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Abstract. The early Eocene, from about 56 Ma, with high atmospheric CO2 levels, offers an analogue for the response of the 5 

Earth’s climate system to anthropogenic fossil fuel burning. In this study we present an ensemble of 50 Earth system model 6 

runs with an early Eocene palaeogeography and variation in the forcing values of atmospheric CO2 and the Earth’s orbital 7 

parameters.  Relationships between simple summary metrics of model outputs and the forcing parameters are identified by 8 

linear modelling, providing estimates of the relative magnitudes of the effects of atmospheric CO2 and each of the orbital 9 

parameters on important climatic features, including tropical-polar temperature difference, ocean-land temperature contrast, 10 

Asian, African and S. American monsoon rains, and climate sensitivity.  Our results indicate that although CO2 exerts a 11 

dominant control on most of the climatic features examined in this study, the orbital parameters also strongly influence 12 

important components of the ocean-atmosphere system in a greenhouse Earth.  In our ensemble, atmospheric CO2 spans the 13 

range 280 - 3000 ppm, and this variation accounts for over 90% of the effects on mean air temperature, southern winter high-14 

latitude ocean-land temperature contrast and northern winter tropical-polar temperature difference.  However, the variation 15 

of precession accounts for over 80% of the influence of the forcing parameters on the Asian and African monsoon rainfall, 16 

and obliquity variation accounts for over 65% of the effects on winter ocean-land temperature contrast in high northern 17 

latitudes, and northern summer tropical-polar temperature difference.  Our results indicate a bimodal climate sensitivity, with 18 

values of 4.36°C and 2.54°C, dependent on low or high states of atmospheric CO2 concentration respectively, with a 19 

threshold at approximately 1000 ppm in this model, and due to a saturated vegetation-albedo feedback.  Our method gives a 20 

quantitative ranking of the influence of each of the forcing parameters on key climatic model outputs, with additional spatial 21 

information from singular value decomposition providing insights into likely physical mechanisms. The results demonstrate 22 

the importance of orbital variation as an agent of change in climates of the past, and we demonstrate that emulators derived 23 

from our modelling output can be used as rapid and efficient surrogates of the full complexity model, to provide estimates of 24 

climate conditions from any set of forcing parameters. 25 

1 Introduction 26 

In the early Eocene several episodes of global warming coincided with carbon isotope excursions (CIEs), pulses of 27 

isotopically light carbon injected into the atmosphere and oceans, and recorded in high-resolution marine and terrestrial 28 

sediments (Kennett and Stott, 1991).  In one large CIE, at the Palaeocene-Eocene transition at ~56 Ma, the Palaeocene-29 
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Eocene Thermal Maximum (PETM), evidence from both tropical (e.g. Zachos et al., 2003) and polar (e.g. Sluijs et al., 2006) 1 

regions indicates that temperatures increased by ~5°C in less than 10 kyr.  Although the greenhouse gas (GHG) sources, and 2 

the duration of the onset phase of the PETM are uncertain, the relatively short time scale and global extent of the PETM 3 

strongly suggest that a large and sudden increase in GHGs in the atmosphere was the primary climatic forcing factor (Zachos 4 

et al., 2007). Since the PETM is the most recent period in Earth's history for which estimated atmospheric GHG 5 

concentrations are similar in magnitude to those of the present-day, and expected to arise from fossil fuel burning, the PETM 6 

may provide a valuable analogue for anthropogenic climate change (e.g. McInerney and Wing, 2011; Zeebe et al., 2016; 7 

Zeebe and Zachos, 2013). 8 

The CIEs of the early Eocene show similar regularity in their timing to periodic changes in the Earth’s orbit around the sun 9 

(Lourens et al., 2005), and the search for causal relationships between orbital cycles and Paleogene climate is an active area 10 

of research (e.g. Lauretano et al., 2015; Laurin et al., 2016; Lunt et al., 2011). 11 

Although the climatic state in the early Eocene cannot be directly measured, much information on temperature and 12 

biogeochemical conditions can be inferred from measurements of proxy data: preserved natural records of climate 13 

variability, which can be linked to the property of interest through physical processes (Jones and Mann, 2004). But there are 14 

major uncertainties in proxy data from the Eocene due to incomplete preservation and alteration over time, with additional 15 

uncertainties as to the seasonality of contributory processes, and for ocean proxies, the depth at which the property of 16 

interest, e.g. temperature, influences the proxy (Dunkley Jones et al., 2013).  Climate models therefore have an important 17 

role to play in exploring the mechanistic functioning of palaeoclimates (Huber, 2012). 18 

Climate simulations with high temporal and spatial resolution can be obtained from General Circulation Models (GCMs), 19 

but the requirement of GCMs for powerful computers and long run-times makes them difficult to deploy for large ensembles 20 

of model simulations and restricts their ability to investigate the large uncertainties in forcings and model parameterisations. 21 

Such ensembles are more practical with more heavily parameterised and hence more computationally efficient Earth system 22 

Models of Intermediate Complexity (EMICs), (Weber, 2010), although we note that Araya-Melo et al. (2015) and Lord et al. 23 

(2017) have deployed the GCM HadCM3 in ensemble-based studies of orbital forcing effects on climates of the Pleistocene 24 

and late Pliocene respectively. 25 

In this study we deploy an EMIC, PLASIM-GENIE (Holden et al., 2016), in an ensemble of model runs to investigate the 26 

effects of varying GHG concentration and orbital parameters on the palaeoclimate of the Earth, with an Eocene configuration 27 

of the oceans and continents.  We reduce the dimensionality of the model output by computing simple scalar metrics to 28 

denote key climatic features of each ensemble member, and we apply singular value decomposition (SVD) to identify the 29 

principal components (PCs) of temperature and precipitation fields in the full ensemble, for comparison with the variation in 30 

the forcing parameters. 31 

By applying the linear modelling and emulation methods of Holden et al. (2015), we regress both the simple scalar metrics 32 

and the SVD reduced dimension model outputs onto the forcing parameters, and from the derived relationships, we infer 33 

main effects denoting the effect of each explanatory term in the linear model, and total effects denoting the effect of each 34 
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forcing parameter, on the variation in the scalar metrics and on the temperature and precipitation output fields.  We 1 

demonstrate that emulators derived in respect of tropical precipitation metrics can be used to estimate Eocene monsoonal 2 

responses to any combination of GHG and orbital forcing parameter values. 3 

2 The Early Eocene and the PETM 4 

2.1 Climate of the Early Eocene 5 

During the Eocene, the Earth remained in the ‘greenhouse’ state, which had persisted since the early Cretaceous, with polar 6 

air temperatures remaining above 0°C for most of the year (Wing and Greenwood, 1993), no permanent polar ice-caps, 7 

reduced equator-pole temperature gradients, and lower ocean-land temperature contrasts, inferred from fossil and isotope 8 

indicators of temperature and environmental conditions.  Climate modellers have experienced difficulty in simulating 9 

Cretaceous and Palaeogene ‘equable climates’ (Sloan and Barron, 1990; Wing and Greenwood, 1993) with sufficient 10 

warming at high latitudes, without overheating the tropics, although Huber and Caballero (2011), hereafter HC11, have 11 

demonstrated that with sufficiently high levels of CO2 (as a proxy for all forms of radiative forcing), climate models can 12 

generate global air temperature distributions in broad agreement with the proxy temperature measurements. 13 

The onset of the PETM, at approximately 55.9 Ma (Westerhold et al., 2009), is recognised as the boundary between the 14 

Palaeocene and Eocene epochs (Aubry et al., 2007), and is characterised by a large CIE, indicating large GHG emissions, 15 

accompanied by a sudden rise in global temperature (Kennett and Stott, 1991), extensive extinction and origination of 16 

nannoplankton (Gibbs et al., 2006), and widespread ocean anoxia (Dickson et al., 2012).  There is some evidence from 17 

analysis and modelling of the timing and duration of variations in 13C and 13O observed in nannoplankton fossils that some 18 

of the GHG emissions were initially in the form of CH4 (Dickens, 2011; Lunt et al., 2011; Thomas et al., 2002), which is 19 

rapidly oxidised in the atmosphere to CO2.  The PETM is also marked by enhanced precipitation and continental weathering 20 

(Carmichael et al., 2016; Chen et al., 2016; Penman, 2016), rapid and sustained surface ocean acidification (Penman et al., 21 

2014; Zachos et al., 2005),  and  shares many features of the global-scale oceanic anoxic events of the Cretaceous and 22 

Jurassic periods (Jenkyns, 2010).  See McInerney and Wing (2011) for a review of PETM research. 23 

The duration of the onset phase of the PETM is uncertain.  Cui et al. (2011) have suggested that the peak rate of addition of 24 

CO2 to the atmosphere was much lower than the present-day rate of anthropogenic GHG emissions, but this is disputed by 25 

Sluijs et al. (2012).  Zeebe et al. (2016) have estimated that the initial release of carbon at the onset of the PETM lasted at 26 

least 4 Ka, at a rate which was little more than one tenth of the present rate of anthropogenic emissions, so the Earth may 27 

already be in a 'no-analogue' state, with anthropogenic climate change likely to exceed that of the PETM. However rapid the 28 

onset, the greenhouse conditions of the early Eocene, and particularly the PETM, provide an opportunity to apply lessons 29 

from the past, with a view to improving predictions of the future (Lunt et al., 2013). 30 
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2.2 Palaeogeography of the Early Eocene 1 

The arrangement of the continents and oceans in the Early Eocene was broadly similar to that of the present, with the Earth’s 2 

land mass divided into the same major continents, and with most of the land mass in the northern hemisphere.  India had not 3 

yet collided with the Eurasian continent, and the closure of the Tethys Ocean was not yet complete. Such tectonic 4 

movements may have effected some changes to the climate system.  In particular, the configuration of ocean gateways 5 

strongly influences modes of ocean circulation, and hence affects energy transport throughout the climate system (Lunt et al., 6 

2016; Sijp et al., 2014). 7 

2.2.1 Continental and Ocean Configurations during the Early Eocene 8 

Although the Bering Strait was closed throughout the Palaeogene (Marincovich et al., 1990), and the Western Interior 9 

Seaway linking the Arctic to the Pacific was closed by the end of the Cretaceous (Slattery et al., 2015), the Arctic Ocean was 10 

connected to the major oceans during the early Eocene through the Turgai Strait, also known as the Western Siberian 11 

Seaway (Akhmetiev et al., 2012; Radionova and Khokhlova, 2000).  The Lomonosov Ridge, from which core samples have 12 

been obtained by the Arctic Coring Expedition (ACEX) of the Integrated Ocean Drilling Program Expedition (IODP) 302 13 

(Backman et al., 2008), was on the edge of the Arctic basin rather than across the pole as in the present configuration 14 

(O'Regan et al., 2008). 15 

Both the Drake Passage between South America and Antarctica (Barker and Burrell, 1977) and the Tasman Gateway 16 

between Australia and Antarctica (Exon et al., 2004) were closed during the early Eocene, preventing the development of an 17 

Antarctic Circumpolar Current and allowing greater southern hemisphere meridional heat transport than in the modern 18 

world. 19 

2.2.2 Orbital Configurations 20 

Throughout Earth's geological history, oscillations in the relative positions of the Earth and Sun have influenced both the 21 

Earth's climate, and rates of sedimentation in some climate-sensitive environmental settings (Hinnov and Hilgen, 2012).  The 22 

main oscillations are the eccentricity of the Earth’s orbit around the Sun, with periods of ~100 ka and 405 ka, the obliquity or 23 

tilt of the Earth’s axis of rotation, with a period of ~40 ka, and precession, the relative timing between perihelion and the 24 

seasons, with a period of ~20 ka (Berger et al., 1993).  By correlating oscillations preserved in the geological record with 25 

computed time series of changes in insolation received by the Earth, an absolute astronomical time scale may be constructed 26 

for recent time-spans with a complete sedimentary record, but where the geological evidence is incomplete, or where 27 

uncertainties in the orbital model are too great further back in time, only a relative time scale may be derived (Hilgen et al., 28 

2010).  An absolute astronomical solution has been computed back to 50 Ma (Laskar et al., 2011), and an absolute age of 29 

55.53 ±0.05 Ma has been proposed for the onset of the PETM at the start of the Eocene epoch by Westerhold et al. (2012). 30 
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Lourens et al. (2005) noted the apparent astronomical pacing of global warming events in the late Palaeocene and early 1 

Eocene, with correlations to both the long and short periods of eccentricity.  Sexton et al. (2011) suggested that although the 2 

smaller hyperthermal events of the early Eocene were driven by cycles of carbon sequestration and release in the ocean, 3 

paced by the eccentricity cycles, the PETM was likely to have been driven by carbon injection from a sedimentary source.  4 

Laurin et al. (2016) applied a method which allows the phase of the 405 Ka eccentricity cycle to be identified from 5 

interference patterns and frequency modulation of the ~100 Ka eccentricity cycle, and concluded that four hyperthermals in 6 

the early Eocene were initiated at 405 Ka eccentricity maxima, but in a study of terrestrial sediments with apparent 7 

correlation to the ~100 Ka eccentricity cycle, Smith et al. (2014) suggested that hyperthermals occurred during eccentricity 8 

minima, rather than maxima. 9 

3 Methods 10 

3.1 The PLASIM-GENIE Model 11 

PLASIM-GENIE (Holden et al., 2016) is an intermediate complexity AOGCM. We apply the model at a spectral T21 12 

atmospheric resolution, which corresponds to a triangular truncation applied at wave number 21 and a horizontal resolution 13 

of 5.625°, with 10 layers, and a matching ocean grid with 32 depth levels.  We apply the calibrated parameter set of Holden 14 

et al (2016). The component modules are as follows: 15 

PLASIM (Fraedrich, 2012) is built around the 3D primitive equation atmosphere model PUMA (Fraedrich et al., 2005). The 16 

radiation scheme considers two wavelength bands in the short wave and uses the broad band emissivity method for long 17 

wave. Fractional cloud cover is diagnosed. Other parameterised processes include large-scale precipitation, cumulus and 18 

shallow convection, dry convection and boundary layer heat fluxes. 19 

GOLDSTEIN is a 3D frictional-geostrophic ocean model (Edwards and Marsh, 2005; Marsh et al., 2011), dynamically 20 

similar to classical GCMs, except that it neglects momentum advection and acceleration. Barotropic flow around the four 21 

continental islands (Fig. 1) is derived from linear constraints that arise from integrating the depth-averaged momentum 22 

equations. 23 

GOLDSTEINSEAICE (Edwards and Marsh, 2005) solves for the fraction of the ocean surface covered by ice within a grid 24 

cell and for the average sea-ice height. A diagnostic equation is solved for the ice surface temperature. Growth or decay of 25 

sea ice depends on the net heat flux into the ice (Hibler III, 1979; Semtner Jr, 1976). Sea-ice dynamics are represented by 26 

diffusion and advection by surface currents.  27 

ENTS (Williamson et al., 2006) models vegetative and soil carbon densities, assuming a single plant functional type. 28 

Photosynthesis depends upon temperature (with a double-peaked response representing boreal and tropical forest), 29 

atmospheric CO2 concentration and soil moisture availability. Self-shading is parameterised. Land surface albedo, moisture 30 

bucket capacity and surface roughness are parameterised in terms of the simulated carbon pool densities. 31 
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The computational efficiency of PLASIM-GENIE is achieved mainly through low spatial resolution (~5°) and, relative to 1 

high-complexity Earth system models, simplifying assumptions in physical processes.  These include, for instance, 2 

simplified parameterisations of radiative transport and convection in the atmosphere, the neglect of momentum transport in 3 

the ocean, and the representation of all vegetation as a single plant functional type.  Climate sensitivity, the response of the 4 

climate to a doubling of atmospheric CO2 concentration, including feedbacks, is an emergent property of the model.   5 

3.2 Model Configuration 6 

3.2.1 Model Grid 7 

This study was designed before Lunt et al. (2017) presented their 'DeepMIP' guidelines for model simulations of the latest 8 

Paleocene and early Eocene.  However, our palaeogeography is based on the high-resolution digital reconstruction of the 9 

early Eocene published by Herold et al. (2014), and which Lunt et al. (2017) recommended should be used as the standard 10 

for all palaeoclimate simulations within the DeepMIP framework.  We have used the dataset of Herold et al. (2014) as an 11 

initial configuration for the tectonic layout, topography and bathymetric boundary conditions in our study.  We have reduced 12 

the resolution of the Eocene palaegeography provided by Herold et al. (2014) to a configuration of 64 longitude x 32 latitude 13 

cells, with each cell representing 5.625° in each orientation. Cells at high latitudes therefore represent smaller land areas than 14 

cells at low latitudes.  Our vertical resolution is 32 ocean depths and 10 atmospheric layers.  We have incorporated the ocean 15 

gateway configurations discussed in section 2.1.1.  The Turgai Strait is open in our configuration, and is the only connection 16 

between the Arctic Ocean and other oceans.  The Drake Passage and Tasman Gateway are both closed. 17 

The palaeogeography (Fig. 1) comprises four land masses: N America and Eurasia; Antarctica combined with S America and 18 

Australia; Africa; and India.  Red rectangles in Fig. 1 indicate the boundaries of areas used to calculate simple metrics of 19 

centennially averaged seasonal precipitation, as empirical indicators of African, Asian and S. American monsoons. 20 

3.2.2 Forcing and Other Input Parameters 21 

In order to investigate the sensitivity of the Eocene climate to variation in atmospheric CO2 and orbital parameters, we have 22 

constructed an ensemble of 50 model configurations, each with a unique set of forcing parameters comprising atmospheric 23 

CO2, eccentricity (e), obliquity () and precession (), the angle on the Earth’s orbit around the Sun between the moving 24 

vernal equinox and the longitude of perihelion (Berger et al., 1993).  When e is zero, the Earth's distance from the Sun is 25 

constant at all points on the orbit, so there is no precessional effect.  The magnitude of precessional effects is controlled by e, 26 

while phase is controlled by , so precessional effects are commonly described by the precession index given by esin.  The 27 

only orbital parameter which alters the total annual solar radiation received by the Earth is e, although the range of variation 28 

is very small.  We include e and  as separate and independent forcing parameters, rather than combined as the precession 29 

index, or in the form ecos.  This approach does not make the assumption that the only effect of eccentricity on the Earth's 30 

climate is through its effect on the amplitude of the precession cycle, but allows experimental results to be examined for 31 
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effects of e and  either separately or in combination.   An additional dummy parameter is included to test for possible 1 

overfitting of relationships between forcing parameters and model output fields. 2 

Although the maximum mass of CO2 injected into the atmosphere during CIEs, and in particular the PETM, remains 3 

uncertain, there is broad agreement that the atmospheric concentration of CO2 did not exceed 3000 ppm (e.g. Gehler et al., 4 

2016), and that it did not fall below the pre-industrial level of 280 ppm at any time during the early Eocene. We allocate 5 

these values as the limits of a uniform range from which our ensemble of CO2 values is selected. 6 

Since the absolute astronomical time scale for the early Eocene has an uncertainty which is greater than the periods of the 7 

obliquity and precession cycles, and there remains disagreement as to which phases of the eccentricity cycles are related to 8 

CIEs, there are no combinations of the orbital forcing parameters which can be known a priori to be of greater importance in 9 

their effects on the Eocene climate in general, and on their contributions to the initiation, duration and termination of the 10 

CIEs in particular.  We therefore select values of orbital parameters independently, and from the full range of each 11 

parameter’s variation during the early Eocene. 12 

To ensure the best coverage of the five-dimensional state-space comprised of the four forcing parameters and the additional 13 

dummy parameter in a limited number of model runs, we apply the Latin hypercube method (McKay et al., 1979), a 14 

constrained Monte Carlo sampling scheme in which the range to be sampled for each variable is divided into non-15 

overlapping intervals, and one value from each interval is randomly selected (Wyss and Jorgensen, 1998).  This provides 16 

adequate coverage of the state space more efficiently than can be achieved by a simple Monte-Carlo sampling approach 17 

(Rougier, 2007).  The present study has been designed to facilitate direct comparison between the results for specific 18 

ensemble members and their direct counterparts in a future study using the EMIC model GENIE-1 (Edwards and Marsh, 19 

2005), which will include additional forcing parameters not used by this PLASIM-GENIE study.  We have applied an 20 

iterative method to generate a pair of corresponding hypercubes with five and eleven dimensions for the PLASIM-GENIE 21 

and GENIE-1 studies respectively, in which the minimum Euclidean distance between any two points is maximised, and 22 

linear correlation between any two parameters is minimised. Details of the steps taken to generate the hypercubes are 23 

provided in Appendix A.  The absolute value of the r correlation coefficient does not exceed 0.1 for any pair of input 24 

(forcing and dummy) parameters.  Uniform ranges for each of the forcing parameters and the dummy parameter are shown in 25 

Table 1, and the values applied in all 50 PLASIM-GENIE ensemble members are shown in Table 2. 26 

The intensity of radiation emitted by the Sun has increased steadily over time, and we apply the linear model of Gough 27 

(1981), and select a solar constant of 1358.68 W m-2.  We note that Lunt et al. (2017) have recommended that a modern 28 

value of 1361.0 W m-2 should be applied to studies within the DeepMIP framework, in order to facilitate comparison 29 

between simulations with modern and pre-industrial levels of CO2, and to offset the absence of elevated levels of CH4. 30 

3.2.3 Running the Models 31 

Each simulation was run for a spin-up period of 1000 years to reach a quasi-steady state, with key output fields recorded as 32 

seasonal averages for each of the three-month periods December, January and February (DJF) and June, July and August 33 
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(JJA), representing both winter and summer seasons in both the northern and southern hemispheres.  Although model output 1 

includes time series of some fields and output values every 100 years, in this study only the field values recorded at the end 2 

of the 1000 years of modelling are used for analysis of the results. 3 

3.3 Analysis of Model Output 4 

Comparison of the forcing parameters applied in the ensemble with the model output fields can be more efficiently achieved 5 

by reducing the dimensionality of the model output while retaining information on key components of the climate system. 6 

3.3.1 Simple Metrics 7 

In studies of the Earth’s modern climate, it is recognised that the tropical-polar temperature difference (TPTD) influences 8 

poleward energy flux, and the ocean-land temperature contrast (OLC) affects monsoon intensity (Jain et al., 1999; Karoly 9 

and Braganza, 2001; Peixoto and Oort, 1992). Although atmospheric circulation patterns in the early Eocene will have 10 

differed from those in the modern world, in selecting latitude regions to represent the TPTD, we adopt the approach of Abbot 11 

and Tziperman (2008), who configured their model of the Cretaceous climate with latitude ranges of 0–30°, 30–60°, and 60–12 

90°, the approximate boundaries of the Hadley, Ferrel and Polar cells observed in the modern world (Peixoto and Oort, 13 

1992).  On our model grid in which each cell spans 5.625° of latitude, for the purposes of deriving scalar metrics, we define 14 

the tropical regions to be between 0.0° and 33.75° North and South, and the polar regions to be between 56.25° to 90° North 15 

and South. 16 

From the output values of air temperature in the lowest level of the atmosphere, weighted by grid cell area, we derive scalar 17 

values for each model run, of global annual mean air temperature (MAT), northern and southern hemisphere seasonality 18 

(mean area-weighted DJF-JJA temperature differences in the above-defined polar regions), TPTD for summer and winter in 19 

each hemisphere, and OLC for summer and winter in tropical and polar regions in each hemisphere. 20 

Monsoons are related to seasonal variations in tropical and subtropical winds and precipitation (Trenberth et al., 2006).  21 

Wang and Fan (1999) noted that the choice of an index to denote monsoon behaviour in the modern world is difficult and 22 

arbitrary, with commonly applied indices based on average summer precipitation, maximum summer precipitation, winter-23 

summer difference in precipitation, or wind circulation patterns within defined geographical areas.  In this study, we derive 24 

simple scalar metrics to denote indices for monsoons for Asia, Africa and South America by subtracting winter rainfall from 25 

summer rainfall, for defined geographical regions, denoted on Fig. 1, and selected for their similarity to monsoonal regions 26 

in the modern continental configuration. 27 

3.3.2 Singular Value Decomposition, Linear Modelling and Model Emulation 28 

We perform a singular value decomposition to identify the PCs and empirical orthogonal functions (EOFs) of temperature 29 

and precipitation fields in the full ensemble , although we note that climate variability may not be due to physical processes 30 
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which vary orthogonally, and identification of PCs can be influenced by aspects of the experimental design.  A detailed 1 

presentation of the use of this method in the analysis of climate data is given by Hannachi (2004).   2 

We use the linear modelling method of Holden et al. (2015), to regress both the simple scalar metrics and the SVD reduced 3 

dimension model outputs onto the forcing parameters.  Values of the forcing parameters CO2, e and  (with its very small 4 

angular range considered to be approximately linear) were normalised to the range [-1, 1] and combined with sin and cos 5 

to form 50-element column vectors representing the forcing factors.  Each 2-D (32 x 64) result field for each ensemble 6 

member was unrolled to form a column vector of 2048 elements, comprising a single column within a 2048 x 50 matrix of 7 

full ensemble values. 8 

SVD was applied to decompose the full ensemble matrix for each 2-D result field, providing a 2048 x 50 matrix of PCs, a 50 9 

x 50 matrix of PC scores, and a 50 x 50 matrix of diagonal values. 10 

Linear modelling was applied to determine relationships between the normalised forcing factors and the first six columns of 11 

the PC scores, including products of pairs of forcing factors, and squares of each forcing factor, with the best fitting 12 

relationships selected according to the Akaike information criterion (Akaike, 1974) then refined using Bayes information 13 

criterion (Schwarz, 1978).  Burnham and Anderson (2003) provide a detailed discussion of the application of information 14 

criteria in model selection.  The resulting relationship provides a simple emulator which can be used to estimate a PC score 15 

for the 2-D model field, given a single set of forcing parameter values.  Applying derived emulators in respect of temperature 16 

and precipitation for both seasons, demonstrated high correlation between emulated PC scores and PC scores derived 17 

directly through SVD (Table 3). 18 

Our emulator approach uses linear regression, rather than a Gaussian process (GP), and is therefore simpler than the methods 19 

applied by Bounceur et al. (2015) in a study of the response of the climate-vegetation system in interglacial conditions to 20 

astronomical forcing, and by Araya-Melo et al. (2015) in their study of the Indian monsoon in the Pleistocene.  Unlike linear 21 

models, GP models are intrinsically stochastic and give a more accurate quantification of their own error in emulating the 22 

input data. However, GP models can become computationally demanding in high dimensional space, and their results can be 23 

more difficult to interpret. 24 

In order to analyse the results of each of our linear models, we apply the method described in detail by Holden et al. (2015) 25 

to derive the main effects (Oakley and O'Hagan, 2004), which provide a measure of the variation in the linear model output 26 

due to each of the terms (first order, second order and cross products), derived from their coefficients, and total effects 27 

(Homma and Saltelli, 1996), which separate the effect of each forcing parameter on the variation in the model output.  28 

Although the forcing factors are all scaled within the range [-1, 1], the trigonometrical precession terms are not uniformly 29 

distributed across this range.  We have therefore computed the variances of the first order, second order and cross product 30 

terms directly for all parameters, rather than applying the respective approximations of 1 ,
3

  1
9

and 4
45

, and we have 31 

applied these values as scaling factors in calculating the main effects and total effects. 32 
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4 Results 1 

4.1 Model Output - Temperature and Precipitation 2 

Analysis of the model results has focused on variation in surface air temperature and precipitation in both winter and 3 

summer in each hemisphere, although it should be noted that our experiment has not been designed such that mean values in 4 

our ensemble output represent direct estimates of the Eocene climate mean.  In the left column of Fig. 2, median 5 

temperatures at each grid cell for the full ensemble are plotted for DJF (top) and for JJA (bottom), with the standard 6 

deviations plotted in the right column.   7 

Ranges of median temperatures over land are greater than over the oceans, but TPTD is smaller in both seasons and both 8 

hemispheres than simulated in the modern world (see Fig. 2, Holden et al 2016). It is apparent from the standard deviation 9 

field that the tropical-polar temperature difference varies substantially across the ensemble, particularly in northern winter.  10 

The temperature distributions are similar to those of the 2240 ppm CO2 simulation of HC11, regarded as their “mid to late 11 

Eocene” analogue (they consider elevated CO2 as a proxy for all radiative forcing, including uncertain climate sensitivity). 12 

The principal difference is in high northern latitude winter temperatures; the Arctic ocean remains above freezing in HC11. 13 

We note that the Arctic winter median air temperature is below freezing over both land and sea in the PLASIM-GENIE 14 

ensemble, (see Fig 3) and the Arctic does not remain ice-free throughout the year in any of the 50 simulations in our study.  15 

Tropical temperatures in excess of 35°C were simulated in some cases, as in HC11, which they regarded as their “most 16 

troubling result”, although they note observational data is currently insufficient to rule this out. Finally, we note that multi-17 

model ensembles have found significant inter-model differences including, for instance a 9°C spread in global average 18 

temperature under the same CO2 forcing (Lunt et al 2012). Quantification of model-related uncertainty is beyond the scope 19 

of the present study. 20 

Full ensemble distributions of mean latitudinal distributions of annual mean sea surface temperature (SST), with mean 21 

latitudinal distributions of maritime and continental surface air temperature in both DJF and JJA are plotted in Fig. 3, 22 

together with ensemble medians and 5% and 95% percentiles of global annual mean SST, and maritime surface air 23 

temperature in both DJF and JJA.  The greater range of temperatures below rather than above median values reflects our use 24 

of a uniform range of CO2 forcing values, and the logarithmic response of temperature to increasing CO2 concentration. 25 

There is substantial variation of mean temperature across the ensemble, around 20 degrees over land, but the temperature 26 

offset varies little with latitude outside of polar regions where snow and ice greatly reduce winter temperatures in the colder 27 

simulations. The variation in TPTD across the ensemble thus appears to be essentially driven by the strength of snow and ice 28 

albedo feedbacks.   29 

Our ensemble distributions of sea and air temperatures are in broad agreement with the values from the Eocene model 30 

studies compared by Lunt et al. (2012), hereafter L12, and with the tables of marine and terrestrial proxy data compiled by 31 

L12 and HC11, covering the early Eocene, and including some records from the very latest Paleocene, but not including the 32 

PETM. Our palaeogeography specifically represents the early Eocene, but our range of CO2 and orbital inputs is more 33 



 

11 

 

representative of the variation in forcing across the whole era.  L12 have summarised variations of SST with latitude from 1 

their proxy data set, in their Fig. 1, including large error bars representing uncertainty which they attribute to assumptions 2 

about seawater chemistry, possible non-analogous behaviour between modern and ancient systems, and uncertainty in 3 

calibrations of relationships between proxy data and properties of the palaeoclimate.  Our median values of SST are close to 4 

the median estimates of SST in L12 at mid latitudes, and well within the uncertainty indicated by error bars at high latitudes.  5 

Median values and standard deviations of precipitation at each grid cell are plotted in Fig. 4.  Higher precipitation values and 6 

variation are largely confined to the tropics, especially to regions associated with monsoons in the present day: Africa and S. 7 

America in DJF, and S.E. Asia in JJA. 8 

4.2 Simple Metrics 9 

In Figs. 5 and 6, CO2, obliquity () and precession index (esin) are plotted against MAT, northern seasonality, northern 10 

winter TPTD and northern summer TPTD (Fig. 5), and southern winter polar OLC, northern winter polar OLC, Asian 11 

monsoon index, African monsoon index and American monsoon index (Fig. 6).  Subplots for obliquity and precession index 12 

in Figures 5 and 6 denote the CO2 level on a continuous colour scale.  The dominant effect of CO2 on MAT and northern 13 

seasonality is apparent in Fig. 5, and it can also be seen that CO2 strongly affects the northern TPTD in the winter, but not in 14 

the summer, when the combined influence of obliquity and precession index is discernible, suggesting that temperature 15 

proxies with seasonal bias may have a significant orbital imprint.  The plot of atmospheric CO2 against N. Winter TPTD 16 

shows a change in gradient at approximately 1000 ppm CO2 and 32°C. This may be related to the logarithmic dependence of 17 

radiative forcing on CO2 concentration, the disappearance of ice above some threshold level, and a minimum level of land 18 

surface albedo related to maximum vegetation cover.  A possible sea ice related threshold mechanism influencing both SST 19 

and maritime air temperature in high northern latitudes may be observed in Fig. 3, and this is strongly associated with the 20 

increase in northern winter TPTD at low CO2 levels. Zeebe et al. (2017) have analysed a high resolution benthic isotope 21 

record covering the late Palaeocene - early Eocene, and have concluded that orbitally paced cycles are unlikely to have been 22 

driven by high latitude mechanisms, but our PLASIM-GENIE modelling suggests that while northern TPTD is not orbitally 23 

paced in the winter, being controlled by CO2, it is orbitally paced in the summer, by a combination of obliquity and 24 

precession. 25 

It can be observed in Fig. 6 that there is strong correlation between CO2 and southern winter polar OLC. The African and 26 

Asian monsoon indices are both correlated with the precession index, a well established feature of Quaternary records (e.g. 27 

Cruz et al., 2005).  The American monsoon index is fairly strongly correlated with the precession index at high levels of 28 

CO2, and negatively correlated with CO2 at low levels of CO2.  In each of the other examples, there is no apparent correlation 29 

between the simple metric and two of the three forcing factors. We have selected these simple metrics with visible 30 

correlations to the forcing parameters for further analysis with the linear modelling and emulation methods.  Total effects on 31 

the simple metrics have been calculated for each of the forcing parameters, with eccentricity and precession considered 32 

separately, rather than combined within the precession index, and are shown in Table 4. 33 
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The total effects of CO2 on MAT, northern winter TPTD and southern winter polar OLC, and of precession on both the 1 

Asian and African monsoon indices are all very high (> 0.90), and the total effects of obliquity on northern winter polar OLC 2 

and northern summer TPTD, are both fairly high (> 0.65), providing quantitative confirmation of the correlations visible in 3 

Figs. 5 and 6. 4 

4.3 Climate Sensitivity and Mean Air Temperature 5 

Figure 7 shows the relationship between CO2 (plotted on a logarithmic scale), and MAT, with an abrupt change of gradient 6 

clearly visible at a CO2 concentration of 1000 ppm.  From the two gradients, we derive climate sensitivity values for a 7 

doubling of CO2 concentration at CO2 levels below 1000 ppm, and at CO2 levels above 1000 ppm, of 4.36°C and 2.54°C 8 

respectively.  We note that our modelled values of carbon in vegetation in the ENTS module remain low outside of the 9 

tropics at low CO2 concentration, but as CO2 concentration increases, land areas at higher latitudes reach maximum values of 10 

carbon in vegetation, with all land areas showing no further capacity for increased carbon in vegetation at an atmospheric 11 

concentration of ~1000 ppm.  The increase in land vegetation cover, with corresponding reduction in albedo, acts as a 12 

positive feedback to rising temperature caused by increasing CO2, but this feedback mechanism ceases to operate when all 13 

available land is at its maximum vegetation capacity, with a consequent reduction in the climate sensitivity. 14 

For a pre-industrial atmospheric CO2 concentration of 280 ppm, the value of MAT indicated by our results for our early 15 

Eocene palaeogeography is 14.0°C.  Holden et al. (2016) applied an identically configured PLASIM-GENIE to a modern 16 

geography, and their results show that with a pre-industrial CO2 concentration, the model climate sensitivity is 3.8°C, and 17 

MAT is 12.9°C. 18 

Our results also indicate values of global MAT for double, and four-times pre-industrial levels of CO2 of 18.5°C and 22.5°C 19 

respectively; both these values are within the ranges of results for land near-surface air temperature in the modelling studies 20 

compared by L12, and shown in their Fig. 2b. 21 

4.4 Singular Value Decomposition 22 

Figure 8 shows the first three PCs of surface air temperature in DJF and JJA, with the percentages of temperature variation 23 

explained by each PC. Each of these plots illustrates the PC scaled by the standard deviation of the PC scores, thereby 24 

reflecting the variability across the ensemble.  Note the variable scales for each of the subplots.  In both DJF and JJA, PC1 25 

explains over 95% of the variance, with TPTD clearly visible in both hemispheres in DJF, but apparent only in the southern 26 

hemisphere in JJA.  OLC is apparent in the plots of PC1 in both DJF and JJA.  OLC is discernible in PC2 for DJF 27 

temperature, which explains 2.4% of variance, but less apparent, at least in the southern hemisphere, for JJA temperatures, in 28 

which PC2 explains 2.6% of the variance.  For temperature in both DJF and JJA, PC3 explains less than 1% of the variance, 29 

with some indication of TPTD and OLC in DJF, but only of weak OLC at high latitudes in JJA. It is worth noting that even 30 

though lower order PCs explain small percentages of global variances, these PCs are generally associated with specific 31 

regions where they are comparably important to the first PC. 32 
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In their presentation of the SVD method applied in this study, Holden et al. (2015) investigated the effects of orbital 1 

parameters on the Earth’s climate in the present day, but without including CO2 as a forcing parameter in their ensemble, and 2 

found that obliquity had a dominant effect on the PC score of annual average surface air temperature.  In our study of the 3 

Eocene climate, CO2 is strongly correlated with N. seasonality (Fig. 5), and obliquity is weakly correlated with TPTD in JJA 4 

(Fig. 5) and with OLC in DJF (Fig. 6). The first three PCs of precipitation in DJF and JJA are shown in Fig. 9.  PC1 explains 5 

approximately 55% of the variance in both seasons, with PC2 and PC3 explaining over 20% and over 5% respectively, in 6 

both seasons.  In both PC2 and PC3, areas of high seasonal contrast appear to correspond to areas which experience 7 

monsoons in the modern world. 8 

Correlations between the PC scores of temperature and precipitation are provided in Table 5. The first PC scores of 9 

temperature, reflecting a global warming signal, are highly correlated with the first PC scores for precipitation, suggesting 10 

that these PCs reflect a strengthening of the hydrological cycle in response to warming. Similar considerations reveal 11 

connections between lower order PC scores, though we note that the 2nd (3rd) component of DJF temperature is associated 12 

with the 3rd (2nd) component of DJF precipitation. In order to address the drivers of these modes, we first consider the 13 

correlation coefficients, r, between forcing factors and the PC scores, shown in Table 6.  These demonstrate that for each 14 

output there is a mode of variability driven by CO2 and another mode driven by precession, suggesting they reflect global 15 

warming (and associated hydrological strength) and precessional forcing of the monsoon system.  16 

There is strong correlation (r2 > 0.5) between CO2 and the first PC scores of temperature in DJF and JJA.  There are also 17 

strong correlations between precession index and the third PC scores for DJF temperature, and between precession index and 18 

the second PC scores for JJA temperature. 19 

CO2 is strongly correlated with the first PC scores of precipitation in both DJF and JJA, and there is a strong relationship 20 

between precession index and the second PC scores of precipitation in both DJF and JJA.  An increase in the second PC 21 

scores for JJA precipitation in the Asian monsoon region (Fig. 9) corresponds to a decrease in the second PC scores for JJA 22 

temperature (Fig. 8), and as already noted, the second PC scores for both temperature and precipitation in JJA are strongly 23 

correlated to the precession index.  This temperature reduction during the Asian monsoon was also observed by Holden et al. 24 

(2014), and attributed to a reduction in incoming solar radiation associated with increased cloud cover and surface 25 

evaporation. 26 

4.5 Linear Modelling and Emulation 27 

The relationships between the forcing parameters (with precession expressed as both sin and cos) and the simple metrics, 28 

and between the forcing parameters and the PC scores of 2-D fields, derived through linear modelling, include first and 29 

second order terms of forcing factors, together with products of forcing factors.  In all cases most of the main effects are 30 

confined to the first order terms, and in no case does eccentricity have a significant effect independently of either of the 31 

precession terms.  All significant effects of the precession terms are accompanied by a small effect of eccentricity. 32 
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In Fig. 10, we plot the main effects of the forcing parameters on the first three PCs of temperature and precipitation for DJF.  1 

Figure 11 shows the main effects of the forcing parameters on the first three PCs of temperature and precipitation plotted for 2 

JJA.   3 

In both seasons, PC1 for temperature and precipitation can be almost entirely explained by CO2, reinforcing the earlier 4 

conclusion that these describe a connected mode, global warming with associated effects on the hydrological cycle.  The 5 

main effects also suggest connections between the modes of variability of temperature and precipitation in lower-order 6 

components. In both seasons, and apparent in both variables, there is a mode that is driven by precession;  we interpret this 7 

as a monsoon signal, given precessional forcing and spatial patterns of rainfall that are characteristic of modern monsoons 8 

(Figs. 8 and 9).  In JJA this is the second component of both variables. The mode is associated with precipitation variability 9 

of ~2.5 mm/day and temperature variability of ~3°C, with increased precipitation associated with a surface air cooling (note 10 

the negative correlation in Table 3, so that positive change in one field is associated with negative change in the other). In 11 

both cases, the local magnitude of variability is comparable to that driven by CO2. In DJF the precessional signal is again 12 

apparent in the second mode of precipitation, but the third mode of temperature. This mode is notable, in that it drives 13 

changes in simulated precipitation over East Africa (5 mm/day) that exceed CO2-driven variability. The remaining modes are 14 

more complex, and may not represent a clear mode of variability that can be straightforwardly attributed. For instance, the 15 

third-order mode of JJA temperature is driven by an interaction between CO2 and obliquity, but in precipitation can be 16 

explained by a combination of precession and CO2. 17 

We apply the linear models derived from the forcing factors and monsoon indices as emulators to estimate values of 18 

monsoon indices corresponding to the full range of precession (), with eccentricity fixed at its high limit of 0.06, low and 19 

high values of CO2 (300 ppm and 3000 ppm), and low and high values of obliquity (22.0° and 24.5°).  Precession index 20 

(esin) and emulated values of the Asian, African and American monsoon indices are plotted in Figures 12, 13 and 14 21 

respectively. Relationships between the precession index and the monsoon indices which are visually suggested in Figure 6 22 

are shown with clear structure in Figures 12, 13 and 14.  In each of the monsoon areas, the increase in precipitation due to 23 

precession effects is more pronounced at high atmospheric concentration of CO2, and also at high obliquity. 24 

5 Summary and Conclusions 25 

Our ensemble of 50 model runs of the EMIC PLASIM-GENIE has used an early Eocene palaeogeography incorporating 26 

recent understanding of the configuration of the continents and ocean gateways, with climate forcing by a randomly selected 27 

combination of atmospheric GHG emissions and orbital parameters for each model run. Relationships between forcing 28 

parameters and scalar summaries of model results have been derived through linear modelling. 29 

Given the input range of CO2, our results show that, at the global scale, variability in patterns of surface air temperature is 30 

strongly dominated by a single mode of variation with a strong imprint of TPTD, focused in northern winter, that is entirely 31 

controlled by CO2 (> 95% variance in both seasons). We note, however, that regions under the influence of monsoon 32 
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systems exhibit precession-driven temperature variability that is comparable in magnitude to the variability driven by CO2 1 

(in large part the high proportion of variance explained by the CO2 mode arises because the signal is global).  In contrast to 2 

the unimodal dominance of CO2 on the modelled global temperature fields, precipitation shows a somewhat more nuanced 3 

response. The first mode of precipitation, while still controlled entirely by CO2, is much less dominant (maximum 57% 4 

variance in DJF cf 21% for PC2). In the second and third spatial modes of precipitation variability, CO2 is still important, but 5 

no more so than orbital parameters, with PC2 controlled more strongly by precession index.  6 

The importance of orbital forcing to precipitation signals is seen more clearly in the OLC and monsoon indices. In spite of 7 

large variation in atmospheric CO2, variation in obliquity accounts for well over half of the variation in high northern latitude 8 

ocean-land temperature contrast, and the variation in precession is the dominant influence on seasonal variation in 9 

precipitation in tropical Africa and Asia, and combines with CO2 to influence seasonal precipitation in tropical America. Our 10 

results strongly suggest the presence of monsoons in the early Eocene, but these climatic features would have developed 11 

without the effects of orography and high altitude plateau heating which are important factors in the modern south Asian 12 

monsoon (Boos and Kuang, 2010). 13 

We note that the relative amplitude of the CO2-driven modes depends critically on the actual amplitude of CO2 variability in 14 

the period of interest.  While the ranges for orbital parameters are well defined, this is less true of CO2 variability over the 15 

Eocene.  If atmospheric CO2 remained within a narrower range throughout the period, for example in the range 700 to 1800 16 

ppm, indicated for the early Eocene by Anagnostou et al. (2016) in a recent study using boron isotopes, then outside of short-17 

lived hyperthermals, the relative influence of CO2 and orbital inputs might have been more evenly balanced.  Our modelling 18 

results suggest that climate sensitivity is state dependent, with a value of 4.36°C in a low CO2 state, and 2.54°C in a high 19 

CO2 state, due to a positive feedback mechanism in which albedo reduces as vegetation increases to its maximum value 20 

when CO2 concentration reaches 1000 ppm. 21 

We have demonstrated that emulators derived from linear modelling of the PLASIM-GENIE ensemble results can be used as 22 

a rapid and efficient method of estimating climate conditions from any set of forcing parameters, without the need for further 23 

deployment of the EMIC. 24 

PLASIM-GENIE is to our knowledge the most sophisticated climate model that has been applied to an ensemble of Eocene 25 

simulations, but we note that increasing computing power is now enabling ensembles of simulations with moderately higher 26 

resolution models, such as HadCM3 (3.75° × 2.5°) (e.g. Araya-Melo et al., 2015; Lord et al., 2017), to be run, although with 27 

some limitation in the model years in each simulation. It will never be possible to apply state of the art climate models to 28 

large ensembles because, given the continual striving for the highest possible resolution, single simulations with such models 29 

will always be at the limits of what is practicable with available computing power.  EMICs therefore have an important role 30 

in furthering our understanding of past, present and future climate systems, and in the rapid identification of influencing 31 

factors and modes of response which may be targeted for study by slower but more powerful models. 32 
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Our study of the early Eocene climate and the PETM using PLASIM-GENIE has shown that variability in orbital parameters 1 

can exert significant climatic influence, particularly in regard to tropical temperature and precipitation, and they should not 2 

be ignored in modelling studies of climates of the past. 3 

Data Availability 4 

Details on access to the model code, and instructions on compiling the model are given in Holden et al. (2016). 5 

Appendix A Hypercube Generation 6 

This study has been designed together with a future study using the EMIC model GENIE-1 (Edwards and Marsh, 2005).  7 

The GENIE-1 model will use all four of the forcing parameters and the dummy parameter, used in the present study, together 8 

with an additional six forcing parameters not used by the PLASIM-GENIE study.  For PLASIM-GENIE we have run 50 9 

simulations with five parameters, while in GENIE-1 we will run 100 simulations with 11 parameters, so that the number of 10 

runs in each ensemble is approximately 10 times the input dimension (Loeppky et al., 2012).  11 

The overall design for both studies is based on a maximin Latin hypercube with 100 rows and 11 columns produced by 12 

repeatedly invoking the lhsdesign function in MATLAB (MathWorks), with the command: 13 

hyperCube = lhsdesign(100, 11, 'criterion', 'maximin', 'iterations', 100); 14 

to select from 100 iteratively generated hypercubes, the one which best fits the maximin criterion, i.e. where the minimum 15 

Euclidian distance between points in hyperspace is at a maximum.  This MATLAB command is repeated until the absolute 16 

value of correlation between columns falls below a selected value, or until a selected number of attempts has been made.  17 

The ability of this ‘brute force’ approach to produce a hypercube which satisfies the maximin criterion, with the required low 18 

correlation between columns decreases rapidly with an increasing number of columns, and a decreasing target correlation, 19 

but in several minutes it can generate a hypercube with 100 rows, each representing a design point for an ensemble member, 20 

and 11 columns, each representing a forcing or dummy parameter, with correlation between any two parameters not 21 

exceeding 0.1. 22 

We then modify the overall design by first picking a subset of 50 of the 100 design points to give good coverage of the 23 

PLASIM-GENIE subspace. We randomly select an initial point, and iteratively select from the remainder, without 24 

replacement, the point which provides the largest increase in the number of populated sectors across all the two-dimensional 25 

projections of PLASIM-GENIE parameter space defined by dividing each two-dimensional subspace into 6 x 6 equal 26 

sectors.  27 

This defines a template comprising a 50-member subset of 11 parameter values. 28 
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Copying the template and discarding the six parameters which are only used in the GENIE-1 ensemble yields the final 1 

hypercube design for the PLASIM-GENIE ensemble, comprising 50 sets of five parameters. 2 

A second copy of the template forms the top half of the GENIE-1 hypercube, and the bottom half is partially constructed by 3 

duplicating only the five PLASIM-GENIE parameters from the first 50 rows, with the remaining six parameters determined 4 

by choosing a previously unselected point, without replacement, from the initial 100 x 11 hypercube that maximises the 5 

Euclidean distance between the pair of points in the subspace of the remaining six parameters. 6 

Following this procedure, the two hypercubes for the PLASIM-GENIE and GENIE-1 studies both show very good state-7 

space coverage and low correlation, and each member of the PLASIM-GENIE ensemble has two corresponding members in 8 

the GENIE-1 ensemble, with identical values for the parameters in common, but widely differing sets of values for the 9 

parameters only used by GENIE-1. 10 
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Table 1  Uniform ranges for forcing and dummy parameters 27 

 

min max 

pCO2 (ppm) 280 3000 

Precession ( ° ) 0 360 

Obliquity ( ° ) 22.0 24.5 

Eccentricity ( - ) 0.00 0.06 

Dummy ( - ) 0 1 

 28 
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Table 2 Forcing factors and dummy values for each member in the ensemble.  Precession = , the angle between the 1 

moving vernal equinox and the longitude of perihelion. 2 

Member (-) CO2 (ppm) Eccentricity (-) Precession (°) Obliquity (°) Dummy (-) 

1 975.6 0.0022 142.5 22.37 0.822 

2 2418.7 0.0256 165.2 23.95 0.907 

3 1259.4 0.0007 307.1 23.91 0.323 

4 801.3 0.0163 270.4 23.50 0.276 

5 1720.1 0.0559 206.7 23.82 0.402 

6 327.1 0.0595 135.9 23.53 0.681 

7 2937.7 0.0418 287.1 22.53 0.650 

8 1200.3 0.0237 313.2 24.12 0.978 

9 1420.7 0.0158 297.1 23.86 0.931 

10 2157.6 0.0432 100.6 23.74 0.661 

11 1791.7 0.0241 247.2 23.43 0.429 

12 2369.0 0.0425 78.9 22.65 0.167 

13 2502.9 0.0296 0.5 22.69 0.122 

14 2149.2 0.0405 249.9 24.23 0.347 

15 1061.7 0.0394 40.9 23.94 0.189 

16 711.3 0.0199 274.6 22.08 0.913 

17 1817.1 0.0578 291.4 23.08 0.888 

18 722.1 0.0463 195.8 24.38 0.865 

19 2988.5 0.0039 110.1 24.40 0.049 

20 539.4 0.0251 212.5 23.29 0.234 

21 450.6 0.0335 96.1 22.28 0.674 

22 2700.1 0.0049 165.9 23.66 0.630 

23 2025.4 0.0320 189.4 23.63 0.087 

24 2268.7 0.0308 233.3 22.86 0.461 

25 1447.2 0.0364 62.0 23.40 0.541 

26 1168.3 0.0300 147.4 22.97 0.947 

27 1317.6 0.0377 12.4 23.04 0.714 

28 1639.5 0.0265 150.9 22.98 0.524 

29 399.0 0.0589 262.7 23.46 0.028 

30 2876.3 0.0411 203.0 22.05 0.608 

31 2611.1 0.0170 54.3 22.84 0.746 

32 2831.7 0.0564 187.2 23.72 0.696 

33 1998.5 0.0372 278.8 24.19 0.805 

34 1465.0 0.0439 38.9 23.50 0.376 

35 1660.0 0.0109 85.3 22.88 0.896 

36 2393.7 0.0587 127.9 24.27 0.191 

37 286.3 0.0004 27.1 23.99 0.391 

38 667.4 0.0509 116.5 22.71 0.569 

39 2246.8 0.0450 317.4 22.90 0.103 

40 2334.2 0.0096 294.7 23.61 0.532 

41 2968.2 0.0346 329.8 22.51 0.314 

42 768.2 0.0085 218.3 23.00 0.000 

43 925.8 0.0450 327.2 24.32 0.753 

44 384.5 0.0081 60.6 22.59 0.436 
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45 850.7 0.0551 322.9 23.21 0.459 

46 1112.8 0.0150 356.7 23.27 0.579 

47 1255.8 0.0116 212.2 22.31 0.487 

48 1124.1 0.0530 343.7 22.40 0.065 

49 2113.9 0.0276 9.9 22.19 0.856 

50 1681.0 0.0354 175.5 22.45 0.287 

 1 

 2 

Table 3  R2 correlation between PC scores from SVD and PC scores emulated with the linear models.   3 

 

PC1 PC2 PC3 

DJF_temperature 0.95 0.58 0.75 

JJA_temperature 0.97 0.97 0.72 

DJF_precipitation 0.97 0.92 0.64 

JJA_precipitation 0.99 0.99 0.89 

 4 

 5 

Table 4  Total effects of forcing parameters on simple scalar metrics. 6 

   7 

 8 

 9 

  CO2 Eccentricity Obliquity Precession 

MAT 0.993 0.002 0.000 0.005 

N. seasonality 0.766 0.003 0.011 0.220 

N. winter TPTD 0.939 0.006 0.039 0.017 

N. summer TPTD 0.144 0.000 0.673 0.183 

S. winter POLC 0.979 0.004 0.005 0.012 

N. winter POLC 0.088 0.000 0.789 0.122 

Asian monsoon index 0.094 0.004 0.063 0.840 

African monsoon index 0.017 0.001 0.001 0.981 

American monsoon index 0.490 0.004 0.020 0.486 

  10 
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Table 5  R correlation values for PC scores for temperature and precipitation in DJF and JJA. Values where R2 >= 0.5 1 
are shown in red. 2 

  

DJF_precipitation 

  

PC1 PC2 PC3 

 
PC1 0.993 -0.004 -0.080 

 DJF_temperature PC2 -0.067 -0.364 -0.864 

  PC3 0.005 0.783 -0.354 

     

  

JJA_precipitation 

  

PC1 PC2 PC3 

 
PC1 0.976 0.091 0.157 

 JJA_temperature PC2 0.098 -0.947 0.082 

  PC3 -0.180 -0.049 0.795 

 3 

 4 

Table 6  R correlation values for forcing factors and PC scores. Values where R2 >= 0.5 are shown in red. 5 

  

CO2 
precession 

index obliquity 

  PC1 -0.859 -0.018 -0.057 

DJF_temperature PC2 0.381 -0.087 -0.354 

  PC3 0.038 -0.924 0.311 

  PC1 -0.899 0.178 -0.066 

JJA_temperature PC2 -0.018 -0.875 0.362 

  PC3 0.342 0.056 -0.239 

  PC1 -0.867 0.003 -0.025 

DJF_precipitation PC2 -0.198 -0.820 0.044 

  PC3 -0.278 0.465 0.164 

  PC1 -0.953 0.065 0.008 

JJA_precipitation PC2 -0.070 0.960 -0.131 

  PC3 0.219 0.191 -0.029 
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1 
Figure 1: Eocene palaeogeography and geographic areas used to determine simple metric values 2 

  3 
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 1 

Figure 2: Ensemble temperature medians (left column) and standard deviations (right column) in DJF (top row) and JJA (bottom 2 
row). 3 
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 1 

Figure 3: Top: full ensemble distributions of mean latitude values of global annual mean sea surface temperature (SST), with 2 
mean latitude maritime surface air temperature in DJF and JJA. 3 

Middle: mean latitude continental surface air temperature in DJF and JJA. 4 

Bottom: ensemble medians and 5% and 95% percentiles of global annual mean SST, and maritime surface air temperature in DJF 5 
(red) and JJA (blue). 6 

 7 
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 1 

Figure 4: Ensemble precipitation medians (left column) and standard deviations (right column) in DJF (top row) and JJA (bottom 2 
row). 3 
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1 
Figure 5: Correlation between three forcing factors CO2 , obliquity and precession index (in columns from left to right), and the 2 
simple metrics MAT, northern seasonality, northern winter tropical-polar temperature difference and northern summer tropical-3 
polar temperature difference (in rows from top to bottom).  CO2 is plotted in colour in the obliquity and precession plots (blue = 4 
low, red = high) 5 

  6 
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Figure 6: Correlation between three forcing factors CO2 , obliquity and precession index (in columns from left to right), and the 1 
simple metrics southern winter polar OLC, northern winter polar OLC, Asian monsoon index African monsoon index and 2 
American monsoon index (in rows from top to bottom).  CO2 is plotted in colour in the obliquity and precession plots (blue = low, 3 
red = high) 4 

 5 

 6 

7 
 Figure 7: Mean air temperature plotted against CO2 on a logarithmic scale, with regression lines plotted for CO2 < 1000 ppm 8 

(blue), and CO2 > 1000 ppm (red), with climate sensitivities for a doubling of CO2 from both of the regressions.  9 
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 1 

 2 

Figure 8: The first three principal components of DJF_temperature (top row) and JJA_temperature (bottom row).  Percentages of 3 
variance explained by each principal component are shown above each plot. 4 

 5 

 6 

 7 

Figure 9: The first three principal components of DJF_precipitation (top row) and JJA_precipitation (bottom row).  Percentages 8 
of variance explained by each principal component are shown above each plot. 9 
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 2 

 3 

Figure 10: Main effects of forcing parameters on the first three principal components of DJF_temperature (top row) and 4 
DJF_precipitation (bottom row). 5 

 6 

 7 

 8 

 9 
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 1 

Figure 11: Main effects of forcing parameters on the first three principal components of JJA_temperature (top row) and 2 
JJA_precipitation (bottom row). 3 
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 1 

Figure 12: Emulated values of the Asian monsoon index, for the full range of the precession index (esin), at low and high values 2 
of CO2 and obliquity (). 3 
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 1 

Figure 13: Emulated values of the African monsoon index, for the full range of the precession index (esin), at low and high values 2 
of CO2 and obliquity (). 3 
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 1 

Figure 14: Emulated values of the Amerian monsoon index, for the full range of the precession index (esin), at low and high 2 
values of CO2 and obliquity (). 3 


