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Abstract. Greenland past temperature history can be reconstructed by forcing the output of a firn densification and heat 

diffusion model to fit multiple gas isotope data (δ15N or δ40Ar or δ15Nexcess) extracted from ancient air in Greenland ice cores. 10 

We present here a novel methodology to solve this inverse problem, by designing a fully automated algorithm. To 

demonstrate the performance of this novel approach, we begin by intentionally constructing synthetic temperature histories 

and associated δ15N datasets, mimicking real Holocene data that we use as “true values” (targets) to be compared to the 

output of the algorithm. This allows us to quantify uncertainties originating from the algorithm itself. The presented 

approach is completely automated and therefore minimizes the “subjective” impact of manual parameter tuning leading to 15 

reproducible temperature estimates. In contrast to many other ice core based temperature reconstruction methods, the 

presented approach is completely independent from ice core stable water isotopes, providing the opportunity to validate 

water isotope based reconstructions or reconstructions where water isotopes are used together with δ15N or δ40Ar. We solve 

the inverse problem T(δ15N) by using a combination of a Monte Carlo based iterative approach and the analysis of remaining 

mismatches between modelled and target data, based on cubic spline filtering of random numbers as well as the laboratory 20 

determined temperature sensitivity for nitrogen isotopes. Additionally, the presented reconstruction approach was tested by 

fitting measured δ40Ar and δ15Nexcess data, which leads as well to a robust agreement between modelled and measured data. 

The obtained final mismatches follow a symmetric standard distribution function. For the synthetic data study, 95 % of the 

mismatches compared to the synthetic target data are in an envelope between 3.0 permeg to 6.3 permeg for δ15N and 0.23 K 

to 0.51 K for temperature (2σ, respectively). In addition to Holocene temperature reconstructions, the fitting approach can 25 

also be used for glacial temperature reconstructions. This is shown by high quality fitting of NGRIP δ15N data for two 

Dansgaard-Oeschger events using the presented approach, leading to results comparable to other studies. 
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1 Introduction 

Holocene climate variability is of key interest to our society, since it represents a time of moderate natural variations prior to 

anthropogenic disturbance, often referred to as a baseline for today’s increasing greenhouse effect driven by mankind. Yet, 

high resolution studies are still very sparse and therefore limit the investigation of decadal and partly even centennial climate 

variations over the course of the Holocene. One of the first studies about changes in the Holocene climate was conducted in 5 

the early 1970s by Denton and Karle´n (1973). The authors investigated rapid changes in glacier extents around the globe 

potentially resulting from variations of Holocene climatic conditions. Mayewski et al. (2004) used this data as the base of a 

multiproxy study identifying rapid climate changes (so called RCCs) globally distributed over the whole Holocene time 

period. Although not all proxy data are showing an equal behaviour in timing and extent during the quasi-periodic RCC 

patterns, the authors found evidence for a highly variable Holocene climate controlled by multiple mechanisms, which 10 

significantly affects ecosystems (Pál et al., 2016; Beaulieu et al., 2017; Crausbay et al., 2017) and human societies 

(Holmgren et al., 2016 ; Lespez, L. et al., 2016). Precise high resolution temperature estimates can contribute significantly to 

the understanding of these mechanisms. Ice core proxy data offer multiple paths for reconstructing past climate and 

temperature variability. The studies of Cuffey et al. (1995; 1997) and Dahl-Jensen et al. (1998) demonstrate the usefulness of 

inverting the measured borehole temperature profile for surface temperature history estimates for the investigated drilling 15 

site using a coupled heat- and ice-flow model. Because of smoothing effects due to heat diffusion within an ice sheet, this 

method is unable to resolve fast temperature oscillations and leads to a rapid reduction of the time resolution towards the 

past. Another approach to reconstruct past temperature is based on the calibration of stable water isotopes of oxygen and 

hydrogen (δ18Oice, δDice) from ice core water samples assuming a constant (and mostly linear) relationship between 

temperature and water isotopic composition due to fractionation effects during ocean evaporation, cloud formation and snow 20 

and ice precipitation (Stuiver et al., 1995; Johnsen et al., 2001). This method provides a rather robust tool for reconstructing 

past temperature for times where large temperature excursions occur (Dansgaard-Oeschger events, Glacial-Interglacial 

transitions (Dansgaard et al., 1982; Johnsen et al., 1992)). However, in the Holocene where Greenland temperature variations 

are comparatively small, seasonal changes of precipitation as well as of evaporation conditions at the source region 

contribute possibly more to water isotope data variations (Werner et al., 2001; Huber et al., 2006; Kindler et al., 2014;). A 25 

relatively new method for ice core based temperature reconstructions uses the thermal fractionation of stable isotopes of air 

compounds (nitrogen and argon) within a firn layer of an ice sheet (Severinghaus et al., 1998; Severinghaus et al., 2001; 

Huber et al., 2006; Kobashi et al., 2011; Kindler et al., 2014). The measured nitrogen and argon isotope records of air 

enclosed in bubbles in an ice core can be used as a paleothermometer due to (i) the stability of isotopic compositions of 

nitrogen and argon in the atmosphere at orbital timescales and (ii) the fact that changes are only driven by firn processes 30 

(Mariotti, 1983; Severinghaus et al., 1998; Leuenberger et al., 1999). To robustly reconstruct the surface temperature for a 

given drilling site, the use of firn models describing gas and heat diffusion throughout the ice sheet is necessary for 

decomposing the gravitational from the thermal diffusion influence on the isotope signals. 
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This work addresses two issues relevant for nitrogen and argon isotope based temperature reconstructions. First, we 

introduce a novel, entirely automated approach for inverting gas isotope data to surface temperature estimates. For that, we 

force the output of a firn densification and heat diffusion model to fit gas isotope data. This methodology can be used for 

many different optimization tasks not restricted to ice core data. As we will show, the approach works besides δ15N for all 

relevant gas isotope quantities (δ15N, δ40Ar, δ15Nexcess) and for Holocene and glacial data as well. Furthermore, the possibility 5 

of fitting all relevant gas isotope quantities, individually or combined, makes it possible for the first time to validate the 

temperature solution gained from one single isotope species by comparison to the solution calculated from other isotope 

quantities. This approach is a completely new method which enables the automated fitting of gas isotope data without any 

manual tuning of parameters, minimizing any potential “subjective” impacts on temperature estimates as well as working 

hours. Also, except for the model spin-up, the presented temperature reconstruction approach is completely independent 10 

from stable water isotopes (δ18Oice, δDice), which provides the opportunity to validate water isotope based reconstructions 

(e.g. Masson-Delmotte, 2005) or reconstructions where water isotopes are used together with δ15N or δ40Ar (e.g. Landais et 

al., 2004; Huber et al., 2006; Capron et al., 2010). To our knowledge, there are only two other reconstruction methods 

independent from stable water isotopes that have been applied to Holocene gas isotope data, without a priori assumption on 

the shape of a temperature change. The studies from Kobashi et al. (2008a, 2017) use the second order parameter δ15Nexcess to 15 

calculate firn temperature gradients, which are later temporally integrated from past to future over the time series of interest 

using the firn densification and heat diffusion model from Goujon et al. (2003). Additionally Orsi et al. (2014) use a 

linearized firn model approach together with δ15N and δ40Ar data to extract surface temperature histories. As both methods 

rely on δ15N together with δ40Ar, they do not offer the possibility to validate one isotope based solution against the other. 

Also these two approaches can only be applied to ice cores where both isotope quantities are measured together with a 20 

sufficient precision. 

Second, we investigate the accuracy of our novel fitting approach by examining the method on different synthetic nitrogen 

isotope and temperature scenarios. The aim of this work is to study the uncertainties emerging from the algorithm itself. 

Furthermore the focal question in this study is: what is the minimal mismatch in δ15N for Holocene like data we can reach 

and what is the implication for the final temperature mismatches. Studying and moreover answering these questions makes it 25 

mandatory to create well defined δ15N targets and related temperature histories. It is impossible to answer these questions 

without using synthetic data in a methodology study. The aim is to evaluate the accuracy and associated uncertainty of the 

inverse method itself to then later apply this method to real δ15N, δ40Ar or δ15Nexcess datasets, for which of course the original 

driving temperature histories are unknown. 
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2. Methods and data 

2.1 Firn densification and heat diffusion model 

The surface temperature reconstruction relies on firn densification combined with gas and heat diffusion (Severinghaus et al., 

1998). In this study, the firn densification and heat diffusion model, from now on referred to as firn model, developed by 

Schwander et al. (1997) is used to reconstruct firn parameters for calculating synthetic δ15N values depending on the input 5 

time series. It is a semi-empirical model based on the work of Herron and Langway (1980), Barnola et al. (1991), and 

implemented using the Crank and Nicholson algorithm (Crank, 1975) and was also used for the temperature reconstructions 

by Huber et al. (2006) and Kindler et al. (2014). Besides surface temperature time series, accurate accumulation rate data is 

needed to run the model. The model then calculates the densification and heat diffusion history of the firn layer and provides 

parameters for calculating the fractionation of the nitrogen isotopes for each time step, according to the following equations: 10 

δ15Ngrav (zLID, t) =  �e
∆m∙g∙zLID(t)

R∙T�(t) − 1� ∙ 1000        (1) 

δ15Ntherm(t) =  �� Tsurf(t)
Tbottom(t)

�
αT
− 1� ∙ 1000        (2) 

δ15Nmod(t) = δ15Ngrav(t) + δ15Ntherm(t)         (3) 

δ15Ngrav(t) is the component of the isotopic fractionation due to the gravitational settling (Craig et al., 1988; Schwander, 

1989) and depends on the lock-in-depth (LID) zLID(t) and the mean firn temperature T�(t) (Leuenberger et al., 1999). g is the 15 

acceleration constant, ∆m the molar mass difference between the heavy and light isotopes (equals 10-3 kg for nitrogen) and R 

the ideal gas constant. zLID is defined as a density threshold ρLID, which is slightly sensitive to surface temperature, following 

the formula from Martinerie et al. (1994), with a small offset correction of 14 kg m-3 to account for the presence of a non-

diffusive zone (Schwander et al., 1997): 

ρLID(kg ∙ m−3) =  1
1

ρice
−6.95∙10−7∙T�−4.3∙10−5

− 14        (4) 20 

where 

ρice(kg ∙ m−3) = 916.5 − 0.14438 ∙ T� − 1.5175 ∙ 10−4 ∙ T�2       (5) 

The thermal fractionation component of the δ15N signal (Severinghaus et al., 1998) is calculated using Eq. (2), where Tsurf(t) 

and Tbottom(t) stand for the temperatures at the top and the bottom of the diffusive firn layer. In contrast to Tsurf(t) which is an 

input parameter for the model, Tbottom(t) is calculated by the model for each time step. The thermal diffusion constant αT was 25 

measured by Grachev and Severinghaus (2003) for nitrogen (see Eq. (6)), and closely matches the value used by 

Leuenberger et al. (1999) based on measurements of Boersma-Klein and De Vries (1966): 

αT = �8.656 −  1323 K
T

� ∙ 10−3          (6) 

The firn model used here behaves purely as a forward model, which means that for the given input time series the output 

parameters (here finally δ15Nmod(t)) can be calculated, but it is not easily possible to construct from measured isotope data the 30 
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related surface temperature or accumulation rate histories. The goal of the presented study is an automatization of this 

inverse modelling procedure for the reconstruction of the rather small Holocene temperature variations. 

2.2 Measurement, input data and time scale 

Accumulation rate data: Besides surface temperatures, accumulation rate data is needed to drive the firn model. In this 

study we use the original accumulation rate, reconstructed in Cuffey and Clow (1997) produced using an ice flow model 5 

adapted to the GISP2 location, but adapted to the GICC05 chronology (Rasmussen et al., 2008; Seierstad et al., 2014). 

Originally, the accumulation rate used to feed the ice flow model was optimised in order to match the time scale from Meese 

et al. (1994) for the Holocene, based on annual layer counting. Seierstad et al. (2014) transferred the GISP2 chronology to 

the GICC05 reference timeframe using multiple match points to the NGRIP and GRIP ice cores, both already on GICC05. 

We used these match points and modified the GISP2 ages in between match points linearly in order to match exactly the 10 

GICC05 duration for the considered interval duration. This way, the detailed GISP2 annual layer counting information is 

kept, but is only stretched/compressed in time. This was done for all intervals in between two match points. The 

accumulation data were then re-calculated accordingly as obviously this is needed in order to keep the same total amount of 

ice accumulated at the GISP2 site. From the three accumulation rate scenarios reconstructed in Cuffey and Clow (1997) and 

adapted here to the GICC05 chronology, the intermediate one is chosen (red curves in Fig. S01). Since the differences 15 

between the scenarios (Fig. S01) are not important for the evaluation of the reconstruction approach, they are not taken into 

account for this study. 

 

δ18Oice data: Oxygen isotope data from the GISP2 ice core water samples measured at the University of Washington’s 

Quaternary Isotope Laboratory is used to construct the surface temperature input of the model spin-up (12 yr to 35 kyr b2k, 20 

see Sect. 2.3.1) (Grootes et al., 1993; Meese et al., 1994; Steig et al., 1994; Stuiver et al., 1995; Grootes and Stuiver, 1997). 

 

Time scale: For the entire study the GICC05 chronology is used (Rasmussen et al., 2014; Seierstad et al., 2014). During the 

whole reconstruction procedure the two input time series (surface temperature and accumulation rate) are split into two parts. 

The first part ranges from 20 yr to 10520 yr b2k (called “Holocene section”) and the second one from 10520 yr to 35000 yr 25 

b2k (“spin-up section”). The entire accumulation rate input (see Sect. 2.3.1), as well as the spin-up section of the surface 

temperature input, remain unchanged during the reconstruction procedure. 
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2.3 Reconstruction approach 

The Holocene temperature reconstruction is implemented by the following four steps:  

(i)  A prior temperature input (first guess) is constructed, which serves as the starting point for the optimization.  

 

(ii)  A smooth solution which passes through the δ15N data (here synthetic target data) is generated following a Monte 5 

Carlo approach. It is assumed that the smooth solution contains all long term temperature trends (centuries to 

millennial) as well as firn column height changes (temperature and accumulation rate dependent) that drive the 

gravitational background signal in δ15N. 

 

(iii)  The smooth temperature solution is complemented by superimposing high frequency information directly extracted 10 

from the δ15N data (here synthetic target data). This step adds short term temperature changes (decadal) in the same 

time resolution as the data. 

 

(iv)  The gained temperature solution is corrected using information extracted from the mismatch between the synthetic 

target and modelled δ15N time series. 15 

 

Accumulation rate input: 

The raw accumulation rate data for the main part of the spin-up section (12000 yr to 35000 yr b2k) is linearly interpolated to 

a 20 yr grid and low pass filtered with a 200 yr cut off period (cop) using cubic spline filtering (Enting, 1987). For the 

Holocene section (20-10520 yr b2k) and the transition part between Holocene and spin-up section (10520 yr to 12000 yr 20 

b2k) the raw accumulation rate data is linearly interpolated to a 1 yr grid to obtain equidistant integer point-to-point 

distances which are necessary for the reconstruction, and to preserve as much information as possible for this time period 

(Fig. S02a). Except for these technical adjustments, the accumulation rate input data remains unmodified, assuming high 

reliability of this data during the Holocene. The accumulation data was indeed reconstructed using annual layer counting, 

and a thinning model which should lead to maximum relative uncertainty of 10 % for the first 1500 m of the 3000 m ice core 25 

(Cuffey and Clow, 1997). 

In order to investigate the influence of smoothing of the accumulation rate data on the model outputs, the high resolution 

accumulation rate dataset in the time window of 20 yr to 12000 yr (Fig. S02a) was low pass filtered with cops between 20 yr 

and 500 yr, and used to drive the firn model. The surface temperature input was set as constant with a value of -31 °C for this 

time window. Then, the deviations of the filtered from the unfiltered accumulation rates and model outputs were calculated. 30 

Figure S03 shows the absolute (I) as well as the relative deviations (II) (relative to the unfiltered scenario) as a function of 

the cops for the accumulation rate input data, δ15N, and LID model outputs. Regarding the standard deviation (1σ) of the 

relative accumulation deviations as a measure for the mean deviation of the filtered minus the unfiltered values show that 
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filtering the accumulation rates leads to a mean deviation of about 20 % between the filtered and unfiltered accumulation rate 

data, depending on the used cop value (see Fig. S03IIa). We use the mean 99 % quantile of the same analysis (Fig. S03IIb) 

as a measure for the maximum deviation between the filtered and unfiltered values. The filtering clearly leads to a maximum 

accumulation rate deviation of about 50 %. The comparison of the related deviations in δ15N and LID outputs reveals that the 

changes in the accumulation rates do not lead to a change in the same order for the model outputs. Indeed, the filtering of the 5 

accumulation rate data leads to deviations of less than 0.6 % and less than 1.5 % for the mean and the maximum δ15N and 

LID deviations respectively (Fig. S03IIc,d). Therefore, it can be argued that a low pass filtering of the accumulation rates for 

cops between 20 yr and 500 yr does only have a small impact on the model outputs as long as the major trends are being 

conserved, because the filtering does not modify the mean accumulation. This result is expected due to the fact that the LID 

and finally δ15N changes are the result of the integration of the accumulation over the whole firn column. The integration 10 

time corresponds to the age of the ice at the LID, which is the order of 200 yr for the Holocene in Greenland. 

Finally, we test which fraction of the measured δ15N variations can be attributed to accumulation changes. For this, we 

perform a sensitivity experiment (Fig. S04) where the temperature input was set as a constant value of -31 °C, and used 

together with the high resolution accumulation rate data (Fig. S02a) to model the LID (Fig. S04a) and δ15N (Fig. S04b) 

values. Due to the absence of temperature changes, only the accumulation rate changes drive the evolution of the diffusive 15 

column height (LID) over time which modulates the δ15N values. Next, the modelled δ15N variations are compared to the 

δ15N measurement data (Fig. S06III) (Kobashi et al., 2008b) to examine the influence of the accumulation rate changes on 

changes in δ15N for two cases. First, for the 8.2k event, the signal amplitude in δ15N is about three times higher for the 

measured data compared to the modelled ones (measured data: Δδ15N8.2k,meas ≈ 60 permeg (one permeg equals 10-6); 

modelled data: Δδ15N8.2k,mod ≈ 20 permeg). The comparison of the standard deviations of the measured data with the 20 

modelled δ15N data for the last 10 kyr (both quantities were normalized with their respective means), shows an even higher 

deviation of the measured versus the modelled variabilities by a factor of about eight (measured data: 

std[δ15N10kyr,meas −  mean(δ15N10kyr,meas)] ≈ 37 permeg; modelled data: std[δ15N10kyr,mod −  mean(δ15N10kyr,mod)] ≈ 4.5 permeg). 

This analysis supports our assumption that the accumulation rate history alone cannot fully explain the observed variability 

in δ15N during the Holocene, and gives an upper limit for the contribution of the accumulation rate to the δ15N signal. 25 

Therefore, the remaining part of the measured δ15N variations has to be related to changes in surface temperature. 

 

Surface temperature spin-up: 

The surface temperature history of the spin-up section (Fig. S02b) is obtained by calibrating the filtered and interpolated 

δ18Oice data (Eq. (7)) using the values for the temperature sensitivity α18O and offset β found by Kindler et al. (2014) for the 30 

NGRIP ice core assuming a linear relationship of δ18Oice with temperature. 

Tspin(t) = 1
α18O(t)

∙ [δ18Oice(t) +  35.2 ‰] − 31.4°C + β(t)       (7) 
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The values 35.2 ‰ and -31.4 °C are modern-time parameters for the GISP2 site (Schwander et al., 1997; Grootes and Stuiver, 

1997). The raw δ18Oice data is filtered and interpolated in the same way as the accumulation rate data for the spin-up part. 

The spin-up is needed to bring the firn model to a well-defined starting condition that takes possible memory effects 

(influence of earlier conditions) of firn states into account. 

 5 

Generating synthetic target data: 

In order to develop and evaluate the presented algorithm, eight temperature scenarios were constructed and used to model 

synthetic δ15N data, which serve later on as targets for the reconstruction. From these eight synthetic surface temperature and 

related δ15N scenarios (S1-S5 and H1-H3), three data sets (later called Holocene like scenarios H1-H3) were constructed in 

such a way that the resulting δ15N time series are very close to the δ15N values measured by Kobashi et al. (2008) in terms of 10 

variability (amplitudes) and frequency (data resolution) of the GISP2 nitrogen isotope data (Fig. S05, Fig. S06). 

The synthetic surface temperature scenarios S1-S5 are created by generating a smooth temperature time series (Tsyn,smooth) 

analogous to the Monte Carlo part of the reconstruction procedure for only one iteration step (see Sect. 2.3.2). The values for 

the cop used for the filtering of the random values, and the s values (standard deviation of the random values, see Sect. 2.3.2) 

for the first 5 scenarios can be found in table S01. The smooth temperatures (Fig. S05I) are calculated on a 20 yr grid, which 15 

is nearly similar to the time resolution of the GISP2 δ15N measurement values of about 17 yr (Kobashi et al., 2008b). For the 

Holocene like scenarios, the smooth temperature time series were generated from the temperature reconstruction for the 

GISP2 δ15N data (not shown here). The final Holocene surface temperature solution was filtered with a 100 yr cop to obtain 

the smooth temperature scenario. 

Following this, high frequency information is added to the smoothed temperature histories. A set of normally distributed 20 

random numbers with a zero mean and a standard deviation (1σ) of 1 K for scenarios S1-S5 and 0.3 K for Holocene like 

scenarios H1-H3 is generated on the same 20 yr grid and added up to the smooth temperature time series. Finally, the 

resulting synthetic target temperature scenarios (Fig. S05II, Fig. S06I) are linearly interpolated to a 1 yr grid. 

These synthetic temperatures are combined with the spin-up temperature and are used together with the accumulation rate 

input to feed the firn model. From the model output the synthetic δ15N targets are calculated according to section 2.1. The 25 

firn model output provides ice age as well as gas age information. The final synthetic δ15N target time series (Fig. S05III, 

Fig. S06II) are set intentionally on the ice age scale to mirror measured data, because no prior information is available for the 

gas-ice age difference (Δage) for ice core data. 

2.3.1 Prior input (step 1) 

The starting point of the optimization procedure is the first guess. To construct the first guess temperature input, a constant 30 

temperature of about -29.6 °C is used for the complete Holocene section, which corresponds to the last value of the 

temperature spin-up (Fig. S02b).  
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2.3.2 Monte Carlo type input generator - Generating smooth solutions (step 2) 

During the second step of the optimization, the prior temperature input from step 1 is iteratively changed following a Monte 

Carlo approach. The basic idea of the Monte Carlo approach is to generate smooth temperature inputs by low-pass filtering 

uniformly distributed random values, and to superimpose this signal on the prior input. Then, the new input is fed to the firn 

model and the mismatch Dmc in between the modelled δ15N signal Xmod, calculated from the model output, and the synthetic 5 

δ15N target values Xtarget is computed.  

Dmc =  1
n
∑ |Di|n
i=1  =  1

n
∑ �Xtarget,i −  Xmod,i�n
i=1         (8) 

Dmc serves as the criterion which is minimised during the optimization in step 2. If the mismatch decreases compared to the 

prior input, the new input is saved and used as new guess. This procedure is repeated until convergence is achieved. 

Table 01 lists the number of improvements and iterations performed for the different synthetic datasets. The perturbation of 10 

the current guess Tg(t) is conducted in the following way: Let Tg���⃗ =  Tg(t) be the vector containing the prior temperature 

input. A second vector P1���⃗  with the same number of elements n as Tg���⃗  is generated containing n uniformly distributed random 

numbers within the limits of an also randomly (equally distributed) chosen standard deviation s. s is chosen from a range of 

0.05-0.50 (Fig. S07II), which means that the maximum allowed perturbation of a single temperature value T(t0) is in a range 

of ±5 % to ±50 %. Creating the synthetic frequencies, P1���⃗  is low-pass filtered using cubic spline filtering with an equally 15 

distributed random cop (Fig. S07I) in the range of 500 yr to 2000 yr generating the vector P��⃗ . The new surface temperature 

input Tsm������⃗  is calculated from P��⃗  according to: 

Tsm������⃗ = Tg���⃗
T
∙ (1� + P��⃗ )           (9) 

The superscript “T” stands for transposed and 1�  is the n by 1 matrix of ones.  

This approach provides a high potential for parallel computing. In this study, an eight core computer was used, generating 20 

and running eight different inputs of Tsm������⃗  simultaneously, minimizing the time to find an improved solution. For example, 

during the 706 iterations for scenario S2, about 5600 different inputs were created and tried, leading to 351 improvements 

(see Tab. 01). Since it is possible to find more than one improvement per iteration step due to the parallelization on eight 

CPU’s, the solution giving the minimal misfit is chosen as new first guess for the next iteration step. This leads to a decrease 

of the used improvements for the optimization (e.g. for S2, 172 of the 351 improvements were used). Additionally, a first gas 25 

age scale is extracted from the model using the last improved conditions, which will then be used in step 3. 

2.3.3 Adding high frequency information (step 3) 

In step 3 the missing high frequency temperature history providing a suitable fit between modelled and synthetic δ15N data is 

directly extracted from the pointwise mismatch Dsmooth,i, between the modelled δ15Nsmooth obtained in step 2 and the synthetic 

δ15N target data. Note that for a real reconstruction, this mismatch is calculated using the measured δ15N dataset instead of 30 

the synthetic one. Dsmooth,i can be interpreted in first order as the detrended high frequency signal of the synthetic δ15N target 
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values (Fig. 01c). This signal is transferred to the gas age scale provided by the firn model for the smooth temperature input 

to insure synchronicity in between the high frequency temperature variations extracted from the mismatch of δ15N on the ice 

age scale and the smooth temperature solution. Additionally, the signal is shifted by about 10 yr towards modern values to 

account for gas diffusion from the surface to the LID (Schwander et al., 1993), which is not yet implemented in the firn 

model. This is necessary for adding the calculated temperature changes ∆T to the smooth signal. The ∆T values are 5 

calculated according to Eq. (10): 

∆Ti =   Dsmooth,i
ΩN2,i

,            (10) 

using the thermal diffusion sensitivity Ω𝑁𝑁2,𝑖𝑖  for nitrogen isotope fractionation from Grachev and Severinghaus (2003): 

ΩN2,i =  8.656 ‰
Tı���

− 1232 ‰∙K

Tı���
2           (11) 

𝑇𝑇𝚤𝚤�  is the mean firn temperature in Kelvin which is calculated by the firn model for each time point i. To reconstruct the final 10 

(high frequency) temperature input Thf, the extracted short term temperature signal ∆T is simply added to the smooth 

temperature input Tsm: 

Thf,i =  Tsm,i + ∆Ti           (12) 

2.3.4 Final correction of the surface temperature solution (step 4) 

For a further improvement of the remaining δ15N and resulting surface temperature misfits, it is important to find a correction 15 

method that contains information that is also available when using measured data. The benefit of the synthetic data study is 

that several later unknown quantities can be calculated, and used for improving the reconstruction approach (see 

Sect. 3 and 4). For instance, it is possible to split the synthetic δ15N data in the gravitational and thermo-diffusion parts or to 

use the temperature misfit, which is unknown in reality. The idea underlying the correction algorithm explained hereafter is 

that the remaining misfits of δ15N and temperature are connected to the Monte Carlo (step 2) and high frequency part (step 3) 20 

of the reconstruction algorithm. In the present inversion framework, it is not possible to find a smooth solution which exactly 

passes through the δ15N target data in the middle of the variance in all parts of the time series. This leads to a slightly over or 

underestimation of the δ15N and their corresponding temperature values. For example, a slightly too low (or too high) smooth 

temperature estimate leads to a small increase (or decrease) of the firn column height, creating a wrong gravitational 

background signal in δ15N on a later point in time (because the firn column needs some time to react). An additional error in 25 

the thermal diffusion signal is also created due to the high frequency part of the reconstruction, because the high frequency 

information is directly extracted from the deviation of the (synthetic) δ15N target data and the modelled δ15N data from the 

smooth solution of the Monte Carlo part. Therefore, this error is transferred into the next step of the reconstruction and partly 

creates the remaining deviations. 

To investigate this problem, the deviations Dsmooth,i of the synthetic target data δ15Ntarget to the smooth data δ15Nsmooth of the 30 

Monte Carlo part is numerically integrated over a time window of 200 yr (see Sect. 4), and thereafter the window is shifted 

from past to future in 1 yr steps resulting in a time series called IF(t). IF(t) equals a 200 yr running-mean of Dsmooth,i. For t, 
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the mid position of the window is allocated. The time evolution of IF is a measure for the deviation of the smooth solution in 

δ15N (or temperature) from the perfect middle passage through the target data and for the slightly over and underestimation 

of the resulting temperature. 

IF(ti) =  ∫ �δ15Ntarget(t) −  δ15Nsmooth(t)�t2
t1

dt        (13) 

where ti =  t1 +  t2−t1 
2

           (14) 5 

Next, the sample cross correlation function (xcf) (Box et al., 1994) is applied to IF(t) and the remaining misfits Dδ15N,hf of 

δ15N after the high frequency part. The xcf shows two extrema (Fig. 02a), a maximum (xcfmax) and a minimum (xcfmin) at 

two certain lags (lagmax,Dδ15N at xcfmax and lagmin,Dδ15N at xcfmin). Now, the same analysis is conducted for IF(t) versus the 

temperature mismatch DT,hf (Fig. 02b), which shows an equal behaviour (two extrema, lagmax,T at xcfmax and lagmin,T at 

xcfmin). Comparing the two cross correlations shows that lagmax,Dδ15N equals the negative lagmin,T and lagmin,Dδ15N corresponds 10 

to the negative lagmax,T (Fig. 02d,e). The idea for the correction is that the extrema in Dδ15N,hf with the positive lag (positive 

means here that Dδ15N,hf has to be shifted to past values relative to IF) creates the misfit of temperature DT,hf on the negative 

lag (modern direction) and vice versa. So IF(t) yields information about the cause and allows us to correct this effect 

between the remaining mismatches of δ15N and temperature over the whole time series. The lags are not sharp signals, due to 

the fact that (i) the cross correlations are conducted over the whole analysed record, leading to an averaging of this cause and 15 

effect relationship as well as that (ii) IF(t) is a smoothed quantity itself. The correction of the reconstructed temperature after 

the high frequency part is conducted in the following way: From the two linear relationships between IF(t) and Dδ15N,hf at the 

two lags (lagmax,Dδ15N at xcfmax, lagmin,Dδ15N at xcfmin) two sets of δ15N correction values (Δδ15Nmax from xcfmax and Δδ15Nmin 

from xcfmin) are calculated. Then the lags are being inverted (Fig. 02c,e) shifting the two sets of the δ15N correction values to 

the attributed lags of the cross correlation between IF(t) and DT,hf (e.g. Δδ15Nmin to lag from xcfmax from the cross correlation 20 

between IF(t) and DT,hf) therefore changing the time assignments of Δδ15Nmin(t) and Δδ15Nmax(t) to Δδ15Nmin(t+lagmax,T) and 

Δδ15Nmax(t+lagmin,T). Now, the Δδ15Nmax and Δδ15Nmin are component wise summed up leading to the time series Δδ15Ncv(t). 

From Eq. (10) with Δδ15Ncv,i instead of Dsmooth,i the corresponding temperature correction values are calculated and added to 

the high frequency temperature solution giving the corrected temperature Tcorr. Finally, Tcorr is used to run the firn model to 

calculate the corrected δ15N time series (Fig. 03). This cause and effect relationship found in the cross correlations between 25 

IF(t) and Dδ15N,hf, and IF(t) and DT,hf, is exemplarily shown in Fig. 02 for scenario S1 and was found for all eight synthetic 

scenarios. The derived correction algorithm leads to a further reduction of the mismatches of about 40 % in δ15N and 

temperature (see Sect. 3.2). 
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3. Results 

3.1 Monte Carlo type input generator 

Figure S08 shows the evolution of the mean misfit Dmean of δ15N from the synthetic target versus the modelled data as a 

function of the applied iterations for all synthetic scenarios. One can easily see that all scenarios show a steep decline of the 

mismatch during the first 50 to 200 iterations followed by a rather moderate decrease, which finally leads to a constant value. 5 

During the Monte Carlo part, it was possible to reduce the misfit of δ15N compared to the first guess solution by about 15 % 

to 75 % depending on the scenario and the mismatch of the first guess solution (see Tab. 01). This leads to a reduction of the 

temperature mismatches compared to the first guess temperature mismatch of about 51 % to 87 %. 

Figure 01 provides the comparison between the first guess and Monte Carlo solution versus the synthetic target data for the 

modelled δ15N (a-c) and surface temperature values (d-f) for scenario S5. Subplots (a) and (d) show the time series of the 10 

synthetic target data (black dotted line), the first guess solution (blue line) and the Monte Carlo solution (red line) for δ15N 

and temperature. In subplots (b) and (e), the distribution of the pointwise mismatch Di of the first guess (blue) and the Monte 

Carlo solution (red) versus the synthetic target data for δ15N and temperature can be found. Subplots (c) and (f) contain the 

time series for Di for δ15N and temperature. The Di(δ15N) data is used later on to calculate the high frequency signal that is 

superimposed to the smooth temperature solution according to Eq. (10) and Eq. (12) (see Sect. 2.3.3). From Fig. 01 it can be 15 

concluded that the Monte Carlo part of the reconstruction algorithm (step 2) leads to two major improvements of the first 

guess solution. First, it is obvious that the Monte Carlo approach corrects the offsets of the first guess input, which shifts the 

midpoint of the distribution of Dmc,i to zero (see Fig. 01b,e). The second improvement is that the distribution becomes more 

symmetric and the misfit is overall reduced (the distributions become narrower) compared to the first guess, due to the 

middle passage through the δ15N targets. These improvements can be observed for all eight synthetic scenarios, showing the 20 

robustness of the Monte Carlo part (see Tab. 01, Fig. 01). 

3.2 High frequency step and final correction 

Figure 03 provides the comparison between the Monte Carlo, the high frequency and the correction parts of the 

reconstruction procedure for the scenarios S5. Additional data for all other scenarios can be found in table 02. The upper four 

plots (a-d) illustrate each reconstruction step and their effect on the modelled δ15N; the bottom four plots (e-h) show the 25 

corresponding results on the temperature. Plots (a) and (d) contain the time series of the synthetic δ15N or temperature target 

(black dotted line), the high frequency solution (blue line), and the final solution after the correction part (red line). For 

visibility reasons, subplots (b) and (f) display a zoom-in for a randomly chosen time window of about 500 yr for the same 

quantities, which shows the excellent agreement in timing and amplitudes of the modelled δ15N and temperature compared to 

the synthetic target data. Histograms (c) and (g) and subplots (d) and (h) show the distribution and the time series of the 30 

pointwise mismatches (Di for δ15N, ΔTi for temperature) between the modelled and the synthetic target data in δ15N and 

temperature for each reconstruction step. 
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Compared to the Monte Carlo solution, the high frequency part leads to a large refinement of the reconstructions. For the 

mean δ15N misfits D, the improvement between the Monte Carlo and the high frequency parts is in the range of 64 % to 

76 % (see Tab. 02). This leads to a reduction of the temperature mismatches of 43 % to 67 %. The standard deviations (1σ) 

of the pointwise mismatches (Fig. 03c,d,g,h) in δ15N and temperature after the high frequency parts are in the range of about 

2.7 permeg to 5.4 permeg for δ15N and 0.22 K to 0.40 K for the reconstructed temperatures depending on the scenario, which 5 

is clearly visible in the decreasing width of the histograms (subplots (c) and (g) of Fig. 03, blue against grey). 

The mismatches after the correction part of the reconstruction approach show clearly a further decrease of the misfits. This 

means that the width of the distributions of the pointwise mismatches of δ15N as well as of temperature is further reduced, 

and the distributions become more symmetric (long tales disappear, see histogram (c) and (g) of Fig. 03). The time series of 

the mismatches (subplots (d) and (h) of Fig. 03) clearly illustrate that the correction approach mainly tackles the extreme 10 

deviations (sharp reduction of extreme values occurrence in the red distribution compared to the blue distribution) leading to 

a further improvement of about 40 % in δ15N and temperature. Finally, the 95 % quantiles of the remaining pointwise 

mismatches of δ15N and temperature (Di or ΔTi) were calculated for the final solutions for all scenarios and are used as an 

estimate for the 2σ uncertainty of the reconstruction algorithm (see Fig. 03 and Tab. 2). The final uncertainties (2σ) are in the 

order of 3.0 permeg to 6.3 permeg for δ15N and 0.23 K to 0.51 K for the surface temperature misfits. It is noteworthy that the 15 

measurement uncertainties (per point) of state of the art δ15N measurements are in the same order of magnitude, i.e. 

3 permeg to 5 permeg (Kobashi et al., 2008b), highlighting the effectiveness of the presented fitting approach. Table 03 

contains the final mismatches (2σ) in Δage between the synthetic target and the final modelled data after the correction step 

for all scenarios and shows that with a known accumulation rate and assumed perfect firn physics, it is possible to fit the 

Δage history in the Holocene with mean uncertainties better than 2 yr. In other words, the uncertainty in Δage reconstruction 20 

due to the inversion algorithm alone is in the order of 2 yr. 

4. Discussion 

4.1 Monte Carlo type input generator 

Figure S07 shows the distribution of the cop (I) and s values (II) used to create the improvements (Sect. 2.3.2) for all 

scenarios. The cop values are more or less evenly distributed, which shows that nearly the whole of the allowed frequency 25 

range (allowed cops were 500 yr to 2000 yr) was used to create the improvements during the iterations. In contrast, the 

distributions of the s values show clearly that mostly small s values are used to create the improvements, which implies that 

iterations with small perturbations more likely lead to an improvement than larger ones. 

Figure S08 reveals a weak point of the Monte Carlo part, namely the absence of a suitable termination criterion for the 

optimization. The implementation until now is conducted such that the maximum number of iterations is given by the user or 30 

the iterations are terminated after a certain time (e.g. 15 h). Figure S08 shows that for nearly all scenarios it would be 

possible to stop the optimization after about 400 iterations, due to rather small additional improvements later on. This would 
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decrease the time needed for the Monte Carlo part to about 10 h (a single iteration needs about 90 s). Since the goal of the 

Monte Carlo part is to find a temperature realisation that leads to an optimal middle passage through the δ15N target data, it 

would be possible to use the mean difference between the δ15N target and spline filtered δ15N data using a certain cut off 

period as a termination criterion. This issue is under investigation at the moment. Another possibility to decrease the time 

needed for the Monte Carlo part could be an increase in the numbers of CPUs used for the parallelization of the model runs. 5 

For this study an eight core parallelization was used. A further increase in numbers of workers would improve the speed of 

the optimization. 

4.2 High frequency step and final correction 

Several analyses were conducted in order to investigate the remaining mismatches in δ15N and temperature after the high 

frequency and the correction part of the reconstruction respectively. First, the total misfit of δ15N (Dδ15Ntot) was separated into 10 

two fractions: gravitational (Dδ15Ngrav) and thermal diffusion mismatches (Dδ15Ntherm) of δ15N (Fig. 04). Figure 04 indicates 

that the main fraction of the total mismatch of δ15N is due to the misfit of the thermal diffusion component of the δ15N signal, 

whereas the gravitational misfit of δ15N has only a minor contribution. The ratio of the standard deviations 

σ(Dδ15Ntherm)/σ(Dδ15Ngrav) is about 2.4 for the high frequency solution, and about 2.3 for the corrected signal, showing that the 

misfit in the thermal diffusion part is more than twice as high as in the gravitational component. 15 

To investigate the timing and contributions of the mismatches in δ15N and temperature for scenario S1, different xcfs were 

calculated (Fig. S09a-d). The same analyses were conducted for all synthetic scenarios, leading to similar results. In 

Fig. S09a the xcf between the mismatch of total δ15N (Dδ15Ntot,hf) and the misfit of temperature (DT,hf) is shown. The cross 

correlation leads to two extrema (r1a=0.70, r2a=˗0.55) on two certain lags (l1a=˗2 yr, l2a=+126 yr). In subplot (b) and (c) the 

same analysis is conducted between the mismatch of the gravitational (Dδ15Ngrav,hf) component (b), and the thermal diffusion 20 

(Dδ15Ntherm,hf) component (c) of δ15N and the temperature mismatch. It is obvious that the xcf of (a) is a combination of (b) 

and (c). The direct correlation on l1a of (a) can be attributed mainly to the mismatch of the thermal diffusion component of 

δ15N, whereas the negative correlation on l2a is due to the mismatch of the gravitational component of δ15N. Regarding the 

xcfs of (a)-(c) at a certain lag l, i.e. l = 0 yr shows that here (and on most of the other lags) the correlations between 

Dδ15Ngrav,hf with DT,hf and Dδ15Ntherm,hf with DT,hf work in opposite directions, which makes it difficult to find a way to correct 25 

the remaining temperature mismatch using only information from Dδ15Ntot,hf
 for measurement data (when only Dδ15Ntot,hf is 

available). The correlation on l1a in (a) is weakened, whereas the lag l2a is shifted to higher values because of the 

superposition of gravitational and thermal diffusion mismatch. Figure S09d shows also that the gravitational and thermal 

diffusion mismatches of δ15N are not independent, but the correlations at the extrema are relatively weak (r1d=0.38, 

r2d=˗0.56). The negative correlation r2d is a sign for the compensation effect between the gravitational and thermal diffusion 30 

signals in δ15N due to the high frequency part of the reconstruction, whereas no explanation could be found for the positive 

correlation r1d. The symmetric behaviour of the lags for r1d and r2d (l1d = ˗88 yr ≈ ˗l2d=93 yr) suggest that r1d could be an 

artefact of a periodic behaviour of Dδ15Ngrav,hf and Dδ15Ntherm,hf. Figures S10a-d show the same analysis after the correction part 
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of the reconstruction. It is evident that in all cases the extrema in the different xcfs break down due to the correction of the 

temperature signal, which is the consequence of the decreasing mismatches of temperature as well as of δ15N. The 

comparison of the subplots (a), (b) and (c) also shows that the remaining temperature misfits after the correction are mainly 

driven by the mismatches of the thermal diffusion signal of δ15N with a minor contribution of the gravitational misfit. 

Figures S09e-h show the cross correlations between IF(t) used for the correction of the high frequency temperature solution, 5 

and the temperature misfit (e), the mismatch of total δ15N (f), the mismatch of the gravitational (g) and thermal diffusion (h) 

component of the δ15N signal calculated from the high frequency temperature solution. For the correction, the cross 

correlations (e) and (f) were used (see Sect. 2.3.4 and Fig. 02). Since for measured data neither information about the 

temperature mismatch (the true temperature is not known) nor about the mismatch of the components of δ15N (gravitational, 

thermal diffusion) are available, it is imperative that the symmetric behaviour between the xcf(IF(t), DT,hf(t)) and inverted 10 

xcf(IF(t), Dδ15Ntot,hf(t)) holds true. This criterion is fulfilled for all eight synthetic data scenarios and especially for H1-H3. 

The comparison of the subplots (f), (g) and (h) of Fig. S09 show the same findings as before, namely that the xcf for IF 

versus Dδ15Ntot,hf is the combination of the xcfs of IF(t) versus Dδ15Ngrav,hf and IF(t) versus Dδ15Ntherm,hf, and that the major 

fraction of Dδ15Ntot,hf is contributed from Dδ15Ntherm,hf. The advantage to use IF(t) for the correction is the symmetry between 

the two cross correlations, which is created by two factors. The first one is the allocation of the window mid position to the 15 

entries of IF, which leads to the symmetric behaviour of the gravitational and thermal diffusion misfits. Second, the shifting 

of the window in 1 yr steps creating IF(t) over the whole data set leads to an averaged information, but even more 

importantly, to constant dependency between the temperature and δ15N mismatches. This can be used later on to fit measured 

data. 

Additionally, the influence of the window length, used for the construction of IF(t), on the correction was analysed. The 20 

construction was conducted for different window lengths ranging from 50 yr to 750 yr (Fig. S11). Also, the correction was 

calculated by using only xcfmax or xcfmin of IF(t) versus Dδ15N,hf for correcting the temperature input. Figures S11a,b show the 

remaining mismatches of δ15N (Dδ15N,corr) (a), and temperature (DT,corr) (b) after the correction as a function of the used 

window length for IF(t). The analysis shows that for all investigated window lengths the correction reduces the mismatches 

of δ15N and temperature, whatever correction mode was used (calculated with xcfmax, xcfmin, or both quantities, see 25 

comparison with the blue line in (a) and (b)). Furthermore, the correction works best for window lengths in the range of 

100 yr to 300 yr with an optimum at 200 yr for all cases. This indicates that the maximum mean duration effect of a δ15N 

mismatch creating a temperature mismatch (and vice versa) is in the same range for the investigated scenarios and such 

small deviations (low permeg level). It is also visible that the correction using both extrema (xcfmax and xcfmin) leads to a 

better correction as the approach using only one quantity. This is somehow surprising because the two extrema are the result 30 

of the periodicity of IF(t), Dδ15N,hf and DT,hf. An explanation for this result could be that a larger section of the temperature 

time series is corrected when both extrema are used for the correction, due to shifts in both directions. The correction using 

xcfmax only leads to a better fit than the one with xcfmin, which can be attributed to the higher correlation between IF(t) and 

Dδ15N,hf. Figures S11e,f show the evolution of the lags corresponding to the two extrema for the cross correlations between 
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IF(t), and the δ15N and temperature mismatches, respectively. The linear dependency between the lags and the window 

length (the lags are nearly half of the window length) is the result of the construction of IF(t), which means the averaging 

due to the integration in the window of this certain length and the symmetric behaviour due to the allocation of the window 

mid position to the entries of IF(t). 

4.3 Key points to be considered for the application to real data  5 

Benefits of the novel gas isotope fitting approach 

In addition to the fitting of δ15N data, the algorithm is able to fit δ40Ar and δ15Nexcess data as well using the same basic 

concepts (Fig. S12). Here the δ40Ar and δ15Nexcess data from Kobashi et al. (2008) were used as the fitting targets using the 

same approach. We reach final mismatches (2σ) of 4.0 permeg for δ40Ar/4 and 3.7 permeg for δ15Nexcess, which are for both 

quantities below the analytical measurement uncertainty of 4.0 permeg to 9.0 permeg for δ40Ar/4 and 5.0 permeg to 10 

9.8 permeg for δ15Nexcess measured data (Kobashi et al., 2008).  

The automated inversion of different gas isotope quantities (δ15N, δ40Ar, δ15Nexcess) provides a unique opportunity to study 

the differences in the gained solutions using different targets and to improve our knowledge about the uncertainties of gas 

isotope based temperature reconstructions using a single firn model. Next, the presented algorithm is not dependent on the 

firn model, which leads to the implication that the algorithm can be coupled to different firn models describing firn physics 15 

in different ways. Furthermore, an automated reconstruction algorithm avoiding manual manipulation and leading to 

reproducible solutions makes it possible for the first time, to study and learn from the differences in between solutions 

matching different targets. Finally, differences obtained by applying different firn physics (densification equations, 

convective zone, etc.) but the very same inversion algorithm may help to assess firn model shortcomings, resulting in more 

robust uncertainty estimates than it was ever possible before.  20 

In this publication we show the functionality and the basic concepts of the automated inversion algorithm using well known 

synthetic δ15N fitting targets. In this “perfect world scenario” the forward problem, converting surface temperature to δ15N, 

as well as the inverse problem, converting δ15N to surface temperature, is completely described by the used firn model. 

Consequently all sources of signal noise are ignored. For the later use of the algorithm on δ15N, δ40Ar or δ15Nexcess measured 

data this will not be the case anymore due to different sources of signal noise in the used measured data. As a result, 25 

differences in between temperature solutions obtained from individual targets (δ15N, δ40Ar, δ15Nexcess) will become obvious. 

These differences will allow to quantify the uncertainties associated with different unconstrained processes. Next, we will 

list and discuss potential sources of uncertainties and try to provide suggestions for their handling and quantification in our 

approach.  

 30 
Measurement uncertainty and firn heterogeneity (cm-scale variability): 

Many studies have investigated the influence of firn heterogeneity (or density fluctuations) on measurements of air 

compounds and quantities (e.g. δ15N, δ40Ar, CH4, CO2, O2/N2 ratio, air content) extracted from ice cores resulting in cm-scale 
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variability and leading to additional noise on the measured data (e.g., Etheridge et al., 1992; Huber and Leuenberger, 2004; 

Fujita et al., 2009; Capron et al., 2010; Hörhold et al., 2011; Rhodes et al., 2013, 2016; Fourteau et al., 2017). Using discrete 

measurement technique instead of continuous sampling methods makes it difficult to quantify these effects. However, during 

discrete analyses of ice core air data it is common to measure replicates for given depths, from which the measurement 

uncertainties of the gas isotope data is calculated using pooled-standard-deviation (Hedges L. V., 1985). Often it is not 5 

possible to take real replicates (same depth) and instead the replicates are taken from nearby depths. Hence, any potential 

cm-scale variability is to some degree already included in the measurement uncertainty, because each measurement point 

represents the average over a few centimetres of ice. This is especially the case for low accumulation sites or glacial ice 

samples for which the vertical length of a sample (e.g., 10-25 cm long for the glacial part of the NGRIP ice core, Kindler et 

al., 2014) covers the equivalent of 20 yr to 50 yr of ice at approximately 35 kyr b2k. Increasing the depth resolution of the 10 

samples would increase our knowledge of cm-scale variability, for e.g. identifying anomalous entrapped gas layers that 

could have been rapidly isolated from the surface due to an overlying high density layer (e.g., Rosen et al., 2014). As this 

variability is likely due to heterogeneity in the density profile, modelling such heterogeneities (if possible at all) may not 

help to better reconstruct a meaningful temperature history, but rather to reproduce the source of noise. This means that the 

potential cm-scale variability, in many cases, is already incorporated in the analytical noise obtained from gas isotope 15 

measurements, due to analytical techniques themselves. Assuming the measurement uncertainty as Gaussian distributed, it is 

easy to incorporate this source of uncertainty in the inverse modelling approach presented here. This will increase the 

uncertainty of the temperature according to Eq. (10).The same equation can also be used for the calculation of the 

uncertainty in temperature related to measurement uncertainty in general. 

To answer the pertinent question of how to better extract a meaningful temperature history from a noisy ice core record, an 20 

excellent – but costly – solution is of course to use multiple ice cores. For example, a δ15N-based temperature reconstruction 

from the combination of data from the GISP2 ice core with the “sister ice core” GRIP drilled only a few kilometres apart is 

likely one of the best ways to overcome potential cm-scale variability. A comparison of ice cores that were drilled even 

closer might be even more advantageous. 

 25 

Smoothing effects due to gas diffusion and trapping: 

It is known that gas diffusion and trapping processes in the firn can smooth out fast signals and result in a damping of the 

amplitudes of gas isotope signals (e.g. Spahni et al., 2003; Grachev and Severinghaus, 2005). The duration of gas diffusion 

from the top of the diffusive column to the bottom where the air is closed off in bubbles is for Holocene conditions in 

Greenland approximately in the order of 10 yr (Schwander et al. 1997), whereas the data resolution of the synthetic targets 30 

was set to 20 yr to mimic the measurement data from Kobashi et al. (2008) with a mean data resolution of about 17 yr (see 

Sect. 2.3: “Generating synthetic target data”). In the study of Kindler et al. (2014) it was shown that a glacial Greenland LID 

leads to a damping of the δ15N signal of about 30 % for a 10 K temperature rise in 20 yr. We further assume that the 
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smoothing according to the lock-in process is negligible for Greenland Holocene conditions according to the much smaller 

amplitude signals and shallower LID. Yet, for glacial conditions it requires attention. 

 

Accumulation rate uncertainties: 

For the synthetic data study presented in this paper it is assumed that the used accumulation rate data is well known with 5 

zero uncertainty. This simplification is used to show the functionality and basic concepts of the presented fitting algorithm in 

every detail on well-known δ15N and temperature targets and to focus on the final uncertainties originating from the 

presented fitting algorithm itself. For the later reconstruction using measured gas isotope data together with the published 

accumulation rate scenarios shown in Fig. S01 this will not be the case anymore. Uncertainties in layer counting and 

corrections for ice thinning lead to a fundamental uncertainty. Especially in the early Holocene, this can easily exceed 10 %. 10 

As the accumulation rate data is used to run the firn model, all potential accumulation uncertainties are in part incorporated 

into the temperature reconstruction. On the other hand, as we discussed in section 2.3, the accumulation rate variability has a 

minor impact compared to the input temperature on the variability of δ15N data in the Holocene (see also Fig. S03, Fig. S04). 

The influence of these quantities, accumulation rate or temperature, on the temperature reconstruction is not equal; during 

the Holocene, accumulation rate variability explains about 12 % to 30 % of δ15N variability. 30 % corresponds to the 8.2 kyr 15 

event and 12 % for the mean of the whole Holocene period including the 8.2 kyr event. Hence the influence of accumulation 

changes, excluding the extreme 8.2 kyr event, is generally below 10 % during the Holocene. If the accumulation is assumed 

to be completely correct then the missing part will be assigned to temperature variations. Nevertheless for the fitting of the 

Holocene measurement data we will use all three accumulation rate scenarios as shown in Fig. S01. The difference in the 

reconstructed temperatures arising from the differences of these three scenarios will be used for the uncertainty calculation as 20 

well and is most likely higher than the uncertainty arising from uncertainties due to the process of producing the 

accumulation rate data and from the conversion of the accumulation rate data to the GICC05 timescale. 

 

Convective zone variability: 

Many studies have shown the existence of a non-diffusive zone at the top of the diffusive firn column, called convective 25 

zone (CZ). The CZ is formed by strong katabatic winds and pressure gradients between the surface and the firn (e.g. 

Kawamura et al., 2006, 2013; Severinghaus et al., 2010). The existence of a CZ changes the gravitational background signal 

in δ15N and δ40Ar as it reduces the diffusive column height. The presented fitting algorithm was used together with the two 

most frequently used firn models for temperature reconstructions based on stable isotopes of air, the Schwander et al. (1997) 

model which has no CZ build in (or better a constant CZ of 0 m) and the Goujon firn model (Goujon et al., 2003) (which 30 

assumes a constant convective zone over time, that can easily be set in the code). This difference between the two firn 

models only changes significantly the absolute temperature rather than the temperature anomalies as it was shown by other 

studies (e.g., Guillevic et al., 2013, Fig. 3). In the presented work, we show the results using the model from Schwander et al. 

(1997), because the differences between the obtained solutions using the two models are negligible besides a constant 
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temperature offset. Also, noteworthy is that there is no firn model at the moment which uses a dynamically changing CZ. 

Indeed, this should be investigated but requires additional intense work. Additionally, the knowledge of the time evolution of 

CZ changes for time periods of millennia to several hundreds of millennia (in frequency and magnitude) is too poor to 

estimate the influence of this quantity on the reconstruction. In principle it is possible to cancel out the influence of a 

potentially changing CZ by using δ15Nexcess data for temperature reconstruction, as due to the subtraction of δ40Ar/4 from 5 

δ15N the gravitational term of the signals is eliminated. From that point of view it will be interesting to compare temperature 

solutions gained from δ15Nexcess fitting with the solutions based on δ15N or δ40Ar alone. This can offer a useful tool for 

quantifying the magnitude and frequency of CZ changes in the time interval of interest.  

It is known that for some very low accumulation rate sites in areas with strong katabatic winds (e.g. “Megadunes”, 

Antarctica) extremely deep CZs can occur, which are potentially able to smooth out even decadal-scale temperature 10 

variations (Severinghaus et al., 2010). For this its deepness would need to be of several dozens of meters, which is highly 

unrealistic even for glacial Summit conditions (Guillevic et al., 2013, see discussion in Annex A4, p. 1042) as well as for the 

rather stable Holocene period in Greenland for which no low accumulation and strong katabatic wind situations are to be 

expected.  

4.4 Proof of concept for glacial data 15 

For glacial conditions the task of reconstructing temperature (with correct frequency and magnitude) without using δ18Oice 

information is much more challenging due to the highly variable gas age - ice age differences (Δage) between stadial and 

interstadial conditions. Here, contrary to the rather stable Holocene period, the Δage can vary by several hundreds of years. 

Also the accumulation rate data is more uncertain than for the Holocene. To prove that the presented fitting algorithm also 

works for glacial conditions we inverted the δ15N data measured for the NGRIP ice core by Kindler et al. (2014) for two 20 

Dansgaard-Oeschger events, namely DO6 and DO7. Since the magnitudes of those events are higher and the signals are 

smoother than in the Holocene we only had to use the Monte Carlo type input generator (see Sect. 2.3.2) for changing the 

temperature inputs. To compare our results to the δ18Oice based and manually calibrated values from Kindler et al. (2014) we 

use the ss09sea06bm time scale (NGRIP members: Andersen et al., 2004; Johnsen et al., 2001) as it was done in the Kindler 

et al. publication. For the model spin-up we use the accumulation rate and temperature data from Kindler et al. (2014) for the 25 

time span 36.2 kyr to 60 kyr. The reconstruction window (containing DO6 and DO7) is set to 32 kyr to 36.2 kyr. As the first 

guess (starting point) of the reconstruction we use the accumulation rate data for NGRIP from the ss09sea06bm time scale 

together with a constant temperature of about -49 °C for this time window. As minimization criterion D for the 

reconstruction we simply use the sum of the mean squared errors of the δ15N and Δage mismatches weighted with their 

uncertainties (wRMSE) according to the following equation instead of the mean δ15N misfit alone as used for the Holocene 30 

(Eq. (8)). 
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Here 𝜀𝜀𝛿𝛿15𝑁𝑁,𝑖𝑖 and 𝜀𝜀𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥,𝑗𝑗 are the uncertainties in δ15N and Δage for the measured values i or j (Δage match points: Guillevic, 

M. (2013), p.65, Tab. 3.2) and N, M the number of measurement values. We set 𝜀𝜀𝛿𝛿15𝑁𝑁,𝑖𝑖 = 20 permeg for all i (Kindler et al., 

2014) and 𝜀𝜀𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥,𝑗𝑗 = 50 yr for all j. The relative uncertainties in Δage can easily reach up to 50 % and more in the Glacial 

using the ss09sea06bm time scale which results in a pre-eminence of the δ15N misfits over the Δage misfits (10 % to 20 % 5 

when using GICC05 time scale, Guillevic (2013), p. 65 Tab. 3.2). Due to this issue we have to set Δage uncertainties to 50 yr 

to make both terms equally important for the fitting algorithm. In Fig. S13 we show preliminary results. The δ15N and Δage 

fitting (a, b) and the resulting gained temperature and accumulation rate solutions (c, d) using the presented algorithm are 

completely independent from δ18Oice which provides the opportunity to evaluate the δ18Oice based reconstructions. In this 

study the algorithm was used in three steps. First, starting with the first guess (constant temperature), the temperature was 10 

changed as explained before. The accumulation rate was changed in parallel to the temperature allowing a random offset 

shift (up and down) together with a stretching or compressing (in y direction) of the accumulation rate signal over the whole 

time window (32 kyr to 36.2 kyr). This first step leads to the “Monte Carlo Solution 0” (MCS0) which provides a first 

approximation and is the base for the next step. For the next step, we fixed the accumulation rate and let the algorithm only 

change the temperature to improve the δ15N fit (MSC1). Finally, we allow the algorithm to change the temperature together 15 

with the accumulation rate using the Monte Carlo type input generator for both quantities. This allows to change the shape of 

the accumulation rate data. This final step can be seen as a fine tuning of the gained solutions from the steps before. The 

obtained mismatches in δ15N and Δage of all steps are at least of the same quality or better than the δ18Oice based manual 

method from Kindler et al. (2014) (see Tab. S02). The gained temperature solutions show a very good agreement in timing 

and magnitude compared to the reconstruction of Kindler et al. (2014). Also the accumulation rate solutions show that the 20 

accumulation has to be reduced significantly compared to the ss09sea06bm data to allow a high quality fit of the δ15N and 

Δage target data, a result highly similar to Guillevic et al. (2013) and Kindler et al. (2014). The mismatches in δ15N and Δage 

of the final MCS FIN solution show a 15 % smaller misfit in δ15N (2σ) and an about 31 % smaller misfit for Δage (2σ) 

compared to the Kindler et al. (2014) solution. Keeping in mind that the used approach is completely independent from 

δ18Oice strengthens the functionality and quality of the presented gas isotope fitting approach also for glacial reconstructions. 25 

As this section contains a proof of concept of the presented automated gas isotope fitting algorithm on glacial data, 

preliminary results and ongoing work were shown here. Furthermore as the presented fitting algorithm was developed and 

tested in first order for Holocene like data, it is highly probable that the functionality of the algorithm using glacial data will 

be further extended and adjusted in future studies. 
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5. Conclusion 

A novel approach is introduced and described for inverting a firn densification and heat diffusion model to fit small gas 

isotope data variations as observed throughout the Holocene. From this new fitting method, it is possible to extract the 

surface temperature history that drives the firn status which in turn leads to the gas isotope time series. The approach is a 

combination of a Monte Carlo based iterative method and the analysis of remaining mismatches between modelled and 5 

target data. The procedure works fully automated and provides a high potential for parallel computing for time consumption 

optimization. Additional sensitivity experiments have shown that accumulation rate changes have only a minor influence on 

short term variations of δ15N, which themselves are mainly driven by high frequency temperature variations. To evaluate the 

performances of the presented approach, eight different synthetic δ15N time series were created from eight known 

temperature histories. The fitting approach leads to an excellent agreement in timing and amplitudes between the modelled 10 

and synthetic δ15N and temperature data. The obtained, final mismatches follow a symmetric, standard distribution function. 

95 % of the mismatches compared to the synthetic data are in an envelope in between 3.0 permeg to 6.3 permeg for δ15N and 

0.23 K to 0.51 K for temperature, depending on the synthetic temperature history scenarios. These values can therefore be 

used as a 2σ estimate for the reconstruction uncertainty arising from the presented fitting algorithm itself. For δ15N the 

obtained final uncertainties are in the same order of magnitude as state of the art experimental measurement uncertainty. The 15 

presented reconstruction approach was also successfully applied to δ40Ar and δ15Nexcess measured data. Moreover, we have 

shown that the presented fitting approach can also be applied to glacial temperature reconstructions with minor algorithm 

modifications. Based on the demonstrated flexibility of our inversion methodology, it is reasonable to adapt this approach for 

reconstructions of other non-linear physical processes. 
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(a)

(b) (c)

(d)

(e) (f)

Figure 01: (a-c) First guess vs. Monte Carlo δ15N solution for the scenario S5: (a) Synthetic δ15N target (black dotted line), modelled 
δ15N time series for the first guess input (blue line) and Monte Carlo solution (red line); (b) Histogram shows the pointwise δ15N 
mismatches Di for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target; (c) Time series for the 
pointwise δ15N mismatches Di for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target; 
(d-f) First guess vs. Monte Carlo surface temperature solution for the scenario S5: (d) Synthetic surface temperature target (black 
dotted line), first guess temperature input (blue line) and Monte Carlo solution (red line); (e) Histogram shows the pointwise 
temperature mismatches ΔTi for the first guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface 
temperature target; (f) Time series for the pointwise temperature mismatches ΔTi for the first guess solution (blue) and the Monte 
Carlo solution (red) versus the synthetic surface temperature target;
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(c) (d) (e)

Figure 02: Scenario S1: (a) Cross correlation function (xcf) between IF and the remaining mismatch in δ15N (Dδ15N,hf) after the high 
frequency part, shows two extrema: the maximum correlation (max xcf) and the minimum correlation (min xcf); (b) Cross 
correlation function (xcf) between IF and the remaining mismatch in temperature (DT,hf) after the high frequency part shows two 
extrema: the maximum correlation (max xcf) and the minimum correlation (min xcf); (c) Inverting of (a) in x (lag) and y 
(correlation coefficient) direction; (d) Comparison between (a) and (b); (e) Comparison between (a) and (c); The temperature 
correction values are calculated from the linear dependency between IF and Dδ15N,hf. After shifting IF to max xcf (lag max) and min 
xcf (lag min) Dcv,δ15N,max and Dcv,δ15N,min are calculated. Next, Dcv,δ15N,max and Dcv,δ15N,min are inverted. That means for Dcv,δ15N,max that 
the values of Dcv,δ15N,max are shifted back (-lag max) and shifted further to lag min. After inverting, Dcv,δ15N,max and Dcv,δ15N,min are 
summed up component wise to calculate Dcv,δ15N. Using Dcv,δ15N in Eq. (10) leads to the temperature correction values which are 
added to the temperature Thf;
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Figure 03: (a-d) δ15N: (a) Synthetic δ15N target (black dotted line), modelled δ15N time series after adding high frequency 
information (blue line) and correction (red line) for the scenario S5; (b) Zoom in for a randomly chosen 500 yr interval shows the 
decrease of the mismatch after the correction compared to the high frequency solution; (c) Histogram shows the pointwise 
mismatches Di from the synthetic δ15N target for the Monte Carlo solution (grey), the high frequency solution (blue) and the 
correction (red); The 95 % quantile is 4.9 permeg (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (d) 
Time series for the pointwise mismatches Di from the synthetic δ15N target for the high frequency solution (blue) and the correction 
(red); (e-h) temperature: (e) Synthetic temperature target (black dotted line), modelled temperature time series after adding high 
frequency information (blue line) and correction (red line); (f) Zoom in for a randomly chosen 500 yr interval shows the decrease of 
the mismatch after the correction compared to the high frequency solution; (g) Histogram shows the pointwise mismatches ΔTi from 
the synthetic temperature target for the Monte Carlo solution (grey), the high frequency solution (blue) and the correction (red); 
The 95 % quantile is 0.37 K (yellow line) and used as an estimate for 2σ uncertainty of the final solution; (h) Time series for the 
pointwise mismatches ΔTi from the synthetic temperature target for the high frequency solution (blue) and the correction (red);
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(a) (b)

(c)

Figure 04: Histograms shows the pointwise mismatches Dδ15N,i in δ15N between the synthetic target data and the δ15N solution of the 
high frequency part (blue) and the correction part (red) for (a) the mismatch in total δ15N (Dδ15Ntot,i), (b) in the gravitational 
(Dδ15Ngrav,i), and (c) in the thermal diffusion component (Dδ15Ntherm,i) of δ15N for the synthetic data scenario S1;
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Tables 

Scenario S1 S2 S3 S4 S5 H1 H2 H3 

D15N,guess [permeg] 13.3 48.4 27.0 23.3 22.4 23.8 24.1 23.8 

D15N,mc [permeg] 11.3 12.4 12.7 11.9 11.5 5.8 6.9 8.2 

δ15N Improvement 

[permeg | %] 

2.0 

15.0 

36.0 

74.4 

14.3 

53.0 

11.4 

48.9 

10.9 

48.7 

18.0 

75.6 

17.2 

71.4 

15.6 

65.5 

# improvements 119 351 152 108 174 223 173 325 

# used improvements 89 174 103 74 102 129 112 193 

# iterations 2103 706 620 656 637 1636 1027 2086 

# tried solutions 16824 5648 4960 5248 5096 13088 8216 16688 

Time [h] 52.6 17.7 15.5 16.4 15.9 40.9 25.7 52.2 

Comments Week-

end 

Week-

end 

Week- 

end 

DT,guess [K] 1.24 5.24 2.45 2.09 2.17 2.34 2.38 2.32 

DT,mc [K] 0.61 0.69 0.70 0.64 0.64 0.32 0.39 0.46 

Temp. Improvement 

[K | %] 

0.63 

50.8 

4.55 

86.8 

1.75 

71.4 

1.45 

69.4 

1.53 

70.5 

2.02 

86.3 

1.99 

83.6 

1.86 

80.2 

Table 01: Summary for the Monte Carlo approach; Mismatch Dguess between the modelled δ15N (or temperature) values using the 
first guess input and the synthetic δ15N (or temperature) target for each scenario; Dmc is the mismatch between the modelled δ15N 
using the final Monte Carlo temperature solution and the synthetic δ15N (or temperature) target for each scenario; 3 runs were 
conducted over weekend, which leads to a higher number of iterations;
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Scenario S1 S2 S3 S4 S5 H1 H2 H3 

D15N,hf [permeg] 2.7 3.6 4.3 3.2 3.5 2.1 2.5 2.6 

Improvement  

(hf vs. MC) [%] 

76.1 71.0 66.1 73.1 69.6 63.8 63.8 68.3 

σ15N,hf [permeg] 3.5 4.6 5.4 4.0 4.3 2.7 3.1 3.3 

D15N,corr [permeg] 1.7 2.1 2.6 1.9 2.0 1.2 1.3 1.6 

Improvement  

(corr vs. hf) [%] 

37.0 41.7 39.5 40.6 42.9 42.9 48.0 38.5 

σ15N,corr [permeg] 2.2 2.7 3.3 2.4 2.5 1.5 1.7 1.9 

2σ15N,corr,95 [permeg] 4.4 5.3 6.3 4.7 4.9 3.0 3.4 3.7 

DT,hf [K] 0.20 0.32 0.33 0.25 0.27 0.18 0.21 0.22 

σT,hf [K] 0.26 0.40 0.43 0.32 0.35 0.22 0.26 0.27 

DT,corr [K] 0.12 0.18 0.20 0.14 0.15 0.10 0.11 0.12 

σT,corr [K] 0.15 0.24 0.25 0.19 0.19 0.12 0.14 0.15 

2σT,corr,95 [K] 0.31 0.48 0.51 0.38 0.37 0.23 0.27 0.30 

Table 02: Summary for the high frequency (hf) and correction part (corr) of the reconstruction approach. D is the mean 
mismatch between the modelled δ15N (or temperature) data versus the synthetic δ15N (or temperature) target. σ is the standard 
deviation of the point wise mismatches Di. The 95 % quantiles (2σ15N,corr,95 or 2σT,corr,95) of the pointwise δ15N (or temperature) 
mismatches (Di or ΔTi) are used as an estimate for the 2σ uncertainty for the final solution. 

Scenario: 2σ Δ(Δage) [yr] Scenario: 2σ Δ(Δage) [yr] 

S1 1.14 S5 1.24 

S2 1.60 H1 1.23 

S3 1.98 H2 1.18 

S4 1.41 H3 1.30 

Table 03: Final mismatches Δ(Δage) (2σ) of Δage between the corrected solution and the synthetic targets for all scenarios. 
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