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Continuous wavelet transform  

 

In this section we describe step-by-step our empirical wavelet mode decomposition. First, since 

the raw signals consist in unevenly spaced time series, each dataset is re-sampled (using linear 

interpolations when necessary) at the frequency of one observation every ten years and centered so 

that it has zero mean. 

 The Lomb-Scargle periodograms plotted in Fig.5 (see text) are obtained with the plomb Matlab 

function from the raw (irregularly spaced) signals. 

The rest of this work is based on the continuous wavelet transform (CWT); self-made codes 

implemented for Scilab are available upon request (see also the toolbox …). The main wavelet-

related principles involved in this study are inspired from (Deliège et al., 2016; Nicolay S., 2011; 

Nicolay et al., 2009)] and are summarized below. More information about wavelets and the CWT 

can be found in e.g. (Daubechies I., 1992; Mallat S., 1999; Meyer Y., 1993; Torrence and Compo, 

199). 

Given a wavelet ψ and a function f, the wavelet transform of f at time t and at scale a > 0 is 

defined as 

 

where ψ¯ is the complex conjugate of ψ. In the context of time-frequency analysis, it is 

recommended to use a wavelet well-located in the frequency domain ([7]). In this work, we use the 

wavelet ψ defined by its Fourier transform as 

 

 

with Ω = π√2/ln2, which is similar to the Morlet wavelet but with exactly one vanishing moment 

([5]). Since  can be considered as a progressive wavelet (i.e. is zero for 

negative arguments) and thus allows an easy recovery of trigonometric functions. Indeed, if f(x) = 

cos(ωx), then 

. 

Therefore, for a fixed time t, if a* stands for the scale at which the function 

a → |Wf(t,a)| reaches its maximum, then we have a*ω = Ω. Consequently, the value of ω can be 

obtained (if unknown) and f is recovered with the real part of its CWT: f(x) = 2ℜ(Wf(x,a*)). 

Drawing on this principle, the general scheme for extracting the dominant components of a given 

function f is the following. 

1. The CWT of  f  is computed and the application (t,a) → |Wf(t,a)| can be seen as a time-

frequency representation of  f. 
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2. The wavelet-based spectral composition of f, also called wavelet spectrum of  f, i.e. the 

wavelet counterpart of its Fourier spectrum, is obtained as 

Λ : a → Et |Wf(t,a)|, 

where Et denotes the mean over time. 

3. For each scale s at which Λ reaches a local maximum, a component cs is extracted from f 

as cs(x) = 2ℜ(Wf(x,s)). 

By adding the modes obtained this way, the CWT allows an almost complete reconstruction of  f 

with smooth amplitude modulated-frequency modulated (AM-FM) components. However, it is 

slightly different in practice because the signal considered has a finite length and thus has to be 

padded at its edges. The chosen padding (zero-padding in the present case) irremediably flaws a 

certain proportion of the wavelet coefficients, which creates a so-called cone of influence (see e.g. 

Deliège and Nicolay, 2016). Even though it is generally impossible to correct exactly the border 

effects, noticeable improvements can be made to sharpen the edges of the components extracted and 

the reconstruction of the initial signal by iterating the process described above. More precisely, the 

technique used in this work in complement to the previous algorithm is the following.  

Let us imagine that the components of interest are located at scales (si)i∈I (for some set of indices 

I). Then, at the first iteration of steps 1 to 3 we extract (c1
i)i∈I as ci

1(x) = 2ℜ(Wf(x,si)). We now perform 

the CWT and the extraction at the same scales (si)i∈I but with 

 

and get the modes (c2
i)i∈I, then again repeat the process with f2 = f1 − ∑ i∈I c2

i, and so on. The 

iterations stop when the components extracted are not significant anymore, i.e. at iteration J if 

 

where ∥.∥ denotes the energy (square of L2 norm) of a signal and α is a threshold chosen as 0.01. 

The final components (ci)i∈I are then obtained as 

J 

ci = ∑cji. 
j=1 

Although most of the energy of f has already been drained at the end of the procedure described 

in this section, it may turn out useful to examine what kind of information still remains in f. For that 

purpose, the whole method can be applied to f -∑i∈I ci to find out which frequencies might have been 

hidden behind the dominant ones and thus obtain “secondary components”, if any. 
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Original data (PN trace element contents, sunspot number, and temperature) were filtered 

according to the dominant periods revealed by the CWT (Fig.1-5).  

Figure 1: the Gleissberg cycle (70-100 yr) 
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Figure 2: de Vries cycle (200-210 yr) 

 

 
Figure 3: Unnamed cycles 350 yrs  
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Figure 4: Unnamed cycles 550 yrs  
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     Figure 5: Eddy cycle (1000 yr) 


