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Supplementary Material to  
 
"Signal detection in global mean temperatures after "Paris": an uncertainty and sensitivity analysis" 
 

In our study we have selected trend models which not only estimate a trend over time but also yield uncertainties 5 
for trend increments. However, this requirement appears to limit our model choices considerately. First, many 
methods are not statistical in nature, such as moving averages (Hansen et al., 2010; Smith et al., 2015; Fyfe et al., 
2016), binomial filters (Morice et al., 2012), wavelets with scale dependencies (Lin and Franzke, 2015), EEMD 
decomposition (Wei et al., 2015; Yao et al., 2015) or linear trends based on stair-step averages with variable lengths 
(De Saedeleer, 2016). A historic example is given in figure SM.1, based on the work of Callender (1938). 10 
     Next to that, a number of methods do not generate estimates at the beginning and ending of the GMT series due 
to the dependence on ‘windows’. Examples are moving averages, OLS linear trends with moving windows (Risbey 
et al., 2015; Marotzke and Forster, 2015) and the staircase approach by De Saedeleer (2016).  
 

Trend models applied to GMT datasets can be categorized methods into three groups:  15 
• Empirical models. These are trend models which are in principle data-based and may be steered by 

qualitative physical insights, such as the choice of a fixed window in combination with moving 
averages (Easterling and Wehner 2009; Hansen et al., 2010; Cowtan and Way, 2014; Roberts et al., 
2015). Other trend models are OLS linear trends with varying sample periods (IPCC 2013 - Box 2.2, 
figure 1a; Karl et al., 2015; Rajaratnam et al., 2015), linear trends with change points (Cahill et al., 20 
2015), binomial filters (Morice et al., 2012), splines (IPCC, 2013 - Box2.2, figure b), EEMD 
decomposition (Wei et al., 2015; Yao et al., 2015), structural time series models (Visser and Molenaar, 
1995; Mills, 2006, 2010) and long-memory trend models (Lennartz and Bunde, 2009; Rea et al., 2011). 

• Semi-empirical methods with stationary regressors. These methods are also data-based but physics may 
enter trend estimates by adding stationary climate indices in the context of regression models. An 25 
example is given by Forster and Rahmstorf (2011) who apply a linear regression model with three 
regressors (MEI, AOD and TSI). Other references are Visser and Molenaar (1995), Yao et al. (2015) 
and Trenberth (2015). 

• Semi-empirical methods with non-stationary regressors. These models differ from semi-empirical 
models in that non-stationary regressors are used as well, such as global CO2 emissions. Typical 30 
examples are given by Imbers et al. (2013) and Hawkins et al. (2017). An example where GMT data are 
treated as regressor to model global sea levels, has been given by Rahmstorf (2007). 

 
A detailed description of methods is given in table SM.1. For background information please see Chandler and 
Scott (2011), Mudelsee (2014) and Visser et al. (2015).  35 
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     From the range of available trend methods we selected trend methods from the group of empirical models, that 
is models (8) and (16), based on cubic spline functions and Structural Time series Models (STMs) and the Kalman 
filter, resp. As mentioned in the Introduction, the rationale for choosing these particular models from table 1 is 
twofold: (i) the models are flexible, this in contrast to methods based on linear trends, and (ii) the models contain 40 
full uncertainty information for trend estimates and trend increments. Based on these choices, models (3) - (6), 
(18) and (19) are less appropriate since they all assume linearity; models (1), (7), (9) - (15) and (17) are less 
appropriate since these methods are not statistical in nature. Next to that, models (1), (2) and (5) are not very well 
suited for tracking GMT signals since they assume fixed windows which implies that no trend estimates are 
available at the beginning and ending of the GMT series. 45 

     Furthermore, we decided not to use models from the semi-empirical approaches since relations in in the climate 
system are (highly) non-linear. Therefore, we preferred GMT curves derived from GCM simulations where these 
non-linearities and feedbacks are accounted for (see main text). 

 

Linear trend 50 

The first trend we select is a linear fit by ordinary least squares (OLS), chosen by IPCC (2013) as their main 
method. Uncertainties simply follow from the linear model:  

 
                                var(Δµ2016) = var([a+b*2016] - [a+b*1880])  =  1252 * var(b)  

 55 

where ‘a’ is the intercept and ‘b’ the slope. The variance of ‘b’ follows from the OLS equations. Next to that the 
variance estimate is corrected by calculating effective sample sizes (IPCC 2013 - Ch. 2 Sup. Mat.). This 
correction is important since residuals are not white noise. Estimates are shown in figure SM.1 
 

The Integrated Random Walk  60 

The Integrated Random Walk (IRW) trend model is part of the wider class of Structural Time series Models 
(STMs) and reads as: 
 

       𝑦𝑦𝑡𝑡 =  𝜇𝜇𝑡𝑡 + 𝜀𝜀𝑡𝑡    and     𝜇𝜇𝑡𝑡 − 2𝜇𝜇𝑡𝑡−1 + 𝜇𝜇𝑡𝑡−2 = 𝜂𝜂𝑡𝑡                                  (1) 
 65 
 
where yt denotes a measurement at time t and µt the trend component. The terms 𝜂𝜂𝑡𝑡  and 𝜀𝜀𝑡𝑡  are independent, 
normally distributed, white noise processes with zero mean. The variables x1,t and x2,t stand for the inclusion of 
explanatory variables (regressors). The OLS linear trend, as applied in models (3) - (6), is a special case of the 
IRW trend approach (arising if the noise process 𝜂𝜂𝑡𝑡 is set to zero). The IRW trend can therefore be seen as a natural 70 



3 
 

extension of the straight line, in which the full uncertainty information is retained (Visser 2004; Visser et al., 2012; 
Visser et al., 2014). The noise variance 𝜂𝜂𝑡𝑡 can be seen as the flexibility parameter of the trend model and this noise 
variance can be optimized by Maximum Likelihood (ML) optimization. 
     Under the assumption of normality, the Kalman filter provides optimal estimates. In mathematical jargon, the 
filter yields the minimum mean square estimator (MMSE) of trend estimates. If the noise processes are not 75 
normally distributed, the filter generates the minimum mean square linear estimator (MMSLE). We refer to Harvey 
(1989), Durbin and Koopman (2001), and Chandler and Scott (2011 – Section 5.5) for details. Estimation results 
for the HadCRUT4 dataset are shown in figure 2. 
 
Cubic splines 80 
Smoothing splines have frequently been applied in environmental research. For a theoretical background we refer 
to Hastie et al. (2001) and Chandler and Scott (2011 - Section 4.1.3). An application of splines to GMT series has 
been given in IPCC (2013 - Box 2.2, figure 1). Smoothing splines are not statistical in nature and, thus, do not 
generate uncertainty estimates. However, uncertainty bands can be reconstructed by Monte Carlo (MC) simulation. 
A detailed procedure is given by Mudelsee (2014 - Section 3.3). We followed the approach of generating so-called 85 
surrogate series. The procedure is illustrated in figure 1. 
     The flexibility of the trend shown in the upper panel of figure 1, is chosen by expert judgment and closely 
resembles the smoothing spline shown in IPCC (2013 - Box 2.2, figure 1). However, this flexibility can also be 
steered by characterizing the correlation structure of residuals, that is the difference between the GMT series and 
the spline. This correlation structure can be found by quantifying the noise structure in natural variability of GCM 90 
simulations. Such simulations are available as ‘PiControl runs’ in the CMIP5 suit of simulations.  
     The correlation structure of natural variability can be quantified by estimating AutoRegressive Moving Average 
(ARMA) models to the individual control runs (Hunt 2011, Roberts et al. 2015). From the analysis of 20 PiControl 
runs we found that natural variability can reasonably be characterized by AR(1) processes where the AR(1) 
parameter φ varies within the range [0.28 - 0.60], depending on the GCM run chosen. We note that in some cases 95 
MA(1) or ARMA(1,1) models performed somewhat better as checked by comparing AIC values. Thus, the AR(1) 
is a compromise to ease the analysis. Next to that AR(1) models are widely applied in climate research (e.g., 
Mudelsee, 2014). Results are shown in figure SM.4 where we have chosen the endpoints of the φ range: 0.28 and 
0.60. 
 100 
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Table SM.1. Summary of three groups of modeling approaches to global mean temperatures: (i) empirical, (ii) 
semi-empirical with stationary regressors, and (iii) semi-empirical with non-stationary regressors. In the fourth 
column the presence of uncertainties for rates of change is given  ([µt - µs] ± ?). The term ‘not explicitly’ means 110 
that uncertainties could be calculated in principle but not shown by the author(s). 
 

Empirical approaches [µt - µs]  
± ? 

1  Decadal aggregation, no trend Callendar (1938 - figure SM.1),  IPCC (2013 
- figure SPM.1a & figure 2.19) 

no 

2 Moving averages with prescribed 
window length (varying from 5 to 50 
years) 

Callendar (1938), Easterling and Wehner 
(2009), Hansen et al. (2010, Figure 9), Kokic 
et al. (2014), Cowtan and Way (2014), 
Roberts et al. (2015) Smith et al. (2015), Fyfe 
et al. (2016)   

no 

3 OLS linear trends, with various 
corrections for correlated noise 

Rajaratnam et al. (2015) yes 

4 OLS linear trends for varying sample 
periods, with corrections for 
correlated noise 

IPCC (2013 - Ch.2: Box 2.2, figure 1a), Karl 
et al. (2015) 

yes 

5 OLS linear trend with moving 
windows 

Risbey et al. (2014), Marotzke and Forster 
(2015)   

only for 
[µt - µt-1]  

 
6 Linear trends with change points (CP) Cahill et al. (2015), Rahmstorf et al. (2017)  not 

explicitly 
7 Linear trends, based on stairstep 

averages with variable lengths 
De Saedeleer (2016) yes, by 

color 
graphs 

8 Splines with Monte Carlo simulation IPCC (2013 - Ch.2: Box 2.2, figure 1b), this 
article (with CMIP5-derived AR(1) noise) 

yes 

9 21-term binomial filter Morice et al. (2012) no 
10 Hodrick-Prescott and Butterworth 

low-pass filters  
Mills (2006) no 

11 Smooth transition trends Mills (2006) no 
12 Adaptive filtering with padding Mann (2008) no 
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13 Wavelets with scale-dependencies Lin and Franzke (2015) no 
14 EEMD decomposition Wei et al. (2015), Yao et al. (2015) no 
15 ARIMA decomposition Mills (2006)   no 
16 IRW trend model, part of the STM 

group of models 
Visser and Molenaar (1995), Mills (2006, 
2010), this article 

yes 

17 Long memory trend models Lennartz and Bunde (2009), Rea et al. (2011) no 
Semi-empirical approaches, stationary regressors  

18 Linear for selected PDO regimes Trenberth (2015) no 
19 Multiple regression models with 

linear trend, aerosols and solar 
Forster and Rahmstorf  (2011) yes 

20 EEMD decomposition with 
correlations PDO and AMO 

Yao et al. (2015) no 

21 STMs with regressors Visser and Molenaar (1995) yes 
Semi-empirical approaches, non-stationary regressors  

22 Regression models with GHGs, SOI, 
TSI, volcanic, ARMA noise 

Kokic et al. (2014) not 
explicitly 

23 Cointegration, ARIMA, trend breaks, 
RF, GHGs 

Kaufmann et al. (2006, 2013) not 
explicitly 

24 Regression models with ENSO, 
AMO, GHG, solar, aerosols and 
AR(1) noise  

Imbers et al. (2013),  
reprinted in IPCC (2013 - Ch. 10) 

not 
explicitly 

25 Regression models with forcings from 
GHGs, aerosols, solar activity, 
volcanic activity and Nino3.4 as 
regressors 

Hawkins et al. (2017, their approach 1) 
yes 

26 Scaling model with local temperature 
series as regressors (CET, De Bilt) 

Hawkins et al. (2017, their approach 3) yes 
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Figure SM.1 Graph taken from Callendar (1938). The fourth curve represents his GMT series, based on 125 
temperature data of 147 stations. To highlight smooth changes over time he used moving averages with a window 
of 10 years. It is interesting to note that he also addresses the specific effect of CO2 emissions on global 
temperatures. 
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