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Abstract. In December 2015, 195 countries agreed in Paris to ‘hold the increase in global mean surface 
temperature (GMT) well below 2.0 °C above pre-industrial levels and to pursue efforts to limit the temperature 
increase to 1.5 °C’. Since large financial flows will be needed to keep GMTs below these targets, it is important 15 
to know how GMT has progressed since pre-industrial times. However, the Paris Agreement is not conclusive as 
for methods to calculate it. Should trend progression be deduced from GCM simulations or from instrumental 
records by (statistical) trend methods? Which simulations or GMT datasets should be chosen, and which trend 
models? What is ‘pre-industrial’, and finally, are the Paris targets formulated for total warming, originating from 
both natural and anthropogenic forcing, or do they refer to anthropogenic warming only? To find answers to these 20 
questions we performed an uncertainty and sensitivity analysis where datasets and model choices have been varied. 
For all cases we evaluated trend progression along with uncertainty information. To do so, we analysed four trend 
approaches and applied these to the five leading GMT products. We find GMT progression to be largely 
independent of various trend model approaches. However, GMT progression is significantly influenced by the 
choice of GMT datasets. Both sources of uncertainty are dominated by natural variability. As a parallel path, we 25 
calculated GMT progression from an ensemble of 106 GCM simulations. Mean progression derived from GCM-
based GMTs appears to lie in the range of trend-dataset combinations. A difference between both approaches lies 
in the width of uncertainty bands: GCM simulations show a much wider spread.  Finally, we discuss various 
choices for pre-industrial baselines and the role of warming definitions. Based on these findings we propose an 
estimate for signal progression in GMTs since pre-industrial. 30 
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1.  Introduction 

 
Global mean surface temperature (GMT) is undoubtedly one of the key indicators of climate change. Tollefson 
(2015) denotes the GMT indicator as ‘the global thermostat’. Over the years many articles have been published in 
relation to GMT series and the patterns therein. These patterns combine an anthropogenic signal – induced by 35 
growing concentration of greenhouses and processes such as aerosol cooling – as well as natural variability. 
Natural variability can be regarded as a correlated noise process consisting of (i) internal random unforced 
(chaotic) variability and (ii) external radiatively forced changes. Here, internal variability is steered by short-term 
processes such as weather in the high latitudes or El Niño and La Niña, as well as by decadal processes such as 
the Interdecadal Pacific Oscillation (e.g., Trenberth, 2015; Fyfe et al. 2016; Xie, 2016; Meehl et al., 2016), and 40 
will result in correlated noise in GMTs (Mudelsee, 2014; Roberts et al., 2015). Externally forced variability is 
mainly due to volcanic eruptions and variations in solar irradiance. It influences global temperatures on annual to 
centennial scales (IPCC, 2013 - Ch. 10; Forster et al., 2013; Mann et al., 2016). A recent realization of internal 
variability led to a fierce debate in the popular media: GMTs were showing a claimed “slowdown”, “pause” or 
“hiatus” from the year 1998 onwards (e.g., Lewandowski et al., 2015; Hedemann et al., 2017; Medhaug et al., 45 
2017 - their figure 1).  
     GMTs has been a crucial indicator in climate negotiations for a long time and it has even become more so at 
the the 21st Conference of Parties (COP21) in Paris, December 2015. The final accord, approved by 195 countries, 
agreed on GMT targets which aim to avoid increases of 1.5 and 2.0 °C compared to pre-industrial temperatures 
(UN, 2015). IPCC (2014a) showed that meeting such GMT targets will require deep reductions of GHG emissions 50 
at the cost of high investments in mitigation measures worldwide. Given the fact that all goals are formulated on 
the basis of this single GMT indicator, the question arises: what is the current GMT level since pre-industrial?  
     So far, little attention has been paid to this topic. IPCC (2013), in its attempt to clarify the meaning of GMT 
measurements, applied linear trends to three different GMT datasets. They reported a trend progression Δµ of  
0.85 [0.65, 1.06] °C for the period 1880-2012. The uncertainty range stands for 90% confidence limits, originating 55 
from differences in datasets, natural variability of the climate system (forced and unforced), and expert judgment 
(IPCC 2013 - Box 2.2). Hawkins et al. (2017) and Schurer et al. (2017) addressed the topic of trend progression 
since pre-industrial and quantified the role of various choices for pre-industrial baselines. 
     Hawkins et al. found that the period 1720-1800 would be the most suitable in physical terms, despite incomplete 
information about radiative forcings and very few direct observations during this time. Additionally, they 60 
concluded that the 1850-1900 period would be a reasonable surrogate for pre-industrial GMTs, being only 
0.05 °C warmer than the 1720-1800 period. Subsequently, Hawkins et al. analyzed GMT progression since pre-
industrial by calculating the GMT mean over the 20-year period 1986-2005 for various GMT products and other 
instrumental data (their figure 4). Trend progression itself was approximated in the study by multiple regression 
models with non-stationary explanatory variables such as historic GHG forcing curves or local temperature series 65 
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(the Central England Temperature series or the De Bilt series). Schurer et al. found that GHGs had a significant 
warming effect on global temperatures if the period 1401-1800 is compared to 1850-1900: from 0.02 to 0.20 ºC 
(90% confidence limits). If all forcings are combined (GHG, solar, volcanic), they found a similar warming effect 
of  0.09 [0.03 - 0.19] °C.  
     In this article, we build on the work of Hawkins et al. but we do not base our GMT progression estimates on 70 
linear regression models with non-stationary regressors. The drawback of this approach is simply the linearity 
assumed, while the climate system is (highly) non-linear with a number of feedback processes. Therefore, we 
follow two other trend estimation approaches: (i) statistical trend models and (ii) global temperature trends derived 
from Global Climate Models (GCMs). Furthermore, we avoid methods or presentations based on subjectively 
selected time-windows (such as Moving Averages). The drawback of time windows is that averages over 21-year 75 
periods or similar do not give estimates for the beginning and ending of the sample period chosen (thus, we would 
have no trend estimates for the period 2007-2016). 
     A final topic we address is that of warming definitions. Should the Paris targets be interpreted as warming due 
to both anthropogenic and natural forcings, or as warming due to anthropogenic warming only? The terms 'global 
warming' or 'total warming' are interpreted in most literature as the sum of anthropogenic warming plus long-term 80 
(decadal to centennial) natural warming, consistent with the IPCC definition of climate change (IPCC Annex II, 
2014). However, some researchers interpret 'global warming' as anthropogenic warming only, consistent with the 
definition proposed by UNFCCC in their article 1 (Otto et al., 2015; Millar et al. 2017). In both definitions, short-
term natural variability – such as seen in "the hiatus period" – is smoothed from warming trends. 
 85 
      Our approach is that of an uncertainty and sensitivity analysis as promoted by Saltelli et al. (2004), Saisana et 
al. (2005) and Visser et al. (2015). We ask the following three major questions:  
 

• How robust are estimates for GMT progression as for specific choices of trend modelling, use of GCMs 
and specific choices of GMT datasets?  90 

• How do these choices influence uncertainties in GMT progression in relation to uncertainties due to 
forced and unforced natural variability?  

• Does the choice for a specific pre-industrial baseline or period play a role? And  are our estimates sensitive 
to forced natural variability on decadal to centennial scales? In other words, does it matter if we interpret 
the Paris targets as total warming, or as anthropogenic warming only? 95 

 
     Since there is no ‘true’ or ‘best’ trend approach (Visser et al., 2015), we explore four trend methods and apply 
these to five leading GMT products (similar to Hawkins et al.). This leads to a 4-by-5 matrix of GMT trend 
progressions since 1880. As a parallel path, we compare these trend progressions to those deduced from GCMs. 
We analyse an ensemble of 106 GCM experiments from the Coupled Model Intercomparison Project phase 5 100 
(CMIP5), corrected for natural variability. GCMs are for a large part physics-based, in contrast to trend methods. 
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However, there are also drawbacks, the main one being that GCMs are only approximations to the real climate 
system and have considerable biases. Although GCMs are tuned to meet the main characteristics of instrumental 
data (Voosen, 2016), GMTs derived from GCMs still show a wide range of trend-progression estimates, as we 
show.  105 
     In the discussion section, we address the role of various assumptions as for pre-industrial baselines, and 
differences in trend progression if Paris targets are interpreted as 'total warming' versus 'anthropogenic warming'.  
     Our analysis is confined to historic data only (up to and including 2016). Examples for GMT projections have 
been given by IPCC (2013 - Ch. 12), Forster et al. (2013), Mann (2014) and Schurer et al. (2017). A short-term 
prediction model is given by Suckling et al. (2016).  110 
 
 
2  Data and methods 
 
2.1  Data 115 
 
Various research groups have published global GMT datasets. IPCC (2013 - section 2.4.3) used three datasets, 
namely the HadCRUT4 series (Morice et al., 2012; Hope, 2016), the NOAA dataset (Vose et al., 2012) and the 
NASA/GISS dataset (Hansen et al 2010). In the analysis here, we instead use a recent update of the NOAA data 
(Karl et al., 2015). Karl et al. applied a number of corrections which mainly deal with sea surface temperatures, 120 
such as the change from buckets to engine intake thermometers. In addition, we added two series, i.e. the version 
of the HadCRUT4 data in which the missing data have been filled in as published by Cowtan and Way (2014) and 
the GMT series by Rohde et al. (2013). Note that these datasets are not independent. They start from roughly the 
same station data over land, and more importantly are based on only two SST analyses: HadSST3 and ERSST v4. 
     Cowtan and Way re-analysed the HadCRUT4 series by applying a statistical interpolation technique (Kriging) 125 
and satellite data for regions where data are sparse. Their series shows higher GMT values in recent decades than 
the non-interpolated HadCRUT4 series due to the more-than-average warming of the poles. The land part of the 
GMT data of Rohde et al. (2013; Berkeley Earth group of researchers) systematically addressed major concerns 
of global warming sceptics, mainly dealing with potential bias from data selection, data adjustment, poor station 
quality and the urban heat island effect. The ocean part (about 70%) is taken from HadSST3. 130 
     Next to the GMT data products we apply the stratospheric aerosol optical depth (AOD) index to explore the 
influence of volcanic dust. These data are from NASA and are available for the period 1850-2016 (Sato et al, 1993; 
Ridley et al., 2014). 
     Since two out of five GMT products start in the year 1880, we use the period 1880-2016 as our period of 
analysis. We return to this point in the discussion section. All data were downloaded from the institution websites 135 
with 2016 as the final year. 
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     Next to these instrumental-data based GMTs we analyze three sets of GCM simulations all taken from CMIP5 
(Taylor et al., 2012; IPCC, 2013 – Ch. 9-12). GMT is defined here as the global average of near-surface 
temperature (temperature at surface or 'tas' in short), in contrast to the observational datasets that use SST over sea 
for practical reasons (also denoted as 'blended temperature series'; Cowtan et al., 2015). The first set consists of 140 
GCM simulations where the input of greenhouse gases from 2005 onwards is taken from three Representative 
Concentration Pathways (RCPs): 4.5, 6.0 and 8.5 W/m2 (Van Vuuren et al., 2011; IPCC, 2014 - section 12.4 and 
figure 12.5). These simulations cover the period 1861-2100. We have taken a set of 106 GCM simulations with 
one member per model (42 members for emission scenario RCP4.5, 25 members for RCP6.0 and 39 members for 
RCP8.5). GMTs from CMIP5 simulations are based on wide range of modeling differences such as climate 145 
sensitivities, cloud parametrization and aerosol forcing (e.g., IPCC 2013 - Ch. 9). 
    The second set that we have analyzed, consists of 37 GCM runs for natural variability, denoted as 
‘historicalNat’. These runs comprise forced and unforced natural variability but no GHG forcing (1860-2005). See 
Forster et al. (2013) for details. Finally, we analyzed 41 Pre-industrial Control (PiControl) runs with lengths 
varying between 200 and 1000 years. These runs simulate  natural internal variability only. All CMIP5 runs were 150 
downloaded from the KNMI Climate Explorer website with one member per model (Trouet and Van Oldenborgh, 
2013). 
 
 
2.2  Trend modeling 155 
 
The tracking of signals or trends in GMT series has a long history, and a wide range of methods have been applied 
to isolate long-term signals or ‘trends’. We have summarized these in the Supplementary Material (table SM.1). 
As stated in the Introduction we choose statistical trend methods that allow for the quantification of trend 
progression where no window is needed and where uncertainty estimates are available for any incremental trend 160 
value. Furthermore, no specific period for pre-industrial has to be chosen (such as the mean of the 1851-1900 
period or similar). ‘Pre-industrial’ is reflected in the choice of the start of the sample period only. 
          Based on these considerations we have selected four trend approaches for our sensitivity analysis: Ordinary 
Least Squares (OLS) linear trends, Integrated Random Walk (IRW) trends and two approaches with splines. The 
first trend - a linear fit by OLS -  was chosen by IPCC (2013) as their main method. Uncertainties simply follow 165 
from the linear model:  
 
                        var(Δµ2016) = var([a+b*2016] - [a+b*1880])  =  1252 * var(b),  
 
where ‘a’ is the intercept and ‘b’ the slope. The variance of ‘b’ follows from the OLS equations. Next to that the 170 
variance estimate is corrected by calculating effective sample sizes, based on annual data (IPCC, 2013 - 2SM).  
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This correction is important since residuals are not white noise due to persistence in natural processes. The signal 
is therefore considered as noise with a large decorrelation scale in this approach. 
     The second trend approach that fulfils our uncertainty requirements, are sub-models from the class of Structural 175 
Time Series models (STMs), in combination with the Kalman filter (Harvey, 1989). From this group of models 
we choose the IRW trend model. The IRW trend model extends the linear regression trend line by a flexible trend 
while retaining all uncertainty information (Visser, 2004; Visser et al., 2012; Visser et al., 2015). Furthermore, the 
flexibility of the trend model is optimized by Maximum Likelihood (ML) optimization. The Kalman filter is the 
ideal filter here since it yields the so-called Minimum Mean Squared Estimator (MMSE) for the trend component 180 
in the model. The Kalman filter has been applied in many fields of research and is gaining popularity in climate 
research recently (e.g., Hay et al., 2015). 
     A third and fourth approach applies a combination of a trend model and the statistical structure of natural 
internal variability as derived from PiControl runs. It can be seen as a hybrid approach. To do so we have chosen 
the cubic spline trend model, a trend approach also applied in the AR5 (IPCC, 2013 - Box 2.2, figure 1). Smoothing 185 
splines are not statistical in nature and, thus, do not generate uncertainty estimates for GMT increments Δµ2016. 
However, uncertainty bands can be reconstructed by Monte Carlo (MC) simulations under the assumption of a 
given mean, variance and autocorrelation structure estimated directly from the underlying dataset (figure 1 and 
Mudelsee 2014 - section 3.3). To steer the flexibility of the cubic spline model we studied the correlation structure 
of internal variability. This correlation structure can be described by an AutoRegressive Moving Average (ARMA) 190 
model as proposed by Hunt (2011) and Roberts et al. (2015). They estimated ARMA models to a range of PiControl 
runs. Similarly, we analyzed 41 PiControl runs and found that variability can reasonably be characterized by AR(1) 
processes where the AR(1) parameter φ varies within the range [0.28 - 0.60], depending on the GCM run chosen 
(cf. Mudelsee, 2014 - section 2.1). 
     All four trend methods are designed to smooth GMTs for annual to decadal natural variability (forced and 195 
unforced). However, if Paris targets should be interpreted as anthropogenic warming only, we should estimate the 
role of decadal to centennial forcings from volcanic and solar activity as well. To estimate the role of volcanic 
eruptions we have extended the OLS linear trend model and the IRW trend model by adding the AOD index as 
regressor (Visser and Molenaar, 1995; Visser et al., 2015 - figure 4).  
  200 
 
3  Results 
 
3.1  Sensitivity analysis trend methods and data products 
 205 
Based on the 1880-2016 GMT sample period we have evaluated trend progression values Δµ2016 from 1880 up to 
2016 along with uncertainties for all datasets and trend approaches. This yields the 4-by-5 matrix shown in table 
1. As for linear trends we corrected uncertainty estimates by a factor √(1.60/0.40) = 2.0, analogous to the approach 
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chosen in IPCC (2013 - Ch. 2, Sup. Mat.) since first-order autocorrelations lie around 0.60. Table 1 shows that the 
trend slopes for the dataset HadCRUT4, LOTI-NASA, NOAA-Karl and Cowtan and Way are close, where the 210 
lowest slope value is for the HadCRUT4 series. This dataset has poor coverage in the Arctic, where trends are 
much higher than the global mean. The steepest trend is found for the Berkeley Earth series, a remarkable result 
since the Berkeley Earth project was set-up to meet a range of critical comments from global warming sceptics. 
Identical patterns are found for the other trend models: lowest trend progression for the HadCRUT4 dataset and 
highest values for the Berkeley Earth dataset. 215 
     As for the IRW trend estimates we find reasonable flexible patterns which closely resemble the spline trend 
shown in IPCC (2013 - Ch.2: Box 2.2, figure 1b). An example for the HadCRUT4 dataset is shown in figure 2. 
Data, trend and uncertainties are shown in the upper panel. The trend increments [µt - µt-1] and [µt - µ1880] are given 
in the middle left and right panel, respectively, along with uncertainties. The [µ2016 - µ1880] value with uncertainty 
is taken as value in table 1. The lower left panel shows the innovations or one-step-ahead predictions errors which 220 
follow from the Kalman filter formulae. The lower right panel shows the autocorrelation function (ACF). We note 
that a prerequisite of Kalman filtering is that the one-step-ahead prediction errors follow a white noise process. 
The ACF shows an AR(1) value of 0.30 which is slightly significant. We applied a correction for compensating 
for this the violation by applying the approach of IPCC, as we did for linear trends: uncertainty bands are corrected 
by a factor √(1.30/0.70) = 1.3.  225 
     As for smoothing splines we have estimated trends in GMT series such that the residual series exhibits an AR(1) 
process with a φ value of 0.28 and 0.60. Trend estimates based on the HadCRUT4 series are shown in figure 3. 
Both spline approaches show quite different trend patterns. The model shown in the upper panel of figure 3 is 
based on a slightly correlated noise process and - as for the IRW trend from figure 2 - closely resembles the spline 
trend shown in IPCC (2013 - Ch.2: Box 2.2, figure 1b). The model shown in the lower panel shows a parabolic 230 
shape. This parabolic pattern closely resembles the anthropogenic signal in GMT series as shown by IPCC (2013 
- figure 10.1f), derived from ‘historicalGHG’ simulation runs (Forster et al., 2013). 
     It is interesting to note that none of the four trend methods show a sign of a 'hiatus', 'slowdown' or 'pause'. That 

is not surprising for the linear trend and the spline estimate with φ = 0.60 due to their stiff character. However, the 

IRW trend and spline with φ = 0.28 are more flexible and do not show any stabilisation pattern for recent years at 235 

all. We tested the residuals of the IRW trend model and these appear to be close to white noise (cf. lower panels 

of figure 1). This inference is consistent with recent findings on the hiatus (Marotzke et al., 2015; Hedemann et 

al., 2017; Medhaug et al., 2017; Rahmstorf et al., 2017). 

     Table 1 shows that differences between trend model and dataset combinations can be considerable. The lowest 
Δµ2016 value is found for the HadCRUT4 dataset in combination with the IRW trend model: 0.90 ± 0.18°C (± 2σ). 240 
The highest values are found for the Berkeley Earth dataset in combination with cubic spline interpolation and φ 
= 0.28: 1.12 ± 0.13 °C. These two extremes reveal that the range of  Δµ2016 values due to datasets and trend models 
accounts for 0.22 °C. This range is somewhat lower than that due to natural variability alone. Based on 2σ limits, 
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we find a low estimate of  ± 0.12 °C, leading to a maximum range of 0.24 ºC (LOTI dataset in combination with 
cubic spline interpolation and φ = 0.28), and a high estimate of  ± 0.19 °C, leading to a maximum range of 0.38 ºC 245 
(LOTI dataset and OLS linear trend). 
     To quantify the role of trend methods in more detail we have averaged trend estimates over the five GMT 
datasets and added it to table 1 (bottom row). It shows that the range of trend progressions is small: [0.97, 1.01] 
ºC. At the other hand, if we average over trend methods, the variability due to datasets is found (right column of 
table 1). The variability accounts for [0.92, 1.09] ºC. Clearly, variability due to GMT datasets is dominant over 250 
specific trend approaches. 
 
 
3.2 Trend progression derived from GCM simulations 
 255 
Trend progression derived from GCMs have been analyzed in a range of studies, e.g. IPCC(2013 - Ch. 10), Forster 
et al. (2013), Marotzke and Forster (2016), Mann et al. (2016) and Meehl et al. (2016). Here, we derive trend 
progression since pre-industrial by taking an ensemble of 106 GCM all-forcing simulations 1861-2016. We note 
that underlying models have quite different characteristics. However, we did not perform an extensive sensitivity 
analysis as for these factors, as for example in Visser et al. (2000).  260 
     Short-term forced and unforced natural variability in individual GCM simulations is smoothed by estimating 
splines to each individual simulation (both for φ = 0.28 and φ = 0.60, as in figure 3). In this way we find 106 values 
for Δi,2016  ≡  yi,2016 - yi,1861 . Results are shown in figure 4 (based on smoothing splines with φ = 0.28). The mean 
Δ2016 value is 1.15 ± 0.50 ºC (2σ) for smoothing all 106 curves with φ = 0.28 and 
1.00 ± 0.50 ºC for smoothing with φ = 0.60. These values are consistent with those reported by Forster et al. (2013, 265 
table 3).  
     The GCM simulations analyzed here differ from data products as for their definition of temperatures ('tas only' 
versus blended temperatures). Cowtan et al. (2015) and Richards et al. (2016 - figure 1) showed that tas 
temperatures differ from blended temperatures by 0.10 ºC, for the period 1860-2009. Thus, mean GCM-derived 
warming estimates cover the ranges [1.00 to 1.15] ºC (tas) or [0.90 to 1.05]  ºC (blended). We note that these 270 
ranges reasonably correspond to the range found in table 1. 
 
 
 
 275 
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4    Discussion  280 

 

4.1 Uncertainty and sensitivity analysis 

 

We make three comments concerning the robustness of the results given in section 3. First, as summarized in table 
SM.1 of the Supplementary Material section, a wide range of trend models exist in the literature, all with varying 285 
characteristics. The fact that many of these methods are not statistical in nature does not limit their application in 
the present context: the approach shown in figure 1 (creating surrogate GMT series by MC simulation) is also 
applicable to methods such as binomial filters or LOESS estimators. Therefore, we cannot rule out that the 
influence of trend modelling is underestimated in table 1. However, given the (i) small differences shown in the 
bottom row of table 1, and (ii) the wide uncertainty bands due to natural variability, we judge such an under-290 
estimation to be relatively small. 
     A second comment concerns a source of uncertainty dealing with the choice for year or period that can be 
regarded as ‘pre-industrial’. As for the analyses in section 3.1, we have chosen for the year 1880 as low end of the 
sample period, simply because two out of five GMT products start in 1880 (NASA and NOAA). This choice is 
consistent with that made by IPCC (2013) as for historic trend progression (without claiming this to be 'since pre-295 
industrial'). In section 3.2 we have chosen the year 1861 as low end of the sample period, again since simulations 
are available from that year onwards.  
     Would our results and conclusions from table 1 or figure 4  be different if the sample period would be enlarged, 
starting in 1400, 1720 or 1850? Strictly spoken, we cannot answer this question since we cannot extend our 
analyses to these starting years due to data availability. As for instrumental dataset, we could perform some 300 
analyses from 1850 onwards but GMT estimates become inaccurate for these early decades. However, estimates 
based on GCM simulations are given by Hawkins et al. (2017) and Schurer et al. (2017).  
     Hawkins et al. show that the GMT difference between the two periods 1720-1800 and 1850-1900 is small, 
around 0.05 ºC, lying on the edge of statistical significance. Additionally to their analysis we compared GMT 
mean values over three periods: 1850-1900, 1860-1880 and 1880-1900, based on the HadCRUT4 dataset. The 305 
mean values appear to be similar: -0.31 ± 0.03 °C, -0.31 ± 0.06 °C and -0.32 ± 0.05 °C, respectively (2σ limits). 
These differences are small if compared to the uncertainties due to natural variability, shown in table 1. These 
results suggest that the choice for 1720-1800, 1850-1900, 1860-1880 or 1880-1900 as 'pre-industrial' will have a 
small influence to the findings presented here. At the other hand, Schurer et al. show from GCM simulations that 
global warming is underestimated by 0.09 [0.03, 0.19] ºC if the period 1401-1800 is chosen as pre-industrial 310 
baseline (compared to the period 1850-1900). Their estimate for the influence of GHG only lies close to these 
estimates, in the range from 0.02 to 0.20 ºC. We conclude that recent simulations point to an underestimation of 
global warming if calculated relative to late nineteenth century estimates. The underestimation lies around 0.10 
ºC.  
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     A third comment deals with differences in warming definitions as mentioned in the Introduction. If the Paris 315 
targets should be interpreted as anthropogenic warming only, we should estimate these contributions as well. 
Clearly, the incremental estimates Δµ2016  shown in Table 1 do not contain corrections  for decadal to centennial 
natural forcings from solar and volcanic activity. To estimate the role of volcanic activity on the estimates given 
in table 1 we have extended the OLS linear trend and the IRW trend model with a regression component where 
GMT series are regressed on the OAD index shown in figure 5. Results are summarized in table SM.2. The table 320 
shows that incremental estimates Δµ2016  are overestimated by 0.02 ºC for linear trends and by 0.04 ºC for IRW 
trends. 

     To estimate the role of long-term solar activity we did not choose for the time-series approach above since any 
explanatory variable in a regression model with some long-term trend will correlate and 'explain' the long-term 
trend in the dependent variable. Therefore, we refer to GCM estimates for the role of solar activity. 325 
     IPCC (2013) estimates the role of solar variability to be small and on the edge of significance. Incremental solar 
forcing for the period 1750-2011 accounts for 2 [0, 4] % of GHG forcing (Figure SPM.5 and Box 10.2). Schurer 
at al. (2017 - figure S3) estimate the incremental contribution of solar forcing on GMTs to be 0.07 [0.02, 0.12] ºC. 
This estimate compares the period 1850-1900 to 1990-2000. Furthermore, the long-term influence of volcanic 
activity is non-significant in their simulations (their figure S2).  330 
     Next to these estimates we analyzed an ensemble of 37 GCM simulations with natural forcing only 
('historicalNat'; IPCC, 2013 - figures 10.1 and 10.7; Forster et al., 2013 - fig 2). The mean curve with 2 standard 
errors (SEs) is shown in figure SM.2, along with major volcanic eruptions (eruptions with a Volcanic Explosivity 
Index of 5 and 6). Mean trend progression for these 37 runs accounts for 0.078 ± 0.030 ºC (2 SE), 1861-2005.  
     From these inferences we conclude that the difference between total warming and 'anthropogenic warming lies 335 
around 0.10 ºC with an uncertainty range of [0.0, 0.14]. 
      
 
4.2   Policy recommendation 
 340 
Schurer et al. (2017) end their article with the recommendation that a consensus be reached as to what is meant by 

pre-industrial temperatures. In this way, the chance would be reduced of conclusions that appear contradictory 

being reached by different studies. Furthermore, it would allow for a more clearly defined framework for 

policymakers and stakeholders. We fully agree with this recommendation. However, our uncertainty and 

sensitivity analysis has shown that the choice of a proper pre-industrial baseline is not the only parameter that 345 

could lead to contradictory results. Decisions around data products and GCM simulations, various time series 

techniques, or warming assumptions should be taken into account as well.  

     Here, we make the following policy proposal which aims to be a reasonable compromise. First, we propose to 

base GMT warming estimates on data products rather than GCM simulations. Our argumentation is that Δ2016 
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values based on GCM simulations show a wide range of warming estimates (figure 4). We note that even wider 350 

ranges are found for absolute GMT estimates (CMIP5 estimates for the mean GMT value over the period 1961-

1990 show a range of 2.5 ºC according to IPCC 2013 - figure 9-8). Another argument is that simulation estimates 

from CMIP5 are accurate up to the year 2005 (estimates for 2006-2016 apply approximations for GHG 

concentrations, and no volcanic and solar activity).  

     Second, since warming estimates vary as a function of the GMT data product chosen (tabel 1), we propose to 355 

estimate trends on the annual averages of all five data products.   

     Third, we found that the choice for specific trend methods plays a minor role, with largest differences between 

stiff and more flexible trend models. Therefore, we propose to apply a flexible and a stiff trend method and average 

the warming estimates found.  

     Fourth, two studies on the role of pre-industrial baselines have been published recently. Schurer et al. (2017) 360 

find a GHG-induced warming in the range [0.02, 0.20] ºC if the period 1401-1800 is compared to the period 1850-

1900. Hawkins et al. (2017) define the period 1720-1800 as a reasonable baseline for pre-industrial and find small 

non-significant differences between the period 1720-1800 and 1850-1900. We choose to follow the baseline 

proposed by Hawkins et al. Since all five GMT data products have data from 1880 onwards and GMT mean values 

for 1850-1900 and 1880-1900 are of equal size (based on the HadCRUT4 data product), we propose to analyse 365 

trend progression from 1880 onwards.  

     Finally, we propose to interpret global warming in the context of "Paris" as the sum of natural and anthropogenic 

warming, consistent with the IPCC definition of climate change. One argument for this choice is that ecological 

systems and human society will respond to total warming and induced shifts in climate extremes regardless of its 

origin. 370 

     From these choices it follows that trend progression Δ2016  accounts for 1.00 ± 0.13 ºC (bottom row of table 1).  
 
 
5   Conclusions  

We have addressed the issue of  signal progression of GMT in relation to the GMT targets agreed upon in Paris in 375 

December 2015. Although these targets are clearly defined – avoiding increments of 1.5 and 2.0 °C – there remain 

a number of (scientific) questions unaswered in the agreement. We have identified five aspects of the accord which 

hamper an exact quantification of GMT progression: (i) the use of instrumental data and trend methods versus 

GCM-derived progression, (ii) the role of varying datasets, (iii) the role of varying trend methods, (iv) the role of 

varying choices for pre-industrial and (v) the role of warming definitions. Since there is no 'true' or 'best' approach 380 
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(Visser et al., 2015), we have chosen to perform an uncertainty and sensitivity on GMT progression as propagated 

by Saltelli et al. (2004) and related articles. This allows us to test the robustness of various trend progression 

claims. 

     Approaches based on instrumental data. We find that trend values for GMT progression 1880-2016 vary 

considerately, from 0.90 ºC (HadCRUT4 dataset in combination with the IRW trend model) to 1.12 ºC (Berkeley 385 

Earth dataset in combination with cubic spline interpolation and φ = 0.28). The two extremes reveal that the range 

of Δµ2016 values due to datasets and trend models accounts for 0.22 °C. This range is smaller than that due to natural 

variability alone. Based on 2σ limits, we find a low estimate of 0.24 °C (LOTI dataset in combination with cubic 

spline interpolation and φ = 0.28) and a high estimate of 0.38 °C (LOTI dataset and OLS linear trend). Furthermore, 

variability due to various GMT products dominates the variability due to specific trend approaches. 390 

     Approaches based on GCMs. We find that mean trend progressions lie within the range of estimates from 

instrumental data. However, the uncertainty bands for 106 simulations are much wider than those derived from 

instrumental trend estimates. Here, GCM variability stems from a wide range of modeling assumptions such as 

climate sensitivities, cloud parameterization and aerosol forcing (e.g., IPCC, 2013 - Ch. 9), rather than from natural 

variability. 395 

     The choice of a pre-industrial period. Recent studies have shown that GHG warming prior to 1880 or 1850 

cannot be neglected. Schurer et al. (2017) estimate that early warming (1401-1800 compared to 1850-1900) 

accounts for 0.09 [0.03, 0.19] ºC. The role of solar and volcanic activity is minimal in this comparison. 

   Interpretation of Paris targets as being 'total warming' or 'anthropogenic warming only'. We find that the role 

of solar and volcanic activity is small on centennial scale. This contribution lies around 0.10 ºC (+0.03 ºC from 400 

volcanic activity and +0.07 ºC from solar activity).    

     Hiatus. As a side result of our trend analyses we note that no signs of an 'hiatus', 'slowdown' or 'pause' can be 

discerned in GMT trend progression. This inference is consistent with recent findings (Marotzke et al. 2015, 

Hedemann et al. 2017, Medhaug et al. 2017, Rahmstorf et al. 2017). 

     Policy recommendation. Schurer et al. (2017) recommend that a concensus be reached as to what is meant by 405 

pre-industrial temperatures. Our analysis shows that other sources of uncertainties should be taken into account as 

well. If not, contradictory results will appear in different studies with direct consequences for CO2 reductions to 

hold GMTs below the Paris targets. Our proposal shows a GMT progression Δ2016  of 1.00 ºC. 

 
 410 
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Table 1.  Trend increments Δµ2016  along with 2σ confidence limits. Increments are given for five GMT series and 
four trend approaches.  
 
 415 

GMT dataset GMT progression  Δµ2016  with 2σ confidence limits   (°C) 

OLS linear 
trend 

 

IRW trend 
 

Spline  
with φ=0.28 

 

Spline  
with φ=0.60 

 

Mean 
progression 

HadCRUT4, 
CRU  

0.90 
 (± 0.18) 

 

0.93  
(± 0.17) 

 

0.94  
(± 0.12) 

 

0.92  
(± 0.14) 

 

0.92 

HadCRUT4,  
Cowtan and 
Way   

0.96  
(± 0.17) 

 

1.06 
(± 0.17) 

  

1.06  
(± 0.12) 

 

0.98  
(± 0.15) 

  

1.02 

LOTI series, 
NASA 

0.98  
(± 0.19) 

 

1.02  
(± 0.18) 

 

1.01  
(± 0.12) 

 

0.99  
(± 0.14) 

 

1.00 

Karl et al 
(2015), NOAA 

0.95 
 (± 0.19) 

 

0.96  
(± 0.19)  

 

0.94  
(± 0.14) 

  

0.95  
(± 0.14) 

0.95 

Berkeley Earth 
Project 

1.04  
(± 0.17) 

 

1.12  
(± 0.17) 

 

1.12  
(± 0.13) 

 

1.06  
(± 0.14) 

 

1.09 

Mean 
progression 

0.97 1.02 1.01 0.98 1.00 

 
 
 
 
 420 
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 435 
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 445 

 
Figure 1. Construction of 1000 surrogate trend series by MC simulation, based on cubic splines. The AR(1) 
parameter estimated on the residuals of the spline model in the upper panel, accounts for 0.28. A surrogate GMT 
series ŷi,t is formed by simulating a new residual series ri,t based on the AR(1) process with φ= 0.28, and adding it 
to the estimated spline (green line upper panel). Then, a spline trend μi,t  is estimated for each surrogate ŷi,t . As an 450 
illustration we have plotted 1000 of such trends  μ1,t   , ... , μ1000,t  in the lower panel. Now, confidence limits can 
be estimated for any μt based on the values μ1,t , .... , μ1000,t . These confidence limits can be based on standard 
deviations or percentiles. Similarly, confidence limits can be calculated for the increment [μ2016 - μ1880], based on 
the values  [μ1,2014 - μ1,1880] ,...... , [μ1000,2014 - μ1000,1880]  (Mudelsee, 2014 - Sections 3.3.3 and 3.4).  
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 455 

 
Figure 2.  Results for the IRW trend model as applied to the HadCRUT4 series. Period: 1880-2016. The upper 
panel shows the trend (green line) along with 95% confidence limits (red dashed lines). The trend increments 
[µt - µt-1] are given in the middle left panel along with uncertainties. Idem the  [µt - µ1880] values in the middle right 
panel. The lower left panel shows the innovations or one-step-ahead predictions errors which follow from the 460 
Kalman filter formulae. The lower right panel shows the autocorrelation function (ACF). 
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Figure 3.  Two smoothing spline estimates for the HadCRUT4 GMT series, with uncertainties generated by MC 465 
simulation. All confidence limits are based on 1000 surrogate GMT series following the approach set out in 
Mudelsee (2014 - Section 3.3.3). Upper panel: AR(1) parameter chosen as φ = 0.28 (equivalent to 7 degrees of 
freedom), the low end of φ  values within CMIP5 PiControl runs. Lower panel: AR(1) parameter chosen as 
φ = 0.60, the high end of φ values (DF=3).  
 470 
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 475 
 
Figure 4.   Histogram based on 106 GCM  Δi,2016 values, relative to 1861. Mean value is 1.15 ± 0.50 ºC  
(2σ). Individual GCM curves were smoothed by splines where the AR(1) parameter is chosen as φ = 0.28 
(equivalent to 7 degrees of freedom), the low end of φ  values within CMIP5 PiControl runs.   
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 480 

 

 
 
 
Figure 5.   The AOD index series as introduced by Sato et al. (1993). Period is 1850-2016. 485 
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Code availability.  IRW trends have been estimated by the TrendSpotter software. This software package is freely 

available from the first author. Splines have been estimated by the statistical package S-Plus, version 8.2. The 

scripts which are highly similar to R, are available from the first author. 495 

 

Data availability.  All five GMT datasets are open access and have been downloaded from the authors websites. 

All CMIP5 runs named in Section 2.1 were downloaded from the KNMI Climate Explorer website with one 

member per model (Trouet and Van Oldenborgh, 2013). The names of individual GCMs can be found there as 

well. Please see https://climexp.knmi.nl/cmip5_indices.cgi?id=someone@somewhere . Data used for the graphical 500 

presentations in this article can be gained from the first author.  
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