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Abstract.

Because of the relatively brief observational record, the climate dynamics that drive multi-year to centennial hydroclimate

variability are not adequately characterized and understood. Data assimilation(DA)-based paleoclimate reconstructions op-

timally fuse paleoclimate proxies with the dynamical constraints of climate models, thus providing a coherent dynamical

picture of the past. Therefore DA is an important new tool for elucidating the mechanisms of hydroclimate variability over5

the last several millennia. But DA has so far remained an untested tool for global hydroclimate reconstructions. Here we ex-

plore whether or not DA can be used to skillfully reconstruct global hydroclimate variability along with the driving climate

dynamics. Through a set of realistic pseudoproxy experiments we find that an established DA reconstruction approach can

indeed be used to reconstruct hydroclimate at both annual and seasonal time scales. We find that temperature and hydroclimate

variables are best reconstructed near the proxy sites; in particular for tree rings, we find that hydroclimate reconstructions de-10

pend critically on moisture-sensitive trees, while temperature reconstructions depend critically on temperature-sensitive trees.

Real-world DA-based reconstructions will therefore likely require a spatial mixture of temperature and moisture sensitive trees

to reconstruct both temperature and hydroclimate variables. Additionally, we illustrate how DA can be used to elucidate the

dynamical mechanisms of drought with two examples: we examine the tropical drivers of multi-year droughts in the North

American Southwest and in equatorial East Africa. This work thus provides a foundation for future DA-based hydroclimate15

reconstructions using real proxy networks, while also highlighting the utility of this important tool for hydroclimate research.

1 Introduction

Hydroclimate extremes, including persistent droughts and pluvials, can have extensive impacts on human welfare and agricul-

tural production. While the frequency of such extremes are estimated to increase with global warming (e.g., Battisti and Naylor,

2009; Cook et al., 2015a; Ault et al., 2016), it is unclear if the underlying climate dynamics of such events are accurately pro-20

duced in climate model simulations (e.g., Coats et al., 2016; Stevenson et al., 2016). The approximately 100-year observational

record also limits our ability to understand the mechanisms of these events because this time interval does not capture the full

range of hydroclimate extreme events and it poorly characterizes multidecadal to centennial variability. A canonical example

is the multidecadal “megadroughts” that were a prominent, though infrequent, feature of the climate system over the past two

thousand years in Western North America and Europe (Cook et al., 2010b, 2015b, 2016). Of particular concern is that many25
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of these drought events were more persistent than any of the droughts observed over the historical era (Cook et al., 2010b).

Reconstructing hydroclimate variables along with their driving dynamics would therefore provide a critical perspective and

allow for improved characterizations of such high-impact events.

While hydroclimate reconstructions exist over many different time scales and resolutions (e.g., Tierney et al., 2008, 2011;

Masson-Delmotte et al., 2013), hydroclimate reconstructions over the Common Era (the past two thousand years) are particu-5

larly important because this time period allows for high resolution seasonal and annual time scale reconstructions over much

of the globe (Bradley, 2014). Hydroclimate reconstructions for the Common Era have been performed for localized regions,

such as for snowpack and precipitation in specific mountain ranges (e.g., Belmecheri et al., 2016; Neukom et al., 2015) or for

the streamflow of particular rivers (e.g., Jacoby Jr, 1976; Cook et al., 2013). On continental-scales, gridded “drought atlases”

targeting the Palmer drought severity index (PDSI) have been derived over portions of North America (Cook et al., 2007),10

Europe (Cook et al., 2015b), Southeastern Asia (Cook et al., 2010a), and Australia and New Zealand (Palmer et al., 2015).

Despite these regional successes, no truly global hydroclimate reconstructions have been made.

The goal of this work is to demonstrate and test the application of data assimilation (DA) for global hydroclimate recon-

structions. DA is a method that optimally fuses proxy information with the dynamical constraints of climate models (Goosse

et al., 2012; Steiger et al., 2014; Hakim et al., 2016). We lay this groundwork by performing a set of synthetic “pseudoproxy”15

reconstructions that estimate a realistic upper-bound on reconstruction skill: given the current proxy networks and state-of-

the-art climate models, we ask whether or not it is possible to skillfully reconstruct hydroclimate variables and their related

dynamics. Pseudoproxy experiments provide a test of the reconstruction methodology while controlling for uncontrolled and

sometimes unknown factors that pervade real-proxy reconstructions (see Smerdon, 2012, for a review). Pseudoproxy experi-

ments have been successfully used to test the skill and characteristics of several reconstruction methodologies, including DA,20

and reconstructed variables such as temperature and precipitation (e.g., Mann et al., 2005, 2007; Christiansen et al., 2009;

Smerdon et al., 2011; Werner et al., 2013; Steiger et al., 2014; Wang et al., 2014, 2015; Gómez-Navarro et al., 2015). The

present pseudoproxy reconstruction work will help to focus future DA reconstruction efforts on variables, time scales, and

geographic areas that are most likely to be successfully reconstructed. This paper also showcases the new kinds of analyses

that are possible with the dynamical atmosphere-ocean variables from a DA-based climate reconstruction. We first analyze the25

pseudo-proxy reconstructions by focusing on global scale temperature and hydroclimate indices. We then move into specific

analyses of the mechanisms of drought in the North American Southwest and equatorial East Africa.

2 Experimental Framework

2.1 DA Methodology

We employ a data assimilation technique that optimally combines observations (in this context, proxy data) with climate model30

states. The model provides an initial, or prior, state estimate that is updated in a Bayesian sense based on the observations and

an estimate of the errors in both the observations and the prior. The prior may contain any climate model variables of interest.
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The updated prior, called the posterior, is the estimate of the climate state given the observations and the error estimates. The

basic state update equations of DA (e.g., Kalnay, 2003, chapter 5) are given by

xa = xb +K[y−H(xb)] , (1)

where xb is the prior (or “background”) estimate of the state vector and xa is the posterior (or “analysis”) state vector. Obser-

vations (or proxies) are contained in vector y. The observations are estimated by the prior throughH(xb), which is, in general,5

a nonlinear vector-valued observation operator that maps xb from the state space to the observation space. The Kalman gain

matrix K can be written as

K = BHT[HBHT +R]−1 , (2)

where B is the prior covariance matrix, R is the error covariance matrix for the proxy data, and H is the linearization of H
about the mean value of the prior. Specifically, we use an ensemble square root filter to compute Eq. (1). We also note that10

Eq. (1) assumes that y, xb, and H(xb) are Gaussian distributed and that their errors are unbiased. The DA update process

involves iteratively computing Eq. (1) to arrive at the posterior, xa, for each year of the reconstruction. In any given year of the

reconstruction, xa is the probability distribution of states that are consistent with the proxy observations and errors, as well as

the prior distribution; therefore it is the full probability distribution of xa that represents the probabilistic reconstruction of the

climate state. In the time series figures herein, we show the mean of xa, with uncertainty estimates derived from the posterior15

distribution. For more mathematical details of the reconstruction methodology and the precise calculation procedure, see the

Appendix of Steiger et al. (2014).

As in previous studies (Steiger et al., 2014; Hakim et al., 2016; Steiger and Hakim, 2016; Dee et al., 2016; Steiger et al., 2017)

we use an “offline” DA approach in which the prior distribution is drawn from existing climate model simulations. For this

approach, the ensemble members are seasonally or annually-averaged climate states instead of an ensemble of independently20

running model simulations, as in “online” DA. Because of how the prior is constructed, it does not contain year-specific

forcings or boundary conditions, nor does the method propagate information forward in time. As discussed in Steiger et al.

(2014); Hakim et al. (2016); Steiger et al. (2017), the off-line approach is well-suited to a paleoclimate context where it has been

shown to be highly skillful at annual time scales (Hakim et al., 2016) without the immense computational costs of a traditional

online approach. Tests of offline vs. online approaches for paleoclimate have so far shown no improvement in reconstruction25

skill with an online method (Matsikaris et al., 2015; Acevedo et al., 2016).

2.2 Climate Model Simulations

Here we explore hydroclimate reconstructions using DA with a series of pseudoproxy experiments. For these experiments,

we employ two full-forcing simulations of the Community Earth System Model from the Last Millennium Ensemble Project

(CESM LME) (Otto-Bliesner et al., 2016). These CESM simulations used a ∼2-degree atmosphere and land, and ∼1-degree30
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ocean and sea ice components. The simulations were run from the years 850 to 1850 CE using estimates of the transient

evolution of solar intensity, volcanic emissions, greenhouse gases, aerosols, land-use conditions, and orbital parameters. The

simulations were given identical forcings but differed by round-off error in the initial atmospheric state; this difference was

sufficient to generate simulations with different time histories (e.g., Nino 3.4 indices from the two simulations we use here

have an annual average correlation of 0.097). These simulations provide the climate states for our prior ensembles as well as5

the climate inputs for the pseudoproxies: the pseudoproxies, y, are generated for the CESM LME simulation 10 while the

prior, xb, and the prior estimate of the pseudoproxies, H(xb), are from simulation 9. In other words, simulation 10 plays the

role of the actual climate in a real-world reconstruction setting; the pseudoproxies are all derived from that simulation, while

simulation 9 generates the ensemble of states that define the prior. We use two different simulations in this way so that there is

no overlap between the specific prior states and the reconstructed climate states.10

2.3 Pseudoproxy Construction

We generate realistic pseudoproxies via process (or forward) models for each proxy type (see Evans et al., 2013, for a re-

view), which transform the simulated climate signal (e.g., temperature, precipitation) into synthetic proxy observations. For

the pseudoproxy experiments, we construct pseudo tree-ring width and an approximation of pseudo-coral δ18O. We only con-

sider these two proxy types because they have established proxy system models and because they represent the majority of15

proxies in global databases [e.g., 92% of proxies in the PAGES2k network (Emile-Geay et al., 2015)]. Because our experi-

mental construction defines an upper-limit on reconstruction skill, we do not consider age uncertainties, which would act to

degrade reconstruction skill and are not applicable for the tree-ring proxies that constitute the majority of the proxy network.

We use the pseudoproxy network shown in Fig. 1, which is based on the updated PAGES2k network of real, global proxy data

(Emile-Geay et al., 2015). In this pseudoproxy network, we created only one pseudoproxy per climate model grid cell, though20

in real proxy reconstructions there would be the possibility of having multiple proxies within a given grid cell. Reconstructions

were performed using both pseudo-tree and pseudo-coral proxies together and also using pseudo-trees alone.

We generated 160 pseudo tree-ring widths using the model VS-lite (Tolwinski-Ward et al., 2011), which uses monthly

temperature and precipitation from the CESM LME simulations to calculate tree-ring width time series at each pseudo tree

ring location. This model accounts for the seasonal dependence of tree growth via simple parameterizations of temperature and25

moisture threshold responses at monthly scales, as well as latitudinal light availability. We estimated the four growth parameters

of VS-lite for each pseudo-tree location using the real PAGES2k tree ring width data (Emile-Geay et al., 2015), the monthly

observational temperature and precipitation data of CRU TS3.23 (Harris et al., 2014), and the VS-lite parameter estimation

code from Tolwinski-Ward et al. (2013). Note also that because this proxy system model takes care of the averaging time scale

of each individual tree, there is no need to define a rigid time scale imposed on all tree sites (e.g., all trees in the Northern30

Hemisphere reflect only June-July-August temperature).
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Tree-Ring Records
Coral Records

Figure 1. Pseudoproxy network used in this study, based on the PAGES2k global database of tree-ring and coral records (Emile-Geay et al.,

2015), and the drought regions explored in this study, the North American Southwest in blue and equatorial East Africa in purple.

We generated 55 pseudo-coral “δ18O” through the linear proxy system model of Thompson et al. (2011), which for a given

coral proxy can be written as

δ18Opseudocoral = a1SST + a2SSS + ε , (3)

where SST is local, annually averaged sea surface temperature and SSS is local, annually averaged sea surface salinity. We

estimated the parameters a1 and a2 based on the real coral proxies in the PAGES2k database and annual (defined as April to the5

next March) SST and SSS from the ocean reanalysis dataset SODA (Carton and Giese, 2008). Note that the CESM simulations

are not isotope-enabled and the coral proxy system model only requires SST and SSS to create coral “δ18O” pseudoproxies.

Within the formulations for both the pseudo tree-ring widths and pseudo coral “δ18O,” each have realistic parameters esti-

mated with real proxy and historical data, but are driven off-line by climate time series inputs from the CESM LME simulations,

viz., 2 m air temperature, total precipitation, SST, and SSS. While the combination of the climate simulation output and the10

proxy system models produce single proxy values for a given year, these values represent the many short time-scale processes

included in the climate model simulations, such as daily weather events.

We additionally note a special issue regarding the use of the VS-lite proxy system model within our Kalman filter-based

DA method: we find the output of VS-lite for some locations to be strictly non-Gaussian. This is important because Eq. (1)

assumes that y andH(xb) are Gaussian. In preliminary work, we observed “filter divergence” (where the state estimate diverges15

unrealistically away from the true state) for small prior ensembles when using VS-lite pseudoproxies. We have not observed

this effect with the proxy system models for corals or ice cores (Dee et al., 2016; Steiger et al., 2017). A common, though ad hoc
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way of dealing with filter divergence is to employ covariance localization that smooths out spurious long-range correlations,

acts to boost the “effective” ensemble size, and tends to reduce non-Gaussian issues (Houtekamer and Mitchell, 1998). Using

covariance localization is unattractive, however, because it is ad hoc and ensemble sizes can be very large in an offline DA

approach. We therefore found that to avoid filter divergence we needed over 500 ensemble members in our prior. We did not

find much sensitivity to the results with ensemble sizes between about 600 and 1000 members (e.g., maximum changes of 0.055

in the correlation skill of the global mean temperature reconstructions). We therefore performed the reconstructions with 1000

members, the maximum available years for the CESM LME simulations. This does not limit future real proxy reconstructions

because of the many millennial-length climate model simulations available (Fernández-Donado et al., 2013; Masson-Delmotte

et al., 2013), but it did require that we use the CESM LME in the present pseudoproxy experiments because it is the only high

resolution, CMIP5/PMIP3 class climate model with multiple millennial-length simulations that are publicly available.10

A further idealization in these reconstructions is that we consider only measurement error, i.e. R is quite small, approx-

imately 0.1 in standardized units for both proxy types. This choice is motivated by our interest in the best-case scenario so

as to estimate an upper-bound for DA-based reconstructions. Our choice is also motivated by the fact that quantifying errors

in non-linear proxy system models like VS-lite is non-trivial (Evans et al., 2014), thus we can have more confidence in an

upper-bound reconstruction skill estimate than a “most-realistic” skill estimate.15

2.4 Reconstruction Procedure and Experiments

Here we employ a “perfect model” framework where the same underlying climate model is used for both the prior and the

“true” climate model state. The prior, xb, consists of all the annual and seasonal climate states (defined below) from the CESM

LME simulation number 9. Using this prior, we reconstruct the corresponding annual and seasonal states of simulation 10

based only on our prior, and the pseudoproxies that are generated from simulation 10. Despite the idealization of the perfect20

model framework, previous DA-based reconstruction work has shown similar results using different climate models in both

pseudoproxy and real proxy reconstructions that did not assume a perfect model framework (Hakim et al., 2016; Dee et al.,

2016; Steiger et al., 2017). These studies saw similar basin and continent-wide patterns and magnitudes of reconstruction skill.

For the reconstructions, the annual states are constructed out of monthly CESM LME output, averaged from April to the

next calendar year’s March. This annual average is chosen to account for the seasonal cycle of a global network of proxies as25

well as climate phenomena like the El Niño–Southern Oscillation (ENSO), the continuity of which would be ignored with a

calendar year average. The seasonal states we use are June-July-August (JJA) and December-January-February (DJF) averages

of the monthly climate variables.

We include the following global variables in our state vectors: 2 m air temperature, the Palmer drought severity index

(PDSI), the standardized precipitation evapotranspiration index (SPEI) using a 12 month decaying exponential weighting ker-30

nel (Beguería et al., 2014) chosen to closely resemble the time scale of PDSI. Both PDSI and SPEI were computed using the

Penman-Monteith equation for potential evapotranspiration and monthly climate model output of precipitation, 2 m temper-

ature, vapor pressure, net surface radiation, surface pressure, and surface wind (estimated from 10 m down to 2 m using the

wind profile power law). Here we focus on PDSI and SPEI because they are so widely used for current drought monitoring
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and historical drought reconstructions. In addition to these global variables, we also include the following index variables:

the location of the inter tropical convergence zone (ITCZ) defined by the precipitation centroid (center of mass) of the zonal

mean tropical precipitation (20◦N to 20◦S) (Frierson and Hwang, 2012), and the monthly Nino 3.4 index. Note that both of

these variables are computed upfront and included as index variables in the prior state vector rather than being post-processed

from reconstructed spatial climate fields (both approaches give equivalent results); this was done simply to save computational5

memory and speed up the reconstructions.

As in previous work (Hakim et al., 2016; Steiger and Hakim, 2016; Dee et al., 2016; Steiger et al., 2017), we quantify

uncertainty in our reconstructions through a combination of Monte Carlo sampling of the proxy network and accounting for

the spread in the posterior distribution, xa. Each 1000 year long reconstruction is repeated 25 times in a Monte Carlo fashion

by sampling 75% of the pseudoproxy network for each reconstruction iteration (we only perform 25 iterations because the10

small pseudoproxy errors lead to very similar reconstructions). This gives us 25 equally-likely reconstructions that each come

with a 1000-member posterior ensemble estimate for each year of the reconstruction. Because this generates very large data

files, we save the ensemble mean for each year of the Monte Carlo iterations and the full posterior ensembles for only one

of the iterations. This yields two distributions for each year based on the proxy network sampling and the spread in climate

model states. We compute the standard deviation of each of these distributions and add them in quadrature, giving us the final15

uncertainty estimates for all of the variables in space and time. For this particular experimental setup, we note that it is actually

only necessary to save one full posterior ensemble because the posterior spread depends only on the spread in the prior, the

spread in the prior estimate of the proxies, the proxy error estimates, and the number of proxies [see, for example, Eqs. A2-A4

in Steiger et al. (2014)], each of which are identical for all the Monte Carlo iterations. The upshot is that the ensemble spread

(but not the ensemble mean) is identical for each year and each reconstruction iteration.20

3 Global Reconstruction Skill Assessment

We first assess the spatial temperature reconstructions in Fig. 2, which shows the skill of the reconstruction at each grid

point using the metrics of correlation (r) and the mean continuous ranked probability skill score (CRPSS). Seasonal (JJA

and DJF) and annual reconstructions are organized by column. Correlation is computed using only the reconstruction mean

time series at each grid point while the CRPSS metric accounts for both the mean grid point time series as well as the grid25

point uncertainty estimates. CRPSS is based on the continuous ranked probability score (CRPS), which is a “strictly proper"

scoring rule that accounts for the skill of the entire posterior reconstruction distribution (Gneiting and Raftery, 2007); because

the posterior ensemble estimates are normally distributed, we specifically used Eq. (5) from Gneiting et al. (2005). The skill

score version, CRPSS, is the reconstructed CRPS computed with respect to the CRPS of a reference distribution, CRPSS≡
1−CRPSrec/CRPSref, here the initial uninformed prior; positive CRPSS indicates that the reconstructed distribution is more30

skillful for this metric than the uninformed prior. CRPSS is calculated for each year of the reconstruction and the “mean”

CRPSS shown in all the figures indicates the time-mean of the CRPSS values. CRPSS is a much more stringent skill metric

than correlation, so we focus most of our attention on CRPSS.
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Figure 2. Reconstruction skill for 2 m air temperature. Rows show the skill metrics of correlation (r) and the mean continuous ranked

probability skill score (CRPSS). These skill metrics are computed for the entire 1000 year reconstruction against the true grid point time

series, CESM LME simulation 10. Columns show the reconstruction skill for June-July-August (JJA) and December-January-February (DJF)

seasonal means, as well as the annual mean, April to the next calendar year’s March. Pseudo-tree sites are indicated by blue squares, pseudo-

corals by blue circles.

Returning again to Fig. 2 and focusing on the CRPSS results, we note that skill is highest in the densest proxy regions.

Comparing the first and second columns in Fig. 2, skill is also much higher near the pseudo-trees during their primary growing

season (note that the full growing season for each pseudo-tree site is not preset, but determined by VS-lite based on the local

temperature and moisture conditions that allow or suppress growth). Despite these seasonal dependencies, the annual mean

temperature reconstructions in the third column of Fig. 2 are skillful (positive CRPSS) despite the fact that the pseudo-trees are5

not responsive to the full annual cycle of climate. This is possible because the DA algorithm can exploit climate field covariance

information across time-scales: see Steiger and Hakim (2016) and note that, for example, ENSO and the approximately 500

day thermal time scale of the global ocean mixed layer (Lintner and Neelin, 2008) are physical features of the climate system

that can retain information across seasonal and annual time scales. The skill of the temperature reconstructions in Fig. 2 is high

across the tropics and is not solely dependent on the presence of corals there, though they do improve tropical reconstructions10

(see section 4.1).

One more subtle feature of Fig. 2 is that not all proxy locations show similar local temperature reconstruction skill, par-

ticularly for the pseudo tree rings. This suggests that certain pseudoproxy locations provide more local information about

temperature than other locations. Importantly, the tree ring proxy system model VS-lite explicitly models how much of a given
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site’s growth is affected by either temperature or moisture limitations (the two growth controlling factors modeled by VS-lite).

Following Tolwinski-Ward et al. (2013), we used VS-lite’s growth response functions to calculate which locations were either

moisture or temperature limited, expressed here by a “moisture limitation fraction,” as shown in Fig. 3. Specifically, we com-

puted the fraction of summer months over the entire simulation in which the growth response to soil moisture was less than

the growth response to temperature; summer is defined as JJA in the Northern Hemisphere and DJF in the Southern Hemi-5

sphere. Values of this fraction approaching zero indicate a temperature-limited site, while values approaching one indicate a

moisture-limited site.

Comparison of moisture limitation fractions with the reconstruction skill estimates in Fig. 2 shows that the locations with

the highest CRPSS skill values correspond to locations that are most temperature limited. For instance, the four tree-ring sites

in Arctic Russia reveal a range of temperature or moisture limited responses. The CRPSS regional values in JJA follow these10

sensitivities, namely the most temperature-limited proxy generates the highest regional skill, while the eastern most proxy that

is moisture-limited is associated with the lowest regional skill. This generally holds for other isolated locations or clusters of

similarly-limited trees, such as for the cluster of temperature-limited sites in Fennoscandia or the cluster of moisture-limited

sites in the Pamir mountain range. Note that the identification of certain moisture or temperature limited sites is due primarily

to the CESM model simulation output, so the identifications here may not correspond perfectly to the related real-world proxy15

sites.

Figures 4 and 5 show the skill of the reconstructed PDSI and SPEI. Both indices behave very similarly, with slightly higher

skill values for SPEI (e.g., over boreal Canada and Russia for JJA correlation and CRPSS). Similar to the temperature recon-

struction, the higher skill values tend to be local to the proxy sites, especially for the CRPSS metric. This result particularly

holds for the areas of single moisture-limited proxies or clusters thereof. These dependencies are again illustrated by comparing20

Figs. 3, 4, and 5 around the four Arctic Russia sites where skill is increased around the moisture-limited locations, particularly

for the far eastern proxy in that region. Similarly, the cluster of moisture-limited sites in the Pamir mountain range is associated

with increased skill there and westward to the Caspian sea. In contrast, the arc of Himalayan pseudo tree rings are largely

temperature-limited and despite their density they have low CRPSS skill values for the PDSI and SPEI reconstructions. We

also note that the skill over Australia and the equatorial regions is not dependent on the presence of the pseudo-corals (not25

shown), consistent with some of the findings of real proxy drought reconstructions (Palmer et al., 2015) that indicate the long

covariance length scales in these regions. Similar to the temperature reconstructions, Figs. 4 and 5 show that skillful annual re-

constructions of hydroclimate are in principle possible in this DA framework despite the fact that the pseudo-trees are primarily

responding to growing season conditions. This result may be due in part to the persistence built into the drought indices.

Because the reconstructions shown here provide an upper-bound skill estimate, we expect Figs. 2, 4, and 5 to be most useful30

in showing where and why the reconstructions lack skill. If skill is limited under idealized conditions, it is unlikely that in-

creased skill would be achieved in real reconstructions. In this case CRPSS is more useful because correlation is less stringent

in that it only tracks the phase of the mean reconstruction and resulting in generally quite high correlations for most locations

and seasons. The comparisons we have so far made between Fig. 3 and the skill metrics in Figs. 2, 4, and 5 illustrates a general

rule that without moisture sensitive trees skillful PDSI or SPEI reconstructions are unlikely; similarly, without temperature35
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Figure 3. Moisture limitation fraction for each pseudo tree ring, with green values indicating more moisture-limited sites and red values

indicating more temperature-limited sites. A value of 0 indicates a pseudo tree site that is completely temperature limited, while a value of 1

indicates a completely moisture-limited site.

sensitive trees skillful temperature reconstructions are unlikely. This might at first appear to be an obvious observation. It is

nevertheless important to recall that PDSI and SPEI are both dependent on temperature through their incorporation of potential

evapotranspiration. Therefore it might be possible in principle for tree rings to reconstruct both temperature and moisture in-

dices equally well, regardless of whether the trees are moisture or temperature limited. To the contrary, our experiments suggest

that this is not the case. Based on these experimental results, we recommend that future DA-based hydroclimate reconstructions5

use a spatial mixture of temperature and moisture sensitive trees if the goal is to reconstruct both temperature and hydroclimate

indices (as happens to be the case over western North America in our experiments). Where this is impossible, our pseudoproxy

experiments suggest that reconstruction skill will be significantly diminished for the target variable not represented by the

proxy network.
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Figure 4. Reconstruction skill, correlation (r) and the mean continuous ranked probability skill score (CRPSS), for the Palmer drought

severity index (PDSI), c.f. Fig. 2.

Figure 5. Reconstruction skill, correlation (r) and the mean continuous ranked probability skill score (CRPSS), for the standardized precipi-

tation evapotranspiration index (SPEI) with a 12 month decaying exponential weighting kernel, c.f. Fig. 2 and 4.
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4 Regional Hydroclimate Reconstructions

Given the above demonstrations of global reconstruction skill, we now showcase two regional examples that explore the

driving dynamics of multi-year droughts in the North American Southwest and equatorial East Africa within the pseudoproxy

reconstructions.

4.1 North American Southwest Multi-year Drought5

We first focus on the dynamical mechanisms of multi-year droughts in the North American Southwest. The choice of this

region is motivated by the local reconstruction skill seen in Figs. 4 and 5, and because several established theories exist about

the dynamical drivers of drought in this region (e.g., Seager et al., 2005; Seager and Hoerling, 2014). Fig. 6 shows the time

series reconstruction of JJA PDSI in the North American Southwest region, defined by the land area within the latitudinal range

of 25◦N–42.5◦N and the longitudinal range of 125◦W–105◦ W as previously used in Coats et al. (2013, 2015) and indicated by10

the blue box in Fig. 1. In Fig. 6, the five most severe droughts are highlighted for both the reconstruction and the truth; overlap is

indicated by the slightly darker purple highlights. The cumulative drought severity is ranked by the sum of persistently negative

PDSI values relative to an 11-year moving average (Meehl and Hu, 2006) [very similar results were found using an alternative

definition of drought that commences after two consecutive years of negative PDSI values and continues until two consecutive

years of positive PDSI values (Coats et al., 2013)]. Consistent with the spatial drought reconstructions shown in Figs. 4 and 5,15

this North American Southwest regional average reconstruction has high skill, r = 0.90 and CRPSS = 0.57 (we note that for a

single time series verification CRPSS reduces to the skill score version of the mean absolute error, which we have computed

here); the reconstruction using pseudo-trees alone has skill values of r = 0.89 and CRPSS = 0.54 (not shown). Despite the high

skill of the overall reconstruction, it is challenging to consistently identify the rank of the most severe droughts based on the

imperfect reconstruction; this is true for not only the top 5 droughts, but the top 10 and 15 as well. This is due to the fact that20

drought identification and ranking procedures (Meehl and Hu, 2006; Coats et al., 2013) tend to be sensitive to the precise zero

crossings of the hydroclimate time series that set the beginning or ending of a drought (thus affecting both the identification

and subsequent ranking); for example, the mid to late 1300s era drought in Fig. 6 is cut short in the reconstruction because of

a zero crossing of the PDSI values near the middle of the true drought.

Given the established teleconnection between Pacific SST anomalies and hydroclimate variability in North America (Seager25

and Hoerling, 2014), we reconstruct the Nino 3.4 index and assess its relationship to North American Southwest multi-year

droughts in CESM. As part of the reconstruction experiments, we reconstructed monthly Nino 3.4 with both pseudo-trees and

pseudo-corals as well as without pseudo-corals. Fig. 7 shows the power spectra of the true Nino 3.4 time series along with the

two reconstruction types. As a representative example of the reconstruction, Fig. 8 shows the monthly Nino 3.4 time series

during the most severe drought during the reconstruction (this short interval was shown for clarity). Skill scores for the entire30

monthly time series for the experiment assimilating both pseudo-trees and pseudo-corals were r = 0.97, CRPSS = 0.78, while

for the experiment with pseudo-trees alone the skill values were r = 0.87, CRPSS = 0.53. Taking both Fig. 7 and Fig. 8 together,

the pseudoproxy framework indicates that it is possible to skillfully reconstruct the monthly Nino 3.4 index, and to potentially
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Figure 6. North American Southwest area-averaged JJA PDSI in the reconstruction mean (purple) and the climate model truth (black). Both

time series have been smoothed with an 11-year moving average (Meehl and Hu, 2006). The skill metrics of correlation (r) and the mean

continuous ranked probability skill score (CRPSS) for the smoothed time series are shown in the lower left corner. The five most severe

multi-year droughts over this period are highlighted in corresponding colors. Reconstruction error estimates, similar to those shown in Fig. 8,

have been left off to clearly show the severe drought highlighting.

do so without coral proxies. The monthly skill associated with the Nino 3.4 reconstruction is likely because monthly values

sufficiently covary with the annual proxy observations such that the reconstruction can provide meaningful monthly states for

this variable (Tardif et al., 2014; Steiger and Hakim, 2016). The results of the reconstructions using pseudo-trees alone is also

particularly important given that coral records are generally short and not extant over more than a couple hundred years.

As an analysis of the relationship between North American Southwest drought variability and ENSO, Fig. 9 shows the5

monthly percent occurrence of El Niño or La Niña states during the 15 most severe multi-year droughts (spanning droughts of

9 to 38 years in length). The El Niño and La Niña states are defined as the months for which the SST anomaly exceeds 0.5◦C

and −0.5◦C, respectively. Figure 9(a) shows how the percent occurrence for each drought reconstruction compares to the true

percent occurrence, while Fig. 9(b) shows the distribution of all the 15 droughts for the truth and the two reconstructions. This

figure illustrates that in the CESM LME simulation, multi-year droughts are associated with an above average occurrence of La10

Niña states. This relationship is consistent with observations and historical model simulations, which in brief show that cooler

La Niña-like SSTs in the tropical Pacific tends to shift the storm track over North America polewards leading to a drying of the

American Southwest (Seager and Hoerling, 2014). In a paleoclimate context, it has also been inferred that increased incidences

of La Niña events have likely driven megadroughts in Western North America over the last 1,000 years (Coats et al., 2016).

Additionally, last millennium simulations of the CESM model have also been shown to have the strongest relationship between15
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Figure 7. Power spectral density of the true model Nino 3.4 index time series along with the reconstructions based on pseudo-trees and

pseudo-corals (purple) as well as pseudo-trees alone (green).

ENSO and drought in the American Southwest compared to other CMIP5-class models (Coats et al., 2015, 2016). These results

thus collectively indicate that drought reconstructions and specific driving dynamics can be successfully investigated within in

a DA-based reconstruction.

4.2 Equatorial East Africa Multi-year Drought

The next reconstruction illustration we consider is multi-year drought in equatorial East Africa. Specifically, we explore where5

drought is occurring and its plausible large-scale drivers according to the CESM LME simulations. Similar to the results shown

in section 4.1, we use drought dynamics in East Africa as an example of what can be reconstructed using the DA-method. We

additionally provide a dynamical analysis that would be the starting point for a region specific analysis that could be performed

based on a real-proxy reconstruction. The choice of this region is motivated by the observation that the spatial drought index

reconstructions, Figs. 4 and 5, show skillful drought reconstructions in Eastern Africa and because tropical dynamics and10

variables are generally better reconstructed than mid-latitude variables and dynamics in global, DA-based reconstructions [see,

for example, Fig. 2 and Steiger et al. (2014); Hakim et al. (2016)]. We also note that this is a particularly important finding

given the absence of seasonally and annually resolved proxies in the region.

For this analysis we assess how shifts in East African tropical circulation relate to multi-year droughts. An extensive number

of paleoclimate studies have broadly interpreted tropical or even extratropical hydrologic changes to shifts in the ITCZ (see15

Chiang and Friedman, 2012, for a review). Here we explore how a common indicator of the location of the ITCZ, the zonal pre-

cipitation centroid (Frierson and Hwang, 2012), is related the location of East African droughts. We calculate the precipitation
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(a)

(b)

Figure 8. Monthly reconstruction of Nino 3.4 index during the most severe drought period in the reconstruction, for (a) using both pseudo-

trees and pseudo-corals and (b) for using only pseudo-trees. The 2σ uncertainty estimates are derived from both the Monte Carlo reconstruc-

tion iterations and the posterior distribution, see section 2.4 for details.
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Figure 9. (a) Monthly percent occurrence of El Niño or La Niña states during the 15 most severe multi-year droughts. The occurrences are

computed as a percentage of the total number of months in a given drought. Dashed lines indicate the average percent occurrence of El Niño

(red) or La Niña (blue) in the CESM LME simulation 10. (b) Box plot distribution summaries of the monthly percent occurrence of El Niño

or La Niña states shown in (a). The letters LN and EN stand for La Niña and El Niño, while the letters T and C indicate experiments with

pseudo-trees or pseudo-corals. “LN” and “EN” by themselves are the true La Niña and El Niño occurrence (gray box plots), corresponding

to the distribution of filled circles in (a).

centroid as the center of mass of the zonal mean precipitation within the latitudinal range of 20◦N–20◦S and the longitudinal

range of 28◦E–52◦E; as seen in Fig. 1 this boxed area is centered over Eastern Africa and includes precipitation over both land

and ocean. We construct a similar drought location index by computing the centroid of the zonal mean negative SPEI values

over the continental African land area within this East African box. We use SPEI for this region because some work indicates

that it may be better suited to drought assessments in East Africa than PDSI (Ntale and Gan, 2003), though the results shown5

in this section are not dependent on the choice of drought variable.

Figure 10(a) shows the mean latitudinal locations of the 15 most severe multi-year droughts in equatorial East Africa for

both the reconstruction and the model truth. Additionally, this figure shows the mean latitudinal location of the precipitation

centroid averaged over each of the drought periods. The locations of the two centroids are well-matched to the truth in the
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Figure 10. The latitude locations of the zonal mean multi-year drought and precipitation centroids (PrCent), for both the truth and the

reconstruction over equatorial East Africa. Panel (a) shows the centroid locations as a function of drought severity rank, while panel (b) has

the same information but more clearly shows the negative correlation between the locations of drought and precipitation centroids.

reconstruction. Furthermore, Fig. 10(b) shows that these two centroids are negatively correlated (in both the truth and the

reconstructions), indicating that as the average precipitation shifts south in CESM, drought occurs in the north and vice versa.

Because the zonal mean precipitation is strongly peaked in the annual mean with more variability in the wings of the zonal

mean distribution, small changes in the precipitation centroid can lead to larger changes in the location of drought (Fig. 10a).

Similar to the results presented for North America, these collective results for East Africa further illustrate the utility of DA-5

based reconstructions and their potential to test specific hypotheses, such as the hypothesis that shifts in the ITCZ can drive

multi-year droughts.

5 Conclusions

Using DA for hydroclimate reconstructions is a new area of research. The aim of this paper was therefore to explore some foun-

dational aspects of global hydroclimate reconstructions using DA. Through a set of pseudoproxy reconstruction experiments,10

we estimated a realistic upper-bound on hydroclimate reconstruction skill for a global pseudoproxy network based on pseudo

tree rings and corals. Unlike most pseudoproxy experiments that use statistical noise perturbations for proxy construction, the

pseudo tree rings and corals were here generated using established proxy system models. These models are physically-based

and account for multiple climatic factors on proxy development.

In our experiments we find that skill is highest in the tropics and in regions local to proxy sampling, in accordance with many15

previous pseudo and real proxy reconstructions that focused on temperature or other non-hydroclimate variables (e.g., Smerdon,
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2012; Steiger et al., 2014; Hakim et al., 2016). For tree rings (which constitute the majority of annually-resolved proxies) we

also find that local reconstruction skill depends on the moisture or temperature sensitivity of particular tree ring proxies:

moisture sensitive trees are necessary for skillful PDSI or SPEI reconstructions and similarly, temperature sensitive trees are

necessary for skillful temperature reconstructions. The covariability of moisture and temperature is not sufficiently strong for

our DA approach to reconstruct both variables equally well from a given tree. Based on these results, we recommend that5

future DA-based hydroclimate reconstructions use a spatial mixture of temperature and moisture sensitive trees if the goal is to

reconstruct both temperature and hydroclimate indices. Importantly, we also performed seasonal and monthly reconstructions

and found that it is in principle possible to reconstruct non-growing season or annual mean climate variables in many regions

using DA. We also found that it is possible to reconstruct a monthly Nino 3.4 index.

Two regional climate dynamics analyses also explored the key drivers of hydroclimate extremes in the North American10

Southwest and equatorial East Africa. These regional examples highlight how DA-based reconstructions can in general be

used to find the dynamical drivers of hydroclimate extremes. This information-added benefit from DA-based reconstructions is

very important given that dynamical information is difficult to simultaneously obtain from a traditional reconstruction. Based

on these results, the application of DA to the PAGES2k network may yield skillful hydroclimate reconstructions that will

deepen our current understanding of decadal to centennial hydroclimate variability. We find that this approach can potentially15

yield dynamical insights about regions that have not been previously well characterized, such as Africa.

6 Code availability

The code used in the production and analysis of the reconstructions is available upon request from nsteiger@ldeo.columbia.edu.

7 Data availability

Monthly CESM LME data is available from http://www.earthsystemgrid.org. The reconstructions from this paper will be made20

publicly available through the Lamont Ingrid Data Library if the paper progresses to publication.
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