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Authors response to two reviewers and to the comments of L.A. Smith    
 
In the following we respond to the comments given by two reviewers and L.A. Smith. We first 
give their comments in italic, followed by our response. Where relevant we will point to the 
lines in the revised manuscript where changes have taken place.   5 
 
Answers to comments of reviewer # 1 (Peter Thorne) 
 
I find the hook to pre-industrial tenuous given that the authors make no attempt to 
estimate a true pre-industrial based value. They would be better, in my view, to state that 10 
they are making an estimate relative to the late 19th Century / early global instrumental 
record. This would be a fairer reflection of what is actually done and consistent with e.g. 
IPCC AR5 which deliberately avoided in the published version implying that 1850-1900 
constituted pre-industrial as noted in Hawkins et al. Indeed, the final plenary of the WG1 
involved a long discussion that I was personally involved in around the topic whereby the 15 
parties agreed that pre-industrial was earlier than 1850. It would be unwise, in my view, for 
the authors to reopen this issue. I note in a couple of places that there are phrases which 
could imply IPCC used 1850-1900 as pre-industrial, and they did not. Such implications 
absolutely must be avoided outright in any resubmission. 
 20 
The discussion linking their work to the pre-industrial era would be far better being given 
exclusively in the Discussion section and, to my view, the authors should remove allusions to 
providing an estimate relative to pre-industrial earlier than this. Bottom line: They either 
should estimate relative to true-pre-industrial or be honest with respect to what they are 
estimating relative to for the paper to be acceptable. As I see it there is no rigorous attempt 25 
to estimate changes since pre-industrial. Rather, there is a rigorous attempt to estimate it 
since 1880 which in itself is useful and valuable. The authors should be honest in this regard 
and not oversell their work by claiming it's an estimate relative to pre-industrial when it 
demonstrably is not. 
 30 
We agree with the reviewer and will adapt the text in the way he suggests. Our uncertainty and 
sensitivity analysis is relative to 1880, and not 1850, or relative to the period 1720-1800 (as in 
Hawkins et al. 2017), or even relative to the period 1400-1800 (as in Schurer et al., July 24, 
2017 - Nature Climate Change). The reason we choose for 1880, is (i) data availability and (ii) 
the increasing uncertainties in GMT estimates for years earlier than 1880. For example, the 35 
Hadley Centre estimates the GMT value plus uncertainty in 1900 to be 
-0.20 [-0.34, -0.06] ºC (95% confidence limits). For 1850 the GMT estimate is 
-0.37 [-0.59, -0.16] ºC. We also remove any text suggesting that IPCC has defined pre-industrial 



2 
 

levels (but simply refer objectively to the pragmatic reference to a fixed period as done by 
IPCC). E.g., see lines 295-296. 40 
 
In the revised text we follow the comment to treat the role of  'pre-industrial' solely in the 
discussion. See lines 293-313. We added the results of Schurer et al. (2017) who analyze the 
role of GHGs, solar radiation and volcanic dust from 1401 onwards. They find that GHGs had 
a significant effect on global warming if the period 1401-1800 is compared to 1850-1900: from 45 
0.02 to 0.20 ºC (5-95% confidence limits). If all forcings are combined (GHG, solar, volcanic) 
they find 0.09 [0.03 - 0.19] °C.  
 
We explicitly note that the results in our table 1 are relative to 1880, and not 1850, 1720 or 
1401. See lines 298-302.  50 
 
I also find the Section at the end of the paper alluding to RCPs and end of Century to be out 
of scope and a distraction. It should either form an integral part of the paper integrated 
throughout or be dropped. Given journal scope I would lean heavily toward its removal. The 
year 2100 is not in the past (at least yet)! 55 
 
Agreed. We have removed 'the future' in Section 5.2, including Figure 5. 
 
Finally, given the authors apparent desire to explore uncertainty I find the omission of the 
JMA observational analysis and the NOAA 20CR product odd. I could see a case for omission 60 
of 20CR, but I see no logical case why the JMA analysis should be omitted here as it has the 
same non-peer-reviewed basis as e.g. the Berkeley global (not land, but global) estimate. 
JMA uses a fundamentally distinct set of SSTs and so would better span uncertainty that the 
authors lament in Section 2.1. 

We have studied the global series of the Japan Meteorological Agency (JMA) carefully. There 65 
is a however a practical problem: the JMA series start in 1891. Thus, we miss the important 
period 1880-1890. In addition, the meta data is only in Japanese. Finally, studies which show 
the JMA series are limited. E.g., it is not named in IPCC (2013, Ch. 2). We therefore have 
chosen for five GMT data products as described in Section 2.1 and we did not add trend analyses 
for JMA to Table 1. This choice is consistent with recent studies such as Medhaug et al. (2017 70 
- their figure 1a) or Rahmstorf et al. (2017 - their figures 1 and 2). These studies use the 5 
datasets as we do. Nevertheless, the referee addresses a relevant issue.  
 
As a test we estimated linear trends for all five data products shown in Table 1 and additionally 
the JMA series. It appears that the JMA incremental value for the period 75 
1891-2016 equals the low end of the five data products we apply in our Table 1 (i.e., the 
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incremental value of the HadCRUT4 series). Thus, the incremental value based on the JMA 
series, does not fall outside the range of values based on HadCRUT4, NASA, NOAA, 
HadCRUT4 adapted by Cowtan and Way, and BEST.  
 80 
We have hesitated to include this argumentation and analysis in the manuscript. However, the 
revised article is already loaded with results and sensitivity analyses. It would influence the 
readability of the text in a negative way, we feel. 
 
As for the NOAA 20CR series we have two arguments for not adding it to our study. First, the 85 
20CR series covers the period 1851-2011. Thus, data for the important period 2012-2016 are 
missing. Second, the series is a combination of modeling (weather prediction models) and data. 
For our study we prefer to make a distinction between GMT series directly derived from 
temperature registrations and models, be it GCMs or weather prediction models. 
 90 
We note  that we give a number of details on data products in the new lines 117-133. These 
details are certainly not exhaustive. However, how data products are made, including complex 
interpolation schemes, etc etc, is not the topic of this article. To compensate for this, we cite all 
relevant literature. 
 95 
 
I have a number of further comments, suggestions and requests which I refer to in the order 
they arise chronologically below: 
 
1. Line 19 per above remove ‘and what is ‘pre-industrial’?’ as you make no attempt to 100 
robustly address that question. 
 
Removed 
 
2. Line 47 GMTs have …. So following the 21st 105 
 
Okay, changed. 
 
3. Lines 53-56 do not reflect the IPCC approach. This was not an attempt to inform on 
post-pre-industrial changes and it did not involve expert judgement. Rather the 110 
stated range is the range of available estimates and their uncertainties after 
correcting for AR(1) and using OLS. The text here significantly overcomplicates both 
what was done and why. As the IPCC author who undertook the lead on this analysis 
I can assure the authors it was not as complicated as they imply here. This should be 
revised to reflect the actual process. 115 
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We changed the text in a way that IPCC did not pretend to give GMT trend progression since 
pre-industrial. See new lines 53-58. However, we decided to keep the words 'and expert 
judgement'. This might surprise both reviewers #1 and # 2. Two of the authors of this article 
were also at the IPCC discussions on this point (Bram Bregman and Arthur Petersen). The 120 
addition of  'expert judgment' was proposed by Petersen and agreed upon. The role of judgments 
here is shown in Box 2.2 of IPCC (2013 - pages 179 and 180).  
 
4. If retained (and note earlier major suggestion to move this to discussion) line 55 
forwards should constitute the beginning of the paragraph currently starting line 57. 125 
 
Agreed and changed 
 
5. Line 73 or similar do not 
 130 
Agreed and changed 
 
6. Line 73. Reader will ask so what? You need to be explicit that the approach 
limitations matter in a period of rapid change. 
 135 
We now explain this point in lines 75-77. 
 
7. Line 76 progression to specific (remove allusion to pre-industrial per major 
comment) 
 140 
Removed 
 
8. Line 88 the main one being 
 
Done. 145 
 
9. Lines 108 to 121 omit the by far largest overlap of all in that the NOAA and NASA 
products are based on identical underlying land and ocean datasets differing solely 
in the applied post-processing. This needs to be acknowledged for this discussion to 
be acceptable. More generally this discussion is incomplete. It needs to be expanded 150 
and may be better if supported by a table. 
 
The referee addresses an important point, but, as explained above the exact construction of data 
products is not the topic of this article. We apply the data sets in the same way as for GCM 
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simulation data sets. To describe the details of all applied datasets (from observations and model 155 
results) would be a huge complicated effort and beyond the scope of this work. For example, 
the differences between NOAA and NASA are quite complicated given the corrections of Karl 
et al. (2015). However, to address this useful point of the referee, we have carefully checked 
the completeness of the references and emphasized our approach in the text.   
 160 
10. Feels odd not to discuss and cite Cowtan et al at lines 125-127 
 
Agreed. We added the reference, see line 140. 
 
11. Lines 155-157. First please clarify whether the AR1 factors are calculated on the 165 
annual series. This is important information that is being omitted. Secondly, even at 
annual scales the AR(1) is primarily an artefact of variability and not forcing so the 
assertion here is wrong as you note in lines 175-177. Your two cheek-to-jowl 
statements here cannot both be right. The AR arising from variability is the correct 
one here. Year-to-year autocorrelation does not arise mainly due to forcing. 170 
 
Agreed, we added 'annual series' in line 171. Furthermore, we removed 'forcing' and replaced 
by persistence in natural processes: lines 172-173.  
 
12. Line 202 you should clarify what the implications of ignoring this are or, preferably, 175 
perform the extra work necessary for its inclusion. Presumably the impact would be 
artificially reduced uncertainty ranges? In which case is it really safe to ignore this 
issue? I’m not entirely convinced and would suggest that extra work leading to its 
inclusion is instead warranted. Even if it ends up showing no change it would make 
the piece more robust. As you yourselves state the effect is statistically significant, in 180 
which case it really should be included. 
 

Agreed. We now show the effect on correcting for this small but significant AR(1) correlation 
in the innovation series of our Kalman filter model. See lines 223-225. Also uncertainty bands 
in table 1 are adapted accordingly.  185 
 
13. Lines 224-227. This is true a. for this particular period and b. this particular small 
(and non-independent as noted in Section 2.1) draw from the broad range of 
plausible means by which to estimate historical changes in GMT. Hence I believe this 
statement oversimplifies the issues and as a result is more confident than is, in 190 
reality, warranted. The findings do not have the universality implied here and may 
not even be true if we instead had a further draw from the sample of plausible 
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approaches to estimating GMTs from observations. Here, JMA’s inclusion may 
fundamentally alter this finding which would imply non-robustness 

We feel that the revised version contains a number of lines which show that these results are 195 
based on this choice of GMT products, this choice of trend methods and this choice of 1880 (in 
stead of 1850, 1720 or 1401). We discussed the point of not adding the JMA series above. 
 

Answers to comments of Anonymous Referee #2 
 200 
This study considers the question of estimating by how much global temperatures have 
changed since ’pre-industrial’ times, assessing the uncertainty in different trend models 
and due to different global temperature datasets. The analysis is interesting, though 
the results are not too surprising. However, I have some major concerns: 
 205 
1) Framing: the authors emphasize repeatedly that they are estimating changes since 
a particular baseline and implying that this is what the Paris agreement meant by 
’preindustrial’. 
 
This is not the case - the introduction of Hawkins et al. (which the authors 210 
cite) discusses this issue at length. In addition, Schurer et al. (2017, NCC) was very 
recently published, highlighting again that there was likely some additional warming 
due to anthropogenic factors before 1850. The authors may also like to examine Otto 
et al. (2015) for an alternative approach to estimating the warming since the 19th century. The 

text in the discussion on this topic is appropriate however. 215 

Agreed. We now treat the topic of 'pre-industrial' more clearly in the discussion section, as we 
pointed out in our response to Reviewer #1. We added the references to Schurer et al. (2017) 
and Otto et al. (2015). Consequently, we address their findings that GHGs had a significant 
effect on global warming if the period 1401-1800 is compared to 1850-1900: from 0.02 to 0.20 
ºC (5-95% confidence limits). If all forcings are combined (GHG, solar, volcanic) they find  220 
0.09 [0.03 - 0.19] °C. See lines 293-313. Otto et al. is named in line 83. 
 

2) Terminology: some of the phrasing is very confusing when referring to and/or distinguishing 
between natural *forced* variability (volcanic, solar) and internal *unforced* 
variability. These terms are sometimes mixed and it’s not always clear what the authors 225 
mean. For example, in the abstract (and L86) the authors claim the models are 
corrected for natural variability, when they mean the forced component, but the introduction 
uses natural variability to mean both forced and unforced variations. On L133, 
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the authors refer to the ’historicalNat’ runs ’for natural unforced variability’, which is not 
true - those runs include both natural forced and internal unforced variations as the 230 
next sentence correctly states. Variability is also used for the spread or range between 
different estimates, adding further confusion. The authors should carefully check each 
use of this type of phrasing and make it far more precise. 
 
Agreed. We checked the phrasing of  'natural variability' carefully, this in combination with the 235 
terms 'forced' or 'unforced' or both, 'internal variability' and 'spread'. See also the reply to 
reviewer #1 who commented on two sentences with three times the word 'variability'. 
 
Additionally, we now treat the role of natural unforced variability and natural forced variability 
(i.e., the role of changes in irradiance of the sun and changes in volcanic activity) separately in 240 
a third item in the discussion section: lines 315-336.  
 
The trend analyses as given in our Table 1 are based on the IPCC definition of climate change 
(Glossary AR5): anthropogenic forcing combined with decadal to centennial natural variability. 
However, UNFCCC defines climate change as originating from GHG forcing only. In their 245 
philosophy we could argue that the Paris limits of 1.5 and 2.0 C should originate solely from 
anthropogenic forcing. We now quantify this second view on the Paris limits. 
 
To do so we make use of the recent study of Schurer et al. (2017, their figures S2 and S3), and 
the lower panel of figure 4 in our original manuscript. Next to that we estimated the role of 250 
volcanos in a time-series setting by extending the Integrated Random Walk (IRW) model. For 
details we  refer to Visser and Molenaar (1995) and Visser et al. (2015).  
 
See lines 315-322 and the new table SM.2, in the Supplementary Material section. 
 255 
It shows that the incremental values shown in Table 1 for the IRW trend are 0.04 ºC degree 
lower. If estimated in combination with the OLS straight line, i.e. a regression model with one 
explanatory variable, estimates are 0.02 °C lower than those shown in table 1. This effect, 
although small, will be due to the Krakatoa eruption in the period 1880-1890. 
 260 
The indicator for volcanic dust is taken from NASA: aerosol optical depth (AOD). See graph 
below: 
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 265 
This graph is the new figure 5 in the revised text. 
 
 
3) GCM analysis: the 106 members used cannot be ’one per model’ as there were not 
that many models in CMIP5. It’s not clear what the authors have used here - there must 270 
be more than one historical part of the runs for some of the models.  
 
The reviewer addresses a good point. What we meant here is that we used one member per 
model, given the use of a specific RCP scenario. Thus, we have used 42 members for emission 
scenario RCP4.5, 25 members for emission scenario RCP6.0 and 39 members for emission 275 
scenario 8.5, making up a total of 106 members. We clarify this in the text: lines 143-146. 
There are also 43 piControls on Climate Explorer, and very few are less than 200 years, not 
only the 20 that the authors have used - why have they not used the others?  
 
Agreed. We have calculated all AR(1) coefficients for all 41 piControl runs, available in the 280 
KNMI Climate Explorer (note: there are 41, not 43). Three of those runs showed a jump or a 
strong linear trend over the simulation period (varying from 200 to 1000 years). We omitted 
these. For the remaining 38 runs we have omitted the lowest two AR(1) coefficient estimates 
(lying around  0.0) and the two highest estimates (lying around 0.75). The remaining range 
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equals the range given in our manuscript: [0.28 - 0.60]. We have adapted the text for this 285 
finding. See lines 192-194. 
 
Also, in section 3.2, the authors could use the AR(1) value from each model’s own control run 
to fit a spline to the historical run of that same model, rather than assume the same across every 
model.  290 
 
In our revision we give values for smoothing by splines with φ=0.28 and φ=0.60, similar to 
shown in our figure 3. Period: 1861-2016. This gives a small change in the upper panel of our 
old figure 4. The spread is for both smoothing options identical ± 0.50 ºC (2σ). The mean value 
of all 106 increments is 1.15 for the smoothing option with φ=0.28 and 1.00 for φ=0.60. See 295 
lines 261-266. 
 
Also, how has the correction for natural forcings been applied (L250)? Has 
the mean across the historicalNat runs been subtracted from each historical run? If 
so, this is inconsistent as the response to volcanic eruptions varies significantly across 300 
models. 
 
In the revised text we do not correct GCM simulations anymore. The reason is that inferences 
in sections 3.1 and 3.2 would become inconsistent: estimates in §3.1 are not corrected for solar 
and volcanic forcings either. 305 
 
 
Smaller points: 
 
L47 - 21th -> 21st 310 
 
Done. 
 
L56 - this uncertainty does not include expert judgement 
 315 
We discussed this point in our answer to reviewer #1. 
 
L87 - this sentence could be read to imply that GCMs should have ’priority’ over the 
observations for answering the question of how much the surface has warmed, but I 
don’t think the authors mean that? 320 
 
We removed this wording. 
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 325 
 
L146 - I’m not sure the UNFCCC would suggest that pre-industrial should be defined 
when a particular dataset happens to begin? 
 
In the revised version we name UNFCCC in the context of warming definitions, in contrast to 330 
the definition of IPCC: lines 78-84. What we meant in the line L146 is that 'pre-industrial' is 
often denoted as a period. However, in the context of trend modeling one does not define any 
period. The outcome of the analysis solely depends on the sample period chosen, thus 1880-
2016, 1850-2016 or 1401-2016, or similar. We did not change the text here. 
 335 
L163-4 - do you need all five of those references to the lead author’s previous papers? 
 
We removed two references here. See line 178. 
 
L191 - this not appropriate for a scientific analysis 340 
 
Okay, removed. 
 
L216 - delete ’is’? 
 345 
Done. 
 
L220 & L307 - three ’variability’ in the same sentence, all referring to slightly different 
things?! The first is a ’range’? The sentences following this are also not clear. 
 350 
Agreed. We have replaced 'variability' by 'range' on both places. See lines 243-246.   
 
L279 - not sure this is quite true - there is a signal of these eruptions in the observations 
but it is probably weaker than the GCMs suggest. But I agree this is probably partly a 
coverage issue. 355 
 
We did not change the text here. 
 
L288 - most of the time, the models are not tuned to the trend, but are tuned on the 
mean present-day climate state. 360 
 
Agreed. 
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L303 - is ’best guess’ the appropriate term? 
 365 
We replace 'best guess' to 'trend' . 
 
L315 - it would be useful to use other historical ensemble members to check this statement 
(where they exist), as they provide another estimate of the change in temperature 
for the same model. 370 
 
Agreed, but we confined our analysis to these 106 simulations from CMIP5 (and discuss the 
role of 'tas' versus 'blended'). Indeed, new simulations will give new insights, that is how science 
works. Our main point for choosing data products and not GCM output is given in the new lines 
348-354. Hopefully, the wide spread in incremental values as shown in our new figure 4 will 375 
become less wide. But we cannot know this at this moment.    
Answers to major points of L.A. Smith 
 
Visser et al (2017) provide an interesting and insightful discussion of signal detection in 
global mean temperature (GMT), focusing on the 1.5 degree target of the Paris Agreement 380 
of 2015. This paper could be made more informative by further consideration of three topics: 
(1) clarifying what is meant by “signal” and by “noise”, and more specifically how (whether) 
natural variability can be “corrected for” in an evolving nonlinear system, (2) implications of 
using CMIP5 models, given that those models display a wide range of values for today’s GMT, 
and (c) a cleaner definition of how one would detect failure to stay “well below” a temperature 385 
target, or to exceed it. These points are expanded upon below. 
 
Specific Comments 
“Natural variability” is said to be a dominant source of uncertainty which has been “corrected 
for” (24). Although discussions of a climate signal coming “out of the noise” are 390 
common, the notions underlying the distinction between signal and noise in the climate context 
is unclear; it is not the traditional distinction of observational noise superimposed 
on a imprecisely measured but well-defined signal. Superposition can only be assumed in 
nonlinear systems given purely observational noise that has no impact on the system: natural 
variability, internal variability and the like alter the dynamics, and thus the “signal” itself, if 395 
such a separation exists (Smith (2001,2002)). A more appropriate conceptualization in 
nonlinear systems is found in consideration of an ensemble of systems each subject to a common 
driving and independent realizations of the relevant noise. In this case, the ensemble median 
would provide a well-defined signal while the distribution about it would capture the effects of 
noise processes. This view is of limited utility in climate science, where there is only one 400 
realization (the Earth): particular realizations need not reflect the (unobservable, non-
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empirical) “signal”; indeed they can diverge arbitrarily far from it. So in no sense can one 
expect “the” signal to emerge from the noise, given observations of a single realization. While 
vague appeals to something somewhat reminiscent of an adiabatic change in thermodynamics 
may be voiced, clear clarification of the meaning of signal and noise in the climate context 405 
would be of value. 
 
In short: it would be useful to clarify how “natural variability” and “internal variability” 
might be isolated in the case of a complicated, nonlinear, evolving planetary system. 
How are we to make sense of the traditional notions of “signal” and “noise” given that 410 
the “noise” is not mere observational noise but actually a component of the system 
dynamics, and given that in nonlinear systems we cannot appeal to a principle of superposition 
of solutions (Smith, 2002). 
 
The modeling of climate data by stochastic climate models have been described in Mudelsee 415 
(2014, sections 2.5.1 and 2.6). He describes the suitability of climate modeling with AR(1) 
processes (and the more general ARIMA models as well) to describe the persistence in data. 
 
The reviewer is right that correlated noise is not the same as climate variability arising from 
nonlinear systems. However, statistical modeling has proven fruitful in a wide field of 420 
ecological modeling. To stick to the modeling of global mean temperatures, we refer to our 
review of (statistical) trend analyses in the peer-reviewed literature in the Supplementary 
Material section of our manuscript (table S.1). Furthermore, Visser et al. (2015) show in their 
table 1 that researchers in the field of sea level rise apply 30 trend methods for quantifying "the 
signal" in sea level data, all with different mathematical formulations.  425 
 
Note: we do not use trend models for prediction. Next to that, projections up to the year 2100 
are removed in the revised text. 
 
It is also worth noting that the statistics community and the physical science community 430 
often hold very different notions of what a trend is: for the first, it is a statistically consistent 
combination of two well-defined models (the trend model and the noise model), while for the 
second it is merely a systematic, often obvious drift. Statisticians require, and quantify, 
consistency between these two components, and reject identification of a trend if that 
consistency is lacking. Physical scientists often require the observations to look trendy, and the 435 
ability to reject simple statistical models given the data, when those models are known by 
construction not to admit a trend. The second bar is much lower. 
 
The claim that modelling groups “have not been very successful in tuning to the observed 
trend” (299) suggests some knowledge as to how large the spread would be in 440 
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the absence of each group knowing the observed trend (aiming for the same target). 
It has been argued elsewhere that knowledge of such spread would be very useful to 
have if, perhaps, impractical to obtain. 
 
Visser et al (2017) state that “mean progression derived from GCM-based GMTs appear 445 
to lie within the range of the trend-dataset combinations” (311). It would be interesting 
to see the variations among individual CMIP5 simulations (not the mean over 
them, but their distribution). The IPCC AR5 reports that variations in the global mean 
temperature of today’s CMIP5 GCMs have a range exceeding 2.5 degrees (see right 
side axis labels of Figure 9-08 of Flato et al (2013)); what are the implications of our 450 
best models showing a range of GMT almost twice the 1.5 degree target? Physical 
and biological processes are driven by actual temperature, not anomalies. Given the 
current (limited) level of realism in these models, and the fact there is a great deal more 
in them than their basis in physical understanding, the authors might wish to reconsider 
calling today’s GCMs “fully physics-based” (86). 455 
 
The upper panel of the old figure 4 shows in part what the reviewer asks for. We discuss the 
implication of the wide range of incremental values in the new discussion section 4.2. Here, we 
argue that GCM simulations are less suited for tracking the signal in GMTs due to their wide 
range. Another argument will be that GCM simulations in CMIP5 are up to date up to the year 460 
2005. Estimates for the period 2006-2016 are less reliable.  
 
We added the important comment  of the reviewer that GCMs give a wide range of estimates 
for the global temperature over the period 1961-1990. Not as anomalies but in absolute 
temperatures. Indeed, figure 9.8 of the AR5 WGI  report (2013, page 768) shows a range from 465 
12.6 ºC to 15.3 ºC, based on 36 models. This range is almost the double of the 
1.5 ºC limit..  Also see figure 1 upper panel in Hawkins and Sutton 2016 BAMS 963-980.  
See lines 351-352. 
 
Finally, we removed the expression that GCMs are 'fully physics based'. That is, indeed, not 470 
true.  
 
Lastly: what precisely does it mean to hold GMT “well below” (14) some temperature 
threshold? How would we know if we had missed this target? Can this be phased 
with sufficient precision to allow, say, an insurance contract or legal wager to hinge onits 475 
occurrence? Issues include the duration for which the threshold is exceeded (An 
instant? A month? A year? A decade?) and how to deal with the imprecision in measuring 
the global mean temperature, even today. In practice, simply setting the target 
as an absolute value of GMT, inspired by the agreed 1.5 change, would prove more 
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straightforward both scientifically and legally, even if not politically or diplomatically. 480 
 
Good point. However, we propose to remove Section 5.2 where we extend the historical 
analysis to the year 2100. Therefore, this important comment is not directly applicable anymore 
to our revised text. 
 485 
 
Additional changes to the revised manuscript 
 
A new aspect in the revised text is the role of warming definitions. We did not address this point 
in the original manuscript. This aspect is now addressed throughout the revised text (the 490 
Abstract, introduction, ...). 
 
Furthermore, we have removed section 5.2. All text on future projections has been removed, 
including figure 5. 
 495 
 
Changes made to the Supplementary Material 
 
There are three changes made to the Supplementary Material. First, we have added table SM.2. 
Here, the role of adding volcanic activity as a regression variable is shown.  Second, we have 500 
added figure SM.2, which we moved from the main text of the original manuscript. Finally, we 
have added two regression variables in equation (1) to show how the IRW model is extended 
from 'trends only' to 'trends plus the influence of explanatory variables'. 
 

 505 

 

 

 

 

 510 
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Abstract. In December 2015, 195 countries agreed in Paris to ‘hold the increase in global mean surface 
temperature (GMT) well below 2.0 °C above pre-industrial levels and to pursue efforts to limit the temperature 
increase to 1.5 °C’. Since large financial flows will be needed to keep GMTs below these targets, it is important 525 
to know how GMT has progressed since pre-industrial times, taking short-term and long-term (decadal) natural 
variability into account.. However, the Paris Agreement is not conclusive as for methods to calculate it. Should 
trend progression be deduced from GCM simulations or from instrumental records by (statistical) trend methods? 
Which trend modelsimulations or GMT datasets should be chosen, and whatwhich trend models? What is ‘pre-
industrial’? Does trend progression depend on, and finally, are the specific GMT dataset chosenParis targets 530 
formulated for total warming, originating from both natural and anthropogenic forcing, or do they refer to 
anthropogenic warming only? To find answers to these questions we performed an uncertainty and sensitivity 
analysis where datasets and model choices have been varied. For all cases we evaluated trend progression since 
pre-industrial, along with uncertainty information. To do so, we analysed four trend approaches and applied these 
to the five leading GMT products. As a parallel path, we calculated GMT progression from an ensemble of 106 535 
GCM simulations, corrected for natural variability. We find GMT progression to be largely independent of various 
trend model approaches. However, GMT progression is significantly influenced by the choice of GMT datasets. 
Both sources of uncertainty are dominated by natural variability. As a parallel path, we calculated GMT 
progression from an ensemble of 106 GCM simulations. Mean progression derived from GCM-based GMTs 
appears to lie withinin the range of the trend-dataset combinations. A difference between both approaches lies in 540 
the width of uncertainty bands: bands for GCMs are much wider.  Results appear to be robust as for specific 
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choices for 'pre-industrial'. Our “Paris” policy recommendation would be to choose a spline or IRW trend model 
and estimate it on the average of the five leading GMT datasets, where 1880 is taken as base year. Given this 
choice trend progression for 2016 accounts for 1.01 ± 0.13 ºC (2-σ).GCM simulations show a much wider spread.  
Finally, we discuss various choices for pre-industrial baselines and the role of warming definitions. Based on these 545 
findings we propose an estimate for signal progression in GMTs since pre-industrial. 

1.  Introduction 

 
Global mean surface temperature (GMT) is undoubtedly one of the key indicators of climate change. Tollefson 
(2015) denotes the GMT indicator as ‘the global thermostat’. Over the years many articles have been published in 550 
relation to GMT series and the patterns therein. These patterns combine an anthropogenic signal – induced by 
growing concentration of greenhouses and processes such as aerosol cooling – as well as natural variability. 
Natural variability can be regarded as a correlated noise process consisting of  (i) internal random unforced 
(chaotic) variability and (ii) external radiatively forced changes. Here, internal variability is steered by short-term 
processes such as weather in the high latitudes or El Niño and La Niña, as well as by decadal processes such as 555 
the Interdecadal Pacific Oscillation (IPO), and will result in correlated noise in GMTs (e.g., Trenberth, 2015; Fyfe 
et al. 2016; Xie, 2016; Meehl et al., 2016), and will result in correlated noise in GMTs (Mudelsee, 2014; Roberts 
et al., 2015). Externally forced variability is mainly due to volcanic eruptions and variations in solar irradiance 
(IPCC, 2013. It influences global temperatures on annual to centennial scales (IPCC, 2013 - Ch. 10; Forster et al., 
2013; Mann et al., 2016). A recent realization of internal variability led to a fierce debate in the popular media: 560 
GMTs were showing a claimed “slowdown”, “pause” or “hiatus” from the year 1998 onwards (e.g., Lewandowski 
et al., 2015; Hedemann et al., 2017; Medhaug et al., 2017 - their figure 1).  
     GMTs has becomebeen a crucial indicator in climate negotiations for a long time and it has even become more 
so at the the 21th21st Conference of Parties (COP21) in Paris, December 2015. The final accord, approved by 195 
countries, agreed on GMT targets which aim to avoid an increaseincreases of 1.5 and 2.0 °C compared to pre-565 
industrial temperatures (UN, 2015). IPCC (2014a) showed that meeting such GMT targets will require deep 
reductions of GHG emissions at the cost of high investments in mitigation measures worldwide. Given the fact 
that all goals are formulated on the basis of this single GMT indicator, the question arises: what is the current GMT 
level since pre-industrial?  
     So far, little attention has been paid to this topic. IPCC (2013), in its attempt to clarify the meaning of GMT 570 
measurements, applied linear trends to three different GMT datasets. They reportreported a trend progression  Δµ  
of  
0.85 [0.65, 1.06] °C overfor the period 1880-2012. The uncertainty range stands for 90% confidence limits, 
originating from differences in datasets, natural variability of the climate system (forced and unforced), and expert 
judgment. (IPCC 2013 - Box 2.2). Hawkins et al. (2017) recentlyand Schurer et al. (2017) addressed the topic of 575 
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trend progression since pre-industrial by quantifyingand quantified the role of various choices for ‘pre-
industrial’industrial baselines. 
     TheyHawkins et al. found that the period 1720-1800 would be the most suitable in physical terms, despite 
incomplete information about radiative forcings and very few direct observations during this time. Additionally, 
they concluded that the 1850-1900 period would be a reasonable surrogate for pre-industrial GMTs by, being only 580 
0,.05 °C warmer than the 1720-1800 period. Subsequently, Hawkins et al. analysedanalyzed GMT progression 
since pre-industrial by calculating the GMT mean over the 20-year period 1986-2005 for various GMT products 
and other instrumental data (their figure 4). Trend progression itself was approximated in the study by multiple 
regression models with non-stationary explanatory variables such as historic GHG forcing curves or local 
temperature series (the Central England Temperature series or the De Bilt series). Schurer et al. found that GHGs 585 
had a significant warming effect on global temperatures if the period 1401-1800 is compared to 1850-1900: from 
0.02 to 0.20 ºC (90% confidence limits). If all forcings are combined (GHG, solar, volcanic), they found a similar 
warming effect of  0.09 [0.03 - 0.19] °C.  
     In this article, we build on the work of Hawkins et al. but we do not base our GMT progression estimates on 
linear regression models with non-stationary regressors. The drawback of this approach is simply the linearity 590 
assumed, while the climate system is (highly) non-linear with a number of feedback processes. Therefore, we 
follow two other trend estimation approaches: (i) statistical trend models and (ii) global temperature trends derived 
from Global Climate Models (GCMs). Furthermore, we avoid methods or presentations based on subjectively 
selected time-windows (such as Moving Averages). The drawback of time windows is that averages over 2021-
year periods or alikesimilar do not give estimates for the beginning and ending of the sample period chosen. 595 
 (thus, we would have no trend estimates for the period 2007-2016). 
     A final topic we address is that of warming definitions. Should the Paris targets be interpreted as warming due 
to both anthropogenic and natural forcings, or as warming due to anthropogenic warming only? The terms 'global 
warming' or 'total warming' are interpreted in most literature as the sum of anthropogenic warming plus long-term 
(decadal to centennial) natural warming, consistent with the IPCC definition of climate change (IPCC Annex II, 600 
2014). However, some researchers interpret 'global warming' as anthropogenic warming only, consistent with the 
definition proposed by UNFCCC in their article 1 (Otto et al., 2015; Millar et al. 2017). In both definitions, short-
term natural variability – such as seen in "the hiatus period" – is smoothed from warming trends. 
 
      Our approach is that of an uncertainty and sensitivity analysis as promoted by Saltelli et al. (2004), Saisana et 605 
al. (2005) and Visser et al. (2015). We ask the following twothree major questions:  
 

• How robust are estimates for GMT progression since pre-industrial as for specific choices of trend 
modelling, use of GCMs and specific choices of GMT datasets?  

• How do these choices influence uncertainties in GMT progression in relation to uncertainties due to 610 
forced and unforced natural variability?  
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• Does the choice for a specific pre-industrial baseline or period play a role? And  are our estimates sensitive 
to forced natural variability on decadal to centennial scales? In other words, does it matter if we interpret 
the Paris targets as total warming, or as anthropogenic warming only? 

 615 
     Since there is no ‘true’ or ‘best’ trend approach (Visser et al., 2015), we explore four trend methods and apply 
these to five leading GMT products (similar to Hawkins et al.). This leads to a 4-by-5 matrix of GMT trend 
progressions since pre-industrial.1880. As a parallel path, we compare these trend progressions to those deduced 
from GCMs. We analyse an ensemble of 106 GCM experiments from the Coupled Model Intercomparison Project 
phase 5 (CMIP5), corrected for natural variability. Clearly, GCMs are fullyfor a large part physics-based, in 620 
contrast to trend methods, and it seems logical to give them priority in relation to the questions raised here.. 
However, there are also drawbacks, the main one being that GCMs are only approximations to the real climate 
system and have considerable biases. Although GCMs are tuned to meet the main characteristics of instrumental 
data (Voosen, 2016), GMTs derived from GCMs still show a wide range of trend-progression estimates, as we will 
show.  625 
     In the discussion section, we address the role of various assumptions as for pre-industrial baselines, and 
differences in trend progression if Paris targets are interpreted as 'total warming' versus 'anthropogenic warming'.  
     Our analysis is confined to historic data only (up to and including 2016). Examples for GMT projections have 
been given by IPCC (2013 - Ch. 12), Forster et al. (2013) and), Mann (2014).) and Schurer et al. (2017). A short-
term prediction model is given by Suckling et al. (2016). Similarly, we will give an impression in section 6.2 how 630 
GMTs might evolve up to the year 2100, based on the historic trend progressions found here. 
 
 
 
 635 
 
 
 
 
 640 
2  Data and methods 
 
2.1  Data 
 
Various research groups have published global GMT datasets. IPCC (2013 - section 2.4.3) used three datasets, 645 
namely the HadCRUT4 series (Morice et al., 2012; Hope, 2016), the NOAA dataset (Vose et al., 2012) and the 
NASA/GISS dataset (Hansen et al 2010). In the analysis here, we instead use a recent update of the NOAA data  
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(Karl et al., 2015). Karl et al. applied a number of corrections which mainly deal with sea surface temperatures, 
such as the change from buckets to engine intake thermometers. In addition, we added two series, i.e. the version 
of the HadCRUT4 data in which the missing data have been filled in as published by Cowtan and Way (2014) and 650 
the GMT series by Rohde et al. (2013). Note that these datasets are not independent. They start from roughly the 
same station data over land, and more importantly are based on only two SST analyses: HadSST3 and ERSST v4. 
     Cowtan and Way re-analysed the HadCRUT4 series by applying a statistical interpolation technique (Kriging) 
and satellite data for regions where data are sparse. Their series shows higher GMT values in recent decades than 
the non-interpolated HadCRUT4 series due to the more-than-average warming of the poles. The land part of the 655 
GMT data of Rohde et al. (2013; Berkeley Earth group of researchers) systematically addressed major concerns 
of global warming sceptics, mainly dealing with potential bias from data selection, data adjustment, poor station 
quality and the urban heat island effect. The ocean part (about 70%) is taken from HadSST3. 
     Next to the GMT data products we apply the stratospheric aerosol optical depth (AOD) index to explore the 
influence of volcanic dust. These data are from NASA and are available for the period 1850-2016 (Sato et al, 1993; 660 
Ridley et al., 2014). 
     Since two out of five GMT products start in the year 1880, our analyses willwe use “the period 1880”-2016 as 
pre-industrial for practical reasons.our period of analysis. We return to this point in the discussion section 4. All 
data were downloaded from the institution websites with 2016 as the final year. 
     Next to these instrumental-data based GMTs we analyze three sets of GCM simulations all taken from CMIP5 665 
(Taylor et al., 2012; IPCC, 2013 – Ch. 9-12). GMT is defined here as the global average of near-surface 
temperature, (temperature at surface or 'tas' in short), in contrast to the observational datasets that use SST over 
sea for practical reasons. (also denoted as 'blended temperature series'; Cowtan et al., 2015). The first set consists 
of GCM simulations where the input of greenhouse gases from 2005 onwards is taken from three Representative 
Concentration Pathways (RCPs): 4.5, 6.0 and 8.5 W/m2 (Van Vuuren et al., 2011; IPCC, 2014 - section 12.4 and 670 
figure 12.5). These simulations cover the period 1861-2100. We have taken a set of 106 GCM simulations with 
one member per model. GCMs from CMIP5 (42 members for emission scenario RCP4.5, 25 members for RCP6.0 
and 39 members for RCP8.5). GMTs from CMIP5 simulations are based on wide range of modeling differences 
such as climate sensitivities, cloud parametrization and aerosol forcing (e.g., IPCC 2013 - Ch. 9). 
    The second set that we have analyzed, consists of 37 GCM runs for natural unforced variability, denoted as 675 
‘historicalNat’. These runs comprise forced and unforced natural variability onlybut no GHG forcing (1860-2005). 
See Forster et al. (2013) for details. Finally, we analyzed 2041 Pre-industrial Control (PiControl) runs ofwith 
lengths varying between 200-year length. and 1000 years. These runs simulate  natural internal variability only. 
All CMIP5 runs were downloaded from the KNMI Climate Explorer website with one member per model (Trouet 
and Van Oldenborgh, 2013). 680 
 
 
2.2  Trend modeling 
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The tracking of signals or trends in GMT series has a long history, and a wide range of methods have been applied 685 
to isolate long-term signals or ‘trends’. We have summarized these in the Supplementary Material (table SM.1). 
As stated in the Introduction we choose statistical trend methods that allow for the quantification of trend 
progression where no window is needed and where uncertainty estimates are available for any incremental trend 
value. Furthermore, no specific period for pre-industrial has to be chosen (such as the mean of the 1851-1900 
period or alikesimilar). ‘Pre-industrial’ is reflected in the choice of the start of the sample period only. 690 
          Based on these considerations we have selected four trend approaches for our sensitivity analysis: Ordinary 
Least Squares (OLS) linear trends, Integrated Random Walk (IRW) trends and two approaches with splines. The 
first trend - a linear fit by OLS -  was chosen by IPCC (2013) as their main method. Uncertainties simply follow 
from the linear model:  
 695 
                        var(Δµ2016) = var([a+b*2016] - [a+b*1880])  =  1252 * var(b),  
 
where ‘a’ is the intercept and ‘b’ the slope. The variance of ‘b’ follows from the OLS equations. Next to that the 
variance estimate is corrected by calculating effective sample sizes, based on annual data (IPCC, 2013 - 2SM).  
 700 
This correction is important since residuals are not white noise, mainly because the forcing is not linear but 
increases with time. A large part of the due to persistence in natural processes. The signal is therefore considered 
as noise with a large decorrelation scale in this approach. 
     The second trend approach that fulfils our uncertainty requirements, are sub-models from the class of Structural 
Time Series models (STMs), in combination with the Kalman filter (Harvey, 1989). From this group of models 705 
we choose the IRW trend model. The IRW trend model extends the linear regression trend line by a flexible trend 
while retaining all uncertainty information (Visser and Molenaar 1995; Visser, 2004; Visser et al., 2012; Visser et 
al., 2014; Visser et al., 2015). Furthermore, the flexibility of the trend model is optimized by Maximum Likelihood 
(ML) optimization. The Kalman filter is the ideal filter here since it yields the so-called Minimum Mean Squared 
Estimator (MMSE) for the trend component in the model. The Kalman filter has been applied in many fields of 710 
research and is gaining popularity in climate research recently (e.g., Hay et al., 2015). 
     A third and fourth approach applies a combination of a trend model and the statistical structure of natural 
internal variability as derived from PiControl runs. It can be seen as a hybrid approach. To do so we have chosen 
the cubic spline trend model, a trend approach also applied in the AR5 (IPCC, 2013 - Box 2.2, figure 1). Smoothing 
splines are not statistical in nature and, thus, do not generate uncertainty estimates for GMT increments Δµ2016. 715 
However, uncertainty bands can be reconstructed by Monte Carlo (MC) simulations under the assumption of a 
given mean, variance and autocorrelation structure estimated directly from the underlying dataset (figure 1 and 
Mudelsee 2014 - section 3.3). To steer the flexibility of the cubic spline model we studied the correlation structure 
of internal variability. This correlation structure can be described by an AutoRegressive Moving Average (ARMA) 
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model as proposed by Hunt (2011) and Roberts et al. (2015). They estimated ARMA models to a range of PiControl 720 
runs. Similarly, we analysed 20analyzed 41 PiControl runs and found that natural variability can reasonably be 
characterized by AR(1) processes where the AR(1) parameter φ varies within the range [0.28 - 0.60], depending 
on the GCM run chosen (cf. Mudelsee, 2014 - section 2.1).  
     All four trend methods are designed to smooth GMTs for annual to decadal natural variability (forced and 
unforced). However, if Paris targets should be interpreted as anthropogenic warming only, we should estimate the 725 
role of decadal to centennial forcings from volcanic and solar activity as well. To estimate the role of volcanic 
eruptions we have extended the OLS linear trend model and the IRW trend model by adding the AOD index as 
regressor (Visser and Molenaar, 1995; Visser et al., 2015 - figure 4).  
  
 730 
3  Results 
 
3.1  Sensitivity analysis trend methods and data products 
 
Based on the 1880-2016 GMT sample period we have evaluated trend progression values Δµ2016 from 1880 up to 735 
2016 along with uncertainties for all datasets and trend approaches. This yields the 4-by-5 matrix shown in table 
1. As for linear trends we corrected uncertainty estimates by a factor √(1.60/0.40) = 2.0, analogous to the approach 
chosen in IPCC (2013 - Ch. 2, Sup. Mat.) since first -order autocorrelations lie around 0.60. Table 1 shows that 
the trend slopes for the dataset HadCRUT4, LOTI-NASA, NOAA-Karl and Cowtan and Way are close, where the 
lowest slope value is for the HadCRUT4 series. This dataset has poor coverage in the Arctic, where trends are 740 
much higher than the global mean. The steepest trend is found for the Berkeley Earth series, a remarkable result 
since the Berkeley Earth project was set-up to meet a range of critical comments from global warming sceptics. 
Identical patterns are found for the other trend models: lowest trend progression for the HadCRUT4 dataset and 
highest values for the Berkeley Earth dataset. 
     As for the IRW trend estimates we find reasonable flexible patterns which closely resemble the spline trend 745 
shown in IPCC (2013 - Ch.2: Box 2.2, Figurefigure 1b). An example for the HadCRUT4 dataset is shown in figure 
2. Data, trend and uncertainties are shown in the upper panel. The trend increments  
[µt - µt-1] and [µt - µ1880] are given in the middle left and right panel, respectively, along with uncertainties. The  
[µ2016 - µ1880] value with uncertainty is taken as value in table 1. The lower left panel shows the innovations or 
one-step-ahead predictions errors which follow from the Kalman filter formulae. The lower right panel shows the 750 
autocorrelation function (ACF). We note that a prerequisite of Kalman filtering is that the one-step-ahead 
prediction errors follow a white noise process. The ACF shows an AR(1) value of 0.30 which is slightly significant. 
SinceWe applied a correction for compensating for this the violation is small, we did not correct uncertainty 
rangesby applying the approach of IPCC, as we did for linear trends: uncertainty bands are corrected by a factor 
√(1.30/0.70) = 1.3.  755 
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     As for smoothing splines we have estimated trends in GMT series such that the residual series exhibits an AR(1) 
process with a φ value of 0.28 and 0.60. Trend estimates based on the HadCRUT4 series are shown in figure 3. 
Both spline approaches show quite different trend patterns. The model shown in the upper panel of figure 3 is 
based on a slightly correlated noise process and - as for the IRW trend from figure 2 - closely resembles the spline 
trend shown in IPCC (2013 - Ch.2: Box 2.2, Figurefigure 1b). The model shown in the lower panel shows a 760 
parabolic shape. This parabolic pattern closely resembles the anthropogenic signal in GMT series as shown by 
IPCC (2013 - figure 10.1f), derived from ‘ historicalGHG’ simulation runs (Forster et al., 2013). 
     It is interesting to note that none of the four trend methods show a sign of a 'hiatus', 'slowdown' or 'pause'. That 

is not surprising for the linear trend and the spline estimate with φ= = 0.60 due to their stiff character. However, 

the IRW trend and spline with φ= = 0.28 are more flexible and do not show any stabilisation pattern for recent 765 

years at all. We tested the residuals of the IRW trend model and these appear to be close to white noise (cf. lower 

panels of figure 1). This inference is consistent with recent findings on the hiatus (e.g., Marotzke et al., 2015; 

Hedemann et al., 2017; Medhaug et al., 2017; Rahmstorf et al., 2017). 

     Table 1 shows is that differences between trend model and dataset combinations can be considerable. The 
lowest Δµ2016 value is found for the HadCRUT4 dataset in combination with the IRW trend model: 0.90 ± 0.18°C 770 
(± 2-σ2σ). The highest values are found for the Berkeley Earth dataset in combination with cubic spline 
interpolation and φ = 0.28: 1.12 ± 0.13 °C. These two extremes reveal that the range of  Δµ2016 variabilityvalues 
due to datasets and trend models accounts for 0.22 °C. This variabilityrange is somewhat lower than variabilitythat 
due to natural variability alone. Based on 2-σ2σ limits, we find a low estimate of  ± 0.12 °C and a high estimate 
of ± 0.19 °C, leading to a maximum rangesrange of 0.24 ºC (LOTI dataset in combination with cubic spline 775 
interpolation and φ = 0.28) up to), and a high estimate of  ± 0.19 °C, leading to a maximum range of 0.38 ºC (LOTI 
dataset and OLS linear trend). 
     To quantify the role of trend methods in more detail we have averaged trend estimates over the five GMT 
datasets and added it to table 1 (bottom row). It shows that variabilitythe range of trend progressions is small: 
[0.97, 1.01] ºC. At the other hand, if we average over trend methods, the variability due to datasets is found (right 780 
column of table 1). The variability accounts for [0.92, 1.09] ºC. Clearly, variability due to GMT datasets is 
dominant over specific trend approaches. 
 
 
 785 
3.2 Trend progression derived from GCM simulations 
 
Trend progression derived from GCMs have been analyzed  in a range of studies, e.g. IPCC(2013 - Ch. 10), Forster 
et al. (2013), Marotzke and Forster (2016), Mann et al. (2016) and Meehl et al. (2016). Here, we derive trend 
progression since pre-industrial by taking an ensemble of 106 GCM all-forcing simulations 1861-2016. We note 790 
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that underlying models have quite different characteristics. However, we did not perform an extensive sensitivity 
analysis as for these factors, as for example in Visser et al. (2000).  
     Short-term forced and unforced natural variability in individual GCM simulations is smoothed by estimating 
splines to each individual simulation (both for φ = 0.28 or, equivalently, 7 degrees of freedomand φ = 0.60, as in 
the upper panel of figure 3). In this way we find 106 values for 795 
 Δi,2016  ≡  yi,2016 - yi,1880 , which1861 . Results are shown in the upper panel of figure 4. (based on smoothing splines 
with φ = 0.28). The mean Δ2016 value is 1.15 ± 0.4750 ºC  (2-σ).(2σ) for smoothing all 106 curves with φ = 0.28 
and 
1.00 ± 0.50 ºC for smoothing with φ = 0.60. These values are consistent with those reported by Forster et al. (2013, 
table 3). Note that the GMT is defined slightly differently 800 
     The GCM simulations analyzed here differ from the observational estimates, with near-surface data products 
as for their definition of temperatures rather than SSTs over sea areas. There are indications that this affects the 
trends and in fact explains the difference (('tas only' versus blended temperatures). Cowtan et al., . (2015) and 
Richards et al. (2016). Thus, strictly spoken, GMT values cannot be compared without accounting for this 
difference (and the difference in coverage for non-interpolated estimates such as HadCRUT4).  - figure 1) showed 805 
that tas temperatures differ from blended temperatures by 0.10 ºC, for the period 1860-2009. Thus, mean GCM-
derived warming estimates cover the ranges [1.00 to 1.15] ºC (tas) or [0.90 to 1.05]  ºC (blended). We note that 
these ranges reasonably correspond to the range found in table 1. 
     Since GCM simulations include externally-forced natural variability we remove forcings by volcanos and solar 
irradiation by analyzing an ensemble of 37 GCM simulations with natural forcing only ('historicalNat'; IPCC, 2013 810 
- figures 10.1 and 10.7; Forster et al., 2013 - fig 2). ). The mean curve with 2 standard errors (SEs) is shown in the 
lower panel of figure 4, along with major volcanic eruptions (eruptions with a Volcanic Explosivity Index of 5 and 
6). Mean trend progression for these 37 runs accounts for 0.078 ± 0.030 ºC  (2-SE), 1861-2005.  
     Now, if we correct GCM simulations for natural forcings we find a mean progression Δ2016 of  
1.07 ± 0.47 ºC (2-σ).  815 
 
 
 
 
 820 
 
 
 
4    Discussion  

 825 
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The results shown in table 4.1 form the central findings in this study. Here, weUncertainty and sensitivity 

analysis 

 

We make twothree comments concerning the robustness of thesethe results given in section 3. First, as summarized 
in table SM.1 of the Supplementary Material section, a wide range of trend models exist in the literature, all with 830 
varying characteristics. The fact that many of these methods are not statistical in nature does not limit their 
application in the present context: the approach shown in figure 1 (creating surrogate GMT series by MC 
simulation) is also applicable to methods such as binomial filters or LOESS estimators. Therefore, we cannot rule 
out that the influence of trend modelling is underestimated in table 1. However, given the (i) small differences 
shown in the bottom row of table 1, and (ii) the wide uncertainty bands due to natural variability, we judge such 835 
an under-estimation to be relatively small. 
     A second comment concerns a source of uncertainty not mentioned thus far, namelydealing with the choice for 
year or period that can be regarded as ‘pre-industrial’. As for the analyses in section 3.1, we have chosen for the 
year 1880 as low end of the sample period, simply because two out of five GMT products start in 1880 (NASA 
and NOAA). This choice is consistent with that made by IPCC (2013) as for historic trend progression (although 840 
some analyses are relative to 1850-1900). Would our results and conclusions from table 1 be different if the sample 
period would be enlarged, starting in 1720, 1850 or 1880?without claiming this to be 'since pre-industrial'). In 
section 3.2 we have chosen the year 1861 as low end of the sample period, again since simulations are available 
from that year onwards.  
     Would our results and conclusions from table 1 or figure 4  be different if the sample period would be enlarged, 845 
starting in 1400, 1720 or 1850? Strictly spoken, we cannot answer this question since we cannot extend our 
analyses to these starting years due to data availability. As for instrumental dataset, we could perform some 
analyses from 1850 onwards but GMT estimates become inaccurate for these early decades. However, estimates 
based on GCM simulations are given by Hawkins et al. (2017) have shown theand Schurer et al. (2017).  
     Hawkins et al. show that the GMT difference between the two periods 1720-1800 and 1850-1900 to beis small, 850 
around 0.05 ºC, lying on the edge of statistical significance. Additionally to their analysis we compared GMT 
mean values over three periods: 1850-1900, 1860-1880 and 1880-1900, based on the HadCRUT4 dataset. The 
mean values appear to be quite similar: 
 -0.3531 ± 0.03 °C, -0.3531 ± 0.06 °C and -0.3632 ± 0.05 °C, respectively (2-σ2σ limits). These differences are 
small if compared to the uncertainties due to natural variability, shown in table 1. We concludeThese results 855 
suggest that the choice for 
 1720-1800, 1850-1900, 1860-1880 or 1880-1900 as 'pre-industrial' will nothave a small influence to the findings 
presented here. 
     As for GCM-derived progressions we have taken At the year 1861 as start of 'pre-industrial'. The reason forother 
hand, Schurer et al. show from GCM simulations that choiceglobal warming is illustrated in the lower panel of 860 
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figure 4. The period 1861-1880 is one with low volcanic activity, with only one volcanic eruption with a Volcanic 
Explosivity Index of 5. However, the period 1880-1900 is strongly influencedunderestimated by eruptions, notably 
that of the Krakatoa with a VEI of 6. This eruption led to lowering of GMTs of 0.309 [0.03, 0.19] ºC. Note that if 
the period 1401-1800 is chosen as pre-industrial baseline (compared to the period 1850-1900). Their estimate for 
the influence of GHG only lies close to these volcanic signatures are not resembledestimates, in the instrumental 865 
data, probably due to poor coverage in the areas in which the signal would have been clearest, the tropics.range 
from 0.02 to 0.20 ºC. We conclude that recent simulations point to an underestimation of global warming if 
calculated relative to late nineteenth century estimates. The underestimation lies around 0.10 ºC.  
     A third comment deals with differences in warming definitions as mentioned in the Introduction. If the Paris 
targets should be interpreted as anthropogenic warming only, we should estimate these contributions as well. 870 
Clearly, the incremental estimates Δµ2016  shown in Table 1 do not contain corrections  for decadal to centennial 
natural forcings from solar and volcanic activity. To estimate the role of volcanic activity on the estimates given 
in table 1 we have extended the OLS linear trend and the IRW trend model with a regression component where 
GMT series are regressed on the OAD index shown in figure 5. Results are summarized in table SM.2. The table 
shows that incremental estimates Δµ2016  are overestimated by 0.02 ºC for linear trends and by 0.04 ºC for IRW 875 
trends. 

     To estimate the role of long-term solar activity we did not choose for the time-series approach above since any 
explanatory variable in a regression model with some long-term trend will correlate and 'explain' the long-term 
trend in the dependent variable. Therefore, we refer to GCM estimates for the role of solar activity. 
     IPCC (2013) estimates the role of solar variability to be small and on the edge of significance. Incremental solar 880 
forcing for the period 1750-2011 accounts for 2 [0, 4] % of GHG forcing (Figure SPM.5 and Box 10.2). Schurer 
at al. (2017 - figure S3) estimate the incremental contribution of solar forcing on GMTs to be 0.07 [0.02, 0.12] ºC. 
This estimate compares the period 1850-1900 to 1990-2000. Furthermore, the long-term influence of volcanic 
activity is non-significant in their simulations (their figure S2).  
     Next to these estimates we analyzed an ensemble of 37 GCM simulations with natural forcing only 885 
('historicalNat'; IPCC, 2013 - figures 10.1 and 10.7; Forster et al., 2013 - fig 2).      How do progression estimates 
shown in table 1 relate to GCM-derived trend progressions? In section 3.2 we estimated mean GCM progression, 
corrected for natural variability, to be 1.07 ± 0.47 ºC (2-σ). These estimates appear to lie within the range of trend 
progressions based on instrumental data. E.g.,  they equal trend progression as derived from the Berkeley Earth 
dataset, which show trend progressions around 1.06 ± 0.14 ºC (2-σ). Clearly, the uncertainty bands for instrumental 890 
trend estimates are much smaller. 
     We note that GMT trend estimates from instrumental data and GCMs are not independent. Modelling groups 
use various methods of tuning to relate their simulations to real world data (IPCC, 2013 - Ch 9; Voosen, 2016), 
although the very large spread indicates that they have not been very successful in tuning to the observed trend.  
 895 
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The mean curve with 2 standard errors (SEs) is shown in figure SM.2, along with major volcanic eruptions 
(eruptions with a Volcanic Explosivity Index of 5 and 6). Mean trend progression for these 37 runs accounts for 
0.078 ± 0.030 ºC (2 SE), 1861-2005.  
     From these inferences we conclude that the difference between total warming and 'anthropogenic warming lies 900 
around 0.10 ºC with an uncertainty range of [0.0, 0.14]. 
      
 
4.2   Policy recommendation 
 905 
Schurer et al. (2017) end their article with the recommendation that a consensus be reached as to what is meant by 

pre-industrial temperatures. In this way, the chance would be reduced of conclusions that appear contradictory 

being reached by different studies. Furthermore, it would allow for a more clearly defined framework for 

policymakers and stakeholders. We fully agree with this recommendation. However, our uncertainty and 

sensitivity analysis has shown that the choice of a proper pre-industrial baseline is not the only parameter that 910 

could lead to contradictory results. Decisions around data products and GCM simulations, various time series 

techniques, or warming assumptions should be taken into account as well.  

     Here, we make the following policy proposal which aims to be a reasonable compromise. First, we propose to 

base GMT warming estimates on data products rather than GCM simulations. Our argumentation is that Δ2016 

values based on GCM simulations show a wide range of warming estimates (figure 4). We note that even wider 915 

ranges are found for absolute GMT estimates (CMIP5 estimates for the mean GMT value over the period 1961-

1990 show a range of 2.5 ºC according to IPCC 2013 - figure 9-8). Another argument is that simulation estimates 

from CMIP5 are accurate up to the year 2005 (estimates for 2006-2016 apply approximations for GHG 

concentrations, and no volcanic and solar activity).  

     Second, since warming estimates vary as a function of the GMT data product chosen (tabel 1), we propose to 920 

estimate trends on the annual averages of all five data products.   

     Third, we found that the choice for specific trend methods plays a minor role, with largest differences between 

stiff and more flexible trend models. Therefore, we propose to apply a flexible and a stiff trend method and average 

the warming estimates found.  

     Fourth, two studies on the role of pre-industrial baselines have been published recently. Schurer et al. (2017) 925 

find a GHG-induced warming in the range [0.02, 0.20] ºC if the period 1401-1800 is compared to the period 1850-

1900. Hawkins et al. (2017) define the period 1720-1800 as a reasonable baseline for pre-industrial and find small 

non-significant differences between the period 1720-1800 and 1850-1900. We choose to follow the baseline 

proposed by Hawkins et al. Since all five GMT data products have data from 1880 onwards and GMT mean values 
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for 1850-1900 and 1880-1900 are of equal size (based on the HadCRUT4 data product), we propose to analyse 930 

trend progression from 1880 onwards.  

     Finally, we propose to interpret global warming in the context of "Paris" as the sum of natural and anthropogenic 

warming, consistent with the IPCC definition of climate change. One argument for this choice is that ecological 

systems and human society will respond to total warming and induced shifts in climate extremes regardless of its 

origin. 935 

     From these choices it follows that trend progression Δ2016  accounts for 1.00 ± 0.13 ºC (bottom row of table 1).  
 
 
5   Conclusions and outlook 

5.1  Conclusions 940 

We have addressed the issue of  signal progression of GMT in relation to the GMT targets agreed upon in Paris, 

in December 2015. Although these targets are clearly defined -– avoiding increments of 1.5 and 2.0 °C -– there 

remain a number of (scientific) questions unaswered in the agreement. We have identified fourfive aspects of the 

accord which hamper an exact quantification of GMT progression: (i) the use of instrumental data and trend 

methods versus GCM-derived progression, (ii) the role of varying datasets, (iii) the role of varying trend methods 945 

and, (iv) the role of varying choices for pre-industrial. These questions are also relevant as GCM outcomes and 

their spread are used to make assessments on and (v) the efforts required to reach the Paris targets with a certain 

“likelihood”.role of warming definitions. Since there is no 'true' or 'best' approach (Visser et al., 2015), we have 

chosen to perform an uncertainty and sensitivity on GMT progression as propagated by Saltelli et al. (2004) and 

related articles. This allows us to test the robustness of various trend progression claims. 950 

     As for approachesApproaches based on instrumental data we. We find that best guesstrend values for GMT 

progression 1880-2016 vary considerately, from 0.90 ºC (HadCRUT4 dataset in combination with the IRW trend 

model) to 1.12 ºC (Berkeley Earth dataset in combination with cubic spline interpolation and φ = 0.28). TheseThe 

two extremes reveal that the range of Δµ2016 variabilityvalues due to datasets and trend models accounts for 0.22 

°C. This variabilityrange is lowersmaller than variabilitythat due to natural variability alone. Based on 2-σ2σ limits, 955 

we find a low estimate of 0.24 °C (LOTI dataset in combination with cubic spline interpolation and φ = 0.28) and 

a high estimate of 0.38 °C (LOTI dataset and OLS linear trend). Furthermore, variability due to various GMT 

products dominates the variability due to specific trend approaches. 

     As for approachesApproaches based on GCMs we. We find that mean trend progressions lieslie within the 

range of estimates from instrumental data. However, the uncertainty bands for 106 simulations are much wider 960 
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than those derived from instrumental trend estimates. Here, GCM variability stems from a wide range of modeling 

assumptions such as climate sensitivities, cloud parameterization and aerosol forcing (e.g., IPCC, 2013 - Ch. 9), 

rather than from natural variability. 

         The choice of a pre-industrial period. Recent studies have shown that GHG warming prior to 1880 or 1850 

cannot be neglected. Schurer et al. (2017) estimate that early warming (1401-1800 compared to 1850-1900) 965 

accounts for 0.09 [0.03, 0.19] ºC. The role of solar and volcanic activity is minimal in this comparison. 

   Interpretation of Paris targets as being 'total warming' or 'anthropogenic warming only'. We find that the role 

of solar and volcanic activity is small on centennial scale. This contribution lies around 0.10 ºC (+0.03 ºC from 

volcanic activity and +0.07 ºC from solar activity).    

     Hiatus. As a side result of our trend analyses we note that no signs of an 'hiatus', 'slowdown' or 'pause' can be 970 

discerned in GMT trend progression. This inference is consistent with recent findings, e.g.  (Marotzke et al. 

(2015),, Hedemann et al. (2017),, Medhaug et al. (2017) and, Rahmstorf et al. (2017). 

 

5.2  Outlook 

The results presented here, have relevance for upcoming climate negotiations. If countries would agree to follow 975 

the precautionary principle with respect to the uncertainty topics raised in this paper, the best choice for datasets 

is the GMT dataset published by the Berkeley Earth project: trend progression is highest for this dataset (sixth row 

in table 1): 1.12 ± 0.13 ºC (2-σ). If countries would agree to follow a best-guess value which is robust against the 

factors addressed here, we propose to choose the IRW or spline trend trend model and to apply it on the average 

of five leading GMT products (for psychological reasons all datasets are chosen as equally important). For this 980 

choice trend progression accounts for 1.01 ± 0.13 ºC. Although estimates based on GCMs are consistent with this 

estimate, as shown above, GCM simulations are not a logical choice here due to their wide spread (cf. upper panel 

in figure 4). 

     To give an impression how GMTs might evolve in the future, we have calculated two mean GCM projections:  

one based on the RCP2.6 scenario (32 simulations) and one based on the RCP4.5 scenario (42 simulations). All 985 

simulations are contained in the 106 GCM simulations used in section 3.2, and scaled to have a mean value of 

1.01 ºC in the year 2016 (the mean value of historic trend progression as derived above). See figure 5. 

     We find that, if countries are able to reduce GHG emissions according to the RCP2.6 scenario, best guess GMT 

values will stay below the 1.5 °C target. Under unfavourable circumstances this target could be reached by the 

year 2040. The 2.0 °C target is never reached. Under the RCP4.5 emission scenario both temperature targets are 990 
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reached before the year 2100, even under favourable conditions.     Policy recommendation. Schurer et al. (2017) 

recommend that a concensus be reached as to what is meant by pre-industrial temperatures. Our analysis shows 

that other sources of uncertainties should be taken into account as well. If not, contradictory results will appear in 

different studies with direct consequences for CO2 reductions to hold GMTs below the Paris targets. Our proposal 

shows a GMT progression Δ2016  of 1.00 ºC. 995 

 
 
 
Table 1.  Trend increments Δµ2016  along with 2-σ2σ confidence limits. Increments are given for five GMT series 
and four trend approaches.  1000 
 
 

GMT dataset GMT progression  Δµ2016  with 2-σ2σ confidence limits   (°C) 

OLS linear 
trend 

 

IRW trend 
 

Spline  
with φ=0.28 

 

Spline  
with φ=0.60 

 

Mean 
progression 

HadCRUT4, 
CRU  

0.90 
 (± 0.18) 

 

0.93  
(± 0.1317) 

 

0.94  
(± 0.12) 

 

0.92  
(± 0.14) 

 

0.92 

HadCRUT4,  
Cowtan and 
Way   

0.96  
(± 0.17) 

 

1.06 
(± 0.1317) 

  

1.06  
(± 0.12) 

 

0.98  
(± 0.15) 

  

1.02 

LOTI series, 
NASA 

0.98  
(± 0.19) 

 

1.02  
(± 0.1418) 

 

1.01  
(± 0.12) 

 

0.99  
(± 0.14) 

 

1.00 

Karl et al 
(2015), NOAA 

0.95 
 (± 0.19) 

 

0.96  
(± 0.1519)  

 

0.94  
(± 0.14) 

  

0.95  
(± 0.14) 

0.95 

Berkeley Earth 
Project 

1.04  
(± 0.17) 

 

1.12  
(± 0.1317) 

 

1.12  
(± 0.13) 

 

1.06  
(± 0.14) 

 

1.09 
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Mean 
progression 

0.97 1.02 1.01 0.98 1.00 
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 1035 

 
 
Figure 1. Construction of 1000 surrogate trend series by MC simulation, based on cubic splines. The AR(1) 
parameter estimated on the residuals of the spline model in the upper panel, accounts for 0.28. A surrogate GMT 
series ŷi,t is formed by simulating a new residual series ri,t based on the AR(1) process with φ= 0.28, and adding it 1040 
to the estimated spline (green line upper panel). Then, a spline trend μi,t  is estimated for each surrogate ŷi,t . As an 
illustration we have plotted 1000 of such trends  μ1,t   , ... , μ1000,t  in the lower panel. Now, confidence limits can 
be estimated for any μt based on the values μ1,t , .... , μ1000,t . These confidence limits can be based on standard 
deviations or percentiles. Similarly, confidence limits can be calculated for the increment [μ2016 - μ1880], based on 
the values  [μ1,2014 - μ1,1880] ,...... , [μ1000,2014 - μ1000,1880]  (Mudelsee, 2014 - Sections 3.3.3 and 3.4).  1045 
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Figure 2.  Results for the IRW trend model as applied to the HadCRUT4 series. Period: 1880-2016. The upper 
panel shows the trend (green line) along with 95% confidence limits (red dashed lines). The trend increments 1050 
[µt - µt-1] are given in the middle left panel along with uncertainties. Idem the  [µt - µ1880] values in the middle right 
panel. The lower left panel shows the innovations or one-step-ahead predictions errors which follow from the 
Kalman filter formulae. The lower right panel shows the autocorrelation function (ACF). 
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 1055 

 
 
Figure 3.  Two smoothing spline estimates for the HadCRUT4 GMT series, with uncertainties generated by MC 
simulation. All confidence limits are based on 1000 surrogate GMT series following the approach set out in 
Mudelsee (2014 - Section 3.3.3). Upper panel: AR(1) parameter chosen as φ = 0.28 (equivalent to 7 degrees of 1060 
freedom), the low end of φ  values within CMIP5 PiControl runs. Lower panel: AR(1) parameter chosen as 
φ = 0.60, the high end of φ values (DF=3).  
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 1070 
 
Figure 4.   Upper panel: histogramHistogram based on 106 GCM  Δi,2016 values., relative to 1861. Mean value is 
1.15 ± 0.4750 ºC  
(2-σ2σ). Individual GCM curves were smoothed by splines. Lower panel: natural variability based on 37 GCM 
simulations. Shown are mean where the AR(1) parameter is chosen as φ = 0.28 (equivalent to 7 degrees of 1075 
freedom), the low end of φ  values along with 2 standard errors. Period is 1861-2005within CMIP5 PiControl runs.   
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Figure 5.  Mean GMT projections based on the RCP2.6 emission scenario (32 simulations, green lines) and based 

on the RCP4.5 emission scenario (42 simulations, red lines). Both mean curves are shifted such that 2016 values 

account for 1.01 ºC. Uncertainty limits are based on 2 Standard Errors (SEs). 
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 1085 
 
Figure 5.   The AOD index series as introduced by Sato et al. (1993). Period is 1850-2016. 
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Code availability.  IRW trends have been estimated by the TrendSpotter software. This software package is freely 1095 

available from the first author. Splines have been estimated by the statistical package S-Plus, version 8.2. The 

scripts which are highly similar to R, are available from the first author. 

 

Data availability.  All five GMT datasets are open access and have been downloaded from the authors websites. 

All CMIP5 runs named in Section 2.1 were downloaded from the KNMI Climate Explorer website with one 1100 

member per model (Trouet and Van Oldenborgh, 2013). The names of individual GCMs can be found there as 

well. Please see https://climexp.knmi.nl/cmip5_indices.cgi?id=someone@somewhere . Data used for the graphical 

presentations in this article can be gained from the first author.  
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