- Authors response to anonymous reviewer #2 1
- 2 3

4 This study considers the question of estimating by how much global temperatures have 5 changed since 'pre-industrial' times, assessing the uncertainty in different trend models 6 and due to different global temperature datasets. The analysis is interesting, though 7 the results are not too surprising. However, I have some major concerns:

8

1) Framing: the authors emphasize repeatedly that they are estimating changes since 9

a particular baseline and implying that this is what the Paris agreement meant by 10 'preindustrial'. 11

12

13 This is not the case - the introduction of Hawkins et al. (which the authors

cite) discusses this issue at length. In addition, Schurer et al. (2017, NCC) was very 14

15 recently published, highlighting again that there was likely some additional warming

due to anthropogenic factors before 1850. The authors may also like to examine Otto 16

et al. (2015) for an alternative approach to estimating the warming since the 19th century. 17

The text in the discussion on this topic is appropriate however. 18

Agreed. We propose to treat the topic of 'pre-industrial' more clearly in the discussion section, 19

as we pointed out in our response to Reviewer #1. We will add the references to Schurer et al. 20

21 (2017) and Otto et al. (2015). Consequently, we will address their findings that GHGs had a

significant effect on global warming if the period 1401-1800 is compared to 1850-1900: from 22

0.02 to 0.20 °C (5-95% confidence limits). If all forcings are combined (GHG, solar, volcanic) 23

24 they find 0.09 [0.03 - 0.19] °C.

25

26 2) Terminology: some of the phrasing is very confusing when referring to and/or

distinguishing between natural *forced* variability (volcanic, solar) and internal *unforced* 27

variability. These terms are sometimes mixed and it's not always clear what the authors 28

29 mean. For example, in the abstract (and L86) the authors claim the models are

30 corrected for natural variability, when they mean the forced component, but the introduction

uses natural variability to mean both forced and unforced variations. On L133, 31

32 the authors refer to the 'historicalNat' runs 'for natural unforced variability', which is not

true - those runs include both natural forced and internal unforced variations as the 33

next sentence correctly states. Variability is also used for the spread or range between 34

different estimates, adding further confusion. The authors should carefully check each 35

36 use of this type of phrasing and make it far more precise.

37

38 Agreed. We propose to check the phrasing of 'natural variability' carefully, this in

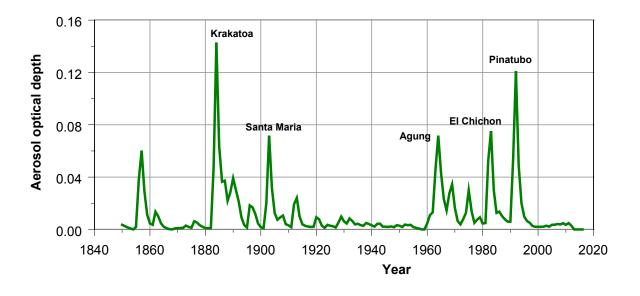
combination with the terms 'forced' or 'unforced' or both, 'internal variability' and 'spread'. 39

40

41

Additionally, we propose to treat the role of natural unforced variability and natural forced variability (i.e., the role of changes in irradiance of the sun and changes in volcanic activity)

- 42 43 separately in a second item in the discussion section.
- 44


The trend analyses as given in our Table 1 are based on the IPCC definition of climate change 45

- (Glossary AR5): anthropogenic forcing combined with decadal to centennial natural 46
- variability. However, UNFCCC defines climate change as originating from GHG forcing 47
- only. In their philosophy we could argue that the Paris limits of 1.5 and 2.0 C should originate 48

- 49 solely from anthropogenic forcing. We propose to quantify this second view on the Paris
- 50 limits.
- To do so we make use of the recent study of Schurer et al. (2017, their figures S2 and S3), and
- 52 the lower panel of figure 4 in our manuscript. Next to that we estimated the role of volcanos
- 53 in a time-series setting by extending the Integrated Random Walk (IRW) model. For details
- 54 we will refer to Visser and Molenaar (1995) and Visser et al. (2015).
- 55
- 56 It shows that the incremental values shown in Table 1 for the IRW trend are 0.04 °C degree
- 57 lower. If estimated in combination with the OLS straight line, i.e. a regression model with one
- explanatory variable, estimates are 0.02 °C lower than those shown in table 1. This effect,
- although small, will be due to the Krakatoa eruption in the period 1880-1890.
- 60

The indicator for volcanic dust is taken from NASA: aerosol optical depth (AOD). See graphbelow:

- 63
- 64

- 65
- 66

- that many models in CMIP5. It's not clear what the authors have used here there must
 be more than one historical part of the runs for some of the models.
- 70

71 The reviewer addresses a good point. What we meant here is that we used one member per $\frac{1}{2}$

- model, given the use of a specific RCP scenario. Thus, we have used 42 members for
 emission scenario RCP4.5, 25 members for emission scenario RCP6.0 and 39 members for
- emission scenario 8.5, making up a total of 106 members. We propose to clarify this in the
- 75 text.
- 76
- There are also 43 piControls on Climate Explorer, and very few are less than 200 years, not
 only the 20 that the authors have used why have they not used the others?
- Agreed. We have calculated all AR(1) coefficients for all 41 piControl runs, available in the
- 81 KNMI Climate Explorer. Three of those runs showed a jump or a strong linear trend over the
- simulation period (varying from 200 to 1000 years). We omitted these. For the remaining 38

^{67 3)} GCM analysis: the 106 members used cannot be 'one per model' as there were not

runs we have omitted the lowest two AR(1) coefficient estimates (lying around 0.0) and the
two highest estimates (lying around 0.75). The remaining range equals the range given in our
manuscript: [0.28 - 0.60]. We propose to adapt the text for this finding.

86

Also, in section 3.2, the authors could use the AR(1) value from each model's own control run

to fit a spline to the historical run of that same model, rather than assume the same across

89 every model. Also, how has the correction for natural forcings been applied (L250)? Has

90 the mean across the historicalNat runs been subtracted from each historical run? If

so, this is inconsistent as the response to volcanic eruptions varies significantly across

92 *models*.

93

In our revision we propose to give values for smoothing by splines with φ =0.28 and φ =0.60,

similar to shown in our figure 3. Period: 1861-2016. This gives a small change in the upper

panel of our figure 4. The spread is for both smoothing options identical ± 0.50 C (2 σ). The

97 mean value of all 106 increments is 1.15 °C for the smoothing option with ϕ =0.28 and 1.00 °C

98 for $\phi = 0.60$.

99

100