-f) First-
guess vs. Mont-Carlo surface-temperature solution Tsurf for the scenario S5: (d) Synthetic surface-temperature target Tsyn (black dotted 
line), first-guess-temperature input (blue line) and Monte-Carlo solution (red line). (e) Histogram shows the pointwise temperature 
mismatches for DT for the first-guess solution (blue) and the Monte-Carlo solution (red) versus the synthetic surface-temperature target. 
(f) Time-series for the pointwise temperature mismatches for DT for the first-guess solution (blue) and the Monte-Carlo solution (red) 
versus the synthetic surface-temperature target.
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Figure 08: (a-d) δ15N: (a) Synthetic δ15Nsyn target (black dotted line), modelled δ15N time-series after adding high-frequency information (hf, 
blue line) and correction (corr, red line) for the scenario S5. (b) Zoom-in for a randomly chosen 5 yr interval shows the decrease of the 
mismatch after the correction compared to the high-frequency solution. (c) Histogram shows the pointwise mismatches for Dδ15N of the 
synthetic δ15Nsyn target vs. the Monte-Carlo solution (mc,fin; grey), the high-frequency solution (hf; blue) and the correction (corr; red). 
The 95 % quantile is 4.9 permeg (yellow line) and used as an estimate for 2σ uncertainty of the final solution. (d) Time-series for the 
pointwise mismatches for Dδ15N of the synthetic δ15Nsyn target vs. the high-frequency solution (hf; blue) and the correction (corr; red). (e-h) 
temperature: (e) Synthetic temperature target Tsurf (black dotted line), modelled temperature time-series after adding high-frequency 
information (hf; blue line) and correction (corr; red line). (f) Zoom-in for a randomly chosen 5 yr interval shows the decrease of the 
mismatch after the correction compared to the high-frequency solution. (g) Histogram shows the pointwise mismatches for DT of the 
synthetic temperature target Tsyn vs. the Monte-Carlo solution (mc,fin; grey), the high-frequency solution (hf; blue) and the correction 
(corr; red). The 95 % quantile is 0.37 K (yellow line) and used as an estimate for 2σ uncertainty of the final solution. (h) Time-series for the 
pointwise mismatches for DT of the synthetic temperature target Tsyn vs. the high-frequency solution (hf; blue) and the correction (corr; 
red).
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Figure 09: (I) Counts of the cut-off-periods (COP) and (II) counts of the s values used to create the improvements for the 
smooth temperature solutions of the Monte-Carlo input generator for all synthetic scenarios (S1-S5 and H1-H3). A s value 
of 0.1 for example means that the maximum allowed perturbation of one temperature value T(t0) is ±10 %.
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Figure 10: Fitting of GISP2 Holocene δ40Ar (a-d) and δ15Nexcess (e-h) data (measurement data from Kobashi et al., 2008): 
(a) measured vs. modelled δ40Ar/4 time-series. (b) Zoom-in for the same quantity as in (a). (c) Time-series of the final 
mismatches Δδ40Ar/4 of the measured minus the modelled δ40Ar/4 data. (d) Histogram for the same quantity as in (c) 
showing an overall final mismatch (2σ) of 4.0 permeg and offset (os) of -0.5 permeg. (e) Measured vs. modelled δ15Nexcess 
time-series. (f) Zoom-in for the same quantity as in (e). (g) Time-series of the final mismatches Δδ15Nexcess of the measured 
minus the modelled δ15Nexcess data. (h) Histogram for the same quantity as in (g) showing an overall final mismatch (2σ) of 
3.7 permeg and offset (os) of -0.8 permeg.



Figure 11: Proof-of-concept for glacial reconstructions (NGRIP DO6 and DO7): (a) δ15N target plot: δ15N model 
output for the first-guess input (blue line), Kindler et al. (2014) fit (orange dotted line), Monte-Carlo solution 0 
(yellow line, unpublished data), Monte-Carlo solution 1 (purple line, unpublished data), final Monte-Carlo 
solution (green line, unpublished data), δ15N measurement target (black dotted line, measurement points are 
black cycles, data from Kindler et al., 2014). (b) Δage target plot: Δage model output for the first-guess input 
(blue line), Kindler et al. (2014) fit (orange dotted line), Monte-Carlo solution 0 (yellow line, unpublished data), 
Monte-Carlo solution 1 (purple line, unpublished data), final Monte-Carlo solution (green line, unpublished 
data), Δage measurement target (black dotted line, measurement points are black cycles, data from Guillevic, M., 
2013). (c) Temperature solution plot: first-guess input (blue line), Kindler et al. (2014) solution (orange dotted 
line), Monte-Carlo solution 0 (yellow line, unpublished data), Monte-Carlo solution 1 (purple line, unpublished 
data), final Monte-Carlo solution (green line, unpublished data); (d) Accumulation-rate solution plot: first-guess 
input (blue line), Kindler et al. (2014) solution (orange dotted line), Monte-Carlo solution 0 (yellow line, 
unpublished data), Monte-Carlo solution 1 (purple line, unpublished data), final Monte-Carlo solution (green 
line, unpublished data).
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Variable Explanation 

αT thermal-diffusion constant calculated from eq. (12) 

α18O slope for δ18Oice calibration (surface-temperature spin-up), eq. (13) 

Acc accumulation-rate data 

Accg,0 first-guess (prior) input accumulation-rate data 

Accmc,fin modelled accumulation-rate data from the final Monte-Carlo output 

β intercept for δ18Oice calibration (surface-temperature spin-up), eq. (13) 

COP cut-off-period for cubic-spline-filtering 

corr index related to the final correction step (step 4) 

CZ convective zone 

D mean mismatch (general) calculated from eq. (1) 

D(t), Di pointwise mismatches (general) 

Dδ15N mean mismatch of δ15N 

Dδ15N,g,0 mean mismatch of δ15N (δ15Nsyn vs. δ15Ng,0) calculated from the output of the first-guess data 

Dδ15N,hf mean mismatch of δ15N (δ15Nsyn vs. δ15Nhf) calculated from the output of the high-frequency step 

(step 3) 

Dδ15N,mc,fin mean mismatch of δ15N (δ15Nsyn vs. δ15Nmc,fin) calculated from the final Monte-Carlo output (step 

2) 

Dgl minimization-criterion for the prove-of-concept on glacial data as used in eq. (14) 

DT mean mismatch of temperature 

DT,corr mean mismatch of temperature (Tsyn vs. Tcorr) calculated from the output of the final correction 

(step 4) 

DT,g,0 mean mismatch of temperature calculated from Tsyn vs. Tg,0 

DT,hf mean mismatch of temperature (Tsyn vs. Thf) calculated from the output of the high-frequency step 

(step 3) 

DT,mc mean mismatch of temperature calculated from the final output of the Monte-Carlo step (step 2) 

δ15Ngrav gravitational component of the δ15N signal 

δ15Ng,0 modelled δ15N signal from the output of the first-guess data (step 1) 

δ15Nhf modelled δ15N signal from the output of the high-frequency step (step 3) 

δ15Nmc,fin modelled (smooth) δ15N signal from the final Monte-Carlo output (step 2) 

δ15Nmod modelled δ15N signal (general) 

δ15Ntherm thermal-fractionation / thermal-diffusion component of the δ15N signal 

δ15Nsyn synthetic δ15N target (fitting target) 

Δage gas-ice-age difference 

Δagemc,fin final gas-ice-age output from the Monte-Carlo step (step2) 

Δδ15Ncv δ15N correction values calculated from Δδ15Nmax and Δδ15Nmin 

Δδ15Nmax δ15N correction values calculated from the linear dependency of xcfmax,δ15N 

Δδ15Nmin δ15N correction values calculated from the linear dependency of xcfmin,δ15N 

Δm molar mass-difference between the heavy and light isotopes 

ΔT high-frequency temperature signal obtained from eq. (3) (step 3) 
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Variable Explanation 

εδ15N uncertainty of the δ15N data as used in eq. (14) 

εΔage uncertainty of the Δage data as used in eq. (14) 

g gravitational acceleration 

g,0 index related to the first-guess (prior) data (step 1) 

hf index related to the high-frequency step (step 3) 

i time index 

IF “integrated factor” calculated from eq. (6), needed for the final correction step (step 4) 

j running index for the Monte-Carlo iterations (step 2) 

lagmax time-lag attributed to the maximum of the sample-cross-correlation-function (xcf), (general) 

lagmax,δ15N time-lag attributed to the maximum of the sample-cross-correlation-function (xcf) of 

IF(t) vs. Dδ15N,hf(t) 

lagmax,T time-lag attributed to the maximum of the sample-cross-correlation-function (xcf) of 

IF(t) vs. DT,hf(t) 

lagmin time-lag attributed to the minimum of the sample-cross-correlation-function (general) 

lagmin,δ15N time-lag attributed to the minimum of the sample-cross-correlation-function of IF(t) vs. Dδ15N,hf(t) 

lagmin,T time-lag attributed to the minimum of the sample-cross-correlation-function of IF(t) vs. DT,hf(t) 

mc index related to the Monte-Carlo step (step 2) 

mc,fin index related to the final Monte-Carlo output (step 2) 

n number of data points of the target 

nmc length of the Holocene temperature vectors (w/o spin-off) 

ΩN2,i thermal-diffusion sensitivity calculated from eq. (4) 

P��⃗ j spline-filtered P��⃗ r,j 

P��⃗ r,j vector containing nmc uniformly-distributed random numbers 

R ideal gas-constant 

ρice ice density 

ρLID lock-in-density, density threshold for calculating zLID 

s standard deviation of the random numbers for P��⃗ r,j 

σδ15N,corr standard deviation of Dδ15N,corr(t) (= Dδ15N,corr,i) 

2σδ15N,corr,95 95 % quantile of Dδ15N,corr(t) (= Dδ15N,corr,i) 

σδ15N,hf standard deviation of Dδ15N,hf(t) ( = Dδ15N,hf,i) 

σT,corr standard deviation of DT,corr(t) ( = DT,corr,i) 

2σT,corr,95 95 % quantile of DT,corr(t) (= DT,corr,i) 

σT,hf standard deviation of DT,hf(t) ( = DT,hf,i) 

T�, T�firn mean firn temperature 

Tbottom temperatures at the bottom of the diffusive firn-layer 

Tcorr temperature signal calculated from the final correction step (step 4) 

Tg,0 first-guess (prior) temperature input 

Thf temperature signal calculated from the high-frequency step (step 3) 

Tmc,j Monte-Carlo temperature guess for iteration j 
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Variable Explanation 

Tmc,fin (smooth) temperature modelled from the final Monte-Carlo output (step 2) 

Tspin surface-temperature spin-up 

Tsurf temperatures at the top of the diffusive firn-layer 

wRMSE mean-squared-errors weighted with data uncertainty as used in eq. (14) 

xcf / XCF sample-cross-correlation-function, needed for the final correction step (step 4) 

xcfmax maximum of the sample-cross-correlation-function (general) 

xcfmax,δ15N maximum of the sample-cross-correlation-function of IF(t) vs. Dδ15N,hf(t) 

xcfmax,T maximum of the sample-cross-correlation-function of IF(t) vs. DT,hf(t) 

xcfmin minimum of the sample-cross-correlation-function 

xcfmin,δ15N minimum of the sample-cross-correlation-function of IF(t) vs. Dδ15N,hf(t) 

xcfmin,T minimum of the sample-cross-correlation-function of IF(t) vs. DT,hf(t) 

Xmod modelled data (general), can be δ15N, T or measured data (δ40Ar, δ15Nexc) 

Xtarget fitting target (general), can be synthetic δ15Nsyn, Tsyn, or measured data (δ40Ar, δ15Nexc) 

zLID, LID lock-in-depth 

Table 01: Used variables and acronyms with their explanations. 
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Scenario S1 S2 S3 S4 S5 H1 H2 H3 

Dδ15N,g,0 [permeg] 13.3 48.4 27.0 23.3 22.4 23.8 24.1 23.8 

Dδ15N,mc,fin [permeg] 11.3 12.4 12.7 11.9 11.5 5.8 6.9 8.2 

δ15N Improvement 

[permeg | %] 

2.0 

15.0 

36.0 

74.4 

14.3 

53.0 

11.4 

48.9 

10.9 

48.7 

18.0 

75.6 

17.2 

71.4 

15.6 

65.5 

# improvements 119 351 152 108 174 223 173 325 

# used improvements 89 174 103 74 102 129 112 193 

# iterations 2103 706 620 656 637 1636 1027 2086 

# tried solutions 16824 5648 4960 5248 5096 13088 8216 16688 

Execution time [h] 52.6 17.7 15.5 16.4 15.9 40.9 25.7 52.2 

DT,g,0 [K] 1.24 5.24 2.45 2.09 2.17 2.34 2.38 2.32 

DT,mc [K] 0.61 0.69 0.70 0.64 0.64 0.32 0.39 0.46 

Temp. Improvement 

[K | %] 

0.63 

50.8 

4.55 

86.8 

1.75 

71.4 

1.45 

69.4 

1.53 

70.5 

2.02 

86.3 

1.99 

83.6 

1.86 

80.2 

Table 02: Summary for the Monte-Carlo approach: Mismatch Dg,0 between the modelled δ15N (or temperature) values 
using the first-guess input and the synthetic δ15N (or temperature) target for each scenario. Dmc is the mismatch 
between the modelled δ15N (or temperature) using the final Monte-Carlo temperature solution and the synthetic δ15N 
(or temperature) target for each scenario. 

Scenario: COP [yr] s 

S1 1135 0.2065 

S2 1007 0.3967 

S3 1177 0.4002 

S4 1315 0.2952 

S5 1244 0.2388 

Table 03: Cut-off-periods (COP) and s values used for creating the smooth synthetic temperature scenarios according 
to the Monte-Carlo approach.



Scenario S1 S2 S3 S4 S5 H1 H2 H3 

Dδ15N,hf [permeg] 2.7 3.6 4.3 3.2 3.5 2.1 2.5 2.6 

Improvement  

(hf vs. MC) [%] 

76.1 71.0 66.1 73.1 69.6 63.8 63.8 68.3 

σδ15N,hf [permeg] 3.5 4.6 5.4 4.0 4.3 2.7 3.1 3.3 

Dδ15N,corr [permeg] 1.7 2.1 2.6 1.9 2.0 1.2 1.3 1.6 

Improvement  

(corr vs. hf) [%] 

37.0 41.7 39.5 40.6 42.9 42.9 48.0 38.5 

σδ15N,corr [permeg] 2.2 2.7 3.3 2.4 2.5 1.5 1.7 1.9 

2σδ15N,corr,95 [permeg] 4.4 5.3 6.3 4.7 4.9 3.0 3.4 3.7 

DT,hf [K] 0.20 0.32 0.33 0.25 0.27 0.18 0.21 0.22 

σT,hf [K] 0.26 0.40 0.43 0.32 0.35 0.22 0.26 0.27 

DT,corr [K] 0.12 0.18 0.20 0.14 0.15 0.10 0.11 0.12 

σT,corr [K] 0.15 0.24 0.25 0.19 0.19 0.12 0.14 0.15 

2σT,corr,95 [K] 0.31 0.48 0.51 0.38 0.37 0.23 0.27 0.30 

Table 04: Summary for the high-frequency (hf) and correction part (corr) of the reconstruction approach. D is the 
mean mismatch between the modelled δ15N (or temperature) data versus the synthetic δ15N (or temperature) target. σ 
is the standard deviation of the pointwise mismatches Di. The 95 % quantiles (2σδ15N,corr,95 or 2σT,corr,95) of the pointwise 
δ15N (or temperature) mismatches are used as an estimate for the 2σ uncertainty for the final solution. 

Scenario: 2σ Δ(Δage) [yr] Scenario: 2σ Δ(Δage) [yr] 

S1 1.14 S5 1.24 

S2 1.60 H1 1.23 

S3 1.98 H2 1.18 

S4 1.41 H3 1.30 

Table 05: Final mismatches Δ(Δage) (2σ) of Δage between the corrected solution and the synthetic targets for all 
scenarios. 

Solution Dgl Mismatch 

δ15N (2σ) 

[permeg] 

Mean 

mismatch 

δ15N* 

[permeg] 

Mismatch 

Δage (2σ) 

[yr] 

Mean 

mismatch 

Δage* 

[yr] 

Kindler 2014 3.6 44.5 17.9 256 101 

first guess 7.8 128.7 63.8 328 138 

MCS0 3.1 50.0 19.3 199 82 

MCS1 2.9 44.3 17.6 200 84 

MCS FIN 2.6 37.8 15.6 175 63 

Table 06: Proof-of-concept for Glacial reconstruction: Dgl is the used minimization criterion (see Sect. 4.4). 
*The mean mismatches for δ15N and Δage were calculated according to eq. (1).
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