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Reply to reviewer #1: 
 
We thank reviewer #1 for the report. Hereafter we address the questions and comments mentioned by the 
reviewer. Reviewer comments are given in italic letters whereas our replies are given in normal letters.  
 5 
It needs to be made clear, right at the beginning, that d15N by itself is not sufficient to provide a temperature 
record. There must be a highly accurate independent accumulation rate record in addition. It is only the 
COMBINATION of d15N data and accumulation data that gives temperature, in the method that is described in 
the manuscript. The reason is very simple. A doubling of accumulation rate can cause a change in firn thickness 
and hence d15N, with no temperature change whatsoever. 10 
 
The same is true for d40Ar data, when it is used as the sole gas measurement. 
 
 
We fully agree with reviewer #1 that highly-accurate accumulation-rate data are needed to reconstruct surface-15 
temperature histories from δ15N and δ40Ar data. We added this fact already in the first sentence of the abstract by 
saying: 
“Greenland past temperature history can be reconstructed by forcing the output of a firn-densification and heat-
diffusion model to fit multiple gas-isotope data (δ15N or δ40Ar or δ15Nexcess) extracted from ancient air in 
Greenland ice-cores using published accumulation-rate (ACC) data sets.” 20 
 
Additionally, the abstract was changed for the dependencies of the reconstructed temperature by adding the 
accumulation explicitly, i.e. T(δ15N, Acc). It reads now: 
 
“We solve the inverse problem T(δ15N, Acc) by using a combination of a Monte-Carlo-based iterative approach 25 
and the analysis of remaining mismatches between modelled and target data, based on cubic-spline-filtering of 
random numbers as well as the laboratory-determined temperature-sensitivity for nitrogen isotopes.” 
 
In the original text we already mentioned the necessity of the accumulation several times in chapter 2. 
 30 
Highly accurate d15Nexcess data, however, can provide a temperature record without any associated 
accumulation record. This distinction needs to be made clearer. In its present form the reader could be seriously 
misled by the manuscript. It borders on scientific dishonesty to persist in making this misleading presentation of 
the facts. 
 35 
We agree with the reviewer in part. Indeed the δ15Nexcess removes the gravitational signal and therefore 
temperature gradients, ∆T, along the firn column can be directly estimated. However, we do not agree with the 
statement that no accumulation rate is necessary to reconstruct surface or bottom temperature because 
accumulation-rate changes initiate heat-diffusion changes. Therefore, firn models are needed as they describe the 
changes of the firn column due to temperature and accumulation-rate variability and more important the 40 
associated heat diffusion through the firn to extract the related surface-temperature time-series (Landais, 2012). 
That means, also for δ15Nexcess-based temperature reconstructions, highly accurate accumulation-rate data are 
needed. For instance, in the recent published study from Kobashi et al. (2017) where a δ15Nexcess-based approach 
was chosen to reconstruct past temperature, the Goujon-firn-model (Goujon et al., 2003) was used for the 
integration of ΔT(t) and even if it is not explicitly mentioned in the paper, accumulation-rate data were needed to 45 
run the firn model. 
In contrast to this, Grachev and Severinghaus (2005) relates the ΔT(t) variability one to one to past surface-
temperature changes with additionally applying a heat-model-based transfer correction of 2 K. In Landais (2012) 
it is argued that the use of a firn-densification and heat-diffusion model instead of the heat transfer correction 
would probably lead to more accurate results. We support this statement. 50 
 
page 4 line 16 units for mass difference should be "kg per mol" 
 
We corrected for that and changed the new sentence to: 
“g is the gravitational acceleration, ∆m the molar mass-difference between the heavy and light isotopes (equals 55 
10-3 kg per mol for nitrogen) and R the ideal gas-constant.” 
 
  



2 
 

page 4 line 27 the language here is confusing. As I understand it, the Leuenberger, Boersma-Klein, and DeVries 
results were not the ones used in the current manuscript, so there is no place for them in the sentence describing 
the given equation. Please cut the mention of Leuenberger and Boersma-Klein and DeVries, as it makes it hard 
for the reader to know which measurement result is being presented in the given equation. There should be no 
ambiguity here, and there is indeed no excuse for creating ambiguity in a scientific paper. This issue was 5 
already raised by one of the reviewers in the first round of review, and the authors have apparently chosen to 
ignore that reviewer. This is unacceptable and unprofessional behavior and the authors are hereby warned that 
continuing to ignore the reviewers will result in rejection of the manuscript. 
 
We deleted the corresponding reference. 10 
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Reply to reviewer #3: 
 
We thank reviewer #3 for the detailed and helpful report. Hereafter we reply to the questions and comments 
mentioned by the reviewer. Reviewer comments are given in italic letters whereas our replies are given in 
normal letters.  5 
 
Although the manuscript appears to have been significantly improved since the original submission, I still found 
the manuscript to be dense and difficult to read. The point of the manuscript is to introduce a method to infer 
past temperatures, but the description of the method is difficult to follow. I think the material is appropriate for 
publication in Climate of the Past, but the presentation of the material can still be improved to make it more 10 
accessible to a broader range of climate scientists. Reaching readers is, after all, a primary goal of publishing. 
Here are issues that I had with Section 2:  
• The authors want to describe a complicated procedure. The 4-point summary overview at the top of page 6 is a 
good start. However, in my view, too much detail is then provided before readers have been given a clear 
understanding of the whole process. Section 2.3 Reconstruction Approach actually contains many intermediate 15 
results, numerical values, and detailed discussion points, before the process is fully explained. When I see text 
like this, I really don’t want to read it. I think the text would be easier to read if the authors were to restrict 2.3 
to describing the fundamental concepts and assumptions of the approach. Then, e.g. in a subsequent Discussion 
section, they could explain how some of those results were developed or obtained, why they were needed, the 
numerical values that arose, and how they were used. 20 
• Illustrations integrated with the description of the method could help readers to “see” and understand the 
procedure. For example, a flow chart could be very useful to help readers as they follow Section 2.3. However, 
there are no figures in the main text to help here; instead, the text depends heavily on figures and tables in the 
Supplement. If material is needed to explain the main points of a paper, then that material should be in the main 
body of the paper. A Supplement should be limited to material that is nice to have in order to supplement the 25 
primary material. It should not contain primary material that is essential in order for readers to understand the 
main text. 
 
In order to make the manuscript more readable, we follow the suggestion mentioned by the reviewer. We 
rearranged the order of sections to start with the fundamentals of the new method which is now section 2.1. To 30 
provide a guideline for an easier understanding of the description of our inversion approach, we created a flow 
chart (Fig. 01) as suggested by the reviewer. The new Fig. 01 contains besides the schematic description of the 
whole algorithm also the used variables. Additionally, we added a new table (Table 01) listing and describing all 
variables and acronyms used in the manuscript, which can be used together with Fig. 01 to follow the 
explanations in sections 2.1ff. To further clarify our descriptions we rearranged the figure order in the main and 35 
supplementary documents. Additionally, we moved the explanation of the adaption of the accumulation rates to 
the GICC05 time scale to a new supplement section S1, as we think that is not important for the understanding of 
the inversion algorithm itself. For the same reason, we moved the sensitivity experiments on the accumulation-
rate data (low-pass-filtering and variability) to a new supplement section S2. To shorten the manuscript, we 
moved a part of our discussion (section 4.2 “High frequency step and final correction“) to the supplement section 40 
S3 and only summarise the results of the cross-correlation experiments in the main text. Furthermore, we wrote a 
short remark right at the start of section 2.1 to inform the readers that the problem we deal with is indeed an 
inverse problem. We hope that with these changes the manuscript is better understandable. 
 
Reviewers of manuscripts are generally expected to identify two types of problems. 45 
• The first is scientific failings, such as failure to correctly interpret and cite relevant background work, or 
omissions of key steps in descriptions or analysis, or errors in logical development of ideas or conclusions. I was 
pleased to see that many of the minor points raised by the two initial reviewers have been addressed. 
 
Thank you. 50 
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• The second type of problem that reviewers are asked to identify is communication failings. Is a manuscript 
organized in a way that readers who are not closely connected with the work can easily understand the 
approach and grasp the aspects that are novel? If points were unclear to the reviewers, they will probably also 
be unclear to many other readers. So, I am a bit concerned that more effort appears to have gone into explaining 
how the initial two reviewers misunderstood the manuscript (15 pages), than has gone into making the 5 
manuscript clearer on those points to other readers. Section 4.3 is new in response, but it is only 3 pages long, 
i.e. only 20% of the length of the argument to the reviewers. I am concerned that the authors may not fully 
appreciate the challenges that outsiders can have in attempting to read their work. 
 
Yes, we got your point. Indeed, when re-reading our response it is obvious that we were very exhausting in 10 
describing what the reviewers potentially have misunderstood and not concentrating on improving why this is 
the case. We now rearranged sections; we added a new figure and table to follow our methodology as explained 
above. 
 
• In most inverse problems, non-uniqueness of the inferred model parameters grows rapidly with increasing 15 
uncertainties in either the data or the model physics. Section 4.3 addresses the new uncertainties (suggested by 
Reviewer #2) that could be associated individually with each of the imperfectly known real-world data sets, and 
with unknowns in the model physics. However, it might be prudent to remind potential users of the procedure 
why a formal inverse approach is necessary. 
 20 
Indeed this is a valid and important point. The problem that we deal with is an inverse problem, since the effect, 
observed as δ15N variations, is dependent on its drivers, i.e. temperature and accumulation changes. Therefore, 
the temperature will be dependent on δ15N and the accumulation-rate changes. The firn model is a non-linear 
transfer function of temperature and accumulation rate to firn states and relates then to δ15N values. The fact that 
manual adjustments are time-consuming and yet not easy reproducible favours an automated inverse approach as 25 
implemented here. This last statement is already mentioned in the introduction and the main text.  
 
But, we added the following short introduction to section 2.1: 
 
“The problem that we deal with is an inverse problem, since the effect, observed as δ15N variations, is dependent 30 
on its drivers, i.e. temperature and accumulation rate changes. Hence, the temperature that we would like to 
reconstruct depends on δ15N and accumulation rate changes. To solve this inverse problem, the firn model, 
which is a non-linear transfer function of temperature and accumulation rate to firn states and relates to δ15N 
values, is run iteratively to match the modelled and measured δ15N values (or other gas species). The automated 
procedure is significantly more efficient and less time-consuming than a manual approach. The Holocene 35 
temperature-reconstruction is implemented by the following four steps (see Fig. 01):”  
 
Page 1, Line 16 – Results may be reproducible, but are they correct? 
Quite apart from uncertainties in the input data or in the model physics, are there biases built into the automated 
procedure? This was a question that Reviewer #2 posed, and it is unclear to me that it has been answered 40 
satisfactorily. 
 
The first statement is indeed an interesting and valid comment. As it is shown in the paper, we are able to 
reconstruct the synthetic temperature targets by fitting the related δ15N histories very accurately. This means that 
the methodology is working. Yet, another issue are the uncertainties in the input data or in the model physics. 45 
This, however, has not been the main goal of our investigation, but could be dealt with using our methodology 
with several different firn models. To our knowledge the presently available firn models (Goujon and Schwander 
model) are very well comparable. One first step to prove our methodology on real data has been done on data 
from two Daansgard-Oeschger events which demonstrated good agreement with previously determined 
reconstructed temperature and accumulation variations by Kindler et al. (2014). 50 
 
Page 9, Equation (8) – 
Why is an L1 norm used instead of an L2 norm? 
 
During the development of the presented algorithm we investigated different minimization-criterions/cost-55 
functions. As a result of these pre-examinations, no significant differences have been found between the use of a 
L1 or L2 norm for the fitting of Holocene gas-isotope data. The algorithm is implemented in such a way that the 
choice of the minimization-criterion can be done by the user in a very simple way by changing only one line of 
code in a sub-function. Also worthwhile mentioning is that for fitting of glacial δ15N data we used a L2 norm 
weighted with the data uncertainties. To summarize: There is no special reason for the use of one norm instead 60 
of the other one. Both norms can be used in a sufficient way.  
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Page 9, Line 8 – 
“If the mismatch decreases compared to the prior input, the new input is saved and used as new guess.”  
I thought that in most Monte Carlo applications, there was also a probability that a result would not be 
accepted, even if it had a lower mismatch. Why is that not done here? 5 
 
For the current version of the algorithm a new seed of the random generator is set each time before new random 
values are being generated. That means if the Monte-Carlo algorithm is used several times on the same target, 
the “way” to the final result is different for any case. This is done to prevent the algorithm for falling into the 
same local minimum during the minimization and leads to a certain band of solutions (not discussed in the 10 
paper). Further, the fact that we do select only the solutions that improve our criteria of minimization 
corresponds to a probability function.  
 
In their response to reviewers (page 13), the authors argue that their paper is appropriate for publication in CP, 
because another methods paper (Winstrup et al., 2012) was previously welcomed and published in CP. While the 15 
decision to publish or not resides with the editors, I personally think that it is obvious that Winstrup et al. is a 
methods paper, and the Winstrup et al. paper is much clearer and more accessible to readers than this 
manuscript in its current form. The editors must also consider these factors. 
 
We fully agree this was an unnecessary statement and of course the decision about an adequate manuscript is 20 
taken by the editor. Yet, we are convinced that our manuscript fits well into the Climate of the Past journal since 
it describes a method for investigating paleo proxy-records regarding temperature variations in the past. 
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Details 

When acronyms are well established in the broad scientific literature, it is fine to use them. However, very little 
space is saved when authors introduce new acronyms for phrases that are relatively short and which are used 
relatively infrequently. Writing the phrase in full for clarity whenever it is used makes reading more efficient and 
produces happier readers, who don’t need to search back through dense text to fine the meaning. For example, 5 
is using “cop” for “cut-off period” really necessary? 
I think the manuscript would benefit from a table of variables (and acronyms). If reader are going to need to 
frequently look up meanings of variables and acronyms, it would at least make it easier for them if there was one 
clearly identified place to go for that information. 
 10 
We fully agree to the reviewer that used acronyms should be well established when used in a paper. For that 
reason we consequently changed the acronym “cop” to “cut-off-period” in the whole manuscript. Yet, we keep 
the abbreviation since it is used in Fig. 01 and Table 1.  
 
Hyphens 15 
The manuscript is nearly devoid of hyphens, although in many instances, correctly used hyphens would eliminate 
minor textual stumbling blocks that can slow readers’ grasp of the material. For example – • Page 3, line 1 – 
“… argon-isotope-based temperature reconstructions.” 
Or better, 
“… temperature reconstructions based on argon isotopes.” 20 
• Page 3, line 24 – “… Holocene-like data ….” 
• Page 6, line 19 – “low-pass filtered: 
• Page 8, line 30 – “first-guess temperature” 
• Page 6, line 21 - “… accumulation-rate data …” 
• Page 16, line 14 – “gas-isotope-based temperature reconstructions …”, 25 
or better, “temperature reconstructions based on gas isotopes …”, 
 
We changed all the points as it was suggested by the reviewer. Also we reformulate sentences and add hyphens 
in the text when it was necessary. 
 30 
 
Data are plural 
• Page 6, line 21 - “… data are linearly interpolated …” 
• Page 6, line 24 - “… data were linearly indeed reconstructed …” 
• Page 8, line 2 – “… data are filtered …” 35 
• Page 17, line 5 – “… gas-isotope data are calculated …” 
• Page 18, line 11 – “… data are used to run …” 
 
We corrected all the points as it was suggested by the reviewer. We also corrected the wrong grammar according 
to this in the rest of the manuscript. 40 
 
 
Page 1, line 26 – 
“This is shown by high quality fitting of NGRIP δ15N data for two Dansgaard-Oeschger events using the 
presented approach, leading to results comparable to other studies.” 45 
“High quality” is wordy and can appear to be an attempt to prejudice how readers will view the results. It can 
often be more convincing to simply state that results were comparable, and let readers decide for themselves 
whether or not the fit was “high quality”. If the authors want to retain “high-quality fitting”, then it needs a 
hyphen. 
 50 
We agree that the used phrase “high quality fitting…” may bias the reader and influence the judgement of the 
presented details. We changed the formulation of the sentence (p.1 l.26) to: 
“This is shown by fitting of NGRIP δ15N data for two Dansgaard-Oeschger events using the presented approach, 
leading to results comparable to other studies.” 
 55 
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Page 17, line 23 – The distance between GRIP and GISP3 is ~30 km, it is not “a few km”. The authors are 
correct that more cores closer together could be very useful. 
 
We corrected for that and reformulated the sentence to: 
“For example, a δ15N-based temperature reconstruction from the combination of data from the GISP2 ice core 5 
with the “sister ice core” GRIP drilled 30 kilometres apart is likely one of the best ways to overcome potential 
cm-scale variability.” 
 
 
Clarity 10 
• Page 1, line 15 – “… parameter tuning leading to …” I think there should be a comma after “tuning. Without a 
comma it is unclear whether the phrase “leading to reproducible temperature estimates” refers to the new 
automated approach or to the old manual approach. I think the former, but some readers may stumble on this 
point. 
 15 
We corrected for that and added the comma as suggested by the reviewer: 
“The presented approach is completely automated and therefore minimizes the “subjective” impact of manual 
parameter-tuning, leading to reproducible temperature-estimates.” 
 
 20 
• Page 1, line 16 – 
“… other ice core based temperature reconstruction methods …”. 
Please try to avoid long strings of adjectives especially if you don’t use hyphens to help readers understand the 
groupings. Better, with hyphens, “… other ice-core-based temperature-reconstruction methods …” Or better 
yet, unpacked, “… other temperature-reconstruction methods based on ice cores …”. 25 
 
We changed the sentence according to the suggestion by the reviewer: 
“In contrast to many other temperature-reconstruction methods based on ice cores, the presented approach is 
completely independent from ice-core stable-water-isotopes, providing the opportunity to validate water-isotope-
based reconstructions or reconstructions where water isotopes are used together with δ15N or δ40Ar.” 30 
 
 
• Page 2, line 3 - What is intended by “partly even centennial … variations”? This is not a English expression 
that I understand. 
 35 
We corrected for that and changed the sentence to: 
“Yet, high-resolution studies are still very sparse and therefore limit the investigation of decadal and even 
centennial climate variations over the course of the Holocene.” 
 
 40 
• Page 2, line 14 – There is no “Cuffey et al. (1997)” reference. The correct reference is “Cuffey and Clow 
(1997)”. 
 
We corrected the wrong reference: 
“The studies of Cuffey et al. (1995), Cuffey and Clow (1997) and Dahl-Jensen et al. (1998) demonstrate the 45 
usefulness of inverting the measured borehole-temperature profile for surface-temperature-history estimates for 
the investigated drilling site using a coupled heat- and ice-flow model.” 
 
 
• Page 4 – “g is the acceleration constant.” I think it is standard practice to mention “gravity” in this context. 50 
 
We changed the terminology here to: 
“g is the gravitational acceleration,…” 
 
 55 
• Page 8, line 8 – “…which serve later on as …” Delete “on”. 
 
We corrected for that and deleted the “on”: 
“In order to develop and evaluate the presented algorithm, eight temperature scenarios were constructed and 
used to model synthetic δ15N data, which serve later as targets for the reconstruction.” 60 
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• Page 8, line 31 – “… of about -29.6oC”. Did you use -29.6oC, or did you use something different? Why not 
just say “… of -29.6°C”? 
 
We changed the sentence to: 
“To construct the first-guess temperature-input Tg,0(t), a constant temperature of -29.6 °C is used for the 5 
complete Holocene section, which corresponds to the last value of the temperature spin-up (Fig. 02b).” 
 
 
Tables 
In Table 01, I don’t see the point of saying that calculations ran over a weekend. Surely the days of the week are 10 
unimportant (are Saturdays really better than Wednesdays?). If the point is the execution time, then state “48 
hours” or “N cpu cycles”, or whatever is the appropriate number. 
 
We fully agree to the reviewer that the presented algorithm is independent from the exact date of use. We wanted 
to provide an explanation for the significant higher execution time for three runs. As it is not important for the 15 
description of the algorithm we deleted the line “Comments” of that table together with the statement, “3 runs 
were conducted over weekend, which leads to a higher number of iterations;”, in the description. 
 
 
References 20 
• Guillevic (2013). PhD thesis. More information would be helpful – title, university, accessibility. 
 
Guillevic, M., Characterisation of rapid climate changes through isotope analyses of ice and entrapped air in the 
NEEM ice core, PhD thesis, University of Copenhagen, Université de Versailles Saint Quentin en Yvelines, 
2013. 25 
 
 
• Schwander et al. (1997) should have a hanging indent, not be fully indented. 
We corrected for that. 
 30 
 
• Severinghaus et al. (1998) should have hanging indent. “Sowers” and “Alley” are mis-spelled. 
 
We corrected for that: 
“Severinghaus, J. P., Sowers, T. and Alley, R. B.: Timing of abrupt climate change  at the end of the Younger 35 
Dryas interval from thermally fractionated gases in polar ice, Nature, 39(January), 141–146, 
doi:10.1002/jqs.622, 1998.” 
 
 
• Spahni (2003) Check how “CH 4” is presented in GRL. 40 
 
We corrected for that: 
“Spahni, R.: The attenuation of fast atmospheric CH4 variations recorded in polar ice cores, Geophys. Res. Lett., 
30(11), 1571, doi:10.1029/2003GL017093, 2003.” 
 45 
 
• Steig et al. (1994). Only the first word in the title (“Seasonal”) should be capitalized. 
 
We corrected for that: 
“Steig, E. J., Grootes, P. M. and Stuiver, M.: Seasonal precipitation timing and ice core records, Science, 50 
266(5192), 1885–1886, doi:10.1126/science.266.5192.1885, 1994.” 
 
 
• Werner et al. (2001) Missing space in “… present and …” 
 55 
We corrected for that: 
“Werner, M., Heimann, M. and Hoffmann, G.: Isotopic composition and origin of polar precipitation in present 
and glacial climate simulations, Tellus Ser. B Chem. Phys. Meteorol. B, 53(1), 53–71, doi:10.1034/j.1600-
0889.2001.01154.x, 2001.” 
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Abstract. Greenland past temperature history can be reconstructed by forcing the output of a firn -densification and heat -10 

diffusion model to fit multiple gas -isotope data (δ15N or δ40Ar or δ15Nexcess) extracted from ancient air in Greenland ice 

cores. using published accumulation-rate (Acc) data sets. We present here a novel methodology to solve this inverse 

problem, by designing a fully -automated algorithm. To demonstrate the performance of this novel approach, we begin by 

intentionally constructing synthetic temperature -histories and associated δ15N datasets, mimicking real Holocene data that 

we use as “true values” (targets) to be compared to the output of the algorithm. This allows us to quantify uncertainties 15 

originating from the algorithm itself. The presented approach is completely automated and therefore minimizes the 

“subjective” impact of manual parameter -tuning, leading to reproducible temperature -estimates. In contrast to many other 

ice -core -based temperature -reconstruction methods, the presented approach is completely independent from ice -core 

stable -water -isotopes, providing the opportunity to validate water -isotope -based reconstructions or reconstructions where 

water isotopes are used together with δ15N or δ40Ar. We solve the inverse problem T(δ15N, Acc) by using a combination of a 20 

Monte -Carlo -based iterative approach and the analysis of remaining mismatches between modelled and target data, based 

on cubic -spline -filtering of random numbers as well asand the laboratory -determined temperature -sensitivity for nitrogen 

isotopes. Additionally, the presented reconstruction approach was tested by fitting measured δ40Ar and δ15Nexcess data, which 

leads as well to a robust agreement between modelled and measured data. The obtained final mismatches follow a symmetric 

standard -distribution -function. For the study on synthetic data study, 95 % of the mismatches compared to the synthetic 25 

target -data are in an envelope between 3.0 permeg to 6.3 permeg for δ15N and 0.23 K to 0.51 K for temperature (2σ, 

respectively). In addition to Holocene temperature -reconstructions, the fitting approach can also be used for glacial 

temperature -reconstructions. This is shown by high quality fitting of NGRIP δ15N data for two Dansgaard-Oeschger events 

using the presented approach, leading to results comparable to other studies.  
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1 Introduction 

Holocene climate variability is of key interest to our society, since it represents a time of moderate natural variations prior to 

anthropogenic disturbance, often referred to as a baseline for today’s increasing greenhouse effect driven by mankind. Yet, 

high resolution studies are still very sparse and therefore limit the investigation of decadal and partly even centennial climate 

variations over the course of the Holocene. One of the first studies about changes in the Holocene climate was conducted in 5 

the early 1970s by Denton and Karle´n (1973). The authors investigated rapid changes in glacier extents around the globe 

potentially resulting from variations of Holocene climatic conditions. Mayewski et al. (2004) used this data as the base of a 

multiproxy study identifying rapid climate changes (so called RCCs) globally distributed over the whole Holocene time 

period. Although not all proxy data are showing an equal behaviour in timing and extent during the quasi-periodic RCC 

patterns, the authors found evidence for a highly variable Holocene climate controlled by multiple mechanisms, which 10 

significantly affects ecosystems (Pál et al., 2016; Beaulieu et al., 2017; Crausbay et al., 2017) and human societies 

(Holmgren et al., 2016 ; Lespez, L. et al., 2016). Precise high resolution temperature estimates can contribute significantly to 

the understanding of these mechanisms. Ice core proxy data offer multiple paths for reconstructing past climate and 

temperature variability. The studies of Cuffey et al. (1995; 1997) and Dahl-Jensen et al. (1998) demonstrate the usefulness of 

inverting the measured borehole temperature profile for surface temperature history estimates for the investigated drilling 15 

site using a coupled heat- and ice-flow model. Because of smoothing effects due to heat diffusion within an ice sheet, this 

method is unable to resolve fast temperature oscillations and leads to a rapid reduction of the time resolution towards the 

past. Another approach to reconstruct past temperature is based on the calibration of stable water isotopes of oxygen and 

hydrogen (δ18Oice, δDice) from ice core water samples assuming a constant (and mostly linear) relationship between 

temperature and water isotopic composition due to fractionation effects during ocean evaporation, cloud formation and snow 20 

and ice precipitation (Stuiver et al., 1995; Johnsen et al., 2001). This method provides a rather robust tool for reconstructing 

past temperature for times where large temperature excursions occur (Dansgaard-Oeschger events, Glacial-Interglacial 

transitions (Dansgaard et al., 1982; Johnsen et al., 1992)). However, in the Holocene where Greenland temperature variations 

are comparatively small, seasonal changes of precipitation as well as of evaporation conditions at the source region 

contribute possibly more to water isotope data variations (Werner et al., 2001; Huber et al., 2006; Kindler et al., 2014;). A 25 

relatively new method for ice core based temperature reconstructions uses the thermal fractionation of stable isotopes of air 

compounds (nitrogen and argon) within a firn layer of an ice sheet (Severinghaus et al., 1998; Severinghaus et al., 2001; 

Huber et al., 2006; Kobashi et al., 2011; Kindler et al., 2014). The measured nitrogen and argon isotope records of air 

enclosed in bubbles in an ice core can be used as a paleothermometer due to (i) the stability of isotopic compositions of 

nitrogen and argon in the atmosphere at orbital timescales and (ii) the fact that changes are only driven by firn processes 30 

(Mariotti, 1983; Severinghaus et al., 1998; Leuenberger et al., 1999). To robustly reconstruct the surface temperature for a 

given drilling site, the use of firn models describing gas and heat diffusion throughout the ice sheet is necessary for 

decomposing the gravitational from the thermal diffusion influence on the isotope signals. 
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This work addresses two issues relevant for nitrogen and argon isotope based temperature reconstructions. First, we 

introduce a novel, entirely automated approach for inverting gas isotope data to surface temperature estimates. For that, we 

force the output of a firn densification and heat diffusion model to fit gas isotope data. This methodology can be used for 

many different optimization tasks not restricted to ice core data. As we will show, the approach works besides δ15N for all 

relevant gas isotope quantities (δ15N, δ40Ar, δ15Nexcess) and for Holocene and glacial data as well. Furthermore, the possibility 5 

of fitting all relevant gas isotope quantities, individually or combined, makes it possible for the first time to validate the 

temperature solution gained from one single isotope species by comparison to the solution calculated from other isotope 

quantities. This approach is a completely new method which enables the automated fitting of gas isotope data without any 

manual tuning of parameters, minimizing any potential “subjective” impacts on temperature estimates as well as working 

hours. Also, except for the model spin-up, the presented temperature reconstruction approach is completely independent 10 

from stable water isotopes (δ18Oice, δDice), which provides the opportunity to validate water isotope based reconstructions 

(e.g. Masson-Delmotte, 2005) or reconstructions where water isotopes are used together with δ15N or δ40Ar (e.g. Landais et 

al., 2004; Huber et al., 2006; Capron et al., 2010). To our knowledge, there are only two other reconstruction methods 

independent from stable water isotopes that have been applied to Holocene gas isotope data, without a priori assumption on 

the shape of a temperature change. The studies from Kobashi et al. (2008a, 2017) use the second order parameter δ15Nexcess to 15 

calculate firn temperature gradients, which are later temporally integrated from past to future over the time series of interest 

using the firn densification and heat diffusion model from Goujon et al. (2003). Additionally Orsi et al. (2014) use a 

linearized firn model approach together with δ15N and δ40Ar data to extract surface temperature histories. As both methods 

rely on δ15N together with δ40Ar, they do not offer the possibility to validate one isotope based solution against the other. 

Also these two approaches can only be applied to ice cores where both isotope quantities are measured together with a 20 

sufficient precision. 

Second, we investigate the accuracy of our novel fitting approach by examining the method on different synthetic 
nitrogen 1 Introduction 

Holocene climate variability is of key interest to our society, since it represents a time of moderate natural variations prior to 

anthropogenic disturbance, often referred to as a baseline for today’s increasing greenhouse effect driven by mankind. Yet, 25 

high-resolution studies are still very sparse and therefore limit the investigation of decadal and even centennial climate 

variations over the course of the Holocene. One of the first studies about changes in the Holocene climate was conducted in 

the early 1970s by Denton and Karle´n (1973). The authors investigated rapid changes in glacier extents around the globe 

potentially resulting from variations of Holocene climatic conditions. Mayewski et al. (2004) used these data as the base of a 

multiproxy study identifying rapid climate changes (so called RCCs) globally distributed over the whole Holocene time 30 

period. Although not all proxy data are showing an equal behaviour in timing and extent during the quasi-periodic RCC 

patterns, the authors found evidence for a highly variable Holocene climate controlled by multiple mechanisms, which 
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significantly affects ecosystems (Pál et al., 2016; Beaulieu et al., 2017; Crausbay et al., 2017) and human societies 

(Holmgren et al., 2016 ; Lespez, L. et al., 2016). Precise high-resolution temperature-estimates can contribute significantly to 

the understanding of these mechanisms. Ice-core proxy-data offer multiple paths for reconstructing past climate and 

temperature variability. The studies of Cuffey et al. (1995), Cuffey and Clow (1997) and Dahl-Jensen et al. (1998) 

demonstrate the usefulness of inverting the measured borehole-temperature profile for surface-temperature-history estimates 5 

for the investigated drilling site using a coupled heat- and ice-flow model. Because of smoothing effects due to heat-

diffusion within an ice sheet, this method is unable to resolve fast temperature oscillations and leads to a rapid reduction of 

the time resolution towards the past. Another approach to reconstruct past temperature is based on the calibration of water-

stable-isotopes of oxygen and hydrogen (δ18Oice, δDice) from ice-core water-samples assuming a constant (and mostly linear) 

relationship between temperature and isotopic composition due to fractionation effects during ocean evaporation, cloud 10 

formation and snow and ice precipitation (Stuiver et al., 1995; Johnsen et al., 2001). This method provides a rather robust 

tool for reconstructing past temperature for times where large temperature excursions occur when an adequate relationship is 

used (Dansgaard-Oeschger events, Glacial-Interglacial transitions (Dansgaard et al., 1982; Johnsen et al., 1992)). Also, in the 

Holocene where Greenland temperature variations are comparatively small, seasonal changes of precipitation as well as of 

evaporation conditions at the source region may contribute to water-isotope-data variations (Werner et al., 2001; Huber et 15 

al., 2006; Kindler et al., 2014). A relatively new method for ice-core-based temperature reconstructions uses the thermal 

fractionation of stable isotopes of air compounds (nitrogen and argon) within a firn layer of an ice sheet (Severinghaus et al., 

1998; Severinghaus et al., 2001; Huber et al., 2006; Kobashi et al., 2011; Kindler et al., 2014). The measured nitrogen- and 

argon-isotope records of air enclosed in bubbles in an ice core can be used as a paleothermometer due to (i) the stability of 

isotopic compositions of nitrogen and argon in the atmosphere at orbital timescales and (ii) the fact that changes are only 20 

driven by firn processes (Mariotti, 1983; Severinghaus et al., 1998; Leuenberger et al., 1999). To robustly reconstruct the 

surface temperature for a given drilling site, the use of firn models describing gas- and heat-diffusion throughout the ice 

sheet is necessary to decompose the gravitational from the thermal-diffusion influence on the isotope signals. 

This work addresses two issues relevant for temperature reconstructions based on nitrogen and argon isotopes. First, we 

introduce a novel, entirely automated approach for inverting gas-isotope data to surface-temperature estimates. For that, we 25 

force the output of a firn-densification and heat-diffusion model to fit gas-isotope data. This methodology can be used for 

many different optimization tasks not restricted to ice-core data. As we will show, the approach works besides δ15N for all 

relevant gas-isotope quantities (δ15N, δ40Ar, δ15Nexcess) and for Holocene and glacial data as well. Furthermore, the possibility 

of fitting all relevant gas-isotope quantities, individually or combined, makes it possible for the first time to validate the 

temperature solution gained from one single isotope species by comparison to the solution calculated from other isotope 30 

quantities. This approach is a completely new method which enables the automated fitting of gas-isotope data without any 

manual tuning of parameters, minimizing any potential “subjective” impacts on temperature estimates as well as working 

hours. Also, except for the model spin-up, the presented temperature-reconstruction approach is completely independent 

from water stable-isotopes (δ18Oice, δDice), which provides the opportunity to validate water-isotope-based reconstructions 
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(e.g. Masson-Delmotte, 2005) or reconstructions where water isotopes are used together with δ15N or δ40Ar (e.g. Landais et 

al., 2004; Huber et al., 2006; Capron et al., 2010). To our knowledge, there are only two other reconstruction methods 

independent from water stable-isotopes that have been applied to Holocene gas-isotope data, without a priori assumption on 

the shape of a temperature change. The studies from Kobashi et al. (2008a, 2017) use the second order parameter δ15Nexcess to 

calculate firn-temperature gradients, which are later temporally integrated from past to future over the time-series of interest 5 

using the firn-densification and heat-diffusion model from Goujon et al. (2003). Additionally Orsi et al. (2014) use a 

linearized firn-model approach together with δ15N and δ40Ar data to extract surface-temperature histories. As both methods 

rely on δ15N together with δ40Ar, they do not offer the possibility to validate one isotope-based solution against the other. 

Also these two approaches can only be applied to ice cores where both isotope quantities are measured together with a 

sufficient precision. 10 

Second, we investigate the accuracy of our novel fitting approach by examining the method on different synthetic nitrogen-

isotope and temperature scenarios. The aim of this work is to study the uncertainties emerging from the algorithm itself. 

Furthermore the focal question in this study is: what is the minimal mismatch in δ15N for Holocene -like data we can reach 

and what is the implication for the final temperature mismatches. Studying and moreover answering these questions makes it 

mandatory to create well defined δ15N targets and related temperature histories. It is impossible to answer these questions 15 

without using synthetic data in a methodology study. The aim is to evaluate the accuracy and associated uncertainty of the 

inverse method itself to then later apply this method to real δ15N, δ40Ar or δ15Nexcess datasets, for which of course the original 

driving temperature histories are unknown. 
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2. Methods and data 

2.1 Firn densification and heat diffusion model 

The surface temperature reconstruction relies on firn densification combined with gas and heat diffusion 
(Severinghaus et al., 1998). In this study, the firn densification and heat diffusion model, from now on referred to as 
firn model, developed by Schwander et al. (1997) is used to reconstruct firn parameters for calculating synthetic δ15N 5 
values depending on the input time series. It is a semi-empirical model based on the work of Herron and Langway 
(1980), Barnola et al. (1991), and implemented using the Crank and Nicholson algorithm (Crank, 1975) and was also 
used for the temperature reconstructions by Huber et al. (2006) and Kindler et al. (2014). Besides surface 
temperature time series, accurate accumulation rate data is needed to run the model. The model then calculates the 
densification and heat 2.1 Reconstruction approach 10 

The problem that we deal with is an inverse problem, since the effect, observed as δ15N variations, is dependent on its 

drivers, i.e. temperature and accumulation-rate changes. Hence, the temperature that we would like to reconstruct depends on 

δ15N and accumulation-rate changes. To solve this inverse problem, the firn-densification and heat-diffusion model (from 

now on referred to as firn model), which is a non-linear transfer function of temperature and accumulation rate to firn states 

and relates to δ15N values, is run iteratively to match the modelled and measured δ15N values (or other gas species). The 15 

automated procedure is significantly more efficient and less time-consuming than a manual approach. The Holocene 

temperature-reconstruction is implemented by the following four steps (Fig. 01):  

 

Step 1:diffusion history of the firn layer and provides parameters for calculating the fractionation of the nitrogen isotopes for 

each time step, according to the following equations: 20 

δ15Ngrav (zLID, t) =  �e
∆m∙g∙zLID(t)

R∙T�(t) − 1� ∙ 1000        (1) 

δ15Ntherm(t) =  �� Tsurf(t)
Tbottom(t)

�
αT
− 1� ∙ 1000        (2) 

δ15Nmod(t) = δ15Ngrav(t) + δ15Ntherm(t)         (3) 

δ15Ngrav(t) is the component of the isotopic fractionation due to the gravitational settling (Craig et al., 1988; Schwander, 

1989) and depends on the lock-in-depth (LID) zLID(t) and the mean firn temperature T�(t) (Leuenberger et al., 1999). g is the 25 

acceleration constant, ∆m the molar mass difference between the heavy and light isotopes (equals 10-3 kg for nitrogen) and R 

the ideal gas constant. zLID is defined as a density threshold ρLID, which is slightly sensitive to surface temperature, following 

the formula from Martinerie et al. (1994), with a small offset correction of 14 kg m-3 to account for the presence of a non-

diffusive zone (Schwander et al., 1997): 

ρLID(kg ∙ m−3) =  1
1

ρice
−6.95∙10−7∙T�−4.3∙10−5

− 14        (4) 30 

where 

ρice(kg ∙ m−3) = 916.5 − 0.14438 ∙ T� − 1.5175 ∙ 10−4 ∙ T�2       (5) 
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The thermal fractionation component of the δ15N signal (Severinghaus et al., 1998) is calculated using Eq. (2), where Tsurf(t) 

and Tbottom(t) stand for the temperatures at the top and the bottom of the diffusive firn layer. In contrast to Tsurf(t) which is an 

input parameter for the model, Tbottom(t) is calculated by the model for each time step. The thermal diffusion constant αT was 

measured by Grachev and Severinghaus (2003) for nitrogen (see Eq. (6)), and closely matches the value used by 

Leuenberger et al. (1999) based on measurements of Boersma-Klein and De Vries (1966): 5 

αT = �8.656 − 1323 K
T

� ∙ 10−3          (6) 

The firn model used here behaves purely as a forward model, which means that for the given input time series the output 

parameters (here finally δ15Nmod(t)) can be calculated, but it is not easily possible to construct from measured isotope data the 

related surface temperature or accumulation rate histories. The goal of the presented study is an automatization of this 

inverse modelling procedure for the reconstruction of the rather small Holocene temperature variations. 10 

2.2 Measurement, input data and time scale 

Accumulation rate data: Besides surface temperatures, accumulation rate data is needed to drive the firn model. In this 

study we use the original accumulation rate, reconstructed in Cuffey and Clow (1997) produced using an ice flow model 

adapted to the GISP2 location, but adapted to the GICC05 chronology (Rasmussen et al., 2008; Seierstad et al., 2014). 

Originally, the accumulation rate used to feed the ice flow model was optimised in order to match the time scale from Meese 15 

et al. (1994) for the Holocene, based on annual layer counting. Seierstad et al. (2014) transferred the GISP2 chronology to 

the GICC05 reference timeframe using multiple match points to the NGRIP and GRIP ice cores, both already on GICC05. 

We used these match points and modified the GISP2 ages in between match points linearly in order to match exactly the 

GICC05 duration for the considered interval duration. This way, the detailed GISP2 annual layer counting information is 

kept, but is only stretched/compressed in time. This was done for all intervals in between two match points. The 20 

accumulation data were then re-calculated accordingly as obviously this is needed in order to keep the same total amount of 

ice accumulated at the GISP2 site. From the three accumulation rate scenarios reconstructed in Cuffey and Clow (1997) and 

adapted here to the GICC05 chronology, the intermediate one is chosen (red curves in Fig. S01). Since the differences 

between the scenarios (Fig. S01) are not important for the evaluation of the reconstruction approach, they are not taken into 

account for this study. 25 

 

δ18Oice data: Oxygen isotope data from the GISP2 ice core water samples measured at the University of Washington’s 

Quaternary Isotope Laboratory is used to construct the surface temperature input of the model spin-up (12 yr to 35 kyr b2k, 

see Sect. 2.3.1) (Grootes et al., 1993; Meese et al., 1994; Steig et al., 1994; Stuiver et al., 1995; Grootes and Stuiver, 1997). 

 30 

Time scale: For the entire study the GICC05 chronology is used (Rasmussen et al., 2014; Seierstad et al., 2014). During the 

whole reconstruction procedure the two input time series (surface temperature and accumulation rate) are split into two parts. 
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The first part ranges from 20 yr to 10520 yr b2k (called “Holocene section”) and the second one from 10520 yr to 35000 yr 

b2k (“spin-up section”). The entire accumulation rate input (see Sect. 2.3.1), as well as the spin-up section of the surface 

temperature input, remain unchanged during the reconstruction procedure. 
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2.3 Reconstruction approach 

The Holocene temperature reconstruction is implemented by the following four steps:  

(i)  A prior temperature input (first guess) is constructed, which serves as the starting point for the optimization.  

 

(ii) Step 2: A smoothlong-term solution which passes through the δ15N data (here synthetic target data) is generated 5 

following a Monte -Carlo approach. It is assumed that the smooth solution contains all long -term temperature trends 

(centuries to millennial) as well as firn -column -height changes (temperature and accumulation -rate dependent) that 

drive the gravitational background signal in δ15N. 

 

(iii) Step 3: The smoothlong-term temperature solution is complemented by superimposing high frequencyshort-term 10 

information directly extracted from the δ15N data (here synthetic target data). This step adds short -term temperature 

changes (decadal) in the same time resolution as the data. 

 

(iv) Step 4: The gained temperature solution is further corrected using information extracted from the mismatch between 

the synthetic target and modelled δ15N time -series. 15 

 

Accumulation rate input: 

The raw accumulation rate data for the main part of the spin-up section (12000 yr to 35000 yr b2k) is linearly interpolated to 

a 20 yr grid and low pass filtered with a 200 yr cut off period (cop) using cubic spline filtering (Enting, 1987). For the 

Holocene section (20-10520 yr b2k) and the transition part between Holocene and spin-up section (10520 yr to 12000 yr 20 

b2k) the raw accumulation rate data is linearly interpolated to a 1 yr grid to obtain equidistant integer point-to-point 

distances which are necessary for the reconstruction, and to preserve as much information as possible for this time period 

(Fig. S02a). Except for these technical adjustments, the accumulation rate input data remains unmodified, assuming high 

reliability of this data during the Holocene. The accumulation data was indeed reconstructed using annual layer counting, 

and a thinning model which should lead to maximum relative uncertainty of 10 % for the first 1500 m of the 3000 m ice core 25 

(Cuffey and Clow, 1997). 

In order to investigate the influence of smoothing of the accumulation rate data on the model outputs, the high resolution 

accumulation rate dataset in the time window of 20 yr to 12000 yr (Fig. S02a) was low pass filtered with cops between 20 yr 

and 500 yr, and used to drive the firn model. The surface temperature input was set as constant with a value of -31 °C for this 

time window. Then, the deviations of the filtered from the unfiltered accumulation rates and model outputs were calculated. 30 

Figure S03 shows the absolute (I) as well as the relative deviations (II) (relative to the unfiltered scenario) as a function of 

the cops for the accumulation rate input data, δ15N, and LID model outputs. Regarding the standard deviation (1σ) of the 

relative accumulation deviations as a measure for the mean deviation of the filtered minus the unfiltered values show that 
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filtering the accumulation rates leads to a mean deviation of about 20 % between the filtered and unfiltered accumulation rate 

data, depending on the used cop value (see Fig. S03IIa). We use the mean 99 % quantile of the same analysis (Fig. S03IIb) 

as a measure for the maximum deviation between the filtered and unfiltered values. The filtering clearly leads to a maximum 

accumulation rate deviation of about 50 %. The comparison of the related deviations in δ15N and LID outputs reveals that the 

changes in the accumulation rates do not lead to a change in the same order for the model outputs. Indeed, the filtering of the 5 

accumulation rate data leads to deviations of less than 0.6 % and less than 1.5 % for the mean and the maximum δ15N and 

LID deviations respectively (Fig. S03IIc,d). Therefore, it can be argued that a low pass filtering of the accumulation rates for 

cops between 20 yr and 500 yr does only have a small impact on the model outputs as long as the major trends are being 

conserved, because the filtering does not modify the mean accumulation. This result is expected due to the fact that the LID 

and finally δ15N changes are the result of the integration of the accumulation over the whole firn column. The integration 10 

time corresponds to the age of the ice at the LID, which is the order of 200 yr for the Holocene in Greenland. 

Finally, we test which fraction of the measured δ15N variations can be attributed to accumulation changes. For this, we 

perform a sensitivity experiment (Fig. S04) where the temperature input was set as a constant value of -31 °C, and used 

together with the high resolution accumulation rate data (Fig. S02a) to model the LID (Fig. S04a) and δ15N (Fig. S04b) 

values. Due to the absence of temperature changes, only the accumulation rate changes drive the evolution of the diffusive 15 

column height (LID) over time which modulates the δ15N values. Next, the modelled δ15N variations are compared to the 

δ15N measurement data (Fig. S06III) (Kobashi et al., 2008b) to examine the influence of the accumulation rate changes on 

changes in δ15N for two cases. First, for the 8.2k event, the signal amplitude in δ15N is about three times higher for the 

measured data compared to the modelled ones (measured data: Δδ15N8.2k,meas ≈ 60 permeg (one permeg equals 10-6); 

modelled data: Δδ15N8.2k,mod ≈ 20 permeg). The comparison of the standard deviations of the measured data with the 20 

modelled δ15N data for the last 10 kyr (both quantities were normalized with their respective means), shows an even higher 

deviation of the measured versus the modelled variabilities by a factor of about eight (measured data: 

std[δ15N10kyr,meas −  mean(δ15N10kyr,meas)] ≈ 37 permeg; modelled data: std[δ15N10kyr,mod −  mean(δ15N10kyr,mod)] ≈ 4.5 permeg). 

This analysis supports our assumption that the accumulation rate history alone cannot fully explain the observed variability 

in δ15N during the Holocene, and gives an upper limit for the contribution of the accumulation rate to the δ15N signal. 25 

Therefore, the remaining part of the measured δ15N variations has to be related to changes in surface temperature. 

 

Surface temperature spin-up: 

The surface temperature history of the spin-up section (Fig. S02b) is obtained by calibrating the filtered and interpolated 

δ18Oice data (Eq. (7)) using the values for the temperature sensitivity α18O and offset β found by Kindler et al. (2014) for the 30 

NGRIP ice core assuming a linear relationship of δ18Oice with temperature. 

Tspin(t) = 1
α18O(t)

∙ [δ18Oice(t) +  35.2 ‰] − 31.4°C + β(t)       (7) 
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The values 35.2 ‰ and -31.4 °C are modern-time parameters for the GISP2 site (Schwander et al., 1997; Grootes and Stuiver, 

1997). The raw δ18Oice data is filtered and interpolated in the same way as the accumulation rate data for the spin-up part. 

The spin-up is needed to bring the firn model to a well-defined starting condition that takes possible memory effects 

(influence of earlier conditions) of firn states into account. 

 5 
Generating synthetic target data: 

In order to develop and evaluate the presented algorithm, eight temperature scenarios were constructed and used to model 

synthetic δ15N data, which serve later on as targets for the reconstruction. From these eight synthetic surface temperature and 

related δ15N scenarios (S1-S5 and H1-H3), three data sets (later called Holocene like scenarios H1-H3) were constructed in 

such a way that the resulting δ15N time series are very close to the δ15N values measured by Kobashi et al. (2008) in terms of 10 

variability (amplitudes) and frequency (data resolution) of the GISP2 nitrogen isotope data (Fig. S05, Fig. S06). 

The synthetic surface temperature scenarios S1-S5 are created by generating a smooth temperature time series (Tsyn,smooth) 

analogous to the Monte Carlo part of the reconstruction procedure for only one iteration step (see Sect. 2.3.2). The values for 

the cop used for the filtering of the random values, and the s values (standard deviation of the random values, see Sect. 2.3.2) 

for the first 5 scenarios can be found in table S01. The smooth temperatures (Fig. S05I) are calculated on a 20 yr grid, which 15 

is nearly similar to the time resolution of the GISP2 δ15N measurement values of about 17 yr (Kobashi et al., 2008b). For the 

Holocene like scenarios, the smooth temperature time series were generated from the temperature reconstruction for the 

GISP2 δ15N data (not shown here). The final Holocene surface temperature solution was filtered with a 100 yr cop to obtain 

the smooth temperature scenario. 

Following this, high frequency information is added to the smoothed temperature histories. A set of normally distributed 20 

random numbers with a zero mean and a standard deviation (1σ) of 1 K for scenarios S1-S5 and 0.3 K for Holocene like 

scenarios H1-H3 is generated on the same 20 yr grid and added up to the smooth temperature time series. Finally, the 

resulting synthetic target temperature scenarios (Fig. S05II, Fig. S06I) are linearly interpolated to a 1 yr grid. 

These synthetic temperatures are combined with the spin-up temperature and are used together with the accumulation rate 

input to feed the firn model. From the model output the synthetic δ15N targets are calculated according to section 2.1. The 25 

firn model output provides ice age as well as gas age information. The final synthetic δ15N target time series (Fig. S05III, 

Fig. S06II) are set intentionally on the ice age scale to mirror measured data, because no prior information is available for the 

gas-ice age difference (Δage) for ice core data. 

2.3.1 Prior input (step 1) 

The functionality of the presented inversion algorithm is schematically displayed in Fig. 01. It guides the reader through 30 

chapters and documents which variables, listed in Table 01, are in use. In the following a detailed description of each step is 

given. 
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Step 1: prior input 

The starting point of the optimization procedure is the first -guess. To construct the first -guess temperature -input, Tg,0(t), a 

constant temperature of about -29.6 °C is used for the complete Holocene section, which corresponds to the last value of the 

temperature spin-up (Fig. S02b).  

Step 2.3.2: Monte -Carlo -type input -generator - Generating smoothlong-term solutions (step 2) 5 

During the second step of the optimization, the prior temperature -input Tg,0(t) from step 1 is iteratively (j) changed 

following a Monte -Carlo approach. The basic idea of the Monte -Carlo approach is to generate smooth temperature -inputs 

Tmc,j(t) by superimpose low-pass filtering -filtered values P��⃗ j of uniformly -distributed random values, and to superimpose this 

signal P��⃗r,j on the prior input Tmc,j-1. Then, the new input is fed to the firn model and the mismatch Dmc in Dδ15N,mc,j (with X ≡ 

δ15Nmc,j) between the modelled δ15N signalδ15Nmc,j (here Xmod,), calculated from the model output, and the synthetic δ15N 10 

target valuesδ15Nsyn (here Xtarget) is computed. for every time step (i) of the target data δ15Nsyn according to:  

DmcDX =  1
n
∑ |Di|n
i=1 ∑ �DX,i�n

i=1  =  1
n
∑ �Xtarget,i −  Xmod,i�n
i=1        

 (81) 

Dmc(Note: If not otherwise stated, all mismatches in this study labelled with “D” are calculated similar to eq. (1)) 

Dδ15N,mc serves as the criterion which is minimised during the optimization in step 2. If the mismatch Dδ15N,mc,j decreases 15 

compared to the prior input, (Tmc,j-1, Dδ15N,mc,j-1), the new input is saved and used as new guess. (Tg,j = Tmc,j). This procedure 

is repeated until convergence is achieved. 

 leading to the final long-term temperature Tmc,fin(t). Table 0102 lists the number of improvements and iterations performed 

for the different synthetic datasets.  

The perturbation of the current guess Tg(t)Tg,j is conducted in the following way: Let Tg���⃗ =  TgT��⃗ g,0 =  Tg,0(t) be the vector 20 

containing the prior temperature -input. A second vector P1���⃗ P��⃗ r,1 with the same number of elements nnmc as Tg���⃗ T��⃗ g,0 is generated 

containing nnmc uniformly -distributed random numbers within the limits of an also randomly (equally -distributed) chosen 

standard deviation s. s is chosen from a range of 0.05-0.50 (Fig. S07II),, which means that the maximum allowed 

perturbation of a single temperature value T(t0) is in a range of ±5 % to ±50 %. Creating the synthetic frequencies, P1���⃗ P��⃗ r,1 is 

low-pass filtered using cubic spline filtering -spline-filtering (Enting, 1987) with an equally distributed random cop 25 

(Fig. S07Icut-off-period (COP) in the range of 500 yr to 2000 yr generating the vector P��⃗ .P��⃗1. Hereby the low-pass filtering of 

P��⃗r,1 reduces the amplitudes of the perturbation of T��⃗ g,0. The new surface temperature input Tsm������⃗ T��⃗ mc,1 is calculated from P��⃗ P��⃗1 

according to: 

Tsm������⃗ = Tg���⃗
T
∙ (1� + P��⃗ )           (9) 

T��⃗mc,1 = T��⃗ g,0
T ∙ (1� + P��⃗1)           (2) 30 
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The superscript “T” stands for transposed and 1� is the n by 1 matrix of ones.  

This approach provides a high potential for parallel computing. In this study, an eight -core computer was used, generating 

and running eight different inputs of Tsm������⃗ T��⃗ mc simultaneously, minimizing the time to find an improved solution. For example, 

during the 706 iterations for scenario S2, about 5600 different inputs were created and triested, leading to 351 improvements 

(see Tab. 01Table 02). Since it is possible to find more than one improvement per iteration step due to the parallelization on 5 

eight CPU’s, the solution giving the minimal misfit Dδ15N,mc,j is chosen as new first -guess for the next iteration step. This 

leads to a decrease of the used improvements for the optimization (e.g. for S2, 172 of the 351 improvements were used). 

Additionally, a first gas -age scale (Δagemc,fin(t)) is extracted from the model using the last improved conditions, which will 

then be used in step 3. 

2.Step 3.3: Adding short-term (high frequency) information (step 3) 10 

In step 3 the missing high frequencyshort-term temperature history providing a suitable fit between modelled and synthetic 

δ15N data is directly extracted from the pointwise mismatch Dsmooth,i,Dδ15N,mc,fin(t), between the modelled δ15Nsmoothδ15Nmc,fin(t) 

obtained in step 2 and the synthetic δ15Nsyn target data. Note that for a real reconstruction, this mismatch is calculated using 

the measured δ15Nmeas dataset instead of the synthetic one. Dsmooth,iDδ15N,mc,fin(t) can be interpreted in first order as the 

detrended high -frequency signal of the synthetic δ15Nsyn target values (Fig. 01c). This signal. Dδ15N,mc,fin(t) is transferred to 15 

the gas -age scale using Δagemc,fin(t) provided by the firn -model output for the smooth temperature input Tmc,fin(t). This is 

needed to insure synchronicity in between the high -frequency temperature variations ΔT(t) extracted from the mismatch of 

δ15NDδ15N,mc,fin(t) on the ice -age scale and the smooth temperature solution. Tmc,fin(t). Additionally, the signal is shifted by 

about 10 yr towards modern values to account for gas diffusion from the surface to the LIDlock-in-depth (Schwander et al., 

1993)(Schwander et al., 1993), which is not yet implemented in the firn model. This is necessary for adding the calculated 20 

short-term temperature changes ∆T(t) to the smooth signal. Tmc,fin(t). The ∆T values are calculated according to 

Eq. (10eq. (3): 

∆Ti =   Dsmooth,i
ΩN2,i

Dδ15N,mc,fin,i
ΩN2,i

,          

  (10(3) 

using the thermal diffusion sensitivity Ω𝑁𝑁2,𝑖𝑖 for nitrogen isotope fractionation from Grachev and Severinghaus (2003): 25 

using the thermal-diffusion sensitivity ΩN2,i for nitrogen-isotope fractionation from Grachev and Severinghaus (2003): 

ΩN2,i =  8.656 ‰
Tı���

− 1232 ‰∙K

Tı���
2          

 (118.656 ‰
T�i

− 1232 ‰∙K

T�i
2           (4) 

𝑇𝑇𝚤𝚤�  T�i is the mean firn temperature in Kelvin which is calculated by the firn model for each time point i. To reconstruct the 

final (high frequency) temperature input Thf,(t), the extracted short -term temperature signal ∆T(t) is simply added to the 30 

smoothlong-term temperature input Tsm:Tmc,fin(t): 
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Thf,i =  Tsm,iTmc,fin,i +  ∆Ti           (125) 

2.3.Step 4: Ffinal correction of the surface temperature solution (step 4) 

For a further improvement of the remaining δ15N and resulting surface -temperature misfits, (Dδ15N,hf(t), DT,hf(t)), it is 

important to find a correction method that contains information that is also available when using measured data. The benefit 

of the synthetic data study is that several later unknown quantities can be calculated, and used for improving the 5 

reconstruction approach (see Sect. 3 and 4). For instance, it is possible to split the synthetic δ15Nsyn data in the gravitational 

and thermo-diffusion parts or to use the temperature misfit, which is unknown in reality. The idea underlying the correction 

algorithm explained hereafter is that the remaining misfits of δ15N (Dδ15N,hf(t)) and temperature (DT,hf(t)) are connected to the 

Monte -Carlo (step 2) and high -frequency part (step 3) of the reconstruction algorithm. In the present inversion framework, 

it is not possible to find a smoothlong-term solution δ15Nmc,fin (or Tmc,fin) which exactly passes through the δ15Nδ15Nsyn (or 10 

Tsyn) target data in the middle of the variance in all parts of the time -series. This leads to a slightly over- or underestimation 

of the δ15Nδ15Nmc,fin(t) and their corresponding temperature values. Tmc,fin(t). For example, a slightly too low (or too high) 

smooth temperature estimate Tmc,fin leads to a small increase (or decrease) of the firn -column -height, creating a wrong 

gravitational background signal in δ15Nδ15Nmc,fin on a later point in time (because the firn column needs some time to react). 

An additional error in the thermal -diffusion signal is also created due to the high -frequency part of the reconstruction, (step 15 

3), because the high -frequency information is directly extracted from the deviation of the (synthetic) δ15N target 

dataδ15Nsyn(t) and the modelled δ15N dataδ15Nmc,fin(t) from the smoothfinal long-term solution Tmc,fin(t) of the Monte -Carlo 

part. Therefore, this error is transferred into the next step of the reconstruction and partly creates the remaining deviations. 

To investigate this problem, the deviations Dsmooth,iDδ15N,mc,fin(t) of the synthetic target data δ15Ntargetδ15Nsyn to the smooth data 

δ15Nsmoothδ15Nmc,fin of the Monte -Carlo part isare numerically integrated over a time window of 200 yr (see Sect. 4, 20 

Supple. S3), and thereafter the window is shifted from past to future in 1 yr steps resulting in a time -series called IF(t). IF(t) 

equals a 200 yr running-mean of Dsmooth,i.Dδ15N,mc,fin(t). For t, the mid position of the window is allocated. The time evolution 

of IF(t) is a measure for the deviation of the smoothlong-term solution in δ15Nδ15Nmc,fin(t) (or temperature)Tmc,fin(t)) from the 

perfect middle passage through the target data δ15Nsyn(t) (or Tsyn(t)) and for the slightly over- and underestimation of the 

resulting temperature. 25 

IF(ti) =  ∫ �δ15Ntarget(t) −  δ15Nsmooth(t)�t2
t1

dt        (13) 

where ti =  t1 +  t2−t1 
2

           (14) 

IF(t) =  1
200 ∫ �δ15Nsyn(t) −  δ15Nmc,fin(t)�t+100

t−100 dt =  1
200 ∫ Dδ15N,mc,fin(t)t+100

t−100 dt     (6) 

Next, the sample -cross -correlation -function (xcf) (Box et al., 1994)(Box et al., 1994) is applied to IF(t) and the remaining 

misfits Dδ15N,hf(t) of δ15N after the high -frequency part. The xcf shows two extrema (Fig. 023a), a maximum (xcfmax) and a 30 

minimum (xcfmin) at two certain lags (lagmax,Dδ15N at xcfmax,δ15N and lagmin,Dδ15N at xcfmin,δ15N). Now, the same analysis is 

conducted for IF(t) versus the temperature mismatch DT,hf(t) (Fig. 023b), which shows an equal behaviour (two extrema, 
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lagmax,T at xcfmax,T and lagmin,T at xcfmin,T). Comparing the two cross correlations shows that lagmax,Dδ15N equals the negative 

lagmin,T and lagmin,Dδ15N corresponds to the negative lagmax,T (Fig. 023d,e). The idea for the correction is that the extrema in the 

cross-correlation IF(t) vs. Dδ15N,hf(t) with the positive lag (positive means here that Dδ15N,hf(t) has to be shifted to past values 

relative to IF)(t)) creates the misfit of temperature DT,hf(t) on the negative lag (modern direction) of IF(t) vs. DT,hf(t) and vice 

versa. So IF(t) yields information about the cause and allows us to correct this effect between the remaining mismatches of 5 

δ15NDδ15N,hf(t) and temperatureDT,hf(t) over the whole time -series. The lags are not sharp signals, due to the fact that (i) the 

cross -correlations are conducted over the whole analysed record, leading to an averaging of this cause and effect 

relationship as well as that (ii) IF(t) is a smoothed quantity itself. The correction of the reconstructed temperature after the 

high -frequency part is conducted in the following way: From the two linear relationships between IF(t) and Dδ15N,hf(t) at the 

two lags (lagmax,Dδ15N at xcfmax,δ15N, lagmin,Dδ15N at xcfmin,δ15N) two sets of δ15N correction values (Δδ15Nmax(t) from xcfmax,δ15N 10 

and Δδ15Nmin(t) from xcfmin,δ15N) are calculated. Then the lags are being inverted (Fig. 023c,e) shifting the two sets of the 

δ15N correction values to the attributed lags of the cross correlation between IF(t) and DT,hf(t) (e.g. Δδ15Nmin(t) to lag from 

xcfmax,T from the cross correlation between IF(t) and DT,hf)(t)) therefore changing the time assignments of Δδ15Nmin(t) and 

Δδ15Nmax(t) to Δδ15Nmin(t+lagmax,T) and Δδ15Nmax(t+lagmin,T). Now, the Δδ15Nmax(t) and Δδ15Nmin(t) are component -wise 

summed up leading to the time -series Δδ15Ncv(t). From Eq. (10eq. (3) with Δδ15Ncv,i instead of DsmoothDδ15N,mc,fin,i the 15 

corresponding temperature correction values are calculated and added to the high -frequency temperature solution Thf(t) 

giving the corrected temperature Tcorr.(t). Finally, Tcorr(t) is used to run the firn model to calculate the corrected δ15Nδ15Ncorr(t) 

time -series (Fig. 03).. This cause and effect relationship found in the cross -correlations between IF(t) and Dδ15N,hf,(t), and 

IF(t) and DT,hf,(t), is exemplarily shown in Fig. 0203 for scenario S1 and was found for all eight synthetic scenarios. The 

derived correction algorithm leads to a further reduction of the mismatches of about 40 % in δ15N and temperature (see 20 

Sect. 3.2). 

2.2 Firn densification and heat diffusion model 

Surface-temperature reconstruction relies on firn densification combined with gas- and heat-diffusion (Severinghaus et al., 

1998). In this study, the firn-densification and heat-diffusion model, developed by Schwander et al. (1997) is used to 

reconstruct firn parameters for calculating synthetic δ15N values depending on the input time-series. It is a semi-empirical 25 

model based on the work of Herron and Langway (1980), Barnola et al. (1991), and implemented using the Crank and 

Nicholson algorithm (Crank, 1975) and was also used for the temperature reconstructions by Huber et al. (2006) and Kindler 

et al. (2014). Besides surface-temperature time-series, accurate accumulation-rate data are needed to run the model. The 

model then calculates the densification and heat-diffusion history of the firn layer and provides parameters for calculating 

the fractionation of the nitrogen isotopes for each time step, according to the following equations: 30 

δ15Ngrav (zLID, t) =  �e
∆m∙g∙zLID(t)

R∙T�(t) − 1� ∙ 1000        (7) 
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δ15Ntherm(t) =  �� Tsurf(t)
Tbottom(t)

�
αT
− 1� ∙ 1000        (8) 

δ15Nmod(t) = δ15Ngrav(t) + δ15Ntherm(t)         (9) 

δ15Ngrav(t) is the component of the isotopic fractionation due to the gravitational settling (Craig et al., 1988; Schwander, 

1989) and depends on the lock-in-depth (LID) zLID(t) and the mean firn temperature T�(t) (Leuenberger et al., 1999). g is the 

gravitational acceleration, ∆m the molar mass-difference between the heavy and light isotopes (equals 10-3 kg per mol for 5 

nitrogen) and R the ideal gas-constant. zLID is defined as a density threshold ρLID, which is slightly sensitive to surface 

temperature, following the formula from Martinerie et al. (1994), with a small offset correction of 14 kg m-3 to account for 

the presence of a non-diffusive zone (Schwander et al., 1997): 

ρLID(kg ∙ m−3) =  1
1

ρice
−6.95∙10−7∙T�−4.3∙10−5

− 14        (10) 

where 10 

ρice(kg ∙ m−3) = 916.5 − 0.14438 ∙ T� − 1.5175 ∙ 10−4 ∙ T�2       (11) 

The thermal-fractionation component of the δ15N signal (Severinghaus et al., 1998) is calculated using eq. (8), where Tsurf(t) 

and Tbottom(t) stand for the temperatures at the top and the bottom of the diffusive firn-layer. In contrast to Tsurf(t) which is an 

input parameter for the model, Tbottom(t) is calculated by the model for each time step. The thermal-diffusion constant αT was 

measured by Grachev and Severinghaus (2003) for nitrogen (eq. (12)): 15 

αT = �8.656 − 1323 K
T

� ∙ 10−3          (12) 

The firn model used here behaves purely as a forward model, which means that for the given input time-series the output 

parameters (here finally δ15Nmod(t)) can be calculated, but it is not easily possible to construct from measured isotope data the 

related surface-temperature or accumulation-rate histories. The goal of the presented study is an automatization of this 

inverse-modelling procedure for the reconstruction of the rather small Holocene temperature variations. 20 

2.3 Measurement, input data and time scale 

Time scale 

For the entire study the GICC05 chronology is used (Rasmussen et al., 2014; Seierstad et al., 2014). During the whole 

reconstruction procedure the two input time-series (surface temperature and accumulation rate) are split into two parts. The 

first part ranges from 20 yr to 10520 yr b2k (called “Holocene section”) and the second one from 10520 yr to 35000 yr b2k 25 

(“spin-up section”). The entire accumulation-rate input, as well as the spin-up section of the surface-temperature input 

remains unchanged during the reconstruction procedure. 

 

Accumulation-rate data 

Besides surface temperatures, accumulation-rate data are needed to drive the firn model. In this study we use the original 30 

accumulation rates, reconstructed in Cuffey and Clow (1997) produced using an ice-flow model adapted to the GISP2 
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location, but adapted to the GICC05 chronology (Rasmussen et al., 2008; Seierstad et al., 2014). A detailed description of 

the adaption procedure can be found in supplement S1. The raw accumulation-rate data for the main part of the spin-up 

section (12000 yr to 35000 yr b2k) are linearly interpolated to a 20 yr grid and low-pass filtered with a 200 yr cut-off-period 

(COP) using cubic-spline-filtering (Enting, 1987). For the Holocene section (20-10520 yr b2k) and the transition part 

between Holocene and spin-up section (10520 yr to 12000 yr b2k) the raw accumulation-rate data are linearly interpolated to 5 

a 1 yr grid to obtain equidistant integer point-to-point distances which are necessary for the reconstruction, and to preserve as 

much information as possible for this time period (Fig. 02a). Except for these technical adjustments, the accumulation-rate 

input remains unmodified, assuming high reliability of these data during the Holocene. The accumulation data were 

reconstructed using annual-layer-counting, and a thinning model which should lead to maximum relative uncertainty of 10 % 

for the first 1500 m of the 3000 m ice core (Cuffey and Clow, 1997). From the three accumulation-rate scenarios 10 

reconstructed in Cuffey and Clow (1997) and adapted here to the GICC05 chronology, the intermediate one is chosen (red 

curves in Fig. S01). Since the differences between the scenarios are not important for the evaluation of the reconstruction 

approach, they are not taken into account for this study. 

Additionally, two sensitivity experiments were conducted (see supplement S2) in order to investigated (i) the influence of 

low-pass-filtering of the high-resolution accumulation rates on the model outputs and (ii) the possible contribution of the 15 

accumulation-rate variability on the δ15N data during the Holocene. The first experiment shows that filtering the 

accumulation-rates with cut-off-periods in the range of 20 yr to 500 yr has nearly no influence on the modelled δ15N or lock-

in-depth as long as the major trends are being conserved. The second experiment leads to the finding that the accumulation-

rate variability explains about 12 % to 30 % of δ15N variability. 30 % corresponds to the 8.2 kyr event and 12 % for the mean 

of the whole Holocene period including the 8.2 kyr event. Hence the influence of accumulation changes, excluding the 20 

extreme 8.2 kyr event, is generally below 10 % during most parts of the Holocene. 

 

δ18Oice data 

Oxygen-isotope data from the GISP2 ice-core-water samples measured at the University of Washington’s Quaternary 

Isotope Laboratory are used to construct the surface-temperature input of the model spin-up (12 yr to 35 kyr b2k; Grootes et 25 

al., 1993; Meese et al., 1994; Steig et al., 1994; Stuiver et al., 1995; Grootes and Stuiver, 1997). The raw δ18Oice data are 

filtered and interpolated in the same way as the accumulation-rate data for the spin-up part. 

 

Surface-temperature spin-up 

The surface-temperature history of the spin-up section (Fig. 02a) is obtained by calibrating the filtered and interpolated 30 

δ18Oice data (eq. (13)) using the values for the temperature sensitivity α18O and offset β found by Kindler et al. (2014) for the 

NGRIP ice core assuming a linear relationship of δ18Oice with temperature. 

Tspin(t) = 1
α18O(t)

∙ [δ18Oice(t) +  35.2 ‰] − 31.4°C + β(t)       (13) 
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The values 35.2 ‰ and -31.4 °C are modern-time parameters for the GISP2 site (Schwander et al., 1997; Grootes and Stuiver, 

1997). The spin-up is needed to bring the firn model to a well-defined starting condition that takes possible memory effects 

(influence of earlier conditions) of firn states into account. 

 
Generating synthetic target data 5 

In order to develop and evaluate the presented algorithm, eight temperature scenarios were constructed and used to model 

synthetic δ15N data, which serve later as targets for the reconstruction. From these eight synthetic surface-temperature and 

related δ15N scenarios (S1-S5 and H1-H3), three data sets (later called Holocene like scenarios H1-H3) were constructed in 

such a way that the resulting δ15N time-series are very close to the δ15N values measured by Kobashi et al. (2008b) in terms 

of variability (amplitudes) and frequency (data resolution) of the GISP2 nitrogen-isotope data (Fig. 04, Fig. 05). 10 

The synthetic surface-temperature scenarios S1-S5 are created by generating a long-term temperature time-series (Tsyn,smooth) 

analogous to the Monte-Carlo part of the reconstruction procedure for only one iteration step (see Sect. 2.1). The values for 

the cut-off-period used for the filtering of the random values, and the s values (standard deviation of the random values, see 

Sect. 2.1) for the first five scenarios can be found in Table 03. The long-term temperatures (Fig. 04I) are calculated on a 

20 yr grid, which is nearly similar to the time resolution of the GISP2 δ15N measurement values of about 17 yr (Kobashi et 15 

al., 2008b). For the Holocene-like scenarios, the smooth temperature time-series were generated from the temperature 

reconstruction for the GISP2 δ15N data (not shown here). The final Holocene surface-temperature solution was filtered with a 

100 yr cut-off to obtain the long-term temperature scenario. 

Following this, high frequency information is added to the long-term temperature histories. A set of normally-distributed 

random numbers with a zero mean and a standard deviation (1σ) of 1 K for scenarios S1-S5 and 0.3 K for Holocene-like 20 

scenarios H1-H3 is generated on the same 20 yr grid and added up to the long-term temperature time-series. Finally, the 

resulting synthetic target-temperature-scenarios (Fig. 04II, Fig. 05I) are linearly interpolated to a 1 yr grid. 

These synthetic temperatures are combined with the spin-up temperature and are used together with the accumulation-rate 

input to feed the firn model. From the model output the synthetic δ15N targets are calculated according to section 2.1. The 

firn-model output provides ice-age as well as gas-age information. The final synthetic δ15N target time-series (δ15Nsyn) are set 25 

intentionally on the ice-age scale to mirror measured data, because no prior information is available for the gas-ice-age 

difference (Δage) for ice-core data. 

3. Results 

3.1 Monte Carlo type input generator 

Figure S0806 shows the evolution of the mean misfit Dmean of δ15N fromDδ15N,mc,j between the synthetic target data (δ15Nsyn) 30 

versus the modelled data output δ15Nmc,j of the Monte-Carlo part (step 2) as a function of the applied iterations (j) for all 

synthetic scenarios. One can easily see that all scenarios show a steep decline of the mismatch during the first 50 to 200 
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iterations followed by a rather moderate decrease, which finally leads to a constant value. During the Monte -Carlo part, it 

was possible to reduce the misfit of δ15NDδ15N,mc compared to the first -guess solution Dδ15N,g,0 by about 15 % to 75 % 

depending on the scenario and the mismatch of the first -guess solution (see Tab. 01Table 02). This leads to a reduction of 

the temperature mismatches DT,mc compared to the first -guess temperature DT,g,0 mismatch of about 51 % to 87 %. 

Figure 0107 provides the comparison between the first -guess (g,0; step 1) and Monte -Carlo (mc,fin; step 2) solution versus 5 

the synthetic target data (syn) for the modelled δ15N (a-c) and surface -temperature values (d-f) for scenario S5. Subplots (a) 

and (d) show the time -series of the synthetic target data (black dotted line), the first -guess solution (blue line) and the 

Monte -Carlo solution (red line) for δ15N and temperature. In subplots (b) and (e), the distribution of the pointwise mismatch 

Di of the first -guess (blue) and the Monte -Carlo solution (red) versus the synthetic target data for δ15N (Dδ15N) and 

temperature (DT) can be found. Subplots (c) and (f) contain the time -series for Di for δ15NDδ15N,i and temperatureDT,i. The 10 

Di(δ15NDδ15N,mc,fin(t) data is(red) are used later on to calculate the high -frequency signal, that is superimposed to the 

smoothlong-term temperature solution Tmc,fin according to Eq. (10eq. (3) and Eq. (12eq. (5) (see Sect. 2.3.1, step 3). From 

Fig. 0107 it can be concluded that the Monte -Carlo part of the reconstruction algorithm (step 2) leads to two major 

improvements of the first -guess solution. First, it is obvious that the Monte -Carlo approach corrects the offsets of the first -

guess input, (g,0), which shifts the midpoint of the distributions of DmcDδ15N,mc,i and DT,mc,i to zero (see blue against red in 15 

Fig. 017b,e). The second improvement is that the distribution becomesdistributions become more symmetric and the misfit is 

overall reduced (the distributions become narrower) compared to the first -guess, due to the middle passage through the 

δ15Nsyn targets. These improvements can be observed for all eight synthetic scenarios, showing the robustness of the Monte -

Carlo part (see Tab. 01Table 02, Fig. 0107). 

3.2 High frequency step and final correction 20 

Figure 0308 provides the comparison between the Monte -Carlo, (mc,fin; step 2), the high -frequency (hf; step 3) and the 

correction (corr; step 4) parts of the reconstruction procedure for the scenarios S5. Additional data for all other scenarios can 

be found in table 02Table 04. The upper four plots (a-d) illustrate each reconstruction step and their effect on the modelled 

δ15N; the bottom four plots (e-h) show the corresponding results on the temperature. Plots (a) and (de) contain the time -

series of the synthetic δ15Nsyn or temperatureTsyn target (syn; black dotted line), the high -frequency solution (hf; blue line), 25 

and the final solution after the correction part (corr; red line). For visibility reasons, subplots (b) and (f) display a zoom-in 

for a randomly chosen time -window of about 500 yr for the same quantities, which shows the excellent agreement in timing 

and amplitudes of the modelled δ15N and temperature compared to the synthetic target data. Histograms (c) and (g) and 

subplots (d) and (h) show the distribution and the time -series of the pointwise mismatches (DiDδ15N,i for δ15N, ΔTi; DT,i for 

temperature) between the modelled and the synthetic target data in δ15N and temperature for each reconstruction step. 30 

Compared to the Monte -Carlo solution, the high -frequency part leads to a large refinement of the reconstructions. For the 

mean δ15N misfits DDδ15N, the improvement between the Monte -Carlo and the high -frequency parts is in the range of 64 % 

to 76 % (see Tab. 02Table 04). This leads to a reduction of the temperature mismatches DT of 43 % to 67 %. The standard 
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deviations (1σ) of the pointwise mismatches (Fig. 038c,d,g,h) in δ15N and temperature after the high -frequency parts are in 

the range of about 2.7 permeg to 5.4 permeg (one permeg equals 10-6) for δ15N and 0.22 K to 0.40 K for the reconstructed 

temperatures depending on the scenario, which is clearly visible in the decreasing width of the histograms (subplots (c) and 

(g) of Fig. 0308, blue against grey). 

The mismatches after the correction part of the reconstruction approach show clearly a further decrease of the misfits. This 5 

means that the width of the distributions of the pointwise mismatches of δ15NDδ15N,i as well as of temperatureDT,i is further 

reduced, and the distributions become more symmetric (long tales disappear,; see histogram (c) and (g)); red against blue of 

Fig. 0308). The time series of the mismatches (subplots (d) and (h) of Fig. 0308) clearly illustrate that the correction 

approach mainly tackles the extreme deviations (sharp reduction of extreme values occurrence in the red distribution 

compared to the blue distribution) leading to a further improvement of about 40 % in δ15N and temperature. Finally, the 10 

95 % quantiles (2σδ15N,corr,95, 2σT,corr,95) of the remaining pointwise mismatches of δ15N and temperature (DiDδ15N,i or ΔTiDT,i) 

were calculated for the final solutions for all scenarios and are used as an estimate for the 2σ uncertainty of the 

reconstruction algorithm (see Fig. 0308c,g and Tab. 2Table 04). The final uncertainties (2σ) are in the order of 3.0 permeg to 

6.3 permeg for δ15N and 0.23 K to 0.51 K for the surface temperature misfits. It is noteworthy that the measurement 

uncertainties (per point) of state of the art δ15N measurements are in the same order of magnitude, i.e. 3 permeg to 5 permeg 15 

(Kobashi et al., 2008b)(Kobashi et al., 2008b), highlighting the effectiveness of the presented fitting approach. Table 0305 

contains the final mismatches (2σ) in Δage between the synthetic target and the final modelled data after the correction step 

for all scenarios and shows that with a known accumulation rate and assumed perfect firn physics, it is possible to fit the 

Δage history in the Holocene with mean uncertainties better than 2 yr. In other words, the uncertainty in Δage reconstruction 

due to the inversion algorithm alone is in the order of 2 yr. 20 

4. Discussion 

4.1 Monte Carlo type input generator 

Figure S0709 shows the distribution of the copcut-off-periods (COP) (I) and s values (II) used to create the improvements 

(Sect. 2.3.1, step 2) for all scenarios. The cop valuescut-off-periods are more or less evenly distributed, which shows that 

nearly the whole of the allowed frequency range (allowed cops were 500 yr to 2000 yr) was used to create the improvements 25 

during the iterations. In contrast, the distributions of the s values show clearly that mostly small s values are used to create 

the improvements, which implies that iterations with small perturbations more likely lead to an improvement than larger 

ones. 

Figure S0806 reveals a weak point of the Monte -Carlo part, namely the absence of a suitable termination criterion for the 

optimization. The implementation until now is conducted such that the maximum number of iterations is given by the user or 30 

the iterations are terminated after a certain time (e.g. 15 h). Figure S0806 shows that for nearly all scenarios it would be 

possible to stop the optimization after about 400 iterations, due to rather small additional improvements later on. This would 
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decrease the time needed for the Monte -Carlo part to about 10 h (a single iteration needs about 90 s). Since the goal of the 

Monte -Carlo part is to find a temperature realisation that leads to an optimal middle passage through the δ15N target data, it 

would be possible to use the mean difference between the δ15N target and spline -filtered δ15N data using a certain cut -off -

period as a termination criterion. This issue is under investigation at the moment. Another possibility to decrease the time 

needed for the Monte -Carlo part could be an increase in the numbers of CPUs used for the parallelization of the model runs. 5 

For this study an eight -core parallelization was used. A further increase in numbers of workers would improve the speed of 

the optimization. 

4.2 High frequency step and final correction 

Several analyses were conducted in order toTo investigate the timing and contributions of the remaining mismatches in δ15N 

and temperature for scenario S1 after the high -frequency (step 3) and the correction part (step 4), different cross-correlation 10 

experiments were conducted (see supplement S3). The experiments lead to equal results. The major fraction of the 

reconstruction respectively. First, final mismatches of δ15N emerges from mismatches in the total misfit of δ15N (Dδ15Ntot) 

was separated into two fractions: gravitational (Dδ15Ngrav) and thermal -diffusion mismatches (component Dδ15Ntherm) of δ15N 

(Fig. 04). Figure 04 indicates that the main fraction. Also a cancelation effect between the gravitational component Dδ15Ngrav 

and Dδ15Ntherm of the total mismatch in δ15N became obviously, affecting the calculation of lagmax,δ15N is due to the misfit of 15 

the thermal diffusion component of the δ15N signal, whereas the gravitational misfit of δ15N has only a minor contribution. 

The ratio of the standard deviations σ(Dδ15Ntherm)/σ(Dδ15Ngrav) is about 2.4 for the high frequency solution, and about 2.3and 

lagmin,δ15N and most likely leading to a fundamental residual uncertainty in the low-permeg level for the corrected signal, 

showing that the misfit in the thermal diffusion part is more than twice as high as in the gravitational component. 

To investigate the timing and contributions of the mismatches in δ15N and temperature for scenario S1, different xcfs were 20 

calculated (Fig. S09a-d).δ15N data. The same analyses were conducted for all synthetic scenarios, leading to similar results. 

In Fig. S09a the xcf between the mismatch of total δ15N (Dδ15Ntot,hf) and the misfit of temperature (DT,hf) is shown. The cross 

correlation leads to two extrema (r1a=0.70, r2a=˗0.55) on two certain lags (l1a=˗2 yr, l2a=+126 yr). In subplot (b) and (c) the 

same analysis is conducted between the mismatch of the gravitational (Dδ15Ngrav,hf) component (b), and the thermal diffusion 

(Dδ15Ntherm,hf) component (c) of δ15N and the temperature mismatch. It is obvious that the xcf of (a) is a combination of (b) 25 

and (c). The direct correlation on l1a of (a) can be attributed mainly to the mismatch of the thermal diffusion component of 

δ15N, whereas the negative correlation on l2a is due to the mismatch of the gravitational component of δ15N. Regarding the 

xcfs of (a)-(c) at a certain lag l, i.e. l = 0 yr shows that here (and on most of the other lags) the correlations between 

Dδ15Ngrav,hf with DT,hf and Dδ15Ntherm,hf with DT,hf work in opposite directions, which makes it difficult to find a way to correct 

the remaining temperature mismatch using only information from Dδ15Ntot,hf
 for measurement data (when only Dδ15Ntot,hf is 30 

available). The correlation on l1a in (a) is weakened, whereas the lag l2a is shifted to higher values because of the 

superposition of gravitational and thermal diffusion mismatch. Figure S09d shows also that the gravitational and thermal 

diffusion mismatches of δ15N are not independent, but the correlations at the extrema are relatively weak (r1d=0.38, 
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r2d=˗0.56). The negative correlation r2d is a sign for the compensation effect between the gravitational and thermal diffusion 

signals in δ15N due to the high frequency part of the reconstruction, whereas no explanation could be found for the positive 

correlation r1d. The symmetric behaviour of the lags for r1d and r2d (l1d = ˗88 yr ≈ ˗l2d=93 yr) suggest that r1d could be an 

artefact of a periodic behaviour of Dδ15Ngrav,hf and Dδ15Ntherm,hf. Figures S10a-d show the same analysis after the correction part 

of the reconstruction. It is evident that in all cases the extrema in the different xcfs break down due to the correction of the 5 

temperature signal, which is the consequence of the decreasing mismatches of temperature as well as of δ15N. The 

comparison of the subplots (a), (b) and (c) also shows that the remaining temperature misfits after the correction are mainly 

driven by the mismatches of the thermal diffusion signal of δ15N with a minor contribution of the gravitational misfit. 

Figures S09e-h show the cross correlations between IF(t) used for the correction of the high frequency temperature solution, 

and the temperature misfit (e), the mismatch of total δ15N (f), the mismatch of the gravitational (g) and thermal diffusion (h) 10 

component of the δ15N signal calculated from the high frequency temperature solution. For the correction, the cross 

correlations (e) and (f) were used (see Sect. 2.3.4 and Fig. 02). Since for measured data neither information about the 

temperature mismatch (the true temperature is not known) nor about the mismatch of the components of δ15N (gravitational, 

thermal diffusion) are available, it is imperative that the symmetric behaviour between the xcf(IF(t), DT,hf(t)) and inverted 

xcf(IF(t), Dδ15Ntot,hf(t)) holds true. This criterion is fulfilled for all eight synthetic data scenarios and especially for H1-H3. 15 

The comparison of the subplots (f), (g) and (h) of Fig. S09 show the same findings as before, namely that the xcf for IF 

versus Dδ15Ntot,hf is the combination of the xcfs of IF(t) versus Dδ15Ngrav,hf and IF(t) versus Dδ15Ntherm,hf, and that the major 

fraction of Dδ15Ntot,hf is contributed from Dδ15Ntherm,hf. The advantage to use IF(t) for the correction is the symmetry between 

the two cross correlations, which is created by two factors. The first one is the allocation of the window mid position to the 

entries of IF, which leads to the symmetric behaviour of the gravitational and thermal diffusion misfits. Second, the shifting 20 

of the window in 1 yr steps creating IF(t) over the whole data set leads to an averaged information, but even more 

importantly, to constant dependency between the temperature and δ15N mismatches. This can be used later on to fit measured 

data. 

Additionally, the influence of the window length, used for the constructioncalculation of IF(t), on the correction was 

analysed. The construction was conducted for different window lengths ranging from 50 yr to 750 yr (Fig. S11). Also, the 25 

correction was calculated by using only xcfmax or xcfmin of IF(t) versus Dδ15N,hf for correcting the temperature input. 

Figures S11a,b show the remaining mismatches of δ15N (Dδ15N,corr) (a), and temperature (DT,corr) (b) after the correction as a 

function of the used window length for IF(t). The analysis shows, showing that for all investigated window lengths the 

correction reduces the mismatches of δ15N and temperature, whatever correction mode was used (calculated with xcfmax, 

xcfmin, or both quantities, see comparison with the blue line in (a) and (b)). Furthermore). Moreover, the correction works 30 

bestis most efficient for window lengths in the range of 100 yr to 300 yr with an optimum at 200 yr for all cases. This 

indicates that the maximum mean duration effect of a δ15N mismatch creating a temperature mismatch (and vice versa) is in 

the same range for the investigated scenarios and such small deviations (low permeg level). It is also visible that the 

correction using both extrema (xcfmax and xcfmin) leads to a better correction as the approach using only one quantity. This is 
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somehow surprising because the two extrema are the result of the periodicity of IF(t), Dδ15N,hf and DT,hf. An explanation for 

this result could be that a larger section of the temperature time series is corrected when both extrema are used for the 

correction, due to shifts in both directions. The correction using xcfmax only leads to a better fit than the one with xcfmin, 

which can be attributed to the higher correlation between IF(t) and Dδ15N,hf. Figures S11e,f show the evolution of the lags 

corresponding to the two extrema for the cross correlations between IF(t), and the δ15N and temperature mismatches, 5 

respectively. The linear dependency between the lags and the window length (the lags are nearly half of the window length) 

is the result of the construction of IF(t), which means the averaging due to the integration in the window of this certain 

length and the symmetric behaviour due to the allocation of the window mid position to the entries of IF(t). 

4.3 Key points to be considered for the application to real data  

Benefits of the novel gas isotope fitting approach 10 

In addition to the fitting of δ15N data, the algorithm is able to fit δ40Ar and δ15Nexcess data as well using the same basic 

concepts (Fig. S12). Here the δ40Ar and δ15Nexcess data from Kobashi et al. (2008) were used as the fitting targets using the 

same approach. We reach final mismatches (2σ) of 4.0 permeg for δ40Ar/4 and 3.7 permeg for δ15Nexcess, which are for both 

quantities below the analytical measurement uncertainty of 4.0 permeg to 9.0 permeg for δ40Ar/4 and 5.0 permeg to 

9.8 permeg for δ15Nexcess measured data (Kobashi et al., 2008).  15 

The automated inversion of different gas 4.3 Key points to be considered for the application to real data  

Benefits of the novel gas isotope fitting approach 

In addition to the fitting of δ15N data, the algorithm is able to fit δ40Ar and δ15Nexcess data as well using the same basic 

concepts (Fig. 10). Here the δ40Ar and δ15Nexcess data from Kobashi et al. (2008b) were used as the fitting targets. We reach 

final mismatches (2σ) of 4.0 permeg for δ40Ar/4 and 3.7 permeg for δ15Nexcess, which are for both quantities below the 20 

analytical measurement uncertainty of 4.0 permeg to 9.0 permeg for δ40Ar/4 and 5.0 permeg to 9.8 permeg for δ15Nexcess 

measured data (Kobashi et al., 2008b).  

The automated inversion of different gas-isotope quantities (δ15N, δ40Ar, δ15Nexcess) provides a unique opportunity to study 

the differences in the gained solutions using different targets and to improve our knowledge about the uncertainties of gas -

isotope -based temperature reconstructions using a single firn model. Next, the presented algorithm is not dependent on the 25 

firn model, which leads to the implication that the algorithm can be coupled to different firn models describing firn physics 

in different ways. Furthermore, an automated reconstruction algorithm avoiding manual manipulation and leading to 

reproducible solutions makes it possible for the first time, to study and learn from the differences in between solutions 

matching different targets. Finally, differences obtained by applying different firn physics (densification equations, 

convective zone, etc.) but the very same inversion algorithm may help to assess firn model shortcomings, resulting in more 30 

robust uncertainty estimates than it was ever possible before.  



24 
 

In this publication we show the functionality and the basic concepts of the automated inversion algorithm using well known 

synthetic δ15N fitting targets. In this “perfect world scenario” the forward problem, converting surface temperature to δ15N, 

as well as the inverse problem, converting δ15N to surface temperature, is completely described by the used firn model. 

Consequently all sources of signal noise are ignored. For the later use of the algorithm on δ15N, δ40Ar or δ15Nexcess measured 

data this will not be the case anymore due to different sources of signal noise in the used measured data. As a result, 5 

differences in between temperature solutions obtained from individual targets (δ15N, δ40Ar, δ15Nexcess) will become obvious. 

These differences will allow to quantify the uncertainties associated with different unconstrained processes. Next, we will 

list and discuss potential sources of uncertainties and try to provide suggestions for their handling and quantification in our 

approach.  

 10 
Measurement uncertainty and firn heterogeneity (cm-scale variability): 

Many studies have investigated the influence of firn heterogeneity (or density fluctuations) on measurements of air 

compounds and quantities (e.g. δ15N, δ40Ar, CH4, CO2, O2/N2 ratio, air content) extracted from ice cores resulting in cm-scale 

variability and leading to additional noise on the measured data (e.g., Etheridge et al., 1992; Huber and Leuenberger, 2004; 

Fujita et al., 2009; Capron et al., 2010; Hörhold et al., 2011; Rhodes et al., 2013, 2016; Fourteau et al., 2017). Using discrete 15 

measurement technique instead of continuous sampling methods makes it difficult to quantify these effects. However, during 

discrete analyses of ice core air data it is common to measure replicates for given depths, from which the measurement 

uncertainties of the gas isotope data is calculated using pooled-standard-deviation (Hedges L. V., 1985). Often it is not 

possible to take real replicates (same depth) and instead the replicates are taken from nearby depths. Hence, any potential 

cm-scale variability is to some degree already included in the measurement uncertainty, because each measurement point 20 

represents the average over a few centimetres of ice. This is especially the case for low accumulation sites or glacial ice 

samples for which the vertical length of a sample (e.g., 10-25 cm long for the glacial part of the NGRIP ice core, Kindler et 

al., 2014) covers the equivalent of 20 yr to 50 yr of ice at approximately 35 kyr b2k. Increasing the depth resolution of the 

samples would increase our knowledge of cm-scale variability, for e.g. identifying anomalous entrapped gas layers that 

could have been rapidly isolated from the surface due to an overlying high density layer (e.g., Rosen et al., 2014). As this 25 

variability is likely due to heterogeneity in the density profile, modelling such heterogeneities (if possible at all) may not 

help to better reconstruct a meaningful temperature history, but rather to reproduce the source of noise. This means that the 

potential cm-scale variability, in many cases, is already incorporated in the analytical noise obtained from gas isotope 

measurements, due to analytical techniques themselves. Assuming the measurement uncertainty as Gaussian distributed, it is 

easy to incorporate this source of uncertainty in the inverse modelling approach presented here. This will increase the 30 

uncertainty of the temperature according to Eq. (10).The same equation can also be used for the calculation of the 

uncertainty in temperature related to measurement uncertainty in general. 

 
Measurement uncertainty and firn heterogeneity (cm-scale variability): 
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Many studies have investigated the influence of firn heterogeneity (or density fluctuations) on measurements of air 

compounds and quantities (e.g. δ15N, δ40Ar, CH4, CO2, O2/N2 ratio, air content) extracted from ice cores resulting in cm-scale 

variability and leading to additional noise on the measured data (e.g., Etheridge et al., 1992; Huber and Leuenberger, 2004; 

Fujita et al., 2009; Capron et al., 2010; Hörhold et al., 2011; Rhodes et al., 2013, 2016; Fourteau et al., 2017). Using discrete 

measurement technique instead of continuous sampling methods makes it difficult to quantify these effects. However, during 5 

discrete analyses of ice-core air-data it is common to measure replicates for given depths, from which the measurement 

uncertainties of the gas-isotope data are calculated using pooled-standard-deviation (Hedges L. V., 1985). Often it is not 

possible to take real replicates (same depth) and instead the replicates are taken from nearby depths. Hence, any potential 

cm-scale variability is to some degree already included in the measurement uncertainty, because each measurement point 

represents the average over a few centimetres of ice. This is especially the case for low-accumulation sites or glacial ice 10 

samples for which the vertical length of a sample (e.g., 10-25 cm long for the glacial part of the NGRIP ice core, Kindler et 

al., 2014) covers the equivalent of 20 yr to 50 yr of ice at approximately 35 kyr b2k. Increasing the depth resolution of the 

samples would increase our knowledge of cm-scale variability, for e.g. identifying anomalous entrapped gas-layers that 

could have been rapidly isolated from the surface due to an overlying high-density layer (e.g., Rosen et al., 2014). As this 

variability is likely due to heterogeneity in the density profile, modelling such heterogeneities (if possible at all) may not 15 

help to better reconstruct a meaningful temperature history, but rather to reproduce the source of noise. This means that the 

potential cm-scale variability, in many cases, is already incorporated in the analytical noise obtained from gas-isotope 

measurements, due to analytical techniques themselves. Assuming the measurement uncertainty as Gaussian distributed, it is 

easy to incorporate this source of uncertainty in the inverse-modelling approach presented here. This will increase the 

uncertainty of the temperature according to eq. (3).The same equation can also be used for the calculation of the uncertainty 20 

in temperature related to measurement uncertainty in general. 

To answer the pertinent question of how to better extract a meaningful temperature history from a noisy ice -core record, an 

excellent – but costly – solution is of course to use multiple ice cores. For example, a δ15N-based temperature reconstruction 

from the combination of data from the GISP2 ice core with the “sister ice core” GRIP drilled only a few30 kilometres apart 

is likely one of the best ways to overcome potential cm-scale variability. A comparison of ice cores that were drilled even 25 

closer might be even more advantageous. 

 

Smoothing effects due to gas diffusion and trapping: 

It is known that gas diffusion and trapping processes in the firn can smooth out fast signals and result in a damping of the 

amplitudes of gas isotope signals (e.g. Spahni et al., 2003; Grachev and Severinghaus, 2005). The duration of gas diffusion 30 

from the top of the diffusive column to the bottom where the air is closed off in bubbles is for Holocene conditions in 

Greenland approximately in the order of 10 yr (Schwander et al. 1997), whereas the data resolution of the synthetic targets 

was set to 20 yr to mimic the measurement data from Kobashi et al. (2008) with a mean data resolution of about 17 yr (see 

Sect. 2.3: “Generating synthetic target data”). In the study of Kindler et al. (2014) it was shown that a glacial Greenland LID 
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leads to a damping of the δ15N signal of about 30 % for a 10 K temperature rise in 20 yr. We further assume that the 

smoothing according to the lock-in process is negligible for Greenland Holocene conditions according to the much smaller 

amplitude signals and shallower LID. Yet, for glacial conditions it requires attention. 

 

Accumulation rate uncertainties: 5 

For the synthetic data study presented in this paper it is assumed that the used accumulation rate data isIt is known that gas-

diffusion and trapping processes in the firn can smooth out fast signals and result in a damping of the amplitudes of gas-

isotope signals (e.g. Spahni et al., 2003; Grachev and Severinghaus, 2005). The duration of gas diffusion from the top of the 

diffusive column to the bottom where the air is closed off in bubbles is for Holocene conditions in Greenland approximately 

in the order of 10 yr (Schwander et al. 1997), whereas the data resolution of the synthetic targets was set to 20 yr to mimic 10 

the measurement data from Kobashi et al. (2008b) with a mean data resolution of about 17 yr (see Sect. 2.3: “Generating 

synthetic target data”). In the study of Kindler et al. (2014) it was shown that a glacial Greenland lock-in-depth leads to a 

damping of the δ15N signal of about 30 % for a 10 K temperature rise in 20 yr. We further assume that the smoothing 

according to the lock-in process is negligible for Greenland Holocene conditions according to the much smaller amplitude 

signals and shallower LID. Yet, for glacial conditions it requires attention. 15 

 

Accumulation rate uncertainties: 

For the synthetic data study presented in this paper it is assumed that the used accumulation-rate data are well known with 

zero uncertainty. This simplification is used to show the functionality and basic concepts of the presented fitting algorithm in 

every detail on well-known δ15N and temperature targets and to focus on the final uncertainties originating from the 20 

presented fitting algorithm itself. For the later reconstruction using measured gas -isotope data together with the published 

accumulation -rate scenarios shown in Fig. S01supplement S1 this will not be the case anymore. Uncertainties in layer -

counting and corrections for ice thinning lead to a fundamental uncertainty. Especially in the early Holocene, this can easily 

exceed 10 %. As the accumulation -rate data isare used to run the firn model, all potential accumulation uncertainties are in 

part incorporated into the temperature reconstruction. On the other hand, as we discussed in section 2.3supplement S2, the 25 

accumulation rate variability has a minor impact compared to the input temperature on the variability of δ15N data in the 

Holocene (see also Fig. S03, Fig. S04).. The influence of these quantities, accumulation rate or temperature, on the 

temperature reconstruction is not equal; during the Holocene, accumulation -rate variability explains about 12 % to 30 % of 

δ15N variability. 30 % corresponds to the 8.2 kyr event and 12 % for the mean of the whole Holocene period including the 

8.2 kyr event. Hence the influence of accumulation changes, excluding the extreme 8.2 kyr event, is generally below 10 % 30 

during the Holocene. If the accumulation is assumed to be completely correct then the missing part will be assigned to 

temperature variations. Nevertheless for the fitting of the Holocene measurement -data we will use all three accumulation -

rate scenarios as shown in Fig. S01S1. The difference in the reconstructed temperatures arising from the differences of these 

three scenarios will be used for the uncertainty calculation as well and is most likely higher than the uncertainty arising from 
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uncertainties due to the process of producing the accumulation -rate data and from the conversion of the accumulation -rate 

data to the GICC05 timescale. 

 

Convective zone variability: 

Many studies have shown the existence of a non-diffusive zone at the top of the diffusive firn column, called convective 5 

zone (CZ). The CZ is formed by strong katabatic winds and pressure gradients between the surface and the firn (e.g. 

Kawamura et al., 2006, 2013; Severinghaus et al., 2010). The existence of a CZ changes the gravitational background signal 

in δ15N and δ40Ar as it reduces the diffusive column height. The presented fitting algorithm was used together with the two 

most frequently used firn models for temperature reconstructions based on stable isotopes of air, the Schwander et al. (1997) 

model which has no CZ build in (or better a constant CZ of 0 m) and the Goujon firn model (Goujon et al., 2003) (which 10 

assumes a constant convective zone over time, that can easily be set in the code). This difference between the two firn 

models only changes significantly the absolute temperature rather than the temperature anomalies as it was shown by other 

studies (e.g., Guillevic et al., 2013, Fig. 3). In the presented work, we show the results using the model from Schwander et al. 

(1997), because the differences between the obtained solutions using the two models are negligible besides a constant 

temperature offset. Also, noteworthy is that there is no firn model at the moment which uses a dynamically changing CZ. 15 

Indeed, this should be investigated but requires additional intense work. Additionally, the knowledge of the time evolution of 

CZ changes for time periods of millennia to several hundreds of millennia (in frequency and magnitude) is too poor to 

estimate the influence of this quantity on the reconstruction. In principle it is possible to cancel out the influence of a 

potentially changing CZ by using δ15Nexcess data for temperature reconstruction, as due to the subtraction of δ40Ar/4 from 

δ15N the gravitational term of the signals is eliminated. From that point of view it will be interesting to compare temperature 20 

solutions gained from δ15Nexcess fitting with the solutions based on δ15N or δ40Ar alone. This can offer a useful tool for 

quantifying the magnitude and frequency of CZ changes in the time interval of interest.  

It is known that for some very low accumulation rate sites in areas with strong katabatic winds (e.g. “Megadunes”, 

Antarctica) extremely deep CZs can occur, which are potentially able to smooth out even decadal-scale temperature 

variations (Severinghaus et al., 2010). For this its deepness would need to be of several dozens of meters, which is highly 25 

unrealistic even for glacial Summit conditions (Guillevic et al., 2013, see discussion in Annex A4, p. 1042) as well as for the 

rather stable Holocene period in Greenland for which no low accumulation and strong katabatic wind situations are to be 

expected.  

4.4 Proof of concept for glacial data 

For glacial conditions the task of reconstructing temperature (with correct frequency and magnitude) without using δ18Oice 30 

information is much more challenging due to the highly variable gas age - ice age differences (Δage) between stadial and 

interstadial conditions. Here, contrary to the rather stable Holocene period, the Δage can vary by several hundreds of years. 

Also the accumulation rate data is more uncertain than for the Holocene. To prove that the presented fitting algorithm also 
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works for glacial conditions we inverted the δ15N data measured for the NGRIP ice core by Kindler et al. (2014) for two 

Dansgaard-Oeschger events, namely DO6 and DO7. Since the magnitudes of those events are higher and the signals are 

smoother than in the Holocene we only had to use the Monte Carlo type input generator (see Sect. 2.3.2) for changing the 

temperature inputs. To compare our results to the δ18Oice based and manually calibrated values from Kindler et al. (2014) we 

use the ss09sea06bm time scale (NGRIP members: Andersen et al., 2004; Johnsen et al., 2001) as it was done in the Kindler 5 

et al. publication. For the model spin-up we use the accumulation rate and temperature data from Kindler et al. (2014) for the 

time span 36.2 kyr to 60 kyr. The reconstruction window (containing DO6 and DO7) is set to 32 kyr to 36.2 kyr. As the first 

guess (starting point) of the reconstruction we use the accumulation rate data for NGRIP from the ss09sea06bm time scale 

together with a constant temperature of about -49 °C for this time window. As minimization criterion D for the 

reconstruction we simply use the sum of the mean squared errors of the δ15N and Δage mismatches weighted with their 10 

uncertainties (wRMSE) according to the following equation instead of the mean δ15N misfit alone as used for the Holocene 

(Eq. (8)). 
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D =  �wRMSE(δ15N) + �wRMSE(Δage)         (15) 
 

Convective zone variability: 

Many studies have shown the existence of a non-diffusive zone at the top of the diffusive-firn-column, called convective 

zone (CZ). The CZ is formed by strong katabatic winds and pressure gradients between the surface and the firn (e.g. 5 

Kawamura et al., 2006, 2013; Severinghaus et al., 2010). The existence of a CZ changes the gravitational background signal 

in δ15N and δ40Ar as it reduces the diffusive-column-height. The presented fitting algorithm was used together with the two 

most frequently used firn models for temperature reconstructions based on stable isotopes of air, the Schwander et al. (1997) 

model which has no CZ build in (or better a constant CZ of 0 m) and the Goujon firn model (Goujon et al., 2003) (which 

assumes a constant convective zone over time, that can easily be set in the code). This difference between the two firn 10 

models only changes significantly the absolute temperature rather than the temperature anomalies as it was shown by other 

studies (e.g., Guillevic et al., 2013, Fig. 3). In the presented work, we show the results using the model from Schwander et al. 

(1997), because the differences between the obtained solutions using the two models are negligible besides a constant 

temperature offset. Also, noteworthy is that there is no firn model at the moment which uses a dynamically changing CZ. 

Indeed, this should be investigated but requires additional intense work. Additionally, the knowledge of the time-evolution 15 

of CZ changes for time periods of millennia to several hundreds of millennia (in frequency and magnitude) is too poor to 

estimate the influence of this quantity on the reconstruction. In principle it is possible to cancel-out the influence of a 

potentially changing CZ by using δ15Nexcess data for temperature reconstruction, as due to the subtraction of δ40Ar/4 from 

δ15N the gravitational term of the signals is eliminated. From that point of view it will be interesting to compare temperature 

solutions gained from δ15Nexcess fitting with the solutions based on δ15N or δ40Ar alone. This can offer a useful tool for 20 

quantifying the magnitude and frequency of CZ changes in the time interval of interest.  

It is known that for some very low accumulation-rate sites in areas with strong katabatic winds (e.g. “Megadunes”, 

Antarctica) extremely deep CZs can occur, which are potentially able to smooth-out even decadal-scale temperature 

variations (Severinghaus et al., 2010). For this its deepness would need to be of several dozens of meters, which is highly 

unrealistic even for glacial Summit conditions (Guillevic et al., 2013, see discussion in Annex A4, p. 1042) as well as for the 25 

rather stable Holocene period in Greenland for which no low accumulation and strong katabatic-wind situations are to be 

expected.  

4.4 Proof of concept for glacial data 

For glacial conditions the task of reconstructing temperature (with correct frequency and magnitude) without using δ18Oice 

information is much more challenging due to the highly variable gas-age - ice-age differences (Δage) between stadial and 30 

interstadial conditions. Here, contrary to the rather stable Holocene period, the Δage can vary by several hundreds of years. 

Also the accumulation-rate data are more uncertain than for the Holocene. To prove that the presented fitting algorithm also 

works for glacial conditions we inverted the δ15N data measured for the NGRIP ice core by Kindler et al. (2014) for two 
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Dansgaard-Oeschger events, namely DO6 and DO7. Since the magnitudes of those events are higher and the signals are 

smoother than in the Holocene we only had to use the Monte-Carlo-type input-generator (see Sect. 2.3.2) for changing the 

temperature inputs. To compare our results to the δ18Oice based and manually calibrated values from Kindler et al. (2014) we 

use the ss09sea06bm time scale (NGRIP members: Andersen et al., 2004; Johnsen et al., 2001) as it was done in the Kindler 

et al. publication. For the model spin-up we use the accumulation-rate and temperature data from Kindler et al. (2014) for the 5 

time span 36.2 kyr to 60 kyr. The reconstruction window (containing DO6 and DO7) is set to 32 kyr to 36.2 kyr. As the first-

guess (starting point) of the reconstruction we use the accumulation-rate data (Accg,0) for NGRIP from the ss09sea06bm 

time-scale together with a constant temperature of about -49 °C for this time window. As minimization-criterion Dg for the 

reconstruction we simply use the sum of the root-mean-squared-errors of the δ15N and Δage mismatches weighted with their 

uncertainties (wRMSE) according to the following equation, instead of the mean δ15N misfit alone as used for the Holocene 10 

(eq. (1)). 

Dgl =  wRMSE(δ15N) +  wRMSE(Δage)         (14) 
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Here 𝜀𝜀𝛿𝛿15𝑁𝑁,𝑖𝑖εδ15N,i and 𝜀𝜀𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥,𝑗𝑗εΔage,k are the uncertainties in δ15N and Δage for the measured values i or jk (Δage match 

points: Guillevic, M. (2013)Guillevic, M. (2013), p.65, Tab. 3.2) and N, M the number of measurement values. We set 

𝜀𝜀𝛿𝛿15𝑁𝑁,𝑖𝑖εδ15N,i = 20 permeg for all i (Kindler et al., 2014) and 𝜀𝜀𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥,𝑗𝑗εΔage,k = 50 yr for all jk. The relative uncertainties in 15 

Δage can easily reach up to 50 % and more in the Glacial using the ss09sea06bm time -scale which results in a pre-eminence 

of the δ15N misfits over the Δage misfits (10 % to 20 % when using GICC05 time -scale,; Guillevic (2013), p.Guillevic, M., 

2013, p. 65 Tab. 3.2). Due to this issue we have to set Δage uncertainties to 50 yr to make both terms equally important for 

the fitting algorithm. In Fig. S1311 we show preliminary results. The δ15N and Δage fitting (a, b) and the resulting gained 

temperature and accumulation -rate solutions (c, d) using the presented algorithm are completely independent from δ18Oice 20 

which provides the opportunity to evaluate the δ18Oice -based reconstructions. In this study the algorithm was used in three 

steps. First, starting with the first -guess (constant temperature), the temperature was changed as explained before. The 

accumulation rate was changed in parallel to the temperature allowing a random offset shift (up and down) together with a 

stretching or compressing (in y direction) of the accumulation -rate signal over the whole time -window (32 kyr to 36.2 kyr). 

This first step leads to the “Monte -Carlo Solution 0” (MCS0) which provides a first approximation and is the base for the 25 

next step. For the next step, we fixed the accumulation rate and let the algorithm only change the temperature to improve the 

δ15N -fit (MSC1). Finally, we allow the algorithm to change the temperature together with the accumulation rate using the 

Monte -Carlo -type input -generator for both quantities. This allows to change the shape of the accumulation -rate data. This 

final step can be seen as a fine tuning of the gained solutions from the steps before. The obtained mismatches in δ15N and 

Δage of all steps are at least of the same quality or better than the δ18Oice -based manual method from Kindler et al. (2014) 30 
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(see Tab. S02Table 06). The gained temperature solutions show a very good agreement in timing and magnitude compared 

to the reconstruction of Kindler et al. (2014). Also the accumulation -rate solutions show that the accumulation has to be 

reduced significantly compared to the ss09sea06bm data to allow a high qualitysuitable fit of the δ15N and Δage target data, a 

result highly similar to Guillevic et al. (2013) and Kindler et al. (2014). The mismatches in δ15N and Δage of the final MCS 

FIN solution show a 15 % smaller misfit inof δ15N (2σ) and an about 31 % smaller misfit forof Δage (2σ) compared to the 5 

Kindler et al. (2014) solution. Keeping in mind that the used approach is completely independent from δ18Oice strengthens the 

functionality and quality of the presented gas -isotope fitting approach also for glacial reconstructions. As this section 

contains a proof -of -concept of the presented automated gas -isotope fitting algorithm on glacial data, preliminary results 

and ongoing work were shown here. Furthermore as the presented fitting algorithm was developed and tested in first order 

for Holocene -like data, it is highly probable that the functionality of the algorithm using glacial data will be further extended 10 

and adjusted in future studies. 

5. Conclusion 

A novel approach is introduced and described for inverting a firn -densification and heat -diffusion model to fit small gas -

isotope -data variations as observed throughout the Holocene. From this new fitting method, it is possible to extract the 

surface -temperature history that drives the firn status which in turn leads to the gas -isotope time -series. The approach is a 15 

combination of a Monte -Carlo -based iterative method and the analysis of remaining mismatches between modelled and 

target data. The procedure works fully automated and provides a high potential for parallel computing for time consumption 

optimization. Additional sensitivity experiments have shown that accumulation -rate changes have only a minor influence on 

short -term variations of δ15N, which themselves are mainly driven by high -frequency temperature variations. To evaluate 

the performances of the presented approach, eight different synthetic δ15N time -series were created from eight known 20 

temperature histories. The fitting approach leads to an excellent agreement in timing and amplitudes between the modelled 

and synthetic δ15N and temperature data. The obtained, final mismatches follow a symmetric, standard -distribution -

function. 95 % of the mismatches compared to the synthetic data are in an envelope in between 3.0 permeg to 6.3 permeg for 

δ15N and 0.23 K to 0.51 K for temperature, depending on the synthetic temperature history scenarios. These values can 

therefore be used as a 2σ estimate for the reconstruction uncertainty arising from the presented fitting algorithm itself. For 25 

δ15N the obtained final uncertainties are in the same order of magnitude as state of the art experimental measurement 

uncertainty. The presented reconstruction approach was also successfully applied to δ40Ar and δ15Nexcess measured data. 

Moreover, we have shown that the presented fitting approach can also be applied to glacial temperature reconstructions with 

minor algorithm modifications. Based on the demonstrated flexibility of our inversion methodology, it is reasonable to adapt 

this approach for reconstructions of other non-linear physical processes. 30 
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