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General comment on the major revisions: For the major revisions of our discussion paper, we had to add two 
additional figures to the supplement of the paper (Fig. S12, S13). This was necessary to account for the details 
discussed in the answer to both reviews as demanded by the editor. Also we added two new chapters to the 
discussion part of the paper for the same reason. The chapter Sect. 4.3 “Key points to be considered for the 
application to real data” describes the benefits of our novel inversion approach together with different sources of 
signal noise and unknowns that have to be considered for the inversions of real measured data using our 
approach. The chapter Sect. 4.4: “Proof of concept for glacial data” contains preliminary results, showing the 
functionality of our approach for the inversion of glacial δ15N data. Furthermore, we changed the abstract, the 
introduction and the conclusion in order to better explain the aim of the paper together with the functionality and 
benefits of our novel gas isotope inversion approach. With these changes the length of the manuscript text 
increased, yet we significantly decreased the number of figures. 
 
The following replies to both reviewers are already published online. 
 
The reply to the review of Anonymous Referee #2 can be found on pages 1-11, the reply to the review of 
Anonymous Referee #1 on pages 12-15. 
 
Reply to reviewer 2: 
 
We thank reviewer 2 for the detailed examination of the presented work. This allows us to clarify some issues 
potentially not emphasized enough within our discussion manuscript. Therefore we will use this opportunity to 
addresses major issues together with detailed answers to the key points mentioned by the reviewers. Reviewer 
comments are given in italic letters whereas our replies are given in normal letters. 
 
Point (1): 
The method assumes that the forward problem (converting surface temperature to d15N) is completely described 
by the firn model, and that all variations in d15N can be linked 1-to-1 to past surface temperature. It is thus no 
surprise that they can reconstruct the original temperature very accurately, because they know the exact 
accumulation rates and physics of the forward model. Unfortunately, that is not at all true in the real world. 
 
We are well aware of the fact that this assumption does not hold true. Due to uncertainties and simplifications in 
firn densification and gas diffusion physics, uncertainties in common firn models and measurement data our 
assumption is only an approximation of the real world as mentioned by the reviewer. Therefore, we will discuss 
several issues in this reply to reviewer 2. Nevertheless we used this assumption here to demonstrate the 
functionality of the automated fitting algorithm. Detailed uncertainty estimations for a “real world” scenario as 
demanded by the reviewer are behind the scope of this work and will follow for the reconstructions using 
measurement data (δ15N, δ40Ar, δ15Nexcess) in next publications. Again, the aim of this work is to present the 
automated gas isotope fitting algorithm applied to synthetic Holocene δ15N data and to study the uncertainties 
emerging from the algorithm itself. Furthermore the focal question in this study is: what is the minimum final 
mismatch in δ15N for Holocene data we can reach and what does this mean for the final temperature mismatches. 
Studying and moreover answering these questions makes it mandatory to create well defined δ15N targets and 
related temperature histories, as we did here. It is impossible to answer these important questions in detail 
without using synthetic data in a methodology study. The aim is to evaluate the accuracy and associated 
uncertainty of the inverse method itself to be able to apply this method in a future study to a real δ15N dataset. 
Here, of course, the original driving temperature history will be unknown. 

The d15N is influenced by variations in convective zone thickness (the CZ is ignored here altogether), firn 
layering that influences the lock-in process, melt layers and wind crusts, etc. Real data (as opposed to the 
synthetic data used) further suffer from analytical noise in the laboratory. All these things will reduce the ability 
to reconstruct temperature from d15N. Furthermore, our understanding of firn densification is incomplete, with 
several physical models giving different results, microstructure effects not included in models, and hypothesized 
influences of dust softening. All these effects remain unaccounted for, which further reduces the ability to use 
d15N. The authors use identical firn physics in the forward and inverse models, which is an idealization that is 
untenable. 
 
Regarding the convective zone (CZ): The presented fitting algorithm was used together with the two most 
frequently used firn models for temperature reconstructions based on stable isotopes of air, the Schwander et al. 
(1997) model which has no CZ build in (or assumes a constant CZ of 0 m) and the Goujon firn model (Goujon et 
al., 2003) (which assumes a constant convective zone over time, that can easily be set in the code). This 
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difference between the two firn models only changes the absolute temperature rather than the temperature 
anomalies as it was shown by other studies (e.g., Guillevic et al. (2013), fig. 3). In the presented work, we show 
the results using the model from Schwander et al. (1997), because the differences between the obtained solutions 
using the two models are negligible besides a constant temperate offset of about 2.3K. Also, noteworthy is that 
there is no firn model at the moment which uses a dynamically changing CZ. Indeed, this should be investigated 
but requires additional intense work. Additionally, the knowledge of the time evolution of CZ changes for the 
time periods of millennia to several hundreds of millennia (in frequency and magnitude) is too poor to estimate 
the influence of this quantity on the reconstruction.  

In addition, the algorithm is able to fit δ15N, δ40Ar and δ15Nexcess data as mentioned in the paper (e.g. in the 
abstract at line 17). In fig.1 we show unpublished data to clarify that the algorithm is usable for δ15Nexcess besides 
δ15N data. Here the δ15Nexcess data from Kobashi et al. (2008) was used as the fitting target using the same 
approach. We reach a final mismatch (2σ) of 3.7 permeg, which is below the analytic measurement uncertainty 
of 5.0 to 9.8 permeg of the measurement data. We hope that this is convincing enough to show the functionality 
of our algorithm also for this quantity. The automated inversion of different gas isotope quantities (δ15N, δ40Ar, 
δ15Nexcess) provides a unique opportunity to study the difference of the gained solutions for the different targets 
and to improve our knowledge about the uncertainties of gas isotope based temperature reconstructions using a 
single firn model. Because of the “perfect physics scenario” as mentioned above it is not necessary to show the 
synthetic δ40Ar and δ15Nexcess fits here, because the gained solutions are the same. This is will be different when 
using measurement data. Here, differences between the temperature solutions gained from the single targets 
(δ15N, δ40Ar, δ15Nexcess) will become obvious due to several sources of signal noise. These differences will allow 
to quantify the uncertainties associated with processes mentioned by the reviewer. 

Next, the presented algorithm is not dependent on the firn model, which leads to the implication that the 
algorithm can be coupled to different firn models describing firn physics in different ways. An automated 
reconstruction algorithm avoiding manual manipulation and leading to reproducible solutions makes it possible 
for the first time, to study and learn from the differences between the solutions. Differences that then can be 
assigned to different firn models and their shortcomings, resulting in more robust uncertainty estimates as was 
possible before. Thus, the algorithm provides the possibility to test firn models by fitting different targets and as 
mentioned before to learn from the differences between the solutions obtained by matching single targets. This is 
exactly the reason the algorithm was developed for. 

Several studies have shown that on the cm-scale there is much variation in parameters like d15N and CH4, 
reflecting a staggered trapping of gas bubbles within the firn-ice transition zone. See e.g. Etheridge et al. (1992), 
Rhodes et al. (2016), and Mitchell et al. (2015). This may be relevant as the sample size is typically smaller than 
the average layer thickness. 
 
This point is not related to the scope this paper. Within the scope of paleoclimate reconstruction, the pertinent 
focus is more on how to extract signals from gas isotope data rather than how to represent potential sources of 
signal noise. Of course signal noise (such as firn heterogeneity) should be included in the uncertainty estimation, 
which is planned in a future study dealing with modelling (among others) real δ15N data. However, we will try to 
account for this question here. We fully agree, for the reconstruction using measurement data, it is necessary to 
keep cm scale variability in mind. Our view on this point can be summarized as follows: During the analytical 
analyses of ice core air data it is common to measure replicates for given depths, from which the measurement 
uncertainties of the gas isotope data is calculated using pooled-standard-deviation (Hedges L. V., 1985). Often it 
is not possible to take real replicates (same depth) and instead the replicates are taken from nearby depths. So, 
the cm scale variability is to some degree already included in the measurement uncertainty, because each 
measurement point represents the average over a few centimetres of ice. This is especially the case for low 
accumulation sites or glacial ice samples for which the vertical length of a sample (e.g., 10-25 cm long for the 
glacial part of the NGRIP ice core, Kindler et al., 2014) covers the equivalent of 20-50 yrs of ice at approx. 35 
kyrs b2k. Increasing the depth resolution of the samples would increase our knowledge of cm scale variability, 
for e.g. identifying anomalous layers that could have been rapidly isolated from the surface due to a high density 
layer (e.g., Rosen et al. (2014)). As this variability is likely due to heterogeneity in the density profile, this may 
not help to better reconstruct a meaningful temperature history, rather to observe the source of signal noise. To 
sum up: The cm scale variability, in many cases, is already incorporated in the analytical noise obtained from gas 
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isotope measurements, due to analytical techniques themselves. Assuming the measurement uncertainty as 
Gaussian distributed, it is very easy to incorporate this source of uncertainty in the inverse modelling approach. 
This will increase the uncertainty of the temperature according to Eq. (9) in our manuscript using the presented 
approach. The same equation can also be used for the calculation of the uncertainty in temperature related to 
measurement uncertainty in general. 

To answer the pertinent question of how to better extract a meaningful temperature history from a noisy ice core 
record, an excellent – but costly – solution is of course to use multiple ice cores. The GISP2 ice core has actually 
the chance to have a “sister ice core” drilled only a few kilometres apart (the GRIP ice core) and combining 
δ15N-based temperature reconstructed from both ice cores is likely one of the best ways to overcome potential 
cm scale variability. A comparison of ice cores that were drilled even closer might be even more advantageous. 

Gas diffusion and trapping smooths out the d15N signal, which provides a fundamental limit on the time 
resolution at which surface temperature is recorded and could potentially be reconstructed. 
 
The duration of gas diffusion from the top of the diffusive column to the bottom where the air is closed off in 
bubbles is for Holocene conditions in Greenland approximately in the order of 10 yr (Schwander et al. 1997), 
whereas the data resolution of the synthetic targets was set to 20 yr to mimic the measurement data from Kobashi 
et al. (2008) with a mean data resolution of about 17 yr (see section 2.4: “Generating synthetic target data”). In 
the study of Kindler et al. (2014) it was shown that a Glacial Greenland lock-in depth leads to a damping of the 
δ15N signal of about 30% for a 10 K temperature rise in 20 yr. We further assume that the smoothing according 
to the lock-in process is negligible for Greenland Holocene conditions according to the much smaller amplitude 
signals and shallower lock-in depth for Holocene conditions. 

From the above it is clear to me that the precision that the authors state for their method is a meaningless 
number, that teaches us nothing about how well d15N can reconstruct temperature. A more interesting approach 
would be to include these fundamental uncertainties in a stochastic way, and see how well the method works 
under realistic settings. The synthetic data could e.g. be generated with a different firn physics description, and 
should be subject to CZ fluctuations, LIZ thickness variations and analytical noise. 

This is obviously a misunderstanding. Indeed we did not mention that the mismatch in δ15N and the therefrom 
calculated temperature range would correspond to an uncertainty of temperature reconstructions. This range is 
only the uncertainty part that directly relates to the inversion model approach and does not include any other 
uncertainties that exist. In the “perfect world” scenario it should be theoretically possible to reach a final 
mismatch of zero for δ15N as well as for temperature. The reason why this was not reached in our study is related 
to the memory effects in the ice sheet model which leads to a rising computational effort for reaching very low 
mismatches. An improvement of one section of the time series will be paid by degradation in another part. To 
circumvent the computational demand we developed the correction step (step 4, section 2.4.4), which accounted 
for this memory effects. This means that in finite time there has to be a limit the algorithm can reach, which is 
exactly characterized by the final mismatches presented here. 

Additionally, in the perspective of making a complete uncertainty budget for a temperature history reconstructed 
based on δ15N data (again, as will be done in a future publication), this uncertainty value for the inverse 
modelling method, being not zero, cannot be neglected and should therefore be taken into account. 

Point (2): 

There are 2 fundamental inputs into the model, namely temperature and accumulation rate. The authors assume 
the latter is known with zero uncertainty (both in values and age model). This is a very unrealistic assumption. 
Even if the layer-count were perfect (which it is not), correcting for ice thinning has a fundamental uncertainty. 
Especially in the early Holocene, this can easily exceed 10%. As the method fits the d15N data, all accumulation 
errors are mapped into the temperature reconstruction. This is not accounted for…As an aside, the authors 
convert the accumulation record from Cuffey et al. onto the GICC05 scale, which makes it internally 
inconsistent because the accumulation rate is the derivative of the age scale, so changing the age scale should 
change the accumulation values. Since the method is sensitive to the decadal-scale accumulation variability, it 
may be insufficient to use this crude approach. 
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Answer for the point on the conversion of the Cuffey accumulation record to the GICC05 time scale: We think 
this comment arose from a lack of details given in the paper. Therefore we describe in the following in more 
detail the procedure we used to produce the finally used accumulation rate data for our modelling work. The 
original accumulation rate for the GISP2 ice core is the one published in Cuffey and Clow (1997), produced 
using an ice flow model adapted to the GISP2 location. The accumulation rate used to feed the ice flow model 
was optimised in order to match the time scale from Meese et al. (1994) for the Holocene, based on annual layer 
counting. Seierstad et al. (2014) transferred the GISP2 chronology to the GICC05 reference timeframe using 
multiple match points to the NGRIP and GRIP ice cores, both already on GICC05. We used these match points 
and modified the GISP2 duration in between match points linearly in order for the considered interval to match 
exactly the GICC05 duration. This way, the detailed GISP2 annual layer counting information is kept, but is only 
stretched/compressed in time. This was done for all intervals in between two match points. The accumulation 
data were then re-calculated accordingly, as obviously (as stated by the reviewer) this is needed in order to keep 
the same total amount of ice accumulated at the GISP2 site. Actually, to obtain an even better consistency, the 
best would be to re-run the Cuffey and Clow ice sheet model, using the GICC05 timescale as target timescale, 
and use the resulting accumulation rate data (but this is beyond the scope if this study). 

Furthermore, as we have shown in the paper in section 2.4 “Accumulation rate input”, the accumulation rate 
variability has a minor impact compared to the temperature on the variability of the δ15N data in the Holocene 
(see also fig.A02). The influence of the quantities, accumulation rate or temperature, on the temperature 
reconstruction is not equal, the accumulation rate variability during the Holocene explains about 12 to 30% of 
the δ15N variability. 30% corresponds to the 8.2 kyr event and 12% for the mean of the whole Holocene period 
including the 8.2 kyr event. Hence the influence of accumulation changes is generally below 10% during the 
Holocene. If the accumulation is assumed to be completely correct then the missing part will be assigned to 
temperature variations. Also in section 2.3.1 we show that the polynomial degree in temperature is more 
important than for the accumulation for the calculation of a polynomial transfer function (see line 3-6 at page 5 
and fig.S02). Nevertheless for the fitting of the Holocene measurement data we will use all three accumulation 
rate scenarios as shown in fig.S01. The difference in the reconstructed temperature arising from the differences 
of these three scenarios will be used for the uncertainty calculation as well and is most likely higher than the 
uncertainty arising from the conversion of the accumulation rate data to the GICC05 timescale. 

Point (3): 
The authors have no way of validating that their Delta-age is correct, which is critical to constrain the timing of 
climate change. In all d15N modeling studies I’m aware of, the use of d18O as a temperature template ensures 
that Delta-age is correct. In particular during abrupt events, the timing of gas and ice signals gives you Delta-
age. This information is lost in their method, which is completely independent of d18O. If the modeled Dage is 
off by 50 years (which is easy to do in Greenland, particularly during the glacial), the timing of the temperature 
solution is also off by 50 years. It would be interesting to run their algorithm on data from the last deglaciation, 
and see whether it reproduces the timing of abrupt change as seen in d18O. Because Deltaage is 
underconstrained, the timing of all reconstructed high-frequency temperature variations is uncertain. 
 
We thank the reviewer for mentioning that point, since we have not explicitly discussed the behaviour of the 
Δage agreement in the paper and we will catch up on this. The Δage adjustment in the Holocene case is related to 
the smooth temperature solution calculated by the Monte Carlo part of the algorithm. If a smooth temperature 
solution is found which creates a robust long term signal in δ15N the gas age - ice age difference from that model 
output is used to calculate the high frequency information and to find the right timing for adding the high 
frequency signal to the smooth temperature solution as it was explained in section 2.4.2 (page 9, lines 11-13) and 
section 2.4.3 (page 9, lines 18-23). As the measurement target data is set on the ice age scale (like all gas isotope 
data after measurement) and the accumulation rate is known, the high frequency temperature signal has to have 
the right timing when the final calculated δ15N signal matches the target (or measurement) data. Table 1 contains 
the final mismatches (2σ) in Δage for all scenarios and shows very well that with a known accumulation rate and 
firn physics it is possible to fit the Δage history in the Holocene with mean uncertainties better than 2 yr. This 
table together with a similar statement will be added to the paper in the results section. Figure 2 shows the time 
series of the mismatches in Δage for all scenarios and is used to clarify the functionality of the algorithm itself.  
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More interesting for the reviewer is probably the “real world” scenario. Due to the large uncertainties in 
measured or modelled Δage it is a challenging task to validate the correctness of the Δage regime anyway. But to 
give an idea to that issue we show here ongoing work. Figure 3 shows the comparison of the Δage regime 
modelled using our algorithm together with the GISP2 δ15N data from Kobashi et al. (2008) and the Δage regime 
published with the GICC05 GISP2 gas age scale from Seierstad et al. (2014) and Rasmussen et al. (2014). 
Besides a nearly constant offset of about 20 yr in the early Holocene the agreement is amazing with a standard 
deviation (2σ) of the mismatches of 7.8 yr over the whole time series and 3.5 yr for the last 8.2 kyr.  

For Glacial conditions the task of reconstructing the temperature (with the right frequency and magnitude) 
without δ18Oice information is much more challenging as mentioned by the reviewer due to the highly variable 
gas age - ice age differences between stadial and interstadial conditions. Here the Δage can vary several 
hundreds of years. Also the accumulation rate data is more uncertain than in the Holocene. To prove that the 
presented fitting algorithm also works for Glacial conditions we inverted the δ15N data measured for the NGRIP 
ice core by Kindler et al. (2014) for two Dangsgard-Oeschger events, namely DO6 and DO7. Since the 
magnitudes of those events are higher and the signals are smoother than in the Holocene we only had to use the 
Monte Carlo type input generator (section 2.4.2) for changing the temperature inputs. To compare our results to 
the δ18Oice based manually calibration method from Kindler et al. (2014) we used the ss09sea06bm time scale 
(NGRIP members (2004), Johnsen et al. (2001)) as it was done in the Kindler et al. publication. For the model 
spin-up we use the accumulation rate and temperature data from Kindler et al. (2014) for the time span 36.2 to 
60 kyr. The reconstruction window (containing DO6 and DO7) was set to 32 to 36.2 kyr. As the first guess 
(starting point) of the reconstruction we used the accumulation rate data for NGRIP from the ss09sea06bm time 
scale together with a constant temperature of about -49 °C for this time window. As minimization criterion D for 
the reconstruction we simply use the sum of the mean squared errors (wRMSE) of the δ15N and Δage 
mismatches weighted with their uncertainties according to the following equation instead of the mean δ15N misfit 
alone as used for the Holocene.  
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Here 𝜀𝜀𝛿𝛿15𝑁𝑁,𝑖𝑖 and 𝜀𝜀𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥,𝑗𝑗 are the uncertainties in δ15N and Δage for the measured values i or j (Δage match points: 
Guillevic, M. (2013), p.65, Tab. 3.2) and N, M the number of measurement values. We set 𝜀𝜀𝛿𝛿15𝑁𝑁,𝑖𝑖  = 20 permeg 
for all i (Kindler et al. 2014) and 𝜀𝜀𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥,𝑗𝑗 = 50 yr for all j. The values of 50 yr for the Δage uncertainties were 
chosen according to reach the same mean relative errors for both terms. The relative uncertainties in Δage can 
easily reach up to 50% and more in the Glacial using the ss09sea06bm time scale which results in a domination 
of the δ15N misfits over the Δage misfits (10-20% when using GICC05 time scale, pers. communication M. 
Guillevic). Because of that issue we had to set the Δage uncertainties to 50 yr to make both terms equally 
important for the fitting algorithm. To sum up: The temperature variations were exactly done in the same way as 
described in section 2.4.2 within the paper without any further adjustments. We only had to add one target more 
(Δage) to the minimization criterion to account for a second unknown, i.e. the also uncertain accumulation rates. 
In fig.4 we show preliminary results. The δ15N and Δage fitting (a,b) and the resulting gained temperature and 
accumulation rate solutions (c,d) using the presented algorithm are completely independent from δ18O which 
provides a great opportunity to evaluate the δ18O based reconstruction. In this study the algorithm was used in 
three steps (MCS0, MCS1, MCS FIN). First, starting with the first guess (constant temperature), the temperature 
was changed as explained before. The accumulation rate was changed parallel to the temperature allowing a 
random offset shift (up and down) together with a stretching or compressing (in y direction) of the accumulation 
rate signal over the whole time window (32 to 36.2 kyr). This first step leads to the “Monte Carlo Solution 0” 
(MCS0) which provides a first approximation and is the base for the next step. For the next step, we fixed the 
accumulation rate and let the algorithm only changes the temperature to improve the δ15N fit (MSC1). Finally, 
we allow the algorithm to change the temperature together with the accumulation rate using the Monte Carlo 
type input generator for both quantities. This also allows the change of the shape of the accumulation rate data. 
This final step can be seen as a fine tuning of the gained solutions from the steps before. The reached 
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mismatches in δ15N and Δage of all steps are at least of the same quality or better than the δ18O based manual 
method from Kindler et al. (2014) (see Tab.2). The gained temperature solutions show a very good agreement in 
timing and magnitude compared to the reconstruction of Kindler et al. (2014). Also the accumulation rate 
solutions show that the accumulation has to be reduced significantly compared to the ss09sea06bm data to allow 
a high quality fit of the δ15N and Δage target data, a result highly similar to Kindler et al. (2014) and Guillevic et 
al. (2013). Regarding the mismatches in δ15N and Δage of the final MCS FIN solution show a 15% smaller misfit 
in δ15N (2σ) and an about 31% smaller misfit for Δage (2σ). Keeping in mind that the used approach is 
completely independent from δ18O should clarify the functionality and quality of the presented gas isotope fitting 
approach also for Glacial reconstructions. 

Point (4): 
I am surprised the authors don’t event attempt to invert the existing GISP2 data (which are even plotted). This 
seems like a missed opportunity; especially given that it would allow comparison to existing reconstructions to 
estimate the accuracy of the method. 
 
We understand the surprise of the reviewer of the missing application on existing data but the focus on this paper 
is indeed the inversion model, its mathematics as well as a proper analysis on the capabilities of the algorithm 
itself based on a synthetic data set. Yet, we will provide a limited projection on future publications hereafter. 
However, we underline once more that the accuracy of the inverse modelling algorithm can only be estimated 
using a synthetic dataset, as shown in our paper. The GISP2 data for δ15N, δ40Ar and δ15Nexcess are already 
inverted using the presented algorithm and will be presented in a following publication, since there are a couple 
of items to be addressed in detail which would overload the scope of the present methodological manuscript. But 
we want to discuss the algorithm itself to examine what are the possibilities and the limits of the presented fitting 
method in a well-known modelling frame work. The main focus of the present manuscript is to present the 
algorithm in a single publication rather than in the supplementary to bring the attention on the functionality and 
fundamental ideas of the algorithm rather than on the gained solutions. We think that is important to give the 
interested reader the chance to understand the basic concepts behind the algorithm and to show the functionality 
on a well-known example (here synthetic δ15N). We hope that we can simplify gas isotope based reconstructions 
for a broad spectrum of researchers using our or maybe a related approach later on. As we have shown, the 
approach works for all relevant gas isotope quantities (δ15N, δ40Ar, δ15Nexcess) and for Holocene as well as Glacial 
data. The approach is a completely new method which enables the automatized fitting of gas isotope data 
without manual tuning of parameters minimizing the “subjective” impact of a single researcher. All together we 
are sure that this paper is the best way to present our new elegant fitting method in the framework we have 
chosen. 

Point (5): 

The paper is overly long. I recommend section 2.3 be removed entirely, and other sections be shortened 
considerably. There are also 32 (!) figures in the manuscript, which is too many. Dividing the figures into main, 
appendix and supplement figures is annoying, as it requires a lot of going back and forth. 
 
We agree that the paper is long and that the amount of figures is possibly too much. As already stated, we tried 
to explain and discuss the algorithm in every detail to clarify the functionality of all parts of the fitting method. 
Our aim was also to present this new method in a totally transparent manner. To shorten the paper we will 
remove section 2.3 as suggested by the reviewer. This section was thought as a motivation for the presented 
fitting algorithm. We agree that it is not necessary for the paper itself. Also, we will reduce the numbers of 
figures by removing the following figures: 
 
Main part: fig01, fig02, fig03 
Supplementary: fig.S02 to fig.S16 
 
Next we will shift all the appendix figures in a new supplementary. This means that we will have now 4 figures 
in the manuscript and 11 figures in the supplementary. As we want to keep the paper understandable a further 
reduction of figures and pages is not possible. 
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Detailed comments: 

Page 1 Line 26: Give references for Holocene temperature reconstructions (there are 
many!). 
 
Since we developed a novel algorithm for ice core based temperature reconstructions and explained the 
functionality based on synthetic data of Holocene like behaviour, we gave references to other ice core based 
reconstruction methods. (borehole inversion, page 1 line 6ff; calibration of water isotopes from the ice core 
water samples, page 1 line 9ff; δ15N, δ40Ar, δ15Nexcess based methods, page 1 line 14ff). Because no 
reconstruction for measurement data is shown here, we think it is not necessary to refer for other (or non-ice-
core-based) reconstructions. 
 
Page 3 Eq. (1): what about the convective zone? You should correct for that Eq. (2): The surface temperature 
should really be the temperature at the bottom of the convective zone where diffusion starts to dominate. This 
may smooth out some of the abrupt decadal-scale temperature variations. 
 
The Schwander model does not use a convective zone at this stage but such a CZ could be implemented in the 
calculation of δ15Ngrav, by subtracting the gravitational signal formed over the length of the CZ. Has the reviewer 
examples of a convective zone deep enough to smooth out decadal scale signals except “Megadune” sites 
(Severinghaus et al., 2010)? We are a bit surprised with this sentence, as for example J. Severinghaus, using 
measurements done at South Pole, showed that the seasonal signal in gas diffusion already affects the first 10 to 
12 m of firn (Severinghaus, 1998) pointing to a shallow or even non-existing CZ. Furthermore, we have to 
remember that we are discussing the rather stable Holocene period in Greenland for which no low accumulation 
and strong katabatic wind situations are to be expected minimizing the effect of deep CZ. For a CZ to have an 
effect as strong as to smooth out decadal scale variation, its deepness would need to be of several dozens of 
meters, which is highly unrealistic even for Glacial Summit conditions. Contrary the process definitely affecting 
the damping of the signal is gas diffusion occurring in the firn, producing i) an increase in the mean gas age of 
the gas at the LID and ii) a damping of the signal whose amplitude is positively correlated with the LID (see for 
example, Buizert et al. (2012), Fig. 7; Buizert et al. (2013), Fig. 2; and Kindler et al. (2014), Fig. 2). 
 
Line 17: Martinerie et al. (1994) gives the depth of the bubble close-off, whereas d15N is set at the lock-in depth 
instead. The LID is shallower than the COD. Is this difference accounted for, and how?  
 
This is explained in details in the description of the Schwander firn model (Schwander, 1997). We did not report 
details in this paper because we thought this model is i) already quite well known and ii) well described in its 
original paper. However we report this information here: Indeed it is well known that the LID is shallower than 
the COD, due to the presence of a non-diffusive zone. Originally the COD is defined by a density threshold, 
calculated as a function of temperature (Martinerie et al., 1994). In the Schwander model, to account for the 
presence of the non-diffusive zone, this COD definition is modified by subtracting 14 kg/m3 to the COD density 
definition, in order to match the observed depth where gas diffusion stops. This offset was optimised using firn 
data from Summit (GRIP) collected in the 90’, Greenland, and we therefore believe this definition in highly 
appropriate for the GISP2 site over the Holocene. 
 
Page 4 Section 2.2: what are the model parameters? What are the time and spatial step? How deep does the 
domain extend? What geothermal heat flux is used, etc. 
 
The model parameters are described in detail in Schwander et al. (1997). 
 
Section 2.3: I recommend this is removed completely. I don’t see the point, especially the dynamic case which we 
know doesn’t behave linearly due to memory effects. 
 
To shorten the paper we will remove this section as suggested by the reviewer. This section was thought as a 
motivation for the presented fitting algorithm. We agree that it is not necessary for the paper itself. 
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Page 6 Line 13: Not too robust. It’d be easy to have a 10% uncertainty in the thinning function. 
 
We reformulate these sentences from: 
 
“Except for these technical adjustments, the accumulation rate input data remains unmodified, assuming high 
reliability of this data during the Holocene. This is due to the fact that the data was gained by annual layer 
counting, and the use of a thinning model which should be rather robust for the first 1500 m of the 3000 m ice 
core (Cuffey and Clow, 1997).” 
 
The new text now reads: 
 
“Except for these technical adjustments, the accumulation rate input data remains unmodified, assuming high 
reliability of this data during the Holocene. The data was gained by annual layer counting, and the use of a 
thinning model which should lead to maximum relative uncertainty of 10% for the first 1500 m of the 3000 m 
ice core (Cuffey and Clow, 1997).” 
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Fig.1: Fitting of GISP2 δ15Nexcess data (measurement data from Kobashi et al. 2008): a) measured versus 
modelled δ15Nexcess time series; b) zoom-in for a randomly chosen 1000 yr interval; c) time series of final 
mismatches Δδ15Nexcess for the measured minus the modelled δ15Nexcess data; d) histogram for the same quantity 
as in c) with values for the final mismatch (2σ) and offset; 

Fig.2: Comparison of the mismatches in Δage between the synthetic target and modelled data for all scenarios 
showing excellent agreement in Δage. All fits leads to a mean mismatch Δ(Δage) in Δage better than 2yr (2σ). 
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Scenario: 2σ Δ(Δage) 
[yr] 

Scenario: 2σ Δ(Δage) 
[yr] 

S1 1.14 S5 1.24 
S2 1.60 H1 1.23 
S3 1.98 H2 1.18 
S4 1.41 H3 1.30 

Tab.1: Final mismatches (2σ) of Δage for all scenarios. 

Solution D Mismatch δ15N 
(2σ)  

 
[permeg] 

Mean 
mismatch 

δ15N* 
[permeg] 

Mismatch Δage 
(2σ)  

 
[yr] 

Mean 
mismatch 

Δage* 
[yr] 

Kindler 2014 3.6 44.5 17.9 256 101 
      

first guess 7.8 128.7 63.8 328 138 
MCS0 3.1 50.0 19.3 199 82 
MCS1 2.9 44.3 17.6 200 84 

MCS FIN 2.6 37.8 15.6 175 63 
Tab.2: Prove of concept for Glacial reconstruction; *The mean mismatches for δ15N and Δage were calculated 
according to Eq. (7) in the paper. 

 

Fig.3: Top plot: Comparison of the modelled Δage (red, unpublished/this study) using the presented approach 
together with the Schwander model and δ15N target data (Kobashi et. all 2008) with the Δage time series for 
GICC05 GISP2 gasagescale (black curve) from Seierstad et al. (2014), Rasmussen et al. (2014) and related 2σ 
uncertainty (dotted line). Bottom plot: Time series of the mismatches Δ(Δage) in Δage. 
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Fig.4: Prove of concept for Glacial reconstructions (NGRIP DO6 and DO7): a) δ15N target plot: δ15N model 
output for the first guess input (blue line), Kindler et al. (2014) fit (orange dotted line), Monte Carlo solution 0 
(yellow line, unpublished data), Monte Carlo solution 1 (purple line, unpublished data), final Monte Carlo 
solution (green line, unpublished data), δ15N measurement target (black dotted line, measurement points are 
black cycles, data from Kindler et al. (2014)); b) Δage target plot: Δage model output for the first guess input 
(blue line), Kindler et al. (2014) fit (orange dotted line), Monte Carlo solution 0 (yellow line, unpublished data), 
Monte Carlo solution 1 (purple line, unpublished data), final Monte Carlo solution (green line, unpublished 
data), Δage measurement target (black dotted line, measurement points are black cycles, data from Guillevic 
(2013)); c) temperature solution plot: first guess input (blue line), Kindler et al. (2014) solution (orange dotted 
line), Monte Carlo solution 0 (yellow line, unpublished data), Monte Carlo solution 1 (purple line, unpublished 
data), final Monte Carlo solution (green line, unpublished data); d) accumulation rate solution plot: first guess 
input (blue line), Kindler et al. (2014) solution (orange dotted line), Monte Carlo solution 0 (yellow line, 
unpublished data), Monte Carlo solution 1 (purple line, unpublished data), final Monte Carlo solution (green 
line, unpublished data); 
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Reply to reviewer 1: 
 
General Comment on reviewer 1: 
 
It was very difficult to find in the comment from reviewer 1 a scientific and/or technical discussion on the 
scientific questions the presented work is dealing with. Therefore it is challenging to find an appropriate way to 
answer the remarks and comments of this review. However, we will try to address the key issues and will give an 
adequate answer in the best possible manner. 
 
This work describes a technical and mathematical variation on previously published 
work by Kobashi et al. (2010; 2011; 2012). 
 
That is not true at all, which makes us wonder if the reviewer read in detail our submitted article. The presented 
approach is completely different to the mentioned work of Kobashi et al.. The calculation of temperature 
gradients from δ15Nexcess data used for a temporal integration using the Goujon model as it was done by Kobashi 
differs from our approach significantly. Our approach calculates in a first step a long term temperature signal and 
the isotope target, which is superimposed by a high frequency signal in a next step. Finally we created a 
correction method for dealing with remaining misfits (permeg level) due to memory effects. Besides the 
methodology view, we will list 6 major differences between both methods: 
 
(1) Our approach allows the automated high quality fitting (or inversion) of δ15N or δ40Ar or δ15Nexcess data as 
single targets (as it was mentioned in the paper and shown in the answer to reviewer 2) and provides 
consequently the opportunity to compare the solution of one target against the others. The method from Kobashi 
et al. uses all isotope quantities together, eliminating the possibility to compare the reconstruction obtained from 
one quantity using the other ones. 
 
(2) Our approach is applicable to Holocene as well as Glacial data (as it was mentioned in the paper and shown 
in the answer to reviewer 2), whereas the approach of Kobashi et al. was only designed and tested for Holocene 
reconstructions. 
 
(3) Our approach allows a parallel adjustment of the accumulation rate input data (if it is necessary) (shown in 
the answer to reviewer 2 for Glacial data). 
 
(4) Our approach uses a well-defined minimization criterion which provides the possibility to adapt it to a variety 
of target combinations (e.g. δ15N and Δage for Glacial reconstructions). 
 
(5) Our approach is not dependent on the choice of a first guess for the reconstruction. A worse choice of this 
quantity will only elongate the computational time of the “Monte Carlo type input generator” step. This was 
shown since we used the same first guess (a constant temperature) for all different synthetic data scenarios.  
 
(6) Our approach splits the reconstructed temperature and isotope signals in a long term and a high frequency 
signal (for Holocene), which provides additional information and bases for further research questions and 
uncertainty calculations. 
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Kobashi et al. innovated by creating a novel hybrid firn densification-thermal diffusion model, much the same as 
is done here. 
 
To our knowledge, Kobashi et al. used for their reconstruction the already published model from Goujon et al. 
(2003). The Goujon model is indeed a firn densification model, coupled to an ice sheet flow model also 
calculating heat transfer from surface to bedrock. The Goujon model does not have a module to automatically 
optimise the temperature and accumulation scenario needed for the inversion. We agree to this comment in the 
sense that Kobashi et al. indeed innovated a novel technique to create an input temperature scenario to feed the 
Goujon model, using firn temperature gradients extracted from δ15Nexcess. We also agree that our approach, 
similar to the method from Kobashi, needs a firn densification and heat diffusion model to provide the physical 
basis for the inversion of δ15N data. Nevertheless both methods differ significantly from each other as discussed 
before. Also both methods were created independently.  
 
The scientific advance represented by this work is useful but is very incremental, almost to the point of not 
standing alone as a publishable scientific paper. It is not clear to me that this work suffices as a "Least 
Publishable Unit", and reads more like an Appendix to a publication. 
 
We think that this is a very subjective opinion which is not underpinned by any scientific argument. We created 
a completely automated algorithm which is able to provide high quality fits for all relevant gas isotope quantities 
and works as well for Holocene as Glacial conditions. Furthermore the algorithm is not firn model dependent as 
it was coupled on two state of the art firn models, leading to comparable results. We also refer to the answer on 
reviewer 2 for point 1, explaining the achievements of this method in detail. Moreover, there are many examples 
of models presented and published in CP, presenting in details each step of the model, without publishing data 
related paleoclimate reconstruction alongside. A very well-known example is the recently published 
automatization method presented by Winstrup et al. (2012) in order to run automated annual layer counting in 
ice cores using multiple annually resolved records. This paper was very welcomed by the reviewers in CP, and 
the method has been successfully applied since then to reconstruct chronologies for many ice core records. We 
believe the focus of our submitted manuscript is very similar to the one from Winstrup et al., applied to a 
different problem, but always linked to paleoclimate reconstruction. 
 
It would improve the paper if Kobashi’s work could be compared to the results found here, and placed in a 
larger context. Additionally, it would be helpful if the present work were actually used to reconstruct Greenland 
temperature over the Holocene, much as Kobashi et al. did. I am somewhat surprised that Kobashi is not a co-
author, considering how heavily this work relies on Kobashi et al.’s prior work. The synthetic data looks a lot 
like Kobashi et al.’s actual data. Why not show the actual data? 
 
As explained in detail in the answer on point (4) for reviewer 2, due to the aim of the paper to describe the 
algorithm in every detail and in a well-known environment (i.e., using a synthetic dataset as target), we decided 
not to show the results of the inversion of the GISP2 measurement data within this publication. Furthermore, the 
paper was criticized because of its length and the amount of figures which makes it impossible to show the 
description of the fitting algorithm together with the inversion of measurement data in a single publication 
without the danger of losing the scope on the major issues. 
As explained above, our inversion method is entirely new and therefore cannot be considered to rely at all on 
Kobashi’s work, which by the way we very much appreciate. However we fully agree that our method (as 
Kobashi’s method) works only when coupled to a firn densification model which is itself coupled to an ice sheet 
flow model equipped with heat transfer, such as the Schwander or the Goujon model.  
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Minor comments: 
 
page 1 line 11 "The presented approach is completely automated..." 
 
We correct for that. The new sentence reads:  
“The presented approach is completely automated and leads to a match of the δ15N target data in the low permeg 
level and to related temperature deviations of a few tenths of Kelvin for different data scenarios, showing the 
robustness of the reconstruction method.” 
 
page 1 line 23 "since it represents a time of moderate natural variations prior to anthropogenic disturbance, 
often referred to as a baseline...." 
 
We correct for that. The new sentence reads:  
“Holocene climate variability is of key interest to our society, since it represents a time of moderate natural 
variations prior to anthropogenic disturbance, often referred to as a baseline for today’s increasing greenhouse 
effect driven by mankind.” 
 
page 2 line 6 "The studies of Dahl-Jensen et al. (1998) and Cuffey et al. (1995; 1997) demonstrate the usefulness 
of inverting the measured borehole temperature profile for surface temperature history....." 
 
We correct for that and added the references. The new sentence reads:  
“The studies of Dahl-Jensen et al. (1998) and Cuffey et al. (1995; 1997) demonstrate the usefulness of inverting 
the measured borehole temperature profile for surface temperature history estimates for the investigated drilling 
site using a coupled heat- and ice-flow model. “ 
 
page 2 line 9 " unable to resolve..." 
 
We correct for that. The new sentence reads: 
“Because of smoothing effects due to the nature of heat diffusion within an ice sheet, this method is unable to 
resolve fast temperature oscillations and leads to a rapid reduction of the time resolution towards the past.” 
 
page 3 line 24. It is not clear from the wording here which thermal diffusion sensitivity value was used here. Is it 
the Grachev and Severinghaus (2003), or the Leuenberge et al. (1999)? This must be clarified. A separate issue 
is that the Leuenberger et al. value is based on measurements that were made in pure nitrogen, not in air. It is 
well known, and indeed predicted from theory, that the thermal diffusion sensitivity (and thermal diffusion 
factor) is larger in pure gases than in air. For example, Grachev and Severinghaus measured these parameters 
in both pure N2 and in air, and found a substantial difference between the two (Figure 1). As can be seen in 
Figure 1, the thermal diffusion factor in pure N2 is 0.0037 whereas in air it is less than 0.0036. Even more 
troubling is the fact that the 1960s-era measurements made in pure N2 by the sources that Leuenberger et al. use 
disagree well outside the analytical error (0.0035) with the pure-N2 value of Grachev and Severinghaus, which 
was made with a modern mass spectrometer. This suggests that the 1960s era measurements by Boersma-Klein 
and De Vries (1966) were badly in error. Given the primitive technology of that time, this is not a criticism of 
these workers, but it is clear that their values should not be used for the present study. 
 
We thank the reviewer mentioning that point. Indeed we used a wrong equation here, which was a relic from an 
older version of the paper. However, all calculations have been performed using the thermal diffusion sensitivity 
from Grachev and Severinghaus (2003). We changed Eq. (4) to: 
 

𝛼𝛼𝑇𝑇 = �8.656 −  
1323 𝐾𝐾

𝑇𝑇
� ∙ 10−3 

 
page 3 line 26 "The firn model used here behaves purely as a forward model,....." 
 
We correct for that. The new sentence reads: 
“The firn model used here behaves purely as a forward model, which means that for the given input time series 
the output parameters (here finally δ15Nmod(t)) can be calculated, but it is not easily possible to reconstruct from 
measured isotope data the related surface temperature or accumulation rate histories.” 
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page 4 line 3 You must say which ice core was used here. Is it GISP2? 
 
We correct for that. The new sentence reads: 
“In this study, accumulation rate data from Cuffey and Clow (1997) for the GISP2 ice core, adapted to the 
GICC05 chronology, is used (Rasmussen et al., 2008; Seierstad et al., 2014).” 
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Abstract. We present a novel approach for reconstructing the Holocene surfaceGreenland past temperature histories history 10 

can be reconstructed by forcing the output of a firn densification and heat diffusion model to fit nitrogenmultiple gas isotope 

data (δ15N or δ40Ar or δ15Nexcess) extracted from ancient air in Greenland ice cores. The We present here a novel methodology 

to solve this inverse problem, by designing a fully automated algorithm. To demonstrate the performance of this novel 

approach is demonstrated using, we begin by intentionally constructing synthetic data.temperature histories and associated 

δ15N datasets, mimicking real Holocene data that we use as “true values” (targets) to be compared to the output of the 15 

algorithm. This allows us to quantify uncertainties originating from the algorithm itself. The presented approach worksis 

completely automated and leads to a match of the δ15N target data in the low permeg level and to related temperature 

deviationstherefore minimizes the “subjective” impact of a few tenths of Kelvin for different data scenarios, showing the 

robustness of the manual parameter tuning leading to reproducible temperature estimates. In contrast to many other ice core 

based temperature reconstruction method. The obtained, final mismatches follow a symmetric, standard distribution 20 

function. 95% of the mismatches compared to the synthetic target data are in an envelope in between 3.0-6.3 permeg for 

δ15N and 0.23-0.51 K for temperature (2σ, respectively). methods, the presented approach is completely independent from 

ice core stable water isotopes, providing the opportunity to validate water isotope based reconstructions or reconstructions 

where water isotopes are used together with δ15N or δ40Ar. We solve the inverse problem T(δ15N) by using a combination of 

a Monte Carlo samplingbased iterative approach and quantitative datathe analysis of remaining mismatches between 25 

modelled and target data, based on cubic spline filtering of random numbers andas well as the measuredlaboratory 

determined temperature sensitivity for nitrogen isotopes. Additionally, the presented reconstruction approach was tested by 

fitting measured δ40Ar and δ15Nexcess data (Döring et al., in prep.),, which leads as well to samea robust agreement between 

modelled and measurement data. measured data. The obtained final mismatches follow a symmetric standard distribution 

function. For the synthetic data study, 95 % of the mismatches compared to the synthetic target data are in an envelope 30 

between 3.0 permeg to 6.3 permeg for δ15N and 0.23 K to 0.51 K for temperature (2σ, respectively). In addition to Holocene 
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temperature reconstructions, the fitting approach can also be used for glacial temperature reconstructions (Döring et al., in 

prep.) and it is reasonable to adapt the approach for model inversions of other non-linear physical processes. This is shown 

by high quality fitting of NGRIP δ15N data for two Dansgaard-Oeschger events using the presented approach, leading to 

results comparable to other studies. 

1 Introduction 5 

Holocene climate variability is of key interest to our society, since it represents the rather constanta time window withof 

moderate natural variations, prior to anthropogenic disturbance, often referred to as a baseline for today’s increasing 

greenhouse effect driven by mankind. Yet, high resolution studies are still very sparse and therefore limit the investigation of 

decadal and partly even centennial climate variations over the course of the Holocene. One of the first studies about changes 

in the Holocene climate was conducted in the early 1970s by Denton and Karle´n (1973). The authors investigated rapid 10 

changes in glacier extents around the globe potentially resulting from variations of Holocene climatic conditions. Mayewski 

et al. (2004) used this data as the base of a multiproxy study identifying rapid climate changes (so called RCCs) globally 

distributed over the whole Holocene time period. Although not all proxy data are showing an equal behaviour in timing and 

extent during the quasi-periodic RCC patterns, the authors found evidence for a highly variable Holocene climate controlled 

by multiple mechanisms, which significantly affects ecosystems (Beaulieu et al., 2017; Crausbay et al., 2017 ; Pál et al., 15 

2016) and human societies  used this data as the base of a multiproxy study identifying rapid climate changes (so called 

RCCs) globally distributed over the whole Holocene time period. Although not all proxy data are showing an equal 

behaviour in timing and extent during the quasi-periodic RCC patterns, the authors found evidence for a highly variable 

Holocene climate controlled by multiple mechanisms, which significantly affects ecosystems (Pál et al., 2016; Beaulieu et 

al., 2017; Crausbay et al., 2017) and human societies (Holmgren et al., 2016 ; Lespez, L. et al., 2016). Precise high resolution 20 

temperature estimates can contribute significantly to the understanding of these mechanisms. Ice core proxy data offer 

multiple paths for reconstructing past climate and temperature variability. The study of Dahl-Jensen et al. (1998) exemplarily 

demonstrates the usefulness of inverting the measured borehole temperature profile to surface temperature estimates for the 

investigated drilling site using a coupled heat- and ice-flow model. Because of smoothing effects due to the nature of heat 

diffusion within an ice sheet, this method is unable to dissolve fast temperature oscillations and leads to a rapid reduction of 25 

the time resolution towards the past. Another approach for reconstructing past temperature is based on the calibration of 

stable water isotopes of oxygen and hydrogen (δ18OH2O, δDH2O) from ice core water samples assuming a constant (and mostly 

linear) relationship between temperature and isotope values due to fractionation of evaporation and rainout processes for a 

certain time period (Stuiver et al., 1995 ; Johnsen et al., 2001). This method provides a rather robust tool for reconstructing 

past temperature for times where large temperature excursions occur (Dansgard-Oeschger events, Glacial-Interglacial 30 

transitions (Johnsen et al., 1992; Dansgaard et al., 1982)). However, in the Holocene where Greenland temperature variations 

are comparatively small, seasonal changes of precipitation as well as of evaporation conditions at the source region 
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contribute possibly more to water isotope data variations (Kindler et al., 2014; Huber et al., 2006; Werner et al., 2001). A 

relatively new method for ice core based temperature reconstructions uses the thermal fractionation of stable isotopes of air 

compounds (nitrogen and argon) within a firn layer of an ice sheet (Severinghaus et al., 2001 ; Severinghaus et al., 1998 ; 

Kobashi et al., 2011; Kindler et al., 2014 ; Huber et al., 2006). The measured nitrogen and argon isotope records of air 

enclosed in bubbles in an ice core can be used as a paleothermometer due to (i) the stability of isotopic compositions of 5 

nitrogen and argon in the atmosphere at orbital timescales and (ii) the fact that changes are only driven by firn processes 

(Severinghaus et al., 1998; Mariotti, 1983; Leuenberger et al., 1999). To robustly reconstruct the surface temperature for a 

given drilling site, the use of firn models describing gas and heat diffusion throughout the ice sheet is necessary for 

decomposing the gravitational from the thermal diffusion influence on the isotope signals. This work addresses two issues 

relevant for nitrogen and argon isotope based temperature reconstructions. First, we introduce a novel, entirely automated 10 

approach for inverting nitrogen isotope data to surface temperature estimates forcing the output of a firn densification and 

heat diffusion model to fit the nitrogen isotope data. And second, we investigate, how accurate can this be done in the 

framework of the used model, by examining the approach on different synthetic nitrogen isotope and temperature scenarios. 

. Precise high resolution temperature estimates can contribute significantly to the understanding of these mechanisms. Ice 

core proxy data offer multiple paths for reconstructing past climate and temperature variability. The studies of Cuffey et al. 15 

(1995; 1997) and Dahl-Jensen et al. (1998) demonstrate the usefulness of inverting the measured borehole temperature 

profile for surface temperature history estimates for the investigated drilling site using a coupled heat- and ice-flow model. 

Because of smoothing effects due to heat diffusion within an ice sheet, this method is unable to resolve fast temperature 

oscillations and leads to a rapid reduction of the time resolution towards the past. Another approach to reconstruct past 

temperature is based on the calibration of stable water isotopes of oxygen and hydrogen (δ18Oice, δDice) from ice core water 20 

samples assuming a constant (and mostly linear) relationship between temperature and water isotopic composition due to 

fractionation effects during ocean evaporation, cloud formation and snow and ice precipitation (Stuiver et al., 1995; Johnsen 

et al., 2001). This method provides a rather robust tool for reconstructing past temperature for times where large temperature 

excursions occur (Dansgaard-Oeschger events, Glacial-Interglacial transitions (Dansgaard et al., 1982; Johnsen et al., 1992)). 

However, in the Holocene where Greenland temperature variations are comparatively small, seasonal changes of 25 

precipitation as well as of evaporation conditions at the source region contribute possibly more to water isotope data 

variations (Werner et al., 2001; Huber et al., 2006; Kindler et al., 2014;). A relatively new method for ice core based 

temperature reconstructions uses the thermal fractionation of stable isotopes of air compounds (nitrogen and argon) within a 

firn layer of an ice sheet (Severinghaus et al., 1998; Severinghaus et al., 2001; Huber et al., 2006; Kobashi et al., 2011; 

Kindler et al., 2014). The measured nitrogen and argon isotope records of air enclosed in bubbles in an ice core can be used 30 

as a paleothermometer due to (i) the stability of isotopic compositions of nitrogen and argon in the atmosphere at orbital 

timescales and (ii) the fact that changes are only driven by firn processes (Mariotti, 1983; Severinghaus et al., 1998; 

Leuenberger et al., 1999). To robustly reconstruct the surface temperature for a given drilling site, the use of firn models 
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describing gas and heat diffusion throughout the ice sheet is necessary for decomposing the gravitational from the thermal 

diffusion influence on the isotope signals. 

This work addresses two issues relevant for nitrogen and argon isotope based temperature reconstructions. First, we 

introduce a novel, entirely automated approach for inverting gas isotope data to surface temperature estimates. For that, we 

force the output of a firn densification and heat diffusion model to fit gas isotope data. This methodology can be used for 5 

many different optimization tasks not restricted to ice core data. As we will show, the approach works besides δ15N for all 

relevant gas isotope quantities (δ15N, δ40Ar, δ15Nexcess) and for Holocene and glacial data as well. Furthermore, the possibility 

of fitting all relevant gas isotope quantities, individually or combined, makes it possible for the first time to validate the 

temperature solution gained from one single isotope species by comparison to the solution calculated from other isotope 

quantities. This approach is a completely new method which enables the automated fitting of gas isotope data without any 10 

manual tuning of parameters, minimizing any potential “subjective” impacts on temperature estimates as well as working 

hours. Also, except for the model spin-up, the presented temperature reconstruction approach is completely independent 

from stable water isotopes (δ18Oice, δDice), which provides the opportunity to validate water isotope based reconstructions 

(e.g. Masson-Delmotte, 2005) or reconstructions where water isotopes are used together with δ15N or δ40Ar (e.g. Landais et 

al., 2004; Huber et al., 2006; Capron et al., 2010). To our knowledge, there are only two other reconstruction methods 15 

independent from stable water isotopes that have been applied to Holocene gas isotope data, without a priori assumption on 

the shape of a temperature change. The studies from Kobashi et al. (2008a, 2017) use the second order parameter δ15Nexcess to 

calculate firn temperature gradients, which are later temporally integrated from past to future over the time series of interest 

using the firn densification and heat diffusion model from Goujon et al. (2003). Additionally Orsi et al. (2014) use a 

linearized firn model approach together with δ15N and δ40Ar data to extract surface temperature histories. As both methods 20 

rely on δ15N together with δ40Ar, they do not offer the possibility to validate one isotope based solution against the other. 

Also these two approaches can only be applied to ice cores where both isotope quantities are measured together with a 

sufficient precision. 

Second, we investigate the accuracy of our novel fitting approach by examining the method on different synthetic nitrogen 

isotope and temperature scenarios. The aim of this work is to study the uncertainties emerging from the algorithm itself. 25 

Furthermore the focal question in this study is: what is the minimal mismatch in δ15N for Holocene like data we can reach 

and what is the implication for the final temperature mismatches. Studying and moreover answering these questions makes it 

mandatory to create well defined δ15N targets and related temperature histories. It is impossible to answer these questions 

without using synthetic data in a methodology study. The aim is to evaluate the accuracy and associated uncertainty of the 

inverse method itself to then later apply this method to real δ15N, δ40Ar or δ15Nexcess datasets, for which of course the original 30 

driving temperature histories are unknown. 
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2. Methods and data 

2.1 Firn densification and heat diffusion model 

The surface temperature reconstruction relies on firn densification combined with gas and heat diffusion (Severinghaus et al., 

1998). In this study, the firn densification and heat diffusion model, from now on referred to as firn model, developed by 

Schwander et al. (1997) is used to reconstruct firn parameters for calculating synthetic δ15N values depending on the input 5 

time series. It is a semi-empirical model based on the work of Herron and Langway (1980), Barnola et al. (1991)Barnola et 

al. (1991), and implemented using the Crank and Nicholson algorithm (Crank, 1975) and was also used for the temperature 

reconstructions by Huber et al. (2006) and Kindler et al. (2014). Besides surface temperature time series, accurate 

accumulation rate data is needed to run the model (Fig. 01).. The model then calculates the densification and heat diffusion 

history of the firn layer and provides parameters for calculating the fractionation of the nitrogen isotopes for each time step, 10 

according to the following equations: 

𝛿𝛿15𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  (𝑧𝑧𝐿𝐿𝐿𝐿𝐿𝐿 , 𝑡𝑡) =  �𝑒𝑒
∆𝑚𝑚∙𝑔𝑔∙𝑧𝑧𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡)

𝑅𝑅∙𝑇𝑇�(𝑡𝑡) − 1� δ15Ngrav (zLID, t) =  �e
∆m∙g∙zLID(t)

R∙T�(t) − 1� ∙ 1000    

    (1) 

𝛿𝛿15𝑁𝑁𝑡𝑡ℎ𝑒𝑒𝑔𝑔𝑒𝑒(𝑡𝑡) =  �� 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)

𝑇𝑇𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏𝑚𝑚(𝑡𝑡)
�
𝛼𝛼𝑇𝑇
− 1� δ15Ntherm(t) =  �� Tsurf(t)

Tbottom(t)
�
αT
− 1� ∙ 1000    

    (2) 15 

𝛿𝛿15𝑁𝑁𝑒𝑒𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝛿𝛿15𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) + 𝛿𝛿15𝑁𝑁𝑡𝑡ℎ𝑒𝑒𝑔𝑔𝑒𝑒(𝑡𝑡)δ15Nmod(t) = δ15Ngrav(t) + δ15Ntherm(t)    

     (3) 

δ15Ngrav(t) is the component of the isotopic fractionation due to the gravitational settling (Craig et al., 1988; Schwander, 

1989) and depends on the lock-in-depth zLID(t) (depth where the density of the firn reaches a certain value, based on the 

empirical formula from Martinerie et al. (1994), which is the density where the porosity of the firn column is low enough, so 20 

the gas diffusion is negligible) and the mean firn temperature T�( (LID) zLID(t) and the mean firn temperature T�(t) 

(Leuenberger et al., 1999). g is the acceleration constant, ∆m the molar mass difference between the heavy and light isotopes 

(equals one gram for nitrogen) and R the ideal gas constant. 10-3 kg for nitrogen) and R the ideal gas constant. zLID is defined 

as a density threshold ρLID, which is slightly sensitive to surface temperature, following the formula from Martinerie et al. 

(1994), with a small offset correction of 14 kg m-3 to account for the presence of a non-diffusive zone (Schwander et al., 25 

1997): 

ρLID(kg ∙ m−3) =  1
1

ρice
−6.95∙10−7∙T�−4.3∙10−5

− 14        (4) 

where 

ρice(kg ∙ m−3) = 916.5 − 0.14438 ∙ T� − 1.5175 ∙ 10−4 ∙ T�2       (5) 

The thermal fractionation component of the δ15N signal (Severinghaus et al., 1998) is calculated using Eq.  (2), where Tsurf(t) 30 

and Tbottom(t) stand for the temperatures at the top and the bottom of the diffusive firn layer. In contrast to Tsurf(t) which is an 
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input parameter for the model, Tbottom(t) is calculated by the model for each time step. The thermal diffusion constant αT was 

measured by Grachev and Severinghaus (2003) for nitrogen, expressed there as Ω, (see Eq. (6)), and closely matches the 

value used by Leuenberger et al. (1999) based on measurements of Boersma-Klein and De Vries (1966): 

𝛼𝛼𝑇𝑇  = 4.61198 ∙ 10−3 ∙ ln (𝑇𝑇� 113.65𝐾𝐾⁄ )         (4) 

αT = �8.656 −  1323 K
T

� ∙ 10−3          (6) 5 

The used firn model used here behaves purely as a sheer forward model, which means that for the given input time series the 

output parameters (here finally δ15Nmod(t)) can be calculated, but it is not easily possible to construct from measured isotope 

data the related surface temperature or accumulation rate histories (Fig. 01).. The goal of the presented study is an 

automatization of this inverse modelling procedure for the reconstruction of the rather small Holocene temperature 

variations. 10 

2.2 Measurement, input data and time scale 

Accumulation rate data: Besides surface temperatures, accumulation rate data is needed to drive the firn model. In this 

study, accumulation rate data from Cuffey and Clow (1997), adapted to the GICC05 chronology, is usedIn this study we use 

the original accumulation rate, reconstructed in Cuffey and Clow (1997) produced using an ice flow model adapted to the 

GISP2 location, but adapted to the GICC05 chronology (Rasmussen et al., 2008; Seierstad et al., 2014). From three 15 

accumulation rate scenariosOriginally, the accumulation rate used to feed the ice flow model was optimised in order to 

match the time scale from Meese et al. (1994) for the Holocene, based on annual layer counting. Seierstad et al. (2014) 

transferred the GISP2 chronology to the GICC05 reference timeframe using multiple match points to the NGRIP and GRIP 

ice cores, both already on GICC05. We used these match points and modified the GISP2 ages in between match points 

linearly in order to match exactly the GICC05 duration for the considered interval duration. This way, the detailed GISP2 20 

annual layer counting information is kept, but is only stretched/compressed in time. This was done for all intervals in 

between two match points. The accumulation data were then re-calculated accordingly as obviously this is needed in order to 

keep the same total amount of ice accumulated at the GISP2 site. From the three accumulation rate scenarios reconstructed in 

Cuffey and Clow (1997) and adapted here to the GICC05 chronology, the intermediate one is chosen (red curves in 

Fig. S01). Since the differences between the scenarios (Fig. S01) are not important for the evaluation of the reconstruction 25 

approach, they are not taken into account for this study. 

 

δ18Oice data: Oxygen isotope data from the GISP2 ice core water samples measured at the University of Washington’s 

Quaternary Isotope Laboratory is used to construct the surface temperature input of the model spin-up (12-35 kyr b2k, see 

Sect. 2.4) (Grootes and Stuiver, 1997 ; Stuiver et al., 1995 ; Meese et al., 1994, Steig et al., 1994, Grootes et al., 1993). yr to 30 

35 kyr b2k, see Sect. 2.3.1) (Grootes et al., 1993; Meese et al., 1994; Steig et al., 1994; Stuiver et al., 1995; Grootes and 

Stuiver, 1997). 
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Time scale: For the entire study the GICC05 chronology is used (Rasmussen et al., 2014; Seierstad et al., 2014). During the 

whole reconstruction procedure the two input time series (surface temperature and accumulation rate) are split into two parts. 

The first part ranges from 20 yr to 10520 yr b2k (called “Holocene section”) and the second one from 10520 yr to 35000 yr 

b2k (“spin-up section”). The wholeentire accumulation rate input (see Sect.  2.43.1)), as well as the spin-up section of the 5 

surface temperature input, remain unchanged during the reconstruction procedure. 

2.3 Pre-study and Sensitivity tests - Search for a transfer function 

2.3.1 Static case 

To investigate the model behaviour in its static condition (constant temperature and, accumulation rate) a set of 408 input 

scenarios was run by the firn model calculating the δ15N outputs for each permutation. The surface temperature inputs were 10 

varied in the range of - 60 °C to -10 °C with 1 K step width and the accumulation rates were changed between 0.10 and 

0.45 m/yr in 0.05 m/yr steps leading to 51 times 8 scenarios (Fig. 02a,b). Each input scenario was calculated in a 30 kyr time 

window to make sure that no spin-up effects influence the output δ15N data. With the obtained temperature, accumulation 

and δ15N combinations different polynomial surface fits were conducted in order to find a transfer function (Table S01 and 

Fig. S02) which approximates the static model behaviour in the best possible manner. Figure 02c shows the comparison 15 

between the model δ15N and the surface polynomial fit using degree 3 in temperature (T in Kelvin) and degree 2 in 

accumulation rate (𝐴𝐴𝐴𝐴𝐴𝐴) leading to a robust model approximation with a correlation coefficient r2 = 0.9997 and root mean 

square error (RMSE) of about 4.5 permeg over the investigated model space and shows a non-linear behaviour in 𝛿𝛿15𝑁𝑁(𝑇𝑇) 

and 𝛿𝛿15𝑁𝑁(𝐴𝐴𝐴𝐴𝐴𝐴). 

𝛿𝛿15𝑁𝑁(𝑇𝑇,𝐴𝐴𝐴𝐴𝐴𝐴) = 𝑝𝑝00 + 𝑝𝑝10 ∙ 𝑇𝑇 + 𝑝𝑝01 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑝𝑝20 ∙ 𝑇𝑇2 + 𝑝𝑝02 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑝𝑝30 ∙ 𝑇𝑇3 (5) 

        + 𝑝𝑝11 ∙ 𝑇𝑇 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑝𝑝21 ∙ 𝑇𝑇2 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑝𝑝12 ∙ 𝑇𝑇 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴2 

 20 

The coefficients pxy as well as the 95% confidence are listed in Table S01. Figure S02 shows the correlation coefficients r2 

and RMSE for all two-dimensional surface fits which were conducted during this analysis as a function of the polynomial 

degrees in temperature and accumulation rate (T,  Acc). It is trivial that a higher polynomial degree leads to a better 

approximation. More interesting is the fact that an increase of the polynomial degree in temperature seems to be more 

important than in accumulation rate, e.g. the polynomial of degree 3 in temperature and degree 1 in accumulation rate leads 25 

to an about seven times smaller RMSE compared to a polynomial with reversed degrees. 

2.3.2 Dynamic case 

A similar study was conducted to investigate the dynamic model behaviour. Here the accumulation rate data (see 
Sect. 2.2/2.4 and Fig. A01a) together with the reconstructed Holocene temperature for the GISP2 reconstruction (Döring et. 
al., in prep.) were used as input. Figure 03a shows the 2-dimensional dependence of δ15N(T, Acc) and (b) the comparison 30 
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between modelled and polynomial fitted δ15N for which the same surface fit procedure as used for investigating the static 
model behaviour was applied. It leads to a much poorer approximation with a correlation coefficient (r2) of about 0.7, and 
RMSE of about 34.2 permeg. Coefficients are again listed in Table   
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2.3S01. The visible poorer correlation and larger non-linearity of δ15N(T, Acc) highlights the problem of system memory 

effects documented by the firn model output. This is expected, since the model never reaches an equilibrium state for fast 

temperature and accumulation rate excursions, which complicates the construction of a robust transfer function in the 

dynamic case. Because our main goal is to fit the δ15N data in the low permeg level, i.e. 0.003 permil to 0.005 permil (level 

of the measurement uncertainty, (Kobashi et al., 2008)), a polynomial transfer function is not suitable for the dynamic case 5 

due to its moderate capability to fit the modelled data. Therefore, we use a combination of Monte Carlo sampling and 

quantitative data analysis for solving the inverse problem T(δ15N) as sketched in Fig. 01 and explained in detail in the 

following section. 

2.4 Reconstruction approach 

The Holocene temperature reconstruction is implemented by the following four steps:  10 

(i)  A prior temperature input (first guess) is constructed, which serves as the starting point for the optimization.  

 

(ii)  A smooth solution which passes through the δ15N data (here synthetic target data) is generated following a Monte 

Carlo approach. It is assumed that the smooth solution contains all long term temperature trends (centuries to 

millennial) as well as firn column height changes (temperature and accumulation rate dependent) that drive the 15 

gravitational background signal in δ15N. 

 

(iii)  The smooth temperature solution is complemented by superimposing high frequency information directly extracted 

from the δ15N data (here synthetic target data). This step adds short term temperature changes (decadal) in the same 

time resolution as the data. 20 

 

(iv)  The gained temperature solution is corrected using information extracted from the mismatch between the synthetic 

target and modelled δ15N time series.  

 

Accumulation rate input: 25 

The raw accumulation rate data for the main part of the spin-up section (12000- yr to 35000 yr b2k) is linearly interpolated to 

a 20 yr grid and low pass filtered with a 200 yr cut off period (cop) using cubic spline filtering (Enting, 1987). For the 

Holocene section (20-10520 yr b2k) and the transition part between Holocene and spin-up section (10520- yr to 12000 yr 

b2k) the raw accumulation rate data is linearly interpolated to a 1 yr grid to obtain equidistant integer point-to-point 

distances which are necessary for the reconstruction, and to preserve as much information as possible for this time period 30 

(Fig. A01aS02a). Except for these technical adjustments, the accumulation rate input data remains unmodified, assuming 

high reliability of this data during the Holocene. This is due to the fact that theThe accumulation data was gained byindeed 
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reconstructed using annual layer counting, and the use of a thinning model which should be rather robustlead to maximum 

relative uncertainty of 10 % for the first 1500 m of the 3000 m ice core (Cuffey and Clow, 1997). 

In order to investigate the influence of smoothing of the accumulation rate data on the model outputs, the high resolution 

accumulation rate dataset in the time window of 20- yr to 12000 yr (Fig. A01aS02a) was low pass filtered with cops between 

20 yr and 500 yr, and used to drive the firn model. The surface temperature input was set as constant with a value of -31 °C 5 

for this time window. Then, the deviations of the filtered from the unfiltered accumulation rates and model outputs were 

calculated. Figure A02S03 shows the absolute (I) as well as the relative deviations (II) (relative to the unfiltered scenario) as 

a function of the cut off periodscops for the accumulation rate input data, δ15N, and LID model outputs. Regarding the 

standard deviation (1σ) of the relative errorsaccumulation deviations as a measure for the mean deviation of the filtered 

minus the unfiltered values showsshow that the filtering of the accumulation rates leads to a mean deviation of about 20 % 10 

between the filtered and unfiltered accumulation rate data, depending on the used cop value (see Fig. A02IIa). In 

Fig. A02IIbS03IIa). We use the mean 99  % quantile forof the same analysis is shown which can serve(Fig. S03IIb) as a 

measure for the maximum deviation between the filtered and unfiltered values. It is clearly visible that theThe filtering 

clearly leads to a maximum accumulation rate deviation of about 50  %. The comparison of the related deviations in the δ15N 

and LID outputs reveals that the changes in the accumulation rates do not lead to a change in the same order for the model 15 

outputs. It can be concluded thatIndeed, the filtering of the accumulation rate data leads to deviations of less than 0.6 % and 

less than 1.5 % for the mean and the maximum δ15N and LID deviations respectively (Fig. A02IIcS03IIc,d). Therefore, it can 

be argued that a low pass filtering of the accumulation rates for cops between 20- yr and 500 yr does only have a small 

impact on the model outputs as long as the major trends are being conserved, because the filtering does not modify the mean 

accumulation. This result wasis expected due to the fact that the LID and finally δ15N changes are the result of the integration 20 

of the accumulation over the whole firn column. The integration time corresponds to the age of the ice at the lock-in-

depthLID, which is the order of 200 yr for the Holocene in Greenland. 

Figure A03 showsFinally, we test which fraction of the measured δ15N variations can be attributed to accumulation changes. 

For this, we perform a sensitivity experiment (Fig. S04) where the temperature input was set as a constant value of -31 °C, 

and used together with the high resolution accumulation rate data (Fig. A01aS02a) to model the LID (Fig. A03aS04a) and 25 

δ15N (Fig. A03bS04b) values. Due to the absence of temperature changes, only the accumulation rate changes drive the time 

evolution of the diffusive column height (LID) over time which modulates the δ15N values. Next, the modelled δ15N 

variations are compared to the δ15N measurement data (Fig. A05IIIS06III) (Kobashi et al., 2008)(Kobashi et al., 2008b) to 

examine the influence of the accumulation rate changes on changes in δ15N for two cases. First, for the 8.2k event that is 

clearly visible in the LID and modelled δ15N as well as in the δ15N measurement data. The, the signal amplitude in δ15N is 30 

about three times higher for the measured data compared to the modelled ones (measurementmeasured data: 

Δδ15N8.2k,meas ≈ 60 permeg, (one permeg equals 10-6); modelled data: Δδ15N8.2k,mod ≈ 20 permeg). The comparison of the 

standard deviations of the measurementmeasured data with the modelled δ15N data for the last 10 kyr (both quantities were 

normalized with their respective means), shows an even higher deviation of the measured versus the modelled variabilities 
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by a factor of about eight (measurementmeasured data: std[δ15N10kyr,meas -  − mean(δ15N10kyr,meas)] ≈  ≈ 37 permeg,; modelled 

data: std[δ15N10kyr,mod -  − mean(δ15N10kyr,mod)]  ≈ 4.5 permeg). This analysis supports our assumption that the accumulation 

rate changehistory alone cannot fully explain the observed variability in δ15N during the Holocene, butand gives limits toan 

upper limit for the contribution of the accumulation rate to the δ15N signal. Therefore, the remaining part of the measured 

δ15N variations has to be related to changes in the surface temperature in order to complement the δ15N signal. 5 

 

Surface temperature spin-up: 

The surface temperature history of the spin-up section (Fig. A01bS02b) is obtained by calibrating the filtered and 

interpolated δ18Oice data (Eq. 6) (7)) using the values for the temperature sensitivity α18O and offset β found by Kindler et al. 

(2014) for the NGRIP ice core assuming a linear relationship of δ18Oice with temperature. 10 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = 1
𝛼𝛼18𝑂𝑂(𝑡𝑡)

∙ [𝛿𝛿18𝑂𝑂𝑠𝑠𝑖𝑖𝑒𝑒(𝑡𝑡) +  35.2 ‰] − 31.4°𝐶𝐶 + 𝛽𝛽(𝑡𝑡)       (6) 

Tspin(t) = 1
α18O(t)

∙ [δ18Oice(t) +  35.2 ‰] − 31.4°C + β(t)       (7) 

The values 35.2 ‰ and -31.4 °C are modern-time parameters for the GISP2 site (Schwander et al., 1997; Grootes and Stuiver, 

1997). The raw δ18Oice data is filtered and interpolated in the same way as the accumulation rate data for the spin-up part. 

The spin-up is needed to bring the firn model to a well-defined starting condition that takes possible memory effects 15 

(influence of earlier conditions) of firn states into account. 

 

Generating synthetic target data: 

In order to develop and evaluate the presented approachalgorithm, eight temperature scenarios were constructed and used to 

model synthetic δ15N data, which serve later on as the targets for the reconstruction approach. From these eight synthetic 20 

surface temperature and related δ15N scenarios (S1-S5 and H1-H3), three data sets (later called Holocene like scenarios H1-

H3) were constructed in such a way that the resulting δ15N time series are very close to the δ15N values measured by Kobashi 

et al. (2008)(2008) in terms of variability (amplitudes) and frequency (data resolution) of the GISP2 nitrogen isotope data 

(Fig. A04S05, Fig. A05S06). 

The synthetic surface temperature scenarios S1-S5 are created by generating a smooth temperature time series (Tsyn,smooth) 25 

analogous to the Monte Carlo part of the reconstruction procedure for only one iteration step (see Sect.  2.43.2). The values 

for the cut off period (cop) used for the filtering of the random values, and the s values (standard deviation of the random 

values, see Sect. 2.3.2) for the first 5 scenarios can be found in Table S02table S01. The smooth temperatures 

(Fig. A04IS05I) are calculated on a 20 yr grid, which is nearly similar to the time resolution of the GISP2 δ15N measurement 

values of about 17 yr (Kobashi et al., 2008).(Kobashi et al., 2008b). For the Holocene like scenarios, the smooth temperature 30 

time series were generated from the temperature reconstruction for the GISP2 δ15N data (Döring et al., in prep.).not shown 

here). The final Holocene surface temperature from Döring et al. (in prep.)solution was filtered with a 100 yr cut off 

periodcop to obtain the smooth temperature scenario. 
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Following this, high frequency information is added to the smoothed temperatures.temperature histories. A set of normally 

distributed random numbers with a zero mean and a standard deviation (1σ) of 1 K for the scenarios S1-S5 and 0.3 K for the 

Holocene like scenarios H1-H3 is generated on the same 20 yr grid and added up to the smooth temperature time series. 

Finally, the resulting synthetic target temperature scenarios (Fig. A04IIS05II, Fig. A05IS06I) are linearly interpolated to a 

1 yr grid. 5 

TheThese synthetic temperatures are combined with the spin-up temperature and are used together with the accumulation 

rate input to feed the firn model. From the model output the synthetic δ15N targets are calculated according to Sect. 

section 2.1. The firn model output provides ice age as well as gas age information. The final synthetic δ15N target time series 

(Fig. A04IIIS05III, Fig. A05IIS06II) are set intentionally on the ice age scale to mirror measurementmeasured data, because 

no prior information is available for the gas-ice age difference (Δage) for ice core data. 10 

2.43.1 Prior input (step 1) 

The starting point of the optimization procedure is the first guess. To construct the first guess temperature input, a constant 

temperature of about -29.6 °C is used for the complete Holocene section, which corresponds to the last value of the 

temperature spin-up (Fig. A01b). During the next step of the optimization, the prior temperature input is iteratively changed 

following a Monte Carlo approach.S02b).  15 

2.43.2 Monte Carlo type input generator - Generating smooth solutions (step 2) 

During the second step of the optimization, the prior temperature input from step 1 is iteratively changed following a Monte 

Carlo approach. The basic idea of the Monte Carlo approach is to generate smooth temperature inputs by low -pass filtering 

uniformly distributed random values, and to superimpose this signal toon the prior input. Then, the new input is fed to the 

firn model and the mismatch DDmc in between the modelled δ15N signal Xmod, calculated from the model output, and the 20 

synthetic δ15N target values XsynXtarget is computed. (note that X equals δ15N during the Monte Carlo part, whereas for the 

later analysis of the mismatches of δ15N or temperature, X equals δ15N or temperature marked by an additional index on “D”) 

D = Dmc =  1
n
∑ |Di|n
i=1  =  1

n
∑ �Xtarget,i −  Xmod,i�n
i=1         (78) 

DDmc serves as the criterion which is minimised during the optimization in step 2. If the mismatch decreases compared to the 

prior input, the new input is saved and used as new guess. This procedure is repeated until convergence is achieved. 25 

Table 01 lists the number of improvements and iterations performed for the different synthetic datasets. The perturbation of 

the current guess (𝑇𝑇𝑔𝑔(𝑡𝑡))Tg(t) is conducted in the following way: Let 𝑻𝑻𝒈𝒈����⃗ =  𝑇𝑇𝑔𝑔(𝑡𝑡Tg���⃗ =  Tg(t) be the vector containing the 

prior temperature input. A second vector 𝑷𝑷𝟏𝟏����⃗ P1���⃗  with the same number of elements n as 𝑻𝑻𝒈𝒈����⃗ Tg���⃗  is generated containing n 

uniformly distributed random numbers within the limits of an also randomly (equally distributed) chosen standard deviation 

s. s is chosen from a range of 0.05-0.50 (Fig. A06IIS07II), which means that the maximum allowed perturbation of a single 30 

temperature value T(t0) is in a range of ±5  % to ±50  %. Creating the synthetic frequencies, 𝑷𝑷𝟏𝟏����⃗ P1���⃗  is low -pass filtered using 
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cubic spline filtering with an equally distributed random cut off period (cop) (Fig. A06IS07I) in the range of 500- yr to 

2000 yr generating the vector 𝑷𝑷��⃗ P��⃗ . The new surface temperature input 𝑻𝑻𝒔𝒔𝒔𝒔�������⃗ Tsm������⃗  is calculated from 𝑷𝑷P�����⃗  according to: 

𝐓𝐓𝐬𝐬𝐬𝐬�������⃗ = 𝐓𝐓𝐠𝐠����⃗
𝐓𝐓
∙ (𝟏𝟏� + 𝐏𝐏��⃗ )           (8) 

Tsm������⃗ = Tg���⃗
T
∙ (1� + P��⃗ )           (9) 

The superscript “T” stands for transposed and 𝟏𝟏�1� is the n by 1 matrix of ones.  5 

This approach provides a high potential for parallel computing. In this study, an eight core computer was used, generating 

and running eight different inputs of 𝑻𝑻𝒔𝒔𝒔𝒔�������⃗ Tsm������⃗  simultaneously, minimizing the time to find an improved solution. For 

example, during the 706 iterations for the scenario S2, about 5600 different inputs were created and tried, leading to 351 

improvements (Tablesee Tab. 01). Since it is possible to find more than one improvement per iteration step due to the 

parallelization on eight CPU’s, the solution giving the minimal misfit is chosen as new first guess for the next iteration step. 10 

This leads to a decrease of the used improvements for the optimization (e.g. for S2, 172 of the 351 improvements were 

used). Additionally, a first gas age scale is extracted from the model using the last improvementimproved conditions, which 

will then be used in the next step 3. 

2.43.3 Adding high frequency information (step 3) 

Finally,In step 3 the missing high frequency temperature informationhistory providing a suitable fit to the between modelled 15 

and synthetic δ15N target data is directly extracted from the pointwise mismatch Dsmooth,i, between the modelled δ15Nsmooth 

signal of the smooth temperature solution given by the Monte Carlo approachobtained in step 2 and the synthetic target 

data.δ15N target data. Note that for a real reconstruction, this mismatch is calculated using the measured δ15N dataset instead 

of the synthetic one. Dsmooth,i can be interpreted in first order as the detrended high frequency signal of the synthetic δ15N 

target values (Fig. 04c01c). This signal is transferred to the gas age scale provided by the firn model for the smooth 20 

temperature input to reachinsure synchronicity in between the gainedhigh frequency temperature variations extracted from 

the mismatch of δ15N on the ice age scale and the smooth temperature solution. Additionally, the signal is shifted by about 

10  yr towards modern values to account for the gas diffusion from the surface to the lock-in-depth,LID (Schwander et al., 

1993), which is not yet implemented in the firn model. This is necessary for adding the calculated temperature changes 

(∆∆T) to the smooth signal. The ∆T values are calculated according to Eq. (9 (10): 25 

∆𝑇𝑇𝑠𝑠 =   𝐿𝐿𝑠𝑠𝑚𝑚𝑏𝑏𝑏𝑏𝑡𝑡ℎ,𝑖𝑖
Ω𝑁𝑁2,𝑖𝑖

,            (9) 

with the thermal diffusion sensitivity ( Ω𝑁𝑁2,𝑠𝑠 ) for the nitrogen isotope fractionation calculated from (Grachev and 

Severinghaus, 2003; Boersma-Klein and De Vries, 1966): 

Ω𝑁𝑁2,𝑠𝑠 =  8.656 ‰
𝑇𝑇𝚤𝚤�

− 1232 ‰∙𝐾𝐾
𝑇𝑇𝚤𝚤�
2           (10) 

∆Ti =   Dsmooth,i
ΩN2,i

,            (10) 30 
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using the thermal diffusion sensitivity Ω𝑁𝑁2,𝑠𝑠 for nitrogen isotope fractionation from Grachev and Severinghaus (2003): 

ΩN2,i =  8.656 ‰
Tı���

− 1232 ‰∙K

Tı���
2           (11) 

𝑇𝑇𝚤𝚤�  is the mean firn temperature in Kelvin which is calculated by the firn model for each time point i. To reconstruct the final 

(high frequency) temperature input, Thf, the extracted short term temperature signal ∆T is simply added to the smooth 

temperature input Tsm: 5 

𝑇𝑇ℎ𝑓𝑓,𝑠𝑠 =  𝑇𝑇𝑠𝑠𝑒𝑒,𝑠𝑠 +  ∆𝑇𝑇𝑠𝑠           (11) 

Thf,i =  Tsm,i + ∆Ti           (12) 

2.43.4 Final correction of the surface temperature solution (step 4) 

For a further improvement of the remaining δ15N and resulting surface temperature misfits, it is important to find a correction 

method whichthat contains information whichthat is also available for measurementwhen using measured data. The benefit 10 

of the synthetic data study is that several later unknown quantities can be calculated, and used for improving the 

reconstruction approach (see Sect. 3 and 4). For instance, it is possible to split the synthetic δ15N data in the gravitational and 

thermo-diffusion parts or to use the temperature misfit, which is not known later on.unknown in reality. The idea underlying 

the correction algorithm explained in the followinghereafter is that the remaining misfits of δ15N and temperature are 

connected to the Monte Carlo (step 2) and high frequency part (step 3) of the reconstruction algorithm. ItIn the present 15 

inversion framework, it is not possible to find a smooth solution which exactly passes through the δ15N target data in the 

middle of the variance in all parts of the time series. This leads to a slightly over or underestimation of the δ15N and their 

corresponding temperature values. For example, a slightly too low (or too high) smooth temperature estimate leads to a small 

increase (or decrease) of the firn column height which creates, creating a wrong gravitational background signal in δ15N on a 

later point in time (because the firn column needs some time to react). An additional error in the thermal diffusion signal is 20 

also created due to the high frequency part of the reconstruction, because the high frequency information is directly extracted 

from the deviation of the (synthetic) δ15N target data and the modelled δ15N data from the smooth solution of the Monte 

Carlo part. Therefore, this error is transferred into the next step of the reconstruction and partly creates the remaining 

deviations. 

To investigate this problem, the deviations Dsmooth,i of the synthetic δ15N target data δ15Ntarget to the smooth δ15N data 25 

δ15Nsmooth of the Monte Carlo part is numerically integrated over a time window of 200 yr (see Sect. 4), and thereafter the 

window is shifted from past to future in 1 yr steps resulting in a time series called IF(t). IF(t) equals a 200 yr running -mean 

of Dsmooth,i. For t, the mid position of the window is allocated. The time evolution of IF is a measure for the deviation of the 

smooth solution in δ15N (or temperature) from the perfect middle passage through the target data and for the slightly over 

and underestimation of the resulting temperature. 30 

𝐼𝐼𝐼𝐼(𝑡𝑡𝑠𝑠) =  ∫ �δ15𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑒𝑒𝑒𝑒𝑔𝑔𝑠𝑠(𝑡𝑡) −  δ15𝑁𝑁𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡ℎ(𝑡𝑡)�𝑡𝑡2
𝑡𝑡1

𝑑𝑑𝑡𝑡        (12) 
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with 𝑡𝑡𝑠𝑠 =  𝑡𝑡1 +  𝑡𝑡2−𝑡𝑡1 
2

   IF(ti) =  ∫ �δ15Ntarget(t) −  δ15Nsmooth(t)�t2
t1

dt   

     (13) 

where ti =  t1 +  t2−t1 
2

           (14) 

Next, the sample cross correlation function (xcf) (Box et al., 1994) is applied to IF(t) and the remaining misfits Dδ15N,hf of 

δ15N after the high frequency part. The xcf shows two extrema (Fig. 05a02a), a maximum (xcfmax) and a minimum (xcfmin) at 5 

two certain lags (lagmax,Dδ15N at xcfmax and lagmin,Dδ15N at xcfmin). Now, the same analysis is conducted for IF(t) versus the 

temperature mismatch DT,hf (Fig. 05b02b), which shows an equal behaviour (two extrema, lagmax,T at xcfmax and lagmin,T at 

xcfmin). Comparing the two cross correlations shows that lagmax,Dδ15N = ˗equals the negative lagmin,T and lagmin,Dδ15N = 

˗corresponds to the negative lagmax,T (Fig. 05d02d,e). The idea for the correction is that the extrema in Dδ15N,hf with the 

positive lag (positive means here that Dδ15N,hf has to be shifted to past values relative to IF) creates the misfit of temperature 10 

DT,hf on the negative lag (modern direction) and vice versa. So IF(t) yields information about the cause and gives a handle for 

correctingallows us to correct this effect between the remaining mismatches of δ15N and temperature over the whole time 

series. The lags are not sharp signals, which results from due to the casefact that (i) the cross correlations are conducted over 

the whole analysed record, which leadsleading to an averaging of this cause and effect relationship as well as that (ii) IF(t) is 

a smoothed quantity itself. The correction of the reconstructed temperature after the high frequency part is conducted in the 15 

following way: From the two linear relationships between IF(t) and Dδ15N,hf at the two lags (lagmax,Dδ15N at xcfmax, lagmin,Dδ15N 

at xcfmin) two sets of δ15N correction values (Δδ15Nmax from xcfmax and Δδ15Nmin from xcfmin) are calculated. NowThen the 

lags are being inverted (Fig. 05c02c,e) shifting the two sets of the δ15N correction values to the attributed lags of the cross 

correlation between IF(t) and DT,hf (e.g. Δδ15Nmin to lag from xcfmax from the cross correlation between IF(t) and DT,hf) 

therefore changing the time assignments of Δδ15Nmin(t) and Δδ15Nmax(t) to Δδ15Nmin(t+lagmax,T) and Δδ15Nmax(t+lagmin,T). Now, 20 

the Δδ15Nmax and Δδ15Nmin are component wise summed up leading to the time series Δδ15Ncv(t). From Eq. (9 (10) with 

Δδ15Ncv,i instead of Dsmooth,i the corresponding temperature correction values are calculated and added to the high frequency 

temperature solution giving the corrected temperature Tcorr. Finally, Tcorr is used to run the firn model to calculate the 

corrected δ15N time series (Fig. 0603). This cause and effect relationship found in the cross correlations between IF(t) and 

Dδ15N,hf, and IF(t) and DT,hf, is exemplarily shown in Fig. 0502 for the scenario S1 and was found for all eight synthetic 25 

scenarios. The derived correction algorithm leads to a further reduction of the mismatches of about 40 % in δ15N and 

temperature (see Sect. 3.2). 

3. Results 

3.1 Monte Carlo type input generator 

Figure A07S08 shows the evolution of the mean misfit Dmean of δ15N offrom the synthetic target versus the modelled data as 30 

a function of the applied iterations for all synthetic scenarios. One can easily see that for all scenarios, there is show a steep 
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decline of the mismatch during the first 50- to 200 iterations followed by a rather moderate decrease, andwhich finally leads 

to a constant value. During the Monte Carlo part, it was possible to reduce the misfit of δ15N compared to the first guess 

solution by about 15 % to 75 % depending on the scenario and the mismatch of the first guess solution (Tablesee Tab. 01). 

This leads to a reduction of the temperature mismatches compared to the first guess temperature mismatch of about 51 % to 

87 %. 5 

Figures 04Figure 01 provides the comparison between the first guess and Monte Carlo solution versus the synthetic target 

data for the modelled δ15N (a-c) and surface temperature values (d-f) for the scenariosscenario S5. Subplots (a) and (d) show 

the time series of the synthetic target data (black dotted line), the first guess solution (blue line) and the Monte Carlo solution 

(red line) for δ15N and temperature. In subplots (b) and (e), the distribution of the pointwise mismatch Di of the first guess 

(blue) and the Monte Carlo solution (red) versus the synthetic target data for δ15N and temperature can be found. Subplots (c) 10 

and (f) contain the time series for Di for δ15N and temperature. The Di(δ15N) data is used later on to calculate the high 

frequency signal that is superimposed to the smooth temperature solution according to Eq. (9 (10) and Eq. (11 (12) (see 

Sect. 2.43.3). From Fig. 0401 it can be concluded that the Monte Carlo part of the reconstruction algorithm (step 2) leads to 

two major improvements of the first guess solution. First, it is obvious that the Monte Carlo approach corrects the offsets of 

the first guess input, which shifts the midpoint of the distribution of DiDmc,i to zero (see Fig. 04b01b,e). The second 15 

improvement is that the distribution becomes more symmetric and the misfit is overall reduced (the distributions become 

narrower) compared to the first guess, due to the middle passage through the δ15N targets. These improvements can be 

observed for all eight synthetic scenarios, showing the robustness of the Monte Carlo part (Tablesee Tab. 01, Fig. 04, and 

Fig. S03-S0901). 

3.2 High frequency step and final correction 20 

Figures 06Figure 03 provides the comparison between the Monte Carlo, the high frequency and the correction parts of the 

reconstruction procedure for the scenarios S5. Additional data and corresponding plots for all other scenarios can be found in 

Tabletable 02 and Fig. S10-S16. The upper four plots (a-d) illustrate each reconstruction step and their effect on the 

modelled δ15N,; the bottom four plots (e-h) show the corresponding results on the temperature. Plots (a) and (d) contain the 

time series of the synthetic δ15N or temperature target (black dotted line), the high frequency solution (blue line), and the 25 

final solution after the correction part (red line). For visibility reasons, subplots (b) and (f) display a zoom-in for a randomly 

chosen time window of about 500 yr for the same quantities, which shows the excellent agreement in timing and amplitudes 

of the modelled δ15N and temperature compared to the synthetic target data. Histograms (c) and (g) and subplots (d) and (h) 

show the distribution and the time series of the pointwise mismatches Di(Di for δ15N, ΔTi for temperature) between the 

modelled and the synthetic target data in δ15N and temperature for each reconstruction step. 30 

Compared to the Monte Carlo solution, the high frequency part leads to a large refinement of the reconstructions. For the 

mean δ15N misfits D, the improvement between the Monte Carlo and the high frequency parts is in the range of 64 % to 

76 % (see TableTab. 02). This leads to a reduction of the temperature mismatches of 43 % to 67 %. The standard deviations 
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(1σ) of the pointwise mismatches (Fig. 06c03c,d,g,h) in δ15N and temperature after the high frequency parts are in the range 

of about 2.7 permeg to 5.4 permeg for δ15N and 0.22 K to 0.40 K for the reconstructed temperatures depending on the 

scenario, which is clearly visible in the decreasing width of the histograms (subplots (c) and (g) of Fig. 0603, blue against 

grey). 

The mismatches after the correction part of the reconstruction approach show clearly a further decrease of the misfits. This 5 

means that the width of the distributions of the pointwise mismatches of δ15N as well as of temperature is further reduced, 

and the distributions become more symmetric (long tales disappear, see histogram (c) and (g) of Fig. 0603). The time series 

of the mismatches (subplots (d) and (h) of Fig. 0603) clearly illustrate that the correction approach mainly tackles the 

extreme deviations (sharp reduction of extreme values occurrence in the red distribution compared to the blue distribution) 

leading to a further improvement of about 40  % in δ15N and temperature. Finally, the 95  % quantiles of the remaining point 10 

wisepointwise mismatches of δ15N and temperature (Di or ΔTi) were calculated for the final solutions for all scenarios and 

are used as an estimate for the 2σ uncertainty of the reconstruction algorithm (see Fig. 06, Fig. S10-S16,03 and TableTab. 2). 

The final uncertainties (2σ) are in the order of 3.0 permeg to 6.3 permeg for δ15N and 0.23 K to 0.51 K for the surface 

temperature misfits. It is noteworthy that the measurement uncertainties (per point) of state of the art δ15N measurements are 

in the same order of magnitude, i.e. 3- permeg to 5 permeg (Kobashi et al., 2008), highlighting the effectiveness of the 15 

presented fitting approach(Kobashi et al., 2008b), highlighting the effectiveness of the presented fitting approach. Table 03 

contains the final mismatches (2σ) in Δage between the synthetic target and the final modelled data after the correction step 

for all scenarios and shows that with a known accumulation rate and assumed perfect firn physics, it is possible to fit the 

Δage history in the Holocene with mean uncertainties better than 2 yr. In other words, the uncertainty in Δage reconstruction 

due to the inversion algorithm alone is in the order of 2 yr. 20 

4. Discussion 

4.1 Monte Carlo type input generator 

Figure A06S07 shows the distribution of the cut off periods (cop) (I),) and the distribution of the s values (II) used to create 

the improvements (see methods Sect. 2.43.2) for all scenarios. The cop values are more or less evenly distributed, which 

shows that nearly the whole of the allowed frequency range (allowed cops were 500 yr to 2000 yr) was used to create the 25 

improvements during the iterations. In contrast, the distributions of the s values show clearly that mostly small s values are 

used to create the improvements, which implies that during the iterations with small perturbations are more likely lead to an 

improvement than larger ones. 

Yet, Fig. A07Figure S08 reveals a weak spotpoint of the Monte Carlo part, namely the absence of a suitable termination 

criterion for the optimization. The implementation until now is conducted such that the maximum number of iterations is 30 

given by the user or the iterations are terminated after a certain time (e.g. 15 h). Figure A07S08 shows that for nearly all 

scenarios it would be possible to stop the optimization after about 400 iterations, due to rather small additional 
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improvements later on. This would decrease the amount of time needed for the Monte Carlo part to about 10 h (a single 

iteration needs about 90 s). Since the goal of the Monte Carlo part is to find a temperature realisation that leads to an optimal 

middle passage through the δ15N target data, it would be possible to use the mean difference between the δ15N target and 

spline filtered δ15N data using a certain cut off period as a termination criterion. This issue is under investigation at the 

moment. Another possibility to decrease the time needed for the Monte Carlo part could be an increase in the numbers of 5 

CPUs used for the parallelization of the model runs. For this study an eight core parallelization was used. A further increase 

in numbers of workers would improve the speed of the optimization. 

4.2 High frequency step and final correction 

InSeveral analyses were conducted in order to investigate the remaining mismatches in δ15N and temperature after the high 

frequency and the correction part of the reconstruction, several analyses were conducted. respectively. First, the total misfit 10 

of δ15N (Dδ15Ntot) was separated into two fractions: gravitational (Dδ15Ngrav) and thermal diffusion mismatches (Dδ15Ntherm) of 

δ15N (Fig. 0704). Figure 0704 indicates that the main fraction of the total mismatch of δ15N is due to the misfit of the thermal 

diffusion component of the δ15N signal, whereas the gravitational misfit of δ15N has only a minor contribution. The ratio of 

the standard deviations σ(Dδ15Ntherm)/σ(Dδ15Ngrav) is about 2.4 for the high frequency solution, and about 2.3 for the corrected 

signal, showing that the misfit in the thermal diffusion part is more than twice as high as in the gravitational component. 15 

To investigate the timing and contributions of the mismatches in δ15N and temperature for scenario S1, different xcfs were 

calculated (Fig. A08aS09a-d). The same analyses were conducted for all synthetic scenarios, leading to similar results. In 

Fig. A08aS09a the xcf between the mismatch of total δ15N (Dδ15Ntot,hf) and the misfit of temperature (DT,hf) is shown. The 

cross correlation leads to two extrema (r1a=0.70, r2a=˗0.55) on two certain lags (l1a=˗2 yr, l2a=+126 yr). In subplot (b) and (c) 

the same analysis is conducted between the mismatch of the gravitational (Dδ15Ngrav,hf) component (b), and the thermal 20 

diffusion (Dδ15Ntherm,hf) component (c) of δ15N and the temperature mismatch. It is obvious that the xcf of (a) is a combination 

of (b) and (c). The direct correlation on l1a of (a) can be attributed mainly to the mismatch of the thermal diffusion 

component of δ15N, whereas the negative correlation on l2a is due to the mismatch of the gravitational component of δ15N. 

Regarding the xcfs of (a)-(c) at a certain lag l, i.e. l = 0 yr shows that here (and on most of the other lags) the correlations 

between Dδ15Ngrav,hf with DT,hf and Dδ15Ntherm,hf with DT,hf work in opposite directions, which makes it difficult to find a way to 25 

correct the remaining temperature mismatch using only information from Dδ15Ntot,hf
 for measurement data (wherewhen only 

Dδ15Ntot,hf is available). The correlation on l1a in (a) is weakened, whereas the lag l2a is shifted to higher values because of the 

superposition of gravitational and thermal diffusion mismatch. Figure A08dS09d shows also that the gravitational and 

thermal diffusion mismatches of δ15N are not independent, but the correlations at the extrema are relatively weak (r1d=0.38, 

r2d=˗0.56). The negative correlation r2d is a sign for the compensation effect between the gravitational and thermal diffusion 30 

signals in δ15N due to the high frequency part of the reconstruction, whereas no explanation could be found for the positive 

correlation r1d. The symmetric behaviour of the lags for r1d and r2d (l1d = ˗88 yr ≈ ˗l2d=93 yr) suggest that r1d could be an 

artefact of a periodic behaviour of Dδ15Ngrav,hf and Dδ15Ntherm,hf. Figure A09aFigures S10a-d show the same analysis after the 
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correction part of the reconstruction. It is evident that in all cases the extrema in the different xcfs break down due to the 

correction of the temperature signal, which is the consequence of the decreasing mismatches of temperature as well as of 

δ15N. The comparison of the subplots (a), (b) and (c) also shows that the remaining temperature misfits after the correction 

are mainly driven by the mismatches of the thermal diffusion signal of δ15N with a minor contribution of the gravitational 

misfit. 5 

Figures A08eS09e-h show the cross correlations between IF(t) used for the correction of the high frequency temperature 

solution, and the temperature misfit (e), the mismatch of total δ15N (f), the mismatch of the gravitational (g) and thermal 

diffusion (h) component of the δ15N signal calculated from the high frequency temperature solution. For the correction, the 

cross correlations (e) and (f) were used (see Sect. 2.43.4 and Fig. 0502). Since for measurementmeasured data neither 

information about the temperature mismatch (the true temperature is not known) nor about the mismatch of the components 10 

of δ15N (gravitational, thermal diffusion) are available, it is imperative that the symmetric behaviour between the xcf(IF(t), 

DT,hf(t)) and inverted xcf(IF(t), Dδ15Ntot,hf)(t)) holds true. This criterion is fulfilled for all eight synthetic data scenarios and 

especially for H1-H3. The comparison of the subplots (f), (g) and (h) of Fig. A08S09 show the same findings as before, 

namely that the xcf for IF versus Dδ15Ntot,hf is the combination of the xcfs of IF(t) versus Dδ15Ngrav,hf and IF(t) versus 

Dδ15Ntherm,hf, and that the major fraction of Dδ15Ntot,hf is contributed from Dδ15Ntherm,hf. The advantage to use IF(t) for the 15 

correction is the symmetry between the two cross correlations, which is created by two factors. The first one is the allocation 

of the window mid position to the entries of IF, which leads to the symmetric behaviour of the gravitational and thermal 

diffusion misfits. Second, the shifting of the window in 1 yr steps creating IF(t) over the whole data set leads to an averaged 

information, but even more importantly, to constant dependencedependency between the temperature and δ15N mismatches. 

This can be used later on to fit measurementmeasured data. 20 

Additionally, the influence of the window length, used for the construction of IF(t), on the correction was analysed. The 

construction was conducted for different window lengths ranging from 50 yr to 750 yr (Fig. A10S11). Also, the correction 

was calculated by using only xcfmax or xcfmin of IF(t) versus Dδ15N,hf for correcting the temperature input. Figures A10aS11a,b 

show the remaining mismatches of δ15N (Dδ15N,corr) (a), and temperature (DT,corr) (b) after the correction as a function of the 

used window length for IF(t). The analysis shows that for all investigated window lengths the correction reduces the 25 

mismatches of δ15N and temperature, whatever correction mode was used (calculated with xcfmax, xcfmin, or both quantities, 

see comparison with the blue line in (a) and (b)). Furthermore, the correction works best for window lengths in the range of 

100 yr to 300 yr with an optimum at 200 yr for all cases. This indicates that the maximum mean duration effect of a δ15N 

mismatch creating a temperature mismatch (and vice versa) is in the same range for the investigated scenarios and such 

small deviations (low permeg level). It is also visible that the correction using both extrema (xcfmax and xcfmin) leads to a 30 

better correction as the approach using only one quantity. This is somehow surprising because the two extrema are the result 

of the periodicity of IF(t), Dδ15N,hf and DT,hf. OneAn explanation for thatthis result could be that a larger section of the 

temperature time series is corrected when both extrema are used for the correction, due to shiftingshifts in both directions. 

The correction using xcfmax only leads to a better fit than the one with xcfmin, which can be attributed to the higher correlation 
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between IF(t) and Dδ15N,hf. Figures A10eS11e,f show the evolution of the lags corresponding to the two extrema for the cross 

correlations between IF(t), and the δ15N and temperature mismatches, respectively. The linear dependency between the lags 

and the window length (the lags are nearly half of the window length) is the result of the construction of IF(t), which means 

the averaging due to the integration in the window of this certain length and the symmetric behaviour due to the allocation of 

the window mid position to the entries of IF(t). 5 

4.3 Key points to be considered for the application to real data  

Benefits of the novel gas isotope fitting approach 

In addition to the fitting of δ15N data, the algorithm is able to fit δ40Ar and δ15Nexcess data as well using the same basic 

concepts (Fig. S12). Here the δ40Ar and δ15Nexcess data from Kobashi et al. (2008) were used as the fitting targets using the 

same approach. We reach final mismatches (2σ) of 4.0 permeg for δ40Ar/4 and 3.7 permeg for δ15Nexcess, which are for both 10 

quantities below the analytical measurement uncertainty of 4.0 permeg to 9.0 permeg for δ40Ar/4 and 5.0 permeg to 

9.8 permeg for δ15Nexcess measured data (Kobashi et al., 2008).  

The automated inversion of different gas isotope quantities (δ15N, δ40Ar, δ15Nexcess) provides a unique opportunity to study 

the differences in the gained solutions using different targets and to improve our knowledge about the uncertainties of gas 

isotope based temperature reconstructions using a single firn model. Next, the presented algorithm is not dependent on the 15 

firn model, which leads to the implication that the algorithm can be coupled to different firn models describing firn physics 

in different ways. Furthermore, an automated reconstruction algorithm avoiding manual manipulation and leading to 

reproducible solutions makes it possible for the first time, to study and learn from the differences in between solutions 

matching different targets. Finally, differences obtained by applying different firn physics (densification equations, 

convective zone, etc.) but the very same inversion algorithm may help to assess firn model shortcomings, resulting in more 20 

robust uncertainty estimates than it was ever possible before.  

In this publication we show the functionality and the basic concepts of the automated inversion algorithm using well known 

synthetic δ15N fitting targets. In this “perfect world scenario” the forward problem, converting surface temperature to δ15N, 

as well as the inverse problem, converting δ15N to surface temperature, is completely described by the used firn model. 

Consequently all sources of signal noise are ignored. For the later use of the algorithm on δ15N, δ40Ar or δ15Nexcess measured 25 

data this will not be the case anymore due to different sources of signal noise in the used measured data. As a result, 

differences in between temperature solutions obtained from individual targets (δ15N, δ40Ar, δ15Nexcess) will become obvious. 

These differences will allow to quantify the uncertainties associated with different unconstrained processes. Next, we will 

list and discuss potential sources of uncertainties and try to provide suggestions for their handling and quantification in our 

approach.  30 

 
Measurement uncertainty and firn heterogeneity (cm-scale variability): 
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Many studies have investigated the influence of firn heterogeneity (or density fluctuations) on measurements of air 

compounds and quantities (e.g. δ15N, δ40Ar, CH4, CO2, O2/N2 ratio, air content) extracted from ice cores resulting in cm-scale 

variability and leading to additional noise on the measured data (e.g., Etheridge et al., 1992; Huber and Leuenberger, 2004; 

Fujita et al., 2009; Capron et al., 2010; Hörhold et al., 2011; Rhodes et al., 2013, 2016; Fourteau et al., 2017). Using discrete 

measurement technique instead of continuous sampling methods makes it difficult to quantify these effects. However, during 5 

discrete analyses of ice core air data it is common to measure replicates for given depths, from which the measurement 

uncertainties of the gas isotope data is calculated using pooled-standard-deviation (Hedges L. V., 1985). Often it is not 

possible to take real replicates (same depth) and instead the replicates are taken from nearby depths. Hence, any potential 

cm-scale variability is to some degree already included in the measurement uncertainty, because each measurement point 

represents the average over a few centimetres of ice. This is especially the case for low accumulation sites or glacial ice 10 

samples for which the vertical length of a sample (e.g., 10-25 cm long for the glacial part of the NGRIP ice core, Kindler et 

al., 2014) covers the equivalent of 20 yr to 50 yr of ice at approximately 35 kyr b2k. Increasing the depth resolution of the 

samples would increase our knowledge of cm-scale variability, for e.g. identifying anomalous entrapped gas layers that 

could have been rapidly isolated from the surface due to an overlying high density layer (e.g., Rosen et al., 2014). As this 

variability is likely due to heterogeneity in the density profile, modelling such heterogeneities (if possible at all) may not 15 

help to better reconstruct a meaningful temperature history, but rather to reproduce the source of noise. This means that the 

potential cm-scale variability, in many cases, is already incorporated in the analytical noise obtained from gas isotope 

measurements, due to analytical techniques themselves. Assuming the measurement uncertainty as Gaussian distributed, it is 

easy to incorporate this source of uncertainty in the inverse modelling approach presented here. This will increase the 

uncertainty of the temperature according to Eq. (10).The same equation can also be used for the calculation of the 20 

uncertainty in temperature related to measurement uncertainty in general. 

To answer the pertinent question of how to better extract a meaningful temperature history from a noisy ice core record, an 

excellent – but costly – solution is of course to use multiple ice cores. For example, a δ15N-based temperature reconstruction 

from the combination of data from the GISP2 ice core with the “sister ice core” GRIP drilled only a few kilometres apart is 

likely one of the best ways to overcome potential cm-scale variability. A comparison of ice cores that were drilled even 25 

closer might be even more advantageous. 

 

Smoothing effects due to gas diffusion and trapping: 

It is known that gas diffusion and trapping processes in the firn can smooth out fast signals and result in a damping of the 

amplitudes of gas isotope signals (e.g. Spahni et al., 2003; Grachev and Severinghaus, 2005). The duration of gas diffusion 30 

from the top of the diffusive column to the bottom where the air is closed off in bubbles is for Holocene conditions in 

Greenland approximately in the order of 10 yr (Schwander et al. 1997), whereas the data resolution of the synthetic targets 

was set to 20 yr to mimic the measurement data from Kobashi et al. (2008) with a mean data resolution of about 17 yr (see 

Sect. 2.3: “Generating synthetic target data”). In the study of Kindler et al. (2014) it was shown that a glacial Greenland LID 
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leads to a damping of the δ15N signal of about 30 % for a 10 K temperature rise in 20 yr. We further assume that the 

smoothing according to the lock-in process is negligible for Greenland Holocene conditions according to the much smaller 

amplitude signals and shallower LID. Yet, for glacial conditions it requires attention. 

 

Accumulation rate uncertainties: 5 

For the synthetic data study presented in this paper it is assumed that the used accumulation rate data is well known with 

zero uncertainty. This simplification is used to show the functionality and basic concepts of the presented fitting algorithm in 

every detail on well-known δ15N and temperature targets and to focus on the final uncertainties originating from the 

presented fitting algorithm itself. For the later reconstruction using measured gas isotope data together with the published 

accumulation rate scenarios shown in Fig. S01 this will not be the case anymore. Uncertainties in layer counting and 10 

corrections for ice thinning lead to a fundamental uncertainty. Especially in the early Holocene, this can easily exceed 10 %. 

As the accumulation rate data is used to run the firn model, all potential accumulation uncertainties are in part incorporated 

into the temperature reconstruction. On the other hand, as we discussed in section 2.3, the accumulation rate variability has a 

minor impact compared to the input temperature on the variability of δ15N data in the Holocene (see also Fig. S03, Fig. S04). 

The influence of these quantities, accumulation rate or temperature, on the temperature reconstruction is not equal; during 15 

the Holocene, accumulation rate variability explains about 12 % to 30 % of δ15N variability. 30 % corresponds to the 8.2 kyr 

event and 12 % for the mean of the whole Holocene period including the 8.2 kyr event. Hence the influence of accumulation 

changes, excluding the extreme 8.2 kyr event, is generally below 10 % during the Holocene. If the accumulation is assumed 

to be completely correct then the missing part will be assigned to temperature variations. Nevertheless for the fitting of the 

Holocene measurement data we will use all three accumulation rate scenarios as shown in Fig. S01. The difference in the 20 

reconstructed temperatures arising from the differences of these three scenarios will be used for the uncertainty calculation as 

well and is most likely higher than the uncertainty arising from uncertainties due to the process of producing the 

accumulation rate data and from the conversion of the accumulation rate data to the GICC05 timescale. 

 

Convective zone variability: 25 

Many studies have shown the existence of a non-diffusive zone at the top of the diffusive firn column, called convective 

zone (CZ). The CZ is formed by strong katabatic winds and pressure gradients between the surface and the firn (e.g. 

Kawamura et al., 2006, 2013; Severinghaus et al., 2010). The existence of a CZ changes the gravitational background signal 

in δ15N and δ40Ar as it reduces the diffusive column height. The presented fitting algorithm was used together with the two 

most frequently used firn models for temperature reconstructions based on stable isotopes of air, the Schwander et al. (1997) 30 

model which has no CZ build in (or better a constant CZ of 0 m) and the Goujon firn model (Goujon et al., 2003) (which 

assumes a constant convective zone over time, that can easily be set in the code). This difference between the two firn 

models only changes significantly the absolute temperature rather than the temperature anomalies as it was shown by other 

studies (e.g., Guillevic et al., 2013, Fig. 3). In the presented work, we show the results using the model from Schwander et al. 
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(1997), because the differences between the obtained solutions using the two models are negligible besides a constant 

temperature offset. Also, noteworthy is that there is no firn model at the moment which uses a dynamically changing CZ. 

Indeed, this should be investigated but requires additional intense work. Additionally, the knowledge of the time evolution of 

CZ changes for time periods of millennia to several hundreds of millennia (in frequency and magnitude) is too poor to 

estimate the influence of this quantity on the reconstruction. In principle it is possible to cancel out the influence of a 5 

potentially changing CZ by using δ15Nexcess data for temperature reconstruction, as due to the subtraction of δ40Ar/4 from 

δ15N the gravitational term of the signals is eliminated. From that point of view it will be interesting to compare temperature 

solutions gained from δ15Nexcess fitting with the solutions based on δ15N or δ40Ar alone. This can offer a useful tool for 

quantifying the magnitude and frequency of CZ changes in the time interval of interest.  

It is known that for some very low accumulation rate sites in areas with strong katabatic winds (e.g. “Megadunes”, 10 

Antarctica) extremely deep CZs can occur, which are potentially able to smooth out even decadal-scale temperature 

variations (Severinghaus et al., 2010). For this its deepness would need to be of several dozens of meters, which is highly 

unrealistic even for glacial Summit conditions (Guillevic et al., 2013, see discussion in Annex A4, p. 1042) as well as for the 

rather stable Holocene period in Greenland for which no low accumulation and strong katabatic wind situations are to be 

expected.  15 

4.4 Proof of concept for glacial data 

For glacial conditions the task of reconstructing temperature (with correct frequency and magnitude) without using δ18Oice 

information is much more challenging due to the highly variable gas age - ice age differences (Δage) between stadial and 

interstadial conditions. Here, contrary to the rather stable Holocene period, the Δage can vary by several hundreds of years. 

Also the accumulation rate data is more uncertain than for the Holocene. To prove that the presented fitting algorithm also 20 

works for glacial conditions we inverted the δ15N data measured for the NGRIP ice core by Kindler et al. (2014) for two 

Dansgaard-Oeschger events, namely DO6 and DO7. Since the magnitudes of those events are higher and the signals are 

smoother than in the Holocene we only had to use the Monte Carlo type input generator (see Sect. 2.3.2) for changing the 

temperature inputs. To compare our results to the δ18Oice based and manually calibrated values from Kindler et al. (2014) we 

use the ss09sea06bm time scale (NGRIP members: Andersen et al., 2004; Johnsen et al., 2001) as it was done in the Kindler 25 

et al. publication. For the model spin-up we use the accumulation rate and temperature data from Kindler et al. (2014) for the 

time span 36.2 kyr to 60 kyr. The reconstruction window (containing DO6 and DO7) is set to 32 kyr to 36.2 kyr. As the first 

guess (starting point) of the reconstruction we use the accumulation rate data for NGRIP from the ss09sea06bm time scale 

together with a constant temperature of about -49 °C for this time window. As minimization criterion D for the 

reconstruction we simply use the sum of the mean squared errors of the δ15N and Δage mismatches weighted with their 30 

uncertainties (wRMSE) according to the following equation instead of the mean δ15N misfit alone as used for the Holocene 

(Eq. (8)). 
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Here 𝜀𝜀𝛿𝛿15𝑁𝑁,𝑠𝑠 and 𝜀𝜀𝛥𝛥𝑔𝑔𝑔𝑔𝑒𝑒,𝑗𝑗 are the uncertainties in δ15N and Δage for the measured values i or j (Δage match points: Guillevic, 

M. (2013), p.65, Tab. 3.2) and N, M the number of measurement values. We set 𝜀𝜀𝛿𝛿15𝑁𝑁,𝑠𝑠 = 20 permeg for all i (Kindler et al., 

2014) and 𝜀𝜀𝛥𝛥𝑔𝑔𝑔𝑔𝑒𝑒,𝑗𝑗 = 50 yr for all j. The relative uncertainties in Δage can easily reach up to 50 % and more in the Glacial 

using the ss09sea06bm time scale which results in a pre-eminence of the δ15N misfits over the Δage misfits (10 % to 20 % 5 

when using GICC05 time scale, Guillevic (2013), p. 65 Tab. 3.2). Due to this issue we have to set Δage uncertainties to 50 yr 

to make both terms equally important for the fitting algorithm. In Fig. S13 we show preliminary results. The δ15N and Δage 

fitting (a, b) and the resulting gained temperature and accumulation rate solutions (c, d) using the presented algorithm are 

completely independent from δ18Oice which provides the opportunity to evaluate the δ18Oice based reconstructions. In this 

study the algorithm was used in three steps. First, starting with the first guess (constant temperature), the temperature was 10 

changed as explained before. The accumulation rate was changed in parallel to the temperature allowing a random offset 

shift (up and down) together with a stretching or compressing (in y direction) of the accumulation rate signal over the whole 

time window (32 kyr to 36.2 kyr). This first step leads to the “Monte Carlo Solution 0” (MCS0) which provides a first 

approximation and is the base for the next step. For the next step, we fixed the accumulation rate and let the algorithm only 

change the temperature to improve the δ15N fit (MSC1). Finally, we allow the algorithm to change the temperature together 15 

with the accumulation rate using the Monte Carlo type input generator for both quantities. This allows to change the shape of 

the accumulation rate data. This final step can be seen as a fine tuning of the gained solutions from the steps before. The 

obtained mismatches in δ15N and Δage of all steps are at least of the same quality or better than the δ18Oice based manual 

method from Kindler et al. (2014) (see Tab. S02). The gained temperature solutions show a very good agreement in timing 

and magnitude compared to the reconstruction of Kindler et al. (2014). Also the accumulation rate solutions show that the 20 

accumulation has to be reduced significantly compared to the ss09sea06bm data to allow a high quality fit of the δ15N and 

Δage target data, a result highly similar to Guillevic et al. (2013) and Kindler et al. (2014). The mismatches in δ15N and Δage 

of the final MCS FIN solution show a 15 % smaller misfit in δ15N (2σ) and an about 31 % smaller misfit for Δage (2σ) 

compared to the Kindler et al. (2014) solution. Keeping in mind that the used approach is completely independent from 

δ18Oice strengthens the functionality and quality of the presented gas isotope fitting approach also for glacial reconstructions. 25 

As this section contains a proof of concept of the presented automated gas isotope fitting algorithm on glacial data, 

preliminary results and ongoing work were shown here. Furthermore as the presented fitting algorithm was developed and 

tested in first order for Holocene like data, it is highly probable that the functionality of the algorithm using glacial data will 

be further extended and adjusted in future studies. 
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5. Conclusion 

A novel approach is introduced and described for inverting a firn densification and heat diffusion model to fit small gas 

isotope data variations as observed throughout the Holocene. From this new fitting method, it is possible to extract the 

surface temperature history that drives the firn status which in turn leads to the gas isotope time series. The approach is a 

combination of a Monte Carlo samplingbased iterative method and quantitative datathe analysis of remaining mismatches 5 

between modelled and target data. The procedure works fully automated and provides a high potential for parallel computing 

for time consumption optimization. Additional sensitivity experiments have shown that accumulation rate changes have only 

a minor influence on short term variations of δ15N, which themselves are mainly driven by high frequency temperature 

variations. To evaluate the performances of the presented approach, eight different synthetic δ15N time series were created 

from eight known temperature histories. The fitting approach leads to an excellent agreement in timing and amplitudes 10 

between the modelled and synthetic δ15N and temperature data, leading to mismatches in the low permeg level for δ15N and 

to related temperature deviations of a few tenths of Kelvin (2σ, respectively).. The obtained, final mismatches follow a 

symmetric, standard distribution function. 95 % of the mismatches compared to the synthetic data are in an envelope in 

between 3.0- permeg to 6.3  permeg for δ15N and 0.23- K to 0.51 K for  K for temperature, depending on the synthetic 

temperature. history scenarios. These values can therefore be used as a 2σ estimate for the reconstruction uncertainty arising 15 

from the presented fitting algorithm itself. For δ15N the obtained final uncertainties are in the same order of magnitude as 

state of the art experimental measurement uncertainty. The presented reconstruction approach was also successfully applied 

to δ40Ar and δ15Nexcess measured data (Döring et al., in prep.). After the successful tests of the presented method using 

synthetic data, it is worthwhile to apply it in a next step to existing high resolution isotope measurements. Besides Holocene 

temperature reconstructions,. Moreover, we have shown that the presented fitting approach can also be applied to glacial 20 

temperature reconstructions (Döring et al., in prep.), and it is with minor algorithm modifications. Based on the demonstrated 

flexibility of our inversion methodology, it is reasonable to adapt thethis approach for reconstructions of other non-linear 

physical processes. 
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