
1 

 

Effects of undetected data quality issues on climatological analyses 

 

Stefan Hunziker1,2, Stefan Brönnimann1,2, Juan Calle3, Isabel Moreno3, Marcos Andrade3, Laura Ticona3, 

Adrian Huerta4, Waldo Lavado-Casimiro4 

 5 

1 Institute of Geography, University of Bern, Switzerland 
2 Oeschger Centre for Climate Change Research, University of Bern, Switzerland 
3 Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, 

Bolivia 
4 Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), Lima, Peru 10 

 

 

 

Correspondence to: Stefan Hunziker (stefan.hunziker@giub.unibe.ch) 

 15 

 

Abstract. Systematic data quality issues may occur at various stages of the data generation process. They may affect large 

fractions of observational datasets and remain largely undetected with standard data quality control. This study investigates 

the effects of such undetected data quality issues on the results of climatological analyses. For this purpose, we quality 

controlled daily observations of manned weather stations from the Central Andean area with a standard and an enhanced 20 

approach. The climate variables analysed are minimum and maximum temperature, and precipitation. About 40 % of the 

observations are inappropriate for the calculation of monthly temperature means and precipitation sums due to data quality 

issues. These quality problems undetected with the standard quality control method strongly affect climatological analyses, 

since they reduce the correlation coefficients of station pairs, deteriorate the performance of data homogenization methods, 

increase the spread of individual station trends, and significantly bias regional temperature trends. Our findings indicate that 25 

undetected data quality issues are included in important and frequently used observational datasets, and hence may affect a 

high number of climatological studies. It is of utmost importance to apply comprehensive and adequate data quality control 

approaches on manned weather station records in order to avoid biased results and large uncertainties.  
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1 Introduction 

Records of in situ weather observations are essential for climatological analyses. Although nowadays automatic stations are 

often in use, most station networks have been based completely on manned station observations, and many still depend largely 

or partly on this type of observations. Various authors demonstrated possible errors in data records of manned stations (e.g. 

Rhines et al., 2015; Trewin, 2010; Viney and Bates, 2004). In order to detect and remove such errors, observational time series 5 

should be quality controlled before they are analysed (WMO, 2011, 2008). However, data quality issues are not always detected 

by common quality control (QC) methods (Hunziker et al., 2017). The overall impact of such undetected errors on 

climatological analyses is largely unknown. 

In order to detect and remove non-climatic signals such as station relocations from observational data,  station records should 

be homogenized (Aguilar et al., 2003; Brönnimann, 2015). For the success of the widely applied relative homogenization 10 

method, highly correlated time series are required (Cao and Yan, 2012; Gubler et al., 2017; Plummer et al., 2003; Trewin, 

2013; Venema et al., 2012). Similarly, the important spatial consistency test in the QC process depends on suitable 

neighbouring stations (Durre et al., 2010; Plummer et al., 2003). Usually, the correlation between station pairs decreases with 

increasing distance. In some regions of the world, correlations are clearly lower or loose significance after shorter distances 

than in others (Gubler et al., 2017; New et al., 2000). According to Gubler et al. (2017), not only climatological factors may 15 

be responsible for such differences, but also factors related to the quality of the observations, such as station siting and 

observation practices. Besides potentially reducing the correlation between station pairs, data quality issues may also induce 

inhomogeneities in time series (WMO, 2008). As a result, the performance of statistical data homogenization methods is 

reduced due to the higher number of breakpoints (Domonkos, 2013). To the author's knowledge, the impact of data quality 

problems on station correlations and statistical data homogenization has not been thoroughly studied so far. 20 

Trend magnitudes and signs in station records may strongly differ among neighbouring stations. This was observed in many 

parts of the world and for various climate variables and indices, such as minimum temperature (López-Moreno et al., 2016), 

precipitation (Rosas et al., 2016; Vuille et al., 2003), diurnal temperature range (New et al., 2006), or extreme indices (Skansi 

et al., 2013; You et al., 2013). Furthermore, regional trends may deviate from observations in comparable areas. For instance, 

studies found stronger positive trends in maximum than minimum temperatures in the Bolivian and Peruvian Altiplano (e.g. 25 

López-Moreno et al., 2016), and Alexander et al. (2006) detected a decrease in the number of warm nights in the same region. 

These findings are not in accordance with the globally observed and expected increase of night-time temperatures and decrease 

of the diurnal temperature range (Alexander et al., 2006; Donat et al., 2013b; IPCC, 2013; Morak et al., 2011; New et al., 2006; 

Quintana-Gomez, 1999; Vincent et al., 2005). While certain trend differences can be expected even on short spatial scales due 

to factors such as topography and feedback processes (You et al., 2010), the question arises if non-climatic factors may 30 

substantially bias trends of individual station records, as well as regional average trends. 

The present study addresses the aforementioned research questions by applying two different QC approaches on the same 

observational dataset and comparing the results of relevant climatological analyses afterwards. As standard QC approach, we 
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used the method that is applied to the GHCN-Daily dataset (Menne et al., 2012). As enhanced approach, we applied the QC 

tests suggested by Hunziker et al. (2017) that focus on the detection of systematically occurring data quality issues. Since this 

is not a self-contained method, the GHCN-Daily QC was additionally applied afterwards. 

The dataset used in the present study consists of manned station observations from the Central Andean region. This area is 

highly suitable for investigating the impacts of undetected data quality issues due to two main reasons: First, all the 5 

uncertainties discussed in the previous paragraphs are found in Central Andean station data, and second, data quality issues 

that may not be detected by standard QC methods are well studied (Hunziker et al., 2017). The dataset used contains the 

climatological key variables maximum temperature (TX), minimum temperature (TN), and precipitation (PRCP). 

In this article, we first describe the data (Chapter 2) and explain the methods (Chapter 3). Next, we present the results (Chapter 

4), in which we focus on the effects of undetected data quality issues on the correlation of station pairs (Sect. 4.1), data 10 

homogenization (Sect. 4.2), and trends (Sect. 4.3).We discuss the results (Chapter 5), and finally draw the conclusions of our 

findings (Chapter 6). 

2 Data 

The dataset used for the present study includes observational records from Bolivia (Servicio Nacional de Meteorología e 

Hidrología de Bolivia, and the Bolivian civil airport administration), from the Peruvian department of Puno (Servicio Nacional 15 

de Meteorología e Hidrología del Perú), and from some Chilean and Paraguayan stations located near the Bolivian boarder 

(Dirección Meteorológica de Chile, Dirección de Meteorología e Hidrología (Paraguay)) (Fig. 1). The dataset was created 

within the framework of the project "Data on climate and Extreme weather for the Central AnDEs" (DECADE) and includes 

daily TX, TN, and PRCP measurements. All records in the DECADE-dataset originate from manned weather stations. This 

reflects the conditions of weather observation in the Central Andean area, where only a few automatic weather stations are in 20 

service (Hunziker et al., 2017). The first records in the DECADE-dataset date back to 1917, and the most recent observations 

were taken in 2015. For more details on weather observations in the Central Andean region, see Hunziker et al. (2017). 

The altitude of the stations in the study area ranges between 98 and 4667 m a.s.l. Stations at elevations ≤600 m a.s.l. group in 

the east (henceforward referred to as "Lowland stations"), while stations at elevations ≥3500 m a.s.l. are located in the west 

(henceforward referred to as "Altiplano stations") (see Fig. 1). Stations at altitudes in between the Lowlands and the Altiplano 25 

group along the eastern slopes of the Central Andes (henceforward referred to as "Valley stations"). 

A large fraction of the 341 TX, 339 TN, and 698 PRCP time series in the original dataset cover only short observation periods 

or contain large gaps. Therefore, all records with a sum of measurements <20 years (i.e. <7300 valid observations) were 

excluded. This nearly divided the number of time series in half, resulting in 180 remaining TX and TN, and 378 PRCP records. 

This dataset containing the raw data (i.e. not quality controlled or homogenized) is called "DATARAW" henceforward. 30 

For the present study, the complete time series of DATARAW were quality controlled and homogenized. However, for the 

subsequent analyses (i.e. correlation and trend analyses), only the period 1981 to 2010 was analysed. During this 30 year 
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standard period, the highest number of station records is available (104 TX, 106 TN, and 220 PRCP time series with ≥80 % of 

valid observations), and data quality is usually higher than earlier in time. 

3 Methods 

3.1 Quality control 

DATARAW was quality controlled with two different approaches. The first approach represents an established standard QC 5 

method. Such methods mostly focus on the detection of single suspicious values (Hunziker et al., 2017). The second approach 

additionally accounts for systematically occurring data quality issues that may remain undetected with standard QC. It is 

therefore considered as enhanced QC. 

3.1.1 Standard approach 

The Global Historical Climatology Network (GHCN)-Daily was developed for a wide range of applications, including studies 10 

of extreme events (Menne et al., 2012), and it is the premier source of daily TX, TN, and PRCP observations from various 

regions of the globe (Donat et al., 2013a). The GHCN-Daily data are quality controlled with a comprehensive set of 19 QC 

tests (Durre et al., 2010). It is a fully automatic QC approach that was particularly developed to run unsupervised (Menne et 

al., 2012). Evaluations of the performance showed that the method is effective at detecting gross errors as well as more subtle 

inconsistencies though having a low false-positive rate (Durre et al., 2010). This QC method was applied to DATARAW. 15 

However, the detections (i.e. the flags for failing certain tests) of the GHCN-Daily QC had to be slightly adapted in order to 

be more appropriate for weather observations in the Central Andean region. One of the internal consistency tests detects cases 

where TX is lower than TN of the previous day. This test should guarantee the physical consistency of TX and TN 

measurements that are representative for a 24-h period. However, in various Bolivian stations (particularly stations at airports), 

TX is representative for the afternoon hours only. This measurement practice should avoid problems in attributing the 20 

observation to a specific calendar day. Usually, daily temperature maxima indeed occur in the afternoon. Nevertheless, during 

certain weather events (particularly the frequent cold surges in the Lowlands (e.g. Espinoza et al., 2013; Garreaud, 2001; Vera 

and Vigliarolo, 2000)), the temperature in the afternoon does not exceed the TN value measured in the morning. As a result, a 

high number of observations was flagged. Even though the presented measurement practise is not ideal, it does not introduce 

any error or bias as long as it remains unchanged. Therefore, internal consistency flags set because of this particular QC test 25 

were regarded as invalid. 

Furthermore, the GHCN-Daily QC did not flag a few extreme outliers (i.e. values <-999.9 and temperature values >1000 °C). 

In order to remove such erroneous numbers, we added an additional flag to all unflagged temperature values >70 °C and 

<-70 °C, as well as to all unflagged negative PRCP values. 

In total, about 0.35 (temperature) and 0.15 % (PRCP) of all measurements were flagged. This is similar to the overall fraction 30 

of 0.24 % flagged observation in the GHCN-Daily dataset (Durre et al., 2010). In DATARAW, about two-thirds of the flagged 
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temperature and the great majority of the flagged PRCP observations are monthly or yearly duplicate data. For any further 

analyses, all flagged values were removed. The dataset quality controlled with this standard QC approach will be called 

"DATAQC-S" henceforward. 

3.1.2 Enhanced approach 

Following the suggestions by Hunziker et al. (2017), DATARAW was carefully checked for systematically occurring data quality 5 

issues. An extensive set of tests (11 for TX and TN, 15 for PRCP) was applied, and flags were set for each test on annual time 

scale. Thanks to flagging each quality issue individually in the database, specific time series segments can subsequently be 

selected that are adequate for the intended purpose. Furthermore, for a segment of one station record (TN of Progreso (Peru), 

see Hunziker et al. (2017)), daily corrections were calculated, since the origin of the correctable error was unambiguously 

identified. 10 

Time series segments affected by data quality issues that disturb the calculation of monthly means (temperature) and sums 

(PRCP) were removed from further analyses, which reduced the number of valid measurements by about 40 %. Namely, 

measurements with the following flags were eliminated (for details on the data quality issues, see Hunziker et al. (2017)): 

 Missing temperature intervals >1 °C (temperature) 

 Rounding errors in the conversion from degrees Fahrenheit to degrees Celsius (temperature) 15 

 Strong asymmetric rounding patterns (temperature, PRCP) 

 Measurement resolutions >1 °C and >1 mm (temperature, PRCP) 

 Moderate and strong irregularities in the data pattern (temperature, PRCP) 

 Frequent and large inhomogeneities (temperature, PRCP) 

 Partial and complete heavy PRCP truncations (PRCP) 20 

 Partial and complete small PRCP gaps >5 mm (PRCP) 

 Strong weekly PRCP cycles following indefinable patterns (PRCP) 

The tests suggested by Hunziker et al. (2017) only detect data quality issues that occur systematically during longer time 

periods (months to years). Therefore, they are not a self-contained QC approach and should be combined with other tests. That 

is why the GHCN-Daily QC was additionally applied (see Sect. 3.1.1) after removing time series segments of insufficient 25 

quality for monthly aggregation. The GHCN-Daily QC added flags to approximately 0.26 (temperature) and 0.10 % (PRCP) 

of the remaining observations. 

However, rigorous QC is required particularly for daily data (Plummer et al., 2003), and observations suitable for analyses on 

monthly scale may not be appropriate on daily time scale. For instance, time series containing multi-day PRCP accumulations 

may still be suitable to calculate monthly totals (WMO, 2011) but cannot be used on daily time scale (Viney and Bates, 2004). 30 

Therefore, record segments affected by quality issues that specifically affect analyses based on daily data (in this study namely 

the correlation on daily scale (Sect. 3.3) and the climate change indices (Sect. 3.5)) were additionally removed: 
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 Partial and complete small PRCP gaps >2 mm (precipitation) 

 Strong weekly PRCP cycles irrespective of the cycle pattern (precipitation) 

This QC procedure may be considered as an enhancement of applying the GHCN-Daily QC only. Hence, the resulting dataset 

will be named "DATAQC_E" henceforward. 

Note that Hunziker et al. (2017) further suggest to include additional information derived from metadata into the QC process. 5 

This allows to remove station records that were generated under inappropriate conditions such as poor station siting or severe 

lack of station maintenance. The present study, however, only considers quality issues and errors that are directly detectable 

in the measurement data. Hence, time series of questionable quality that could be removed by including metadata in the QC 

process remain in the dataset. 

3.2 Calculation of monthly and yearly means and sum 10 

According to WMO (2011), monthly means can be calculated for continuous variables such as temperature if ≤10 daily 

measurements are missing. However, we used the stricter approach suggested for the calculation of monthly 30-year standard 

normals (WMO, 1989) that allows ≤5 missing observations (3 if in succession). For cumulative variables such as rainfall, 

values should be calculated only if either all daily observations are available, or if unrecorded PRCP amounts are incorporated 

in the next measurement (WMO, 2011). At various Bolivian stations, measurements are not taken on one day (usually Sundays) 15 

(Hunziker et al., 2017). This affects particularly weather stations at airports that are not operating one day a week. PRCP on 

these days is usually incorporated in the measurement of the next operation day. Therefore, monthly PRCP sums were 

calculated if ≤5 daily observations were missing and if no missing observations occurred in succession. Annual means 

(temperature) and sums (PRCP) were calculated based on monthly values, and yearly values were regarded as valid only if 12 

valid months were available (WMO, 2011). 20 

For many datasets and studies, gaps in time series are filled (e.g. Auer et al., 2007; Kizza et al., 2012; Vuille et al., 2000). 

There are many techniques for data estimation (e.g. WMO, 2011) that may increase the time series completeness and hence 

data availability. However, data estimation is difficult to apply to Central Andean station records due to complex topography, 

sparse station networks, and limited numbers of observed variables. Furthermore, the input data for ACMANT3 

(homogenization method used in the present study, see Sect. 3.4.2) should best not include estimated data (Domonkos and 25 

Coll, 2017). In order to avoid introducing uncertainty by filling gaps, no data were estimated for the present study.  

3.3 Correlation analysis 

Before calculating the correlation coefficient of station pairs, time series were standardized by subtracting the mean and 

dividing by the standard deviation. In order to remove the influence of trends and inhomogeneities, the first differences 

(differences at lag 1) were calculated. From these time series, spearman rank correlations were computed for the period 1981 30 

to 2010. 
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For correlations on monthly time scale, daily observations were aggregated as described in Sect. 3.2. Only time series 

containing ≥80 % valid monthly values in the 30-year long period of interest were considered. 

To standardize measurement values on daily time scale, daily means and standard deviations were calculated based on linear 

interpolation of monthly means and standard deviations. If equal values occurred in succession in the original observations, 

the first differences of the standardized values were set to zero in order to not bias correlation coefficients by the seasonality 5 

of the standardization. 

Because unreported shifting of dates occurs frequently in the Central Andean observation networks (Hunziker et al., 2017), it 

must be accounted for temporal dislocation in daily time series pairs. For example, a high correlation of two station records 

usually becomes slightly negative if one of the two time series is shifted by one day. Therefore, shifts of -2 to +2 days were 

applied to one time series of each station pair, and the highest correlation value was expected to be the real correlation 10 

coefficient. This method may artificially increase correlations that are close to zero or negative in reality. However, such low 

correlations are not of interest in the present study. Furthermore, we use the median to quantify the effect of data quality issues 

on correlations, which eliminates the potential bias introduced to low correlations. Time series with <80 % of daily 

observations in the period 1981 to 2010 were removed from the correlation analysis. 

3.4 Data homogenization 15 

3.4.1 Clustering 

In order to build station groups that share a similar background climate, we applied agglomerative hierarchical clustering with 

complete linkage on the monthly station correlation matrices (see Sect. 3.3). Time series that did not share ≥120 common valid 

months with ≥10 neighbours were removed from the data homogenization process. For the break detection and adjustment 

method used in this study (Sect. 3.4.2), the optimal cluster size is usually around 20 to 30 stations, but the optimal number of 20 

stations can be much higher if record lengths and data completeness differ between the time series (Domonkos and Coll, 2017). 

This strongly applies to the Central Andean data. Therefore, we selected three clusters for TX and TN with a median size of 

60 (DATAQC-S) and 40 (DATAQC-E) stations. For PRCP, six (DATAQC-S) and five (DATAQC-E) clusters were selected with a 

median cluster size of 65 (DATAQC-S) and 42 (DATAQC-E). The minimum and maximum cluster size is 11 and 94 stations, 

respectively. 25 

The spatial structure of the clusters is similar for DATAQC-S and DATAQC-E. For temperature, two main clusters were detected, 

representing the Lowlands and the Altiplano. Stations of the third cluster are mostly located mostly along the eastern Andean 

slopes. 

3.4.2 Breakpoint detection and adjustment 

There are various established homogenization approaches (e.g. Aguilar et al., 2003; Ribeiro et al., 2016; Venema et al., 2012). 30 

For the present study, the method ACMANT was chosen. It is a state of the art homogenization method having one of the best 
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performance (Ribeiro et al., 2016; Venema et al., 2012). Recently, a new version of the approach (ACMANT3) was published 

(Domonkos and Coll, 2017). Compared to previous versions (Domonkos, 2011; Domonkos, 2015), the performance of the 

method was further improved and the range of use increased (Domonkos and Coll, 2017). ACMANT3 is a fully automatic 

method that does not incorporate metadata. Hence, the approach is objective, in contrast to semi-automatic approaches such 

as HOMER (Mestre et al., 2013) that require various subjective decisions. This subjectivity may influence the results of the 5 

homogenization process (Vertačnik et al., 2015). For the aim of the present study to evaluate the effects of undetected data 

quality issues, it is important to avoid such disturbances. Therefore, ACMANT3 was used for breakpoint detection and 

adjustment. 

ACMANT3 includes a recommended function for detecting monthly outliers that was applied before detecting and correcting 

breakpoints. About twice as many monthly outliers were detected in DATAQC-S than in DATAQC-E. The highest frequency of 10 

monthly outliers was found in TN of DATAQC-S with 0.16 outliers per decade. All monthly outliers were removed from 

DATAQC-S and DATAQC-E. 

3.5 Trend calculation 

Trends of annual values and of climate change indices were analysed for the entire study area. However, trend signals differ 

between the varied climate zones covered by the DECADE-dataset. Therefore, we decided to focus particularly on the 15 

Altiplano region for trend analyses. Time series from this area satisfying the completeness requirements originate nearly 

exclusively from stations located in the north-western Bolivian department of La Paz and the adjacent Peruvian department of 

Puno. In this spatially limited region, the station network is dense compared to the rest of the study area (Fig. 1). Therefore, 

relatively homogeneous trend signals may be expected. 

Magnitudes of linear trends were calculated with the Theil-Sen estimator. For individual station records, the significance of 20 

trends is not of major interest in the present study and was therefore not tested. Furthermore, accounting for serial correlation 

in trend tests would cause large uncertainties due to the missing values in the time series. However, for the Altiplano stations, 

trends of spatially averaged anomalies were tested with the Mann-Kendall test at the 5 % significance level. Before applying 

the trend test, the time series were pre-whitened. 

Trends of annual means (temperature) and sums (PRCP) were analysed based on yearly aggregated data (see Sect. 3.2). Time 25 

series with <80 % valid yearly values 1981 to 2010 were removed previously. 

In order to investigate the effect of undetected data quality issues on extremes, we computed the frequently used climate change 

indices defined by the CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI) 

(http://etccdi.pacificclimate.org/list_27_indices.shtml). For the calculation of the indices, we used the software tool RClimDex 

(Zhang and Yang, 2004) that is often applied in climatological studies (e.g. Kioutsioukis et al., 2010; Kruger and Sekele, 2013; 30 

New et al., 2006). RClimDex calculates monthly (yearly) index values if ≤3 (≤15) observations are missing (Zhang and Yang, 

2004). The indices discussed in the present study are namely the diurnal temperature range (DTR), cool days (TX10p), cool 

nights (TN10p), warm days (TX90p), warm nights (TN90p), frost days (FD), annual contribution from very wet days 
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(R95pTOT), and the simple daily intensity index (SDII) (Table 1). Note that all indices were calculated on annual scale. For 

indices based on percentiles, the complete 30-year period 1981 to 2010 was used as base period. Indices units in percentage 

were converted to days per year. 

The ETCCDI climate change indices describe moderate to very moderate extreme events that occur usually many times per 

year. Therefore, they are particularly suitable for the application on short time series. For the index calculation of the 5 

homogenized datasets, daily measurements were corrected by adding monthly adjustment values (temperature) and multiplying 

by monthly adjustment factors (PRCP) that were computed by ACMANT3. Even though data homogenization on monthly 

time scale may not be sufficient for daily values (Brönnimann, 2015; Costa and Soares, 2009; Trewin, 2013), it must be 

accounted for the large and frequent inhomogeneities detected in the Central Andean time series (Sect. 4.2), since they may 

severely affect extremes (Klein Tank et al., 2009). Data homogenization on daily time scale, however, is difficult, and open 10 

questions remain (Aguilar et al., 2003; Costa and Soares, 2009; Klein Tank et al., 2009; Szentimrey, 2013). Furthermore, the 

deficiency of correcting daily data with monthly adjustments is relaxed, because it equally affects the climate change indices 

derived from DATAQC-S and DATAQC-E. Trends were only calculated for time series with ≥80 % of valid yearly index values 

in the period 1981 to 2010. 

4 Results 15 

4.1 Correlation analysis 

Detecting and removing erroneous measurement values and time series segments affects the correlation of station pairs in two 

ways. On one hand, time series may not anymore fulfil the completeness requirements in the time period of interest. This 

occurs more often when applying the enhanced than the standard QC approach. While highly correlated station records remain 

in DATAQC-E, the enhanced QC largely removes the low correlation coefficients found in DATAQC-S (Fig. 2). Hence, data 20 

quality issues that are undetected by the standard QC method result in low correlation coefficients of station pairs. On the other 

hand, the correlations of station pairs may change if rather short time series segments are removed due to data quality problems. 

Usually, this results in an increase of the correlation coefficients (Fig. 2), which may reach up to 0.07 (TX) and 0.09 (PRCP) 

on monthly and daily time scale. For TN, maximum correlation improvements are 0.10 and 0.05 on monthly and daily time 

scale, respectively. Since this study only includes time series with ≥80 % of valid values, each time series pair shares ≥60 % 25 

of common observations between 1981 and 2010 (i.e. ≥18 years). 

The resulting median differences of correlation coefficients in DATAQC-S and DATAQC-E are relatively constant up to station 

distances of approximately 300 km (Fig. 3, Fig. 4). The overall differences between DATAQC-E and DATAQC-S are 0.15 (TX), 

0.24 (TN), and 0.11 (PRCP) on monthly, and 0.10 (TX) and 0.13 (TN) on daily time scale (Table 2). For daily PRCP, median 

correlation coefficients converge quickly to zero with increasing station distance, and therefore stations within a 100 km radius 30 

were analysed. The resulting median correlation difference for daily PRCP between DATAQC-E and DATAQC-S is 0.06. 
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However, the effect of undetected data quality issues on station correlations varies strongly between the different regions. 

While it is small in the Lowlands, it is very pronounced in the Valleys. This can be partly explained by the high fraction of 

station records affected by severe data quality issues in the Valleys. Lowland stations, in contrast, are often located at airports 

where data quality problems occur less frequently. 

There are remarkable differences between median correlation coefficients of station pairs in the Lowlands, the Valleys, and 5 

the Altiplano (Fig. 3, Fig. 4, Table 2). This is primarily explicable by the varied topography. While the Lowlands are largely 

flat, the topography of the Altiplano and the Valleys is moderately and highly complex, respectively. Therefore, the median 

correlations are overall highest in the Lowlands, and lowest in the Valleys. 

However, spatial correlations are further modulated by regional weather and climate characteristics. For instance, PRCP 

correlation coefficients in the Altiplano are higher than in the Lowlands on monthly time scale, whereas the opposite applies 10 

to correlations on daily time scale (Fig. 3, Fig. 4, Table 2). On one hand, the Altiplano receives precipitation from deep 

convective storms during austral summer (Garreaud, 2009), and wet periods tend to cluster in episodes of about a week, 

interrupted by dry spells of similar duration (Garreaud, 1999). On the other hand, cold surges in the Lowlands occur with a 

periodicity of approximately one to two weeks (Garreaud, 2000) and usually last two or three days (Espinoza et al., 2013). In 

summertime, these events cause synoptic-scale bands of enhanced and suppressed deep convection that structure temporal 15 

PRCP occurrence (Garreaud, 2000). Hence, rain events in the Altiplano cluster on clearly larger time scales than in the 

Lowlands. This favours high correlation of monthly PRCP sums in the Altiplano and high correlation coefficients of daily 

observations in the Lowlands. Note, however, that the correlation differences between the regions are more pronounced within 

DATAQC-S than within DATAQC-E. 

4.2 Data homogenization 20 

One out of three TN station clusters of DATAQC-S (34 station records) could not be homogenized because of too low spatial-

temporal coherence. Most of the time series in this cluster are affected by systematic data quality issues that were not detected 

with the standard QC. Since these station records could not be homogenized, they were excluded from all further analyses. 

ACMANT3 detected a high number of breakpoints in the station records. For temperature, about one breakpoint per decade 

was detected in average, with a slightly higher breakpoint frequency in DATAQC-S than for DATAQC_E (Table 3). For PRCP, 25 

0.3 breakpoints per decade were found in DATAQC-S and 0.2 in DATAQC-E. Median, mean and maximum breakpoint sizes are 

clearly larger in DATAQC-S than DATAQC-E for all climate variables (Table 3). 

Adjustments values (temperature) and factors (PRCP) close to zero (temperature) and one (PRCP) are more frequent for 

DATAQC-E than for DATAQC-S (Fig. 5). Furthermore, maxima of the absolute adjustments are higher for DATAQC-S than 

DATAQC-E, reaching up to 10.2 °C (temperature) and 3.5 (PRCP). However, there are not only differences in the standard 30 

deviation, but also in the symmetry of the adjustment distributions. For example, the adjustment factors for PRCP of DATAQC-E 

indicate a density peak at around 1.3, which is not found for DATAQC-S (Fig. 5). For TN of the Altiplano stations in 1981 to 

2010, there is a high density of adjustments values around -1 °C. This peak is more pronounced in DATAQC-E than in 
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DATAQC-S. As a result, the median adjustment in DATAQC-E is -0.5 °C, whereas it is +0.2 °C in DATAQC-S. The same median 

adjustments are calculated for complete record lengths of the Altiplano stations (not shown), indicating the detection of an 

overall warm bias in earlier TN observations of DATAQC-E but not of DATAQC-S.  

Henceforward, the homogenized datasets DATAQC-S and DATAQC-E are named "DATAQC-S_H" and "DATAQC-E_H", 

respectively. 5 

4.3 Trends 

4.3.1 Annual temperature averages 

Overall, there is a clear positive TX trend in the entire study area (Fig. 6). The few negative TX trends in the unhomogenized 

station records disappear due to data homogenization. In the Altiplano, the trend of the spatially averaged anomalies is 

significant and varies between +0.40 (DATAQC-E_H) and +0.44 °C per decade (DATAQC-E) (Table 4). TN trends, however, are 10 

more ambiguous. Spatial trend patterns are unclear, except for DATAQC-E_H, where a clear warming is found in the north-

eastern Altiplano, and slight cooling in the south and the Lowlands. This pattern is spatially coherent and substantially diverges 

from the spatial trend patterns derived from the other datasets. As a result, TN trends of spatially averaged anomalies calculated 

from DATAQC-E_H in the Altiplano are significant with +0.22 °C per decade, whereas they are close to zero and insignificant 

if calculated from the other datasets (Table 4). This may be at least partly ascribed to the results of the data homogenization 15 

process, which suggest a clear overall warm bias in earlier TN observations in the Altiplano in DATAQC-E, but not in DATAQC-S 

(Sect. 4.2). 

The spread of individual station trends is slightly lower in DATAQC-E than in DATAQC-S (Fig. 7). However, the spread of trends 

is much more reduced by data homogenization than by enhancing the QC approach. For TX, the trend spreads derived from 

the homogenized datasets DATAQC-S_H and DATAQC-E_H are similar. For TN, however, the decrease of trend spreads resulting 20 

from data homogenization of DATAQC-S and DATAQC-E clearly differs. The trend spread of the entire study area derived from 

DATAQC-S_H is small and ranges between +0.02 and +0.09 °C per decade within the 25th and 75th percentile. In contrast, data 

homogenization of DATAQC-E does not cause such a pronounced inflation of the trend spread. 

4.3.2 Annual precipitation sums 

PRCP trends are negative for most station records (Fig. 6). The spatial pattern of trend magnitudes is more coherent if trends 25 

are calculated from DATAQC-E_H than from the other datasets. Despite the previous homogenization of the time series in 

DATAQC-S_H, there are strong positive and negative trends of stations within short distance. For all regions (Lowlands, Valleys, 

and Altiplano), trends of the spatially averaged anomalies are negative, particularly if derived from DATAQC-E_H (not shown). 

However, these trends are barely significant due to the high interannual variability of PRCP. 
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The trend spread and frequency of extreme trends is lower in DATAQC-E than in DATAQC-S (Fig. 7). Data homogenization 

reduces the trend spread of the PRCP time series, but considerably less than for temperature data. Overall, the spread of PRCP 

trends of individual station records is relatively large in all datasets. 

4.3.3 Climate change indices 

Trends of the median diurnal temperature range (DTR) of all datasets are positive (Fig. 8). The spread of trends calculated 5 

from the unhomogenized datasets is large, ranging from -1.21 to +2.17 °C per decade, respectively. The spread of trends is 

lower for DATAQC-E than for DATAQC-S, particularly on regional scale such as in the Altiplano (Fig. 9). However, data 

homogenization is most relevant for increasing the coherency of DTR trends. This is particularly remarkable for DATAQC-E_H 

in the Altiplano, where individual station trends of the DTR are reduced to a range between 0.10 and 0.29 °C per decade (Fig. 

9). Besides this high DTR trend coherency derived from DATAQC-E_H in the Altiplano, trend magnitudes are clearly lower than 10 

those derived from the other datasets. This manifests in an insignificant trend of the spatially averaged anomalies of +0.23 °C 

per decade for DATAQC-E_H, whereas the trends calculated from the other datasets are all significant and range between +0.39 

(DATAQC-S_H) and +0.56 °C per decade (DATAQC-E_H). 

The overall trend signal of the TX based percentile indices TX10p and TX90p is relatively uniform among the different 

datasets, indicating a reduction of cool days and an increase of warm days (Fig. 8, Fig. 9). The trends of the spatially averaged 15 

anomalies in the Altiplano calculated from the different datasets are all significant and range between -11.9 (DATAQC-E_H) and 

-14.4 (DATAQC-S_H) cool days per decade, and between +8.7 (DATAQC-S) and +11.0 (DATAQC-S_H) warm days per decade 

(Table 4). For both indices, the trend magnitudes are more pronounced for DATAQC-S_H than for DATAQC-E_H. 

Median trend magnitudes of TN based percentile indices (TN10p, TN90p) are smaller than those based on TX, and the spreads 

of individual station trends are larger, particularly in the Altiplano (Fig. 8, Fig. 9). In the Altiplano, trend magnitudes derived 20 

from DATAQC-E_H differ substantially from the other datasets (Fig. 9) by indicating a clear warming trend in all indices (i.e. 

decrease in cool nights and frost days, increase in warm nights). This is confirmed by the trends of the spatially averaged 

anomalies that indicate a significant decrease of cool nights (-5.8 days per decade) and a significant increase of warm nights 

(+8.8 days per decade) (Table 4). In contrast, the trends calculated from the other datasets are all insignificant and have lower 

trend magnitudes. The same pattern is found for trends of the frequency of frost days (FD). Trends calculated from DATAQC-E_H 25 

indicate a significant decrease of FD (-6.5 days per decade), whereas the trends of the other datasets are insignificant and close 

to zero (Table 4). 

The PRCP based climate change indices indicate a slight decrease in the annual contribution of very wet days (R95pTOT) and 

a decreasing intensity of precipitation events (SDII), particularly in the Altiplano. This signal is more pronounced for the 

datasets quality controlled with the standard method than for the datasets quality controlled with the enhanced approach. Trends 30 

of the spatially averaged anomalies are not significant, except for the trends of SDII derived from the dataset quality controlled 

with the standard approach in the Altiplano (i.e. -3.1 mm day-1 (DATAQC-S) and -2.1 mm day-1 (DATAQC S_H)). In contrast to 

the indices derived from temperature data, applying the enhanced QC approach reduces the trend spread of the PRCP based 
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indices more than statistical data homogenization. Compared to DATAQC-S, the standard deviation of the relative trends in the 

complete study area calculated from DATAQC-S_H, DATAQC-E, and DATAQC-E_H are by 20, 40, and 50 % lower, respectively. 

5 Discussion 

Systematically occurring data quality issues affect a large fraction of Central Andean station records, making about 40 % 

inadequate for the calculation of monthly means (temperature) and sums (PRCP). These data quality issues remain largely 5 

undetected when applying standard data quality control methods such as the one used for GHCN-Daily. Hence, important data 

sources may be affected substantially by such undetected data quality issues (abbreviated as UDQI henceforward). Including 

tests to specifically detect such erroneous patterns could significantly increase the quality of many datasets. 

On monthly time scale and up to 300 km station distance, UDQI cause a reduction of median correlation coefficients by 0.15 

(TX), 0.24 (TN), and 0.11 (PRCP) compared to unaffected data. On daily time scale, this reduction is 0.10 (TX) and 0.13 (TN) 10 

for station pairs within 300 km distance, and 0.06 (PRCP) for stations within 100 km distance. These findings confirm the 

assumption by Gubler et al. (2017) that the strong differences in correlation coefficients between station networks of the 

Peruvian Andes an Switzerland may not be explained by unequal climate regimes alone. Hypothesising that UDQI occur more 

frequently in time series from the tropics than from mid-latitudes, they may partly explain the differences in the correlation 

decay distances described by New et al. (2000). Using relatively high minimum correlation thresholds in climatological 15 

analyses (e.g. data homogenization) may reduce the amount of station records affected by UDQI. As a more advanced 

approach, weighting correlation coefficients with station distances (i.e. more weight to station pairs further away from each 

other for equal correlation coefficients) could particularly account for UDQI. 

UDQI induce inhomogeneities in observational record, which may cause a decrease of the performance of statistical data 

homogenization methods (Domonkos, 2013). This is particularly problematic in sparse observational networks, where a high 20 

number of breakpoints may result in adjustments that deteriorate the temporal consistency of station records (Gubler et al., 

2017). In the Central Andean region, UDQI increase the number of statistically detected breakpoints by about 15 % for TX 

and TN, and by 50 % for PRCP. They also increase the median breakpoint size by 35 to 40 (TX and TN) and 60 % (RPCP), 

and inflate break size maxima by up to 100 (temperature) and 70 % (PRCP). Since UDQI have larger relative effects on break 

sizes than on the number of detected breakpoints, they apparently deteriorate the detectability of small non-climatic 25 

inhomogeneities. 

The effect of UDQI also manifests in the adjustment values (temperature) and factors (PRCP) resulting from the data 

homogenization process. UDQI cause a reduction in the frequency of small adjustments and an increase of large adjustments. 

They also may induce an adjustment bias. For instance, the median adjustment value for TN station records in the Altiplano is 

-0.5 °C. If the same dataset contains UDQI, the resulting median adjustment is +0.2 °C. Hence, UDQI may impede the 30 

adjustments of systematic biases introduced by inhomogeneities. In summary, UDQI may substantially decrease the 
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performance of statistical data homogenization methods. In the Central Andean region, this particularly applies to TN and 

PRCP observations. 

Between 1981 and 2010, a pronounced and relatively uniform increase of global mean temperatures was observed (IPCC, 

2013). Similarly, clear overall warming trends in the same period were reported from analyses of extreme indices (Donat et 

al., 2013b). Hence, 1981 to 2010 is a suitable period for analysing linear temperature trends, and clear trend signals may also 5 

be expected in the Central Andean area. 

UDQI increase the overall spread of individual station trends. Statistical data homogenization may largely reduce or eliminate 

this effect, but only at the cost of more and larger breakpoints, which lowers the performance of data homogenization methods. 

For instance, the trend spread of homogenized TN time series quality controlled with the standard approach (DATAQC-S_H) is 

extremely small (Fig. 7). This clearly deviates from the trend spreads observed for TX, as well as from the trend spread derived 10 

from DATAQC-E_H. Hence, station trends computed from DATAQC-S_H seem rather implausible and may indicate an over-

homogenization. In contrast, the low trend spread of diurnal temperature range (DTR) derived from DATAQC-E_H (Fig. 9) 

suggests that the independent data homogenization of TX and TN observations are consistent with each other. Furthermore, 

trends calculated from DATAQC-E_H are spatially more coherent than those derived from DATAQC-S_H, particularly for TN and 

PRCP (Fig. 6). 15 

If datasets contain UDQI and/or are unhomogenized, TN trends of averaged anomalies in the Altiplano are close to zero and 

insignificant, and trends of the diurnal temperature range (DTR) are strongly positive and significant at the 5 % level (Table 

4). On the contrary, TN trends derived from DATAQC-E_H are significantly positive, and trends of the DTR are insignificant. 

Hence, mean temperature trends in the Altiplano are more in accordance with the global observations (IPCC, 2013) if 

systematically occurring data quality issues are removed from the dataset. Nevertheless, the influence of UDQI in station 20 

records from the Altiplano explains roughly half of the trend difference between TX and TN. Hence, there must be other 

factors (climatological or non-climatological) that cause a stronger increase in TX than TN in the Altiplano. 

Since systematically occurring data quality issues especially affect extremes (Hunziker et al., 2017), UDQI have a stronger 

effect on ETCCDI climate change indices than on trends of annual means (temperature) and sums (PRCP). Particularly in the 

Altiplano, the spread of individual station trends is usually more coherent if trends are calculated from DATAQC-E_H than from 25 

the other datasets. For the climate change indices derived from PRCP analysed in the present study (R95pTOT and SDII), 

most very strong trends of individual time series are caused by UDQI and cannot be adjusted by statistical data homogenization. 

Hence, highly incoherent spatial trend signals and strong differences in trend magnitudes between neighbouring stations as 

detected in many studies (e.g. Skansi et al., 2013; Vuille et al., 2003; You et al., 2011) may potentially be ascribed to UDQI.  

The overall temperature trend signals derived from DATAQC-E_H in the Altiplano are highly coherent, indicating significant 30 

warming throughout all indices. This trend pattern of moderate extreme events is more in accordance with the global 

observations (e.g. IPCC, 2013) than the trend patterns derived from the other datasets. Consequently, UDQI may at least partly 

explain the discrepancies of trends detected in the Altiplano compared to most other world regions.  
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According to Donat et al. (2013b), gridding observations minimizes the impact of data quality issues at individual stations due 

to averaging. This, however, may not be true if UDQI cause systematic biases. We calculated trends of the relevant climate 

change indices derived from the two 2.5° x 3.75° grid cells of the HadEX2 dataset (Donat et al., 2013b) that are most 

representative for the Altiplano. Overall, these trends in the period 1981 to 2010 are most similar to the trends derived from 

DATAQC-S_H. However, the trends of few climate change indices derived from HadEx2 deviate strongly, such as a detected 5 

increase of +14.0 frost days per decade in one of the grid cells. Furthermore, virtually all of these trends are insignificant due 

to large variabilities in the annual index time series. Even though these findings do not allow drawing clear conclusions, they 

suggest that UDQI affect the dataset and influence the trend calculations. 

The quantifications of the effects of UDQI presented in this study are rather an estimate of the lower limit, since the enhanced 

QC method applied here may still not have detected and removed all relevant data quality issues. Furthermore, metadata was 10 

not accessed as information source for QC, which may help to detect and remove additional time series segments of inadequate 

quality (Hunziker et al., 2017). However, the quantifications presented in this article cannot be generalized. The frequencies 

and characteristics of data quality issues occurring in manned station networks depend on various factors, such as the observing 

practices, the capabilities of the personnel, or the data transcription procedures. Furthermore, the wide range of QC approaches 

applied in National Weather Services will detect different fractions of errors and data quality issues. The effects of UDQI on 15 

climatological analyses also depend on the climate regime. For instance, missed measurements of small precipitation events 

of up to a few millimetres may have a negligible effect on monthly sums in wet regions (e.g. Amazonian lowlands), but 

considerable impacts in rather dry areas (e.g. Altiplano). As demonstrated in this work, UDQI have stronger effects on TN 

than TX. On one hand, TN is generally more variable and spatially heterogeneous than TX (Luhunga et al., 2014; Mahmood 

et al., 2006; New et al., 1999). On the other hand, measurement errors may occur more frequently in TN than TX. For example, 20 

TN falls naturally more often below freezing temperature than TX, and temperature values around and below 0 °C often trigger 

measurement errors by observers as well as data transcription errors (Hunziker et al., 2017). Hence, frequency and effects of 

UDQI may also vary spatially and seasonally. 

6 Conclusions 

Systematically occurring data quality issues may affect large fractions of time series in observational datasets. In the Central 25 

Andean area, about 40 % of the observations are inappropriate for the calculation of monthly temperature means and 

precipitation sums. These problems remain largely undetected by standard quality control methods. In the present study, we 

applied a standard and an enhanced quality control approach on the same dataset. The enhanced approach should particularly 

detect systematically occurring data quality issues. We subsequently compared the results of various climatological analyses 

derived from data quality controlled with the two different methods. 30 

Undetected data quality issues (UDQI) substantially lower the correlation coefficients of station pairs. This directly affects 

various methods such as clustering or data homogenization. 
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The performance of data homogenization approaches deteriorates if time series contain UDQI. Since UDQI induce 

inhomogeneities in time series, they increase the number and average size of breakpoints detected with data homogenization 

methods. As a result of the increased noise in the station records, the skill of detecting and correcting smaller inhomogeneities 

is reduced. Furthermore, data homogenization may fail to detect and correct systematic biases caused by inhomogeneities due 

to UDQI. In the Altiplano for instance, a median adjustment value of -0.5 °C for minimum temperature observations was 5 

detected for time series free of UDQI, whereas a median adjustment of +0.2° C was found for the station records affected by 

UDQI. This warm bias in earlier TN observations may affect previous studies using station records from the Altiplano. Hence, 

data homogenization relies on high quality station data and cannot account for UDQI. 

Removing UDQI from a dataset increases the spatial coherence and reduces the spread of individual stations trends. 

Furthermore, UDQI may systematically bias trends. For instance, regional minimum temperature trends in the Altiplano are 10 

insignificant and close to zero if calculated from station records affected by UDQI, whereas trends are significant and clearly 

positive if derived from time series free of UDQI.  

Since UDQI especially affect extremes, they are particularly problematic for analysing trends of rare events such as for the 

ETCCDI climate change indices. In the Altiplano, trends of various indices based on minimum temperature differ significantly 

if derived from a dataset affected or unaffected by UDQI. For some climate change indices based on precipitation, extreme 15 

trend magnitudes at individual stations can be corrected by previously removing UDQI from the dataset, but not by statistical 

data homogenization. 

Most likely, the results of various studies are affected by UDQI. If quality control approaches are enhanced and UDQI 

removed, results of climatological analyses may be more coherent and reliable. Note that neither an enhanced and 

comprehensive quality control can substitute for appropriate data homogenization nor vice versa. 20 
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Table 1: ETCCDI climate change indices analysed in the present study. Note that all indices were calculated on annual time scale. 

Index units in percentage where converted to days per year in the following analyses. 

ID Index name Index definition Unit 

DTR Daily temperature range Monthly mean difference between TX and TN days 

TX10p Cool days Percentage of days when TX < 10th percentile % 

TN10p Cool nights Percentage of days when TN < 10th percentile % 

TX90p Warm days Percentage of days when TX > 90th percentile % 

TN90p Warm nights Percentage of days when TN > 90th percentile % 

FD Frost days 
Annual count of days when TN (daily minimum 

temperature) <0 °C 
days 

R95pTOT 
Annual contribution from 

very wet days 
Annual total of daily PRCP when PRCP >95th percentile mm 

SDII Simple precipitation intensity index 
PRCP sum on wet days (PRCP ≥1 mm) 

divided by the number of wet days 
mm day-1 
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Table 2: Monthly and daily median correlation coefficients of station pairs within a 300 km radius (100 km for daily PRCP) for 

maximum temperature (TX), minimum temperature (TN), and precipitation (PRCP). 

  TX TN PRCP 

  DATAQC-S DATAQC-E DATAQC-S DATAQC-E DATAQC-S DATAQC-E 

M
o

n
th

ly
 

all stations 

≤300 km 
0.53 0.68 0.39 0.63 0.34 0.45 

Altiplano stations 

≤300 km 
0.68 0.72 0.57 0.64 0.45 0.50 

Valley stations 

≤300 km 
0.46 0.60 0.34 0.61 0.31 0.35 

Lowland stations 

≤300 km 
0.76 0.79 0.72 0.75 0.33 0.36 

D
ai

ly
 

all stations 

≤300 km for temperature 

≤100 km for PRCP 

0.25 0.35 0.14 0.27 0.13 0.19 

Altiplano stations 

≤300 km for temperature 

≤100 km for PRCP 

0.26 0.31 0.24 0.28 0.14 0.18 

Valley stations 

≤300 km for temperature 

≤100 km for PRCP 

0.26 0.45 0.12 0.22 0.12 0.24 

Lowland stations 

≤300 km for temperature 

≤100 km for PRCP 

0.55 0.59 0.40 0.44 0.28 0.32 

 

 

Table 3: Breakpoint frequencies and break sizes. For minimum and maximum temperature (TX and TN, respectively), absolute 5 
break size values in °C are shown. For precipitation (PRCP), the factors of the break sizes are indicated.  

 TX TN PRCP 

 DATAQC-S DATAQC-E DATAQC-S DATAQC-E DATAQC-S DATAQC-E 

Breakpoints per decade 1.0 0.9 1.1 0.9 0.3 0.2 

Median absolute breakpoint size  1.1 °C 0.8°C 1.1 °C 0.8 °C 1.25 1.15 

Mean absolute breakpoint size 1.5 °C 1.0 °C 1.6 °C 1.2 °C 1.30 1.20 

Maximum absolute breakpoint size 10.2 °C 5.0 °C 8.4 °C 5.0 °C 3.40 2.00 

 

  

Clim. Past Discuss., doi:10.5194/cp-2017-64, 2017
Manuscript under review for journal Clim. Past
Discussion started: 16 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



24 

 

Table 4: Trends of spatially averaged anomalies in the Altiplano (≥3500 m a.s.l.) in the period 1981 to 2010. Trends are shown for 

the annual means, for the 10th and 90th percentile of maximum temperature (TX) and minimum temperature (TN) (i.e. TX10p, 

TN10p, TX90p, TN90p), and for the number of frost days (FD). Bold numbers denote significance at the 5 % level.  

 TX TN 

 
DATA 

QC-S 

DATA 

QC-S_H 

DATA 

QC-E 

DATA 

QC-E_H 

DATA 

QC-S 

DATA 

QC-S_H 

DATA 

QC-E 

DATA 

QC-E_H 

Annual means 

(°C per decade) 
+0.41 +0.42 +0.44 +0.40 -0.04 +0.05 -0.12 +0.22 

10th percentile 

(days per decade) 
-13.2 -14.4 -12.0 -11.9 +0.4 - 1.0 -0.9 -5.8 

90th percentile 

(days per decade) 
+8.7 +11.0 +9.8 +9.3 +0.2 +3.7 +2.0 +8.8 

FD 

(days per decade) 
--- --- --- --- +2.9 -1.3 +1.4 -6.5 

 

 5 

 

Figure 1: Stations of the DECADE-dataset with ≥20 years of valid observations for maximum temperature (TX), minimum 

temperature (TN), and precipitation (PRCP). Solid lines represent country boarders, and the dashed line the boarder of the Peruvian 

department of Puno. Circles and pluses indicate stations with ≥80 % of valid measurements 1981 to 2010 in the datasets quality 

controlled with a standard method (DATAQC-S) and with an enhanced approach (DATAQC-E), respectively. White crosses mark 10 
stations with <80 % of valid observations 1981 to 2010 in both datasets. Colours classify stations regarding their elevation in 

Lowlands (≤600 m a.s.l.), Valleys (601 to 3499 m a.s.l.), and Altiplano (≥3500 m a.s.l.). The grey background shading indicates the 

elevation in m a.s.l. 
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Figure 2: Correlation coefficients of station pairs as function of station distance for maximum temperature (TX), minimum 

temperature (TN), and precipitation (PRCP). This figure shows the example of monthly correlations in the Altiplano (≥3500 m a.s.l.). 

Black circles indicate equal correlation coefficients in DATAQC-S and DATAQC-E (absolute difference ≤0.01), green triangles 

correlation coefficients that are higher in DATAQC-E than in DATAQC-S (difference >+0.01), red triangles correlation coefficients that 5 
are lower in DATAQC-E than in DATAQC-S (difference <-0.01), and grey circles correlation coefficients of station combinations that 

occur in DATAQC-S but not in DATAQC-E. 
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Figure 3: Monthly median correlation coefficients within a 49-km running window for maximum temperature (TX), minimum 

temperature (TN), and precipitation (PRCP). The median correlation coefficient is not shown if there are less than three station 

pairs within the running window. Colours mark the medians for all regions combined, the Lowlands (≤600 m a.s.l.), the Valleys (601 

to 3499 m a.s.l.), and the Altiplano (≥3500 m a.s.l.). Light and dark colours indicate correlation coefficients derived from DATAQC-S 5 
and DATAQC-E, respectively. 

 

 

Figure 4: Same as Fig. 3 but for daily data. 
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Figure 5: Kernel density of the adjustments calculated with ACMANT3 for all regions and the complete time series (left plots), and 

for the Altiplano stations in 1981 to 2010 (right plots). For maximum and minimum temperature (TX and TN, respectively), 

inhomogeneous time series segments are corrected by adding the adjustment values, whereas for precipitation (PRCP), 

inhomogeneous segments are corrected by multiplication with the adjustment factors. 5 
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Figure 6: Trends of individual station records for maximum temperature (TX) (row one), minimum temperature (TN) (row two), 

and precipitation (PRCP) (row three) 1981 to 2010. Column one shows the results for the unhomogenized dataset quality controlled 

with the standard approach (DATAQC-S), column two the homogenized dataset quality controlled with the standard approach 

(DATAQC-S_H), column three the unhomogenized dataset quality controlled with the enhanced approach (DATAQC-E), and column 5 
four the homogenized dataset quality controlled with the enhanced approach (DATAQC-E_H). For temperature, trends are indicated 

in °C per decade. For PRCP, the relative magnitudes of the trend changes 1981 to 2010 are shown. It is calculated from the difference 

between the fitted value at the end and the beginning of the time series, which is divided by the mean of the fit. A relative trend 

increase by 1 is equal to an increase by 200.0 %, and a relative decrease by 1 is equal to a decrease by 66.7 %. 

 10 

 

 

Clim. Past Discuss., doi:10.5194/cp-2017-64, 2017
Manuscript under review for journal Clim. Past
Discussion started: 16 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



29 

 

 

Figure 7: Trends of individual station records for maximum temperature (TX), minimum temperature (TN), and precipitation 

(PRCP) in the period 1981 to 2010. Trend boxplots for the complete study area and for the Altiplano (≥3500 m a.s.l.) are shown. 

Colours indicated the different datasets that are unhomogenized and quality controlled with the standard approach (DATAQC-S), 

homogenized and quality controlled with the standard approach (DATAQC-S_H), unhomogenized and quality controlled with the 5 
enhanced approach (DATAQC-E), and homogenized and quality controlled with the enhanced approach (DATAQC-E_H). For 

temperature, trends are specified in °C per decade. For PRCP, relative trends in 1980 to 2010 are shown (see Caption of Fig. 6 for 

details). The boxplots show the median, the 25th and 75th percentile, and the 1.5×IQR (whiskers). 
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Figure 8: Trends of individual station records of the complete study area for the climate change indices daily temperature range 

(DTR), number of cool days (TX10p), number of warm days (TX90p), number of cool nights (TN10p), and number of warm nights 

(TN90p) in the period 1981 to 2010. Colours indicated the different datasets that are unhomogenized and quality controlled with the 

standard approach (DATAQC-S), homogenized and quality controlled with the standard approach (DATAQC-S_H), unhomogenized 5 
and quality controlled with the enhanced approach (DATAQC-E), and homogenized and quality controlled with the enhanced 

approach (DATAQC-E_H). For the DTR, trends are specified in °C per decade, and for the other indices in days per decade. The 

boxplots show the median, the 25th and 75th percentile, and the 1.5×IQR (whiskers). 
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Figure 9: Same as Fig. 8 but for the Altiplano stations (≥3500 m a.s.l.). Additionally, trends of frost days (FD) are shown. 
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