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Keery et al., Sensitivity of the Eocene Climate to CO2 and Orbital Variability 

Responses to Reviewers 

 

We have amended the manuscript to address the issues raised by the reviewers.  We have included comments on the 

limitations and advantages of models of intermediate complexity in the Methods and Summary sections.  We have expanded 

our discussion of the responses of the monsoons, including the American monsoon, to orbital cycle, and clarified 

comparisons or our results with temperature proxy measurements.   

Details are provided below in our responses to each of the two reviewers, with reviewers’ comments in black, and our 

responses in red. 

In addition to our responses to the reveiwers’ comments, we have recalculated main effects and total effects without using an 

approximation in the calculation of variances, resulting in only very minor numerical differences, and no change to our main 

findings.  We have prepared amended versions of Table 4 and Figures 10 and 11, and made very minor changes to the text, 

where appropriate. 

We have included calculations of climate sensitivity for a doubling of atmospheric CO2, added a new figure to illustrate this, 

and amended the Results section to include our findings with respect to a dependency of climate sensitivity on low or high 

states of CO2 concentration: 

Figure 7 shows the relationship between CO2 (plotted on a logarithmic scale), and MAT, with an abrupt change of 

gradient clearly visible at a CO2 concentration of 1000 ppm.  From the two gradients, we derive climate sensitivity 

values for a doubling of CO2 concentration at CO2 levels below 1000 ppm, and at CO2 levels above 1000 ppm, of 

4.36°C and 2.54°C respectively.  We note that our modelled values of carbon in vegetation in the ENTS module 

remain low outside of the tropics at low CO2 concentration, but as CO2 concentration increases, land areas at higher 

latitudes reach maximum values of carbon in vegetation, with all land areas showing no further capacity for increased 

carbon in vegetation at an atmospheric concentration of ~1000 ppm.  The increase in land vegetation cover, with 

corresponding reduction in albedo, acts as a positive feedback to rising temperature caused by increasing CO2, but 

this feedback mechanism ceases to operate when all available land is at its maximum vegetation capacity, with a 

consequent reduction in the climate sensitivity. 

and we have included the following text in the Summary: 

Our modelling results suggest that climate sensitivity is state dependent, with a value of 4.36°C in a low CO2 state, 

and 2.54°C in a high CO2 state, due to a positive feedback mechanism in which albedo reduces as vegetation 

increases to its maximum value when CO2 concentration reaches 1000 ppm. 

Responses to each of the reviewers, and the amended manuscript with markup, are included below. 
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Keery et al., Sensitivity of the Eocene Climate to CO2 and Orbital Variability 

Response to M. Crucifix (Referee) 

 

Referee comments in black 

Author responses in red 

 

We are very grateful for this thorough review. 

 

1 Summary 

Keery et al. present a sensitivity analysis of the Eocene climate to four factors: CO2 concentration, eccentricity, obliquity, 

and precession angle. They use, to this end, the PLASIM-GENIE model (details in their section 3) with suitable 

palaeogeography.  The methodology relies on a 50-member hyper-cube sample of a 5-d space (one extra dummy variable 

was added), and linear modelling with a Information Criteria for model selection. Experiment output are summarised using 

fit-for-purpose summaries like “tropical-polar temperature difference” and monsoon indices, as well as principal components 

obtained from a singular value decomposition. The authors conclude on the importance of CO2 for global mean temperature, 

and of the orbital elements for the spatial distribution and regional weather systems such as monsoons. 

2 Main comments 

1. The paper is in the line of a number of recent studies attempting to estimate the relative sensitivity of the climate system to 

CO2 and orbital forcing, using a methodology founded on ensemble of experiments. This includes, in addition to the Holden 

et al. (2015) and Bounceur et al. (2015) cited, Araya-Melo et al. (2015) and Lord et al. (2017). Keery et al. is the only article 

to focus on the Eocene, which makes it an original contribution. It also uses a much simpler methodology than Araya-Melo 

et al. (2015), Bounceur et al. (2015), and Lord et al. (2017) because it uses linear regression instead of a Gaussian process 

emulator. In fact, the authors reference to the word “emulator” is slightly unusual because emulation is, in the climate 

literature, often used to designate statistical meta-modelling with a focus on uncertainty quantification. Claiming (p. 8) that a 

“similar emulator approach has been applied by Bounceur et al. 2015” is therefore somewhat misleading. Bounceur et al. and 

Araya-Melo et al. applied the developments of Oakley and O’Hagan (2004) with, in the case of Bounceur, the additional 

complication of the PCA emulator.  

We agree that the comparison of our emulator to the emulators developed by Araya-Melo et al. (2015) and Bounceur et al. 

(2015) was misleading, and we have amended this section: 

Our emulator approach uses linear regression, rather than a Gaussian process (GP), and is therefore simpler than the 

methods applied by Bounceur et al. (2015) in a study of the response of the climate-vegetation system in interglacial 

conditions to astronomical forcing, and by Araya-Melo et al. (2015) in their study of the Indian monsoon in the 

Pleistocene.   

In spite of its simplicity, we are confident that our approach may be correctly described as an emulator, as it fulfills the 

criteria described by O’Hagan (2006), and cited by Araya-Melo et al. (2015): 

• it is derived from a small number of model runs filling the entire multidimensional input space 

• once the emulator is built, it is not necessary to perform any additional runs with the model 

In passing, Araya-Melo et Lord used HadCM3 which shows that ensemble-based sensitivity analysis to orbital forcing is 

doable with GCMs (this qualifies the author’s comment on line 15, p.2). 

We have amended this paragraph to acknowledge recent ensemble studies using GCMs: 
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Climate simulations with high temporal and spatial resolution can be obtained from General Circulation Models 

(GCMs), but the requirement of GCMs for powerful computers and long run-times makes them difficult to deploy for 

large ensembles of model simulations and restricts their ability to investigate the large uncertainties in forcings and 

model parameterisations. Such ensembles are more practical with more heavily parameterised and hence more 

computationally efficient Earth system Models of Intermediate Complexity (EMICs), (Weber, 2010), although we 

note that Araya-Melo et al. (2015) and Lord et al. (2017) have deployed the GCM HadCM3 in ensemble-based 

studies of orbital forcing effects on climates of the Pleistocene and late Pliocene respectively. 

Of course, the fact that other authors have adopted a more sophisticated methodology invalidates by no means the approach 

used by Keery et al.: there may be no need to use a sledgehammer to crack a nut. It remains that the methodological set up 

used here is a step backwards compared to recent studies, and this arguably requires some justification. How much do we 

lose with the linearity assumption, and which impact does it have on the uncertainties of the quantification of main effects? 

(see comment 3. more specifically on main effects). 

As we have noted in our methods section, we have demonstrated that the linear models can be used to emulate PC scores 

with very high correlations to the PC scores derived directly through SVD, with examples from temperature and 

precipitation shown in Table 3.  We can therefore be confident that main effects derived from the linear models are robust.  

We have amended the text: 

Unlike linear models, GP models are intrinsically stochastic and give a more accurate quantification of their own 

error in emulating the input data. However, GP models can become computationally demanding in high dimensional 

space, and their results can be more difficult to interpret.   

2. Experiment design. The authors do not say much about the ensemble design, except that this is a latin hypercube. There 

are many ways to do a latin hypercube, and it usually involves additional constraints.  

We have added a detailed description of the method used to generate the latin hypercube in an appendix, include forcing 

factor values for the full ensumble in a new Table, and we have amended the main text: 

The present study has been designed to facilitate direct comparison between the results for specific ensemble 

members and their direct counterparts in a future study using the EMIC model GENIE-1 (Edwards and Marsh, 2005), 

which will include additional forcing parameters not used by this PLASIM-GENIE study.  We have applied an 

iterative method to generate a pair of corresponding hypercubes with five and eleven dimensions for the PLASIM-

GENIE and GENIE-1 studies respectively, in which the minimum Euclidean distance between any two points is 

maximised, and linear correlation between any two parameters is minimised. Details of the steps taken to generate the 

hypercubes are provided in Appendix A.  The absolute value of the r correlation coefficient does not exceed 0.1 for 

any pair of input (forcing and dummy) parameters.  Uniform ranges for each of the forcing parameters and the 

dummy parameter are shown in Table 1, and the values applied in all 50 PLASIM-GENIE ensemble members are 

shown in Table 2.  
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In fact this experiment design raises some doubts. For example, why are some secondary structures (periodic up and downs) 

apparent in the response to obliquity, Figure 5, middle column? Is this just a subjective visual impression?  

We have created an additional plot of the two forcing factors obliquity and CO2, for discussion, but not for inclusion in the 

paper, and this shows a very similar pattern to the obliquity-MAT subplot in Figure 5, with corresponding clusters and the 

same slight impression of periodicity. We can therefore be confident that the apparent periodicity noted by the reviewer in 

the model output is an artefact of randomly generated structure in the model input. 

 
Figure R1   Obliquity plotted against CO2.  

One potentially problematic element is the definition of the sampled astronomical space. It seems that latin hypercube 

sampling is made on axes along e,  (longitude of perihelion) and . If this is what the authors have been doing then this is 

non-physical. We know that the astronomical forcing generates effects through seasonal and daily insolation, which are very 

well approximated by linear functions of e sin (which the authors call the precession index on Fig. 6) and e cos. This is 

the reason why several authors have chosen to sample the astronomical space following the axes e sin and e cos and 

regress against these components. Presumably the regression analysis by Keery is indeed done against these indices but the 

text is not always clear. Lines 1-2 p. 8. rather suggest that the explanatory variables where sin and cos (instead of their 

multiplication by e) and the lines 4-5 p. 11 are quite confusing. Hopefully the choice of regression variables is mainly matter 

of text clarification, but the design of the latin hypercube may have a more fundamental problem. 

We have indeed constructed our hypercube by sampling independently on e,  (longitude of perihelion) and , but we do not 

agree that this is non-physical, as there are no combinations of these parameters which can be excluded for the early Eocene 

period.  If we have ignored any information which would imply that some combinations are less likely to have occurred than 

others (we are not aware of any), then this would only result in a minor reduction in the efficiency with which we fill our 

state space.  We note that precessional effects are well approximated by esin and ecos, and that several authors have 

chosen to sample and regress against these components, but we have chosen not to take this approach, as it would not allow 

any climatic effects of eccentricity which may exist independently of precession to be identified. We have amended our 

description of the forcing factors: 

In order to investigate the sensitivity of the Eocene climate to variation in atmospheric CO2 and orbital parameters, 

we have constructed an ensemble of 50 model configurations, each with a unique set of forcing parameters 

comprising atmospheric CO2, eccentricity (e), obliquity () and precession (), the angle on the Earth’s orbit around 

the Sun between the moving vernal equinox and the longitude of perihelion (Berger et al., 1993).  When e is zero, the 

Earth's distance from the Sun is constant at all points on the orbit, so there is no precessional effect.  The magnitude 

of precessional effects is controlled by e, while phase is controlled by , so precessional effects are commonly 

described by the precession index given by esin.  The only orbital parameter which alters the total annual solar 

radiation received by the Earth is e, although the range of variation is very small.  We include e and  as separate and 

independent forcing parameters, rather than combined as the precession index, or in the form ecos.  This approach 

does not make the assumption that the only effect of eccentricity on the Earth's climate is through its effect on the 
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amplitude of the precession cycle, but allows experimental results to be examined for effects of e and  either 

separately or in combination.   An additional dummy parameter is included to test for possible overfitting of 

relationships between forcing parameters and model output fields. 

We have also amended our description of our preparation of the forcing factors for linear modelling: 

Values of the forcing parameters CO2, e and  (with its very small angular range considered to be approximately 

linear) were normalised to the range [-1, 1] and combined with sin and cos to form 50-element column vectors 

representing the forcing factors. 

3. There may be some confusion about the meaning of the main effects. Saltelli does not use the phrase “first order” to mean 

linear approximation. In a case where only one factor would matter (be the relationship linear on not), the main and total 

effects would match (Saltelli et al. (2004), ch. 1 states clearly the definitions; or refer again to Oakley and O’Hagan (2004)). 

More generally, computing main and total effects is not trivial and always involves some approximations.More details on 

their computation would be welcome. 

We have amended the text to provide more details on the computation of the main effects and total effects: 

In order to analyse the results of each of our linear models, we apply the method described in detail by Holden et al. 

(2015) to derive the main effects (Oakley and O'Hagan, 2004), which provide a measure of the variation in the linear 

model output due to each of the terms (first order, second order and cross products), derived from their coefficients, 

and total effects (Homma and Saltelli, 1996), which separate the effect of each forcing parameter on the variation in 

the model output.  Although the forcing factors are all scaled within the range [-1, 1], the trigonometrical precession 

terms are not uniformly distributed across this range.  We have therefore computed the variances of the first order, 

second order and cross product terms directly for all parameters, rather than applying the respective approximations 

of 1 ,
3

  1
9

and 4
45

, and we have applied these values as scaling factors in calculating the main effects and total 

effects. 

4. Singular value decomposition is a great dimensionality reduction methodology, but how much is learned by analysing the 

behaviour of principal components separately is a more contentious subject. Identification of principal components can be 

fragile to some implementation details, such as, e.g. grid area weighting and experiment design, and the physical phenomena 

which give rise to climate variability need not be orthogonal. In fact physical modes may project poorly on the orthogonal 

vectors (Monahan and Fyfe, 2006). These caveats implicitly acknowledged by the authors (p. 11, ll. 20-21) but this state-of-

affairs poses some questions about the emphasis on principal components in this article. 

We have amended the text to acknowledge these caveats: 

We perform a singular value decomposition to identify the PCs and empirical orthogonal functions (EOFs) of 

temperature and precipitation fields in the full ensemble, although we note that climate variability may not be due to 

physical processes which vary orthogonally, and identification of PCs can be influenced by aspects of the 

experimental design. 

3 Minor (scientific) comments 

• How Fig. 2 should be interpreted is not entirely clear since the ensemble was not explicitly designed so that the ensemble 

mean is an estimate of the Eocene climate mean. 

Figures 2 and 4 are included to provide an illustrative summary of the spatial distribution and variation of temperature and 

precipitation in the full ensemble output, without implying that the ensemble mean is an estimate of the Eocene climate 

mean.  We have amended the text: 

Analysis of the model results has focused on variation in surface air temperature and precipitation in both winter and 

summer in each hemisphere, although it should be noted that our experiment has not been designed such that mean 

values in our ensemble output represent direct estimates of the Eocene climate mean. 
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4 Minor (editorial) comments 

• Introduce subtitle after section 2. 

We have introduced the subtitle ‘Climate of the Early Eocene’ 

• Material about cyclostratigraphy under section 2.1.2. may possibly be considered for shortening as slightly out of scope of 

the article. This said this is an interesting read. 

We would prefer to retain the section on cyclostratigraphy in full, as we believe it provides important details which are 

relevant to our experimental design, particularly our selection of independent orbital values, and the separation of e and . 

• PLASIM-GENIE does not need a specific section: it can fall under section 3.Methods. 

This section has been moved to the Methods as suggested by both reviewers. 

• p. 6 reference Gough (1981) is mistakenly repeated. 

The duplicated reference has been be removed. 

• p. 7, the sentence “We apply the linear algebraic tool SVD” sounds unnecessarily sophisticated. Why not “We perform a 

singular value decomposition to identifyprincipal components” 

We have amended this sentence: 

We perform a singular value decomposition to identify the PCs and empirical orthogonal functions (EOFs) of 

temperature and precipitation fields in the full ensemble. 

• p. 10, l. 27 : define the word “precession” precisely. 

We have made amendments to the text to define precession (), and the precession index (esin).  See our response to an 

earlier comment. 

• p. 12, ll. 13-17 : introducing new results so close to the closing words is usually not encouraged. 

We have deleted these results, as further analysis suggests it is difficult to draw any very useful conclusions from the extra 

experiment, and we have amended the text to include the reference to Anagnostou et al. (2016): 

If atmospheric CO2 remained within a narrower range throughout the period, for example in the range 700 to 1800 

ppm indicated for the early Eocene by Anagnostou et al. (2016) in a recent study using boron isotopes, then outside of 

short-lived hyperthermals, the relative influence of CO2 and orbital inputs might have been more evenly balanced.   

 

5 Digital material 

• Relevant data of the Eocene runs (at least the summaries and experiment input data) could be provided. 

We have included the values of forcing factors for the 50 member ensemble in a new Table. 
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Keery et al., Sensitivity of the Eocene Climate to CO2 and Orbital Variability 

Response to D. De Vleeschouwer (Referee) 

 

Referee comments in black 

Author responses in red 

 

We are very grateful for this thorough review. 

 

This paper reports on an ensemble of 50 Eocene climate-model simulations, each of which characterized by a different 

combination of eccentricity, obliquity, precession and atmospheric CO2 concentration. The climate model is the PLASIM-

GENIE model, a new model of intermediate complexity, recently introduced by Holden et al. (2016). The study aims to 

summarize the ensemble of paleoclimate simulations by looking at what-they-call “simple metrics”, principal component 

analysis and an emulator approach.  This study provides a couple of interesting results. The first is the existence of a seaice-

related threshold mechanism in the northern hemispheric high latitudes. From Figure 2 and 3, it seems that when a certain 

threshold in the extent of DJF-sea-ice is exceeded, temperatures (both sea-surface and maritime air temperatures) drop 

significantly. It would be interesting to read the author’s opinion how this compares to the recent findings of modeling work 

by Zeebe et al. (2017), who found that “High-latitude mechanisms are unlikely drivers of orbitally paced changes in the late 

Paleocene-early Eocene”. The interesting role of (seasonal) sea-ice in the climate system of the early Eocene aspect remains, 

however, rather underdeveloped in the present version of the paper.  

 

In our discussion of Figs. 2 & 3 [page 9, line 10] we have stated: "The variation in TPTD across the ensemble thus appears to 

be essentially driven by the strength of snow and ice albedo feedback", and a little further on, in our discussion of Fig. 5 

[page 9, line 22], in particular the plot of CO2 v northern winter TPTD we have declared: "and it can also be seen that CO2 

strongly affects the northern TPTD in the winter, but not in the summer, when the combined influence of obliquity and 

precession index is discernible, suggesting that temperature proxies with seasonal bias may have a significant orbital imprint.  

The plot of atmospheric CO2 against N. Winter TPTD shows a change in gradient at approximately 1000 ppm CO2 and 

32°C. This may be related to the logarithmic dependence of radiative forcing on CO2 concentration, as well as the 

disappearance of ice above some threshold level, cf Fig. 3." 

 

We have added the additional comment:  

A possible sea ice related threshold mechanism influencing both SST and maritime air temperature in high northern 

latitudes may be observed in Fig. 3, and this is strongly associated with the increase in northern winter TPTD at low 

CO2 levels. Zeebe et al. (2017) have analysed a high resolution benthic isotope record covering the late Palaeocene - 

early Eocene, and have concluded that orbitally paced cycles are unlikely to have been driven by high latitude 

mechanisms, but our PLASIM-GENIE modelling suggests that while northern TPTD is not orbitally paced in the 

winter, being controlled by CO2, it is orbitally paced in the summer, by a combination of obliquity and precession. 

The second interesting aspect is the distinct response to precession of monsoonal precipitation and temperature in the 

different monsoonal systems (e.g. Figure 6). The description and discussion of these Eocene paleoclimate simulations is 

useful and perfectly fits the scope of the journal. The current version of the manuscript is, however, unsatisfactory for 

publication in Climate of the Past for the reasons listed below. 
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Major Comments 

1. One of the major conclusions in the current version of the manuscript, is that 95The emulator approach adopted in this 

study allows for estimating the response of different aspects of the climate system (e.g. wet-season monsoonal precipitation) 

over the full input space. It would -for example- be interesting to see the response of precipitation and temperatures in the 

different monsoonal systems to astronomical forcing for specific pCO2 levels. This could be an elegant way to circumvent 

the disparity in time-scales between CO2 and orbital variability. 

We have amended the subplots for obliquity and precession index in Figures 5 and 6 to denote the CO2 level on a continuous 

colour scale.  This approach gives a simple visual indication of which relationships between the astronomical forcing factors 

and the temperature and precipitation simple metrics are influenced by CO2.   Figure 6 also now includes an additional row 

of subplots for the American monsoon index. 

We have applied emulators derived from linear modelling of the forcing factors and monsoon indices, to estimate values of 

each of the monsoon indices over the full range of precession (), with fixed high eccentricity (e), for low and high values of 

CO2, and low and high values of obliquity ().   

We have made amendments to the abstract: 

The results demonstrate the importance of orbital variation as an agent of change in climates of the past, and we 

demonstrate that emulators derived from our modelling output can be used as rapid and efficient surrogates of the full 

complexity model, to provide estimates of early Eocene climate conditions from any set of forcing parameters. 

and to the final paragraph of the introduction: 

By applying the linear modelling and emulation methods of Holden et al. (2015), we regress both the simple scalar 

metrics and the SVD reduced dimension model outputs onto the forcing parameters, and from the derived 

relationships, we infer main effects denoting the effect of each explanatory term in the linear model, and total effects 

denoting the effect of each forcing parameter, on the variation in the scalar metrics and on the temperature and 

precipitation output fields.  We demonstrate that emulators derived in respect of tropical precipitation metrics can be 

used to estimate Eocene monsoonal responses to any combination of GHG and orbital forcing parameter values. 

We have added new Figures 12, 13 and 14, plotting emulated values of the Asian, African and American monsoon indices. 

We have added a paragraph to the Results section: 

We apply the linear models derived from the forcing factors and monsoon indices as emulators to estimate values of 

monsoon indices corresponding to the full range of precession (), with eccentricity fixed at its high limit of 0.06, 

low and high values of CO2 (300 ppm and 3000 ppm), and low and high values of obliquity (22.0° and 24.5°).  

Precession index (esin) and emulated values of the Asian, African and American monsoon indices are plotted in 

Figures 12, 13 and 14 respectively. Relationships between the precession index and the monsoon indices which are 

visually suggested in Figure 6 are shown with clear structure in Figures 12, 13 and 14.  In each of the monsoon areas, 

the increase in precipitation due to precession effects is more pronounced at high atmospheric concentration of CO2, 

and also at high obliquity. 

We have added a paragraph to the Summary; 

We have demonstrated that emulators derived from linear modelling of the PLASIM-GENIE ensemble results can be 

used as a rapid and efficient method of estimating climate conditions from any set of forcing parameters, without the 

need for further deployment of the EMIC. 
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2. The authors do not provide their 50-simulation experimental design. It is essential to have an overview of the parameter 

settings for each simulation that was run in the framework of this study. The details on the settings of the 50 simulations 

could be given either in the form of a Table, or in the form of a figure, or in both forms. For good examples, please check 

Figure 2 and Table 1 in Araya-Melo et al. (2015, cp-11-45-2015), Figure 2 and Table 2 in Lord et al. (2017, cp-2017-57), 

and Figure 1 in Bounceur et al. (2015, esd-6-205-2015). 

We have included the values of the forcing factors and the dummy variable for the ensemble in a new table (Table 2). 

We note that Araya-Melo et al. (2015) constrained their experiment to exclude non-physical combinations of CO2 and sea 

ice, and their Figure 2 includes an informative subplot showing fairly strong inverse correlation between CO2 and sea ice.  In 

our study, however, we do not have a priori information with which to constrain any combinations of our forcing factors, 

each of which is sampled independently to maximise state space coverage and to minimise correlations between the forcing 

factors.  We include in this response a new figure showing cross-plots and r coefficients of all of the forcing factors and the 

dummy parameter, which illustrate both the coverage of the state space, and the very low correlation between any of the 

factors. We do not consider that this figure, or a variation, could add significant information to that included in the text, 

which has been amended to include the statement: 

The absolute value of the correlation coefficient r does not exceed 0.1 for any pair of input (forcing and dummy) 

parameters. 
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Figure R2  Correlation plots and r coefficients between all forcing factors. 

 

3. From Figure 6, it is very clear that precession has an important influence on the Asian Monsoon intensity, with higher 

rainfall when the index is minimum (i.e. Earth in perihelion during JJA, maximum northern hemisphere summer insolation). 

However, if I interpret PC2 in JJA temperature and PC2 in JJA precipitation correctly (Table 5 and Figures 7 and 8), it seems 

that a precession-driven increase in monsoonal rainfall coincides with a decrease in JJA temperature in the Asian Monsoon 

region. Such a decrease in temperature is remarkable, given that it occurs when northern hemisphere JJA insolation is 

maximum. This observation can either be explained by the consumption of incoming solar radiation as latent heat, or by a 

negative influence of the increased cloud cover on the radiation balance. Indeed, the reflective character of clouds 

contributes to the planetary albedo. In the revised version of the manuscript, I would like to read more discussion of 

paleoclimate mechanisms like this one. 
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This temperature decrease is indeed observed in the model results for the Asian monsoon.  We have augmented the text to 

describe this effect more clearly: 

An increase in the second PC scores for JJA precipitation in the Asian monsoon region (Fig. 9) corresponds to a 

decrease in the second PC scores for JJA temperature (Fig. 8), and as already noted, the second PC scores for both 

temperature and precipitation in JJA are strongly correlated to the precession index.  This temperature reduction 

during the Asian monsoon was also observed by Holden et al. (2014), and attributed to a reduction in incoming solar 

radiation associated with increased cloud cover and surface evaporation. 

 

4. Page 7, lines 23-25 and Figure 6: When I was first interpreting Figure 6, I was confused by the fact that the Asian 

Monsoon and the African monsoon seemed to respond to precession in the same way, despite the fact that they are located 

on opposite sides of the equator. It took me quite a while to realize that both monsoonal systems are responding to precession 

in the expected way: with intensified wet-season precipitation in the Asian Monsoon system when the Earth reaches 

perihelion in JJA (negative precession index), and intensified wet-season precipitation in the African Monsoon system when 

the Earth reaches perihelion in DFF (positive precession index). I only understood this after reading lines 23-25 (page 7) 

several times. Indeed, the authors define their monsoon-related “simple scalar metric” by the difference in rainfall in DJF 

and JJA, regardless of whether DJF is the wet or the dry season in the monsoonal system considered. This also explains why 

the panel of Figure 6 that is related to the African Monsoon shows negative values, whereas the panel that is related to the 

Asian Monsoon exhibits positive values. I would strongly advise the authors to think about ways to illustrate the monsoonal 

response to precession in a more intuitive way. Maybe the paper by Tuenter et al (2003) could provide some inspiration as to 

how to best present the response of a summer monsoon to precessional (and obliquity?) forcing. Also, why is the South 

American monsoon system missing from Figure 6? 

We have amended our monsoon indices so that each is now derived by subtracting winter precipitation from summer 

precipitation, as suggested.  Figure 6 has been altered accordingly, and now also includes a row for the American monsoon 

index, an entry for which will be added to the table of total effects of forcing parameters on simple scalar metrics (presently 

Table 3; will be Table 4). 

We have amended the text to reflect the changes to the monsoon indices: 

In this study, we derive simple scalar metrics to denote indices for monsoons for Asia, Africa and South America by 

subtracting winter rainfall from summer rainfall, for defined geographical regions, denoted on Fig. 1, and selected for 

their similarity to monsoonal regions in the modern continental configuration. 

We have amended our comments on Figures 5 and 6 in the Results section, following addition of the American monsoon 

index, and the use of colour in these Figures: 

In Figs. 5 and 6, CO2, obliquity () and precession index (esin) are plotted against MAT, northern seasonality, 

northern winter TPTD and northern summer TPTD (Fig. 5), and southern winter polar OLC, northern winter polar 

OLC, Asian monsoon index, African monsoon index and American monsoon index (Fig. 6).  Subplots for obliquity 

and precession index in Figures 5 and 6 denote the CO2 level on a continuous colour scale. 

and we have added the comment: 

The American monsoon index is fairly strongly correlated with the precession index at high levels of CO2, and 

negatively correlated with CO2 at low levels of CO2.   

We note that the study by Tuenter et al. (2003) included six experimental setups, with each one comprising either maximum 

or minimum values of obliquity, and maximum, minimum or zero values of precession.  They were therefore able to 

illustrate their results in the form of spatial patterns of the differences in output values for pairs of experiments with 

contrasting values of one or both forcing factors.  This approach is not appropriate for our 50 member ensemble, with 

uncorrelated forcing factor values, in which no pairs of experiments can be identified for this type of comparison. 
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Additional comments and recommendations 

Abstract line 5 and p. 2 lines 1-3: I would recommend being a little bit more conservative on the possible analogy between 

the PETM and the ongoing anthropogenic disturbance of the global carbon cycle. Also cite Zeebe et al. (2016, Nature 

Geoscience) here. 

We have amended the text to clarify the importance of the PETM, particularly its importance as the closest, if not perfect, 

analogue to anthropogenic climate change, and to include a citation of Zeebe et al (2016): 

Since the PETM is the most recent period in Earth's history for which estimated atmospheric GHG concentrations are 

similar in magnitude to those of the present-day, and expected to arise from fossil fuel burning, the PETM may 

provide a valuable analogue for anthropogenic climate change (e.g. McInerney and Wing, 2011; Zeebe et al., 2016; 

Zeebe and Zachos, 2013). 

 

Abstract: The abstract reads too technical and vague. I find the following sentence particularly vague: “Two dimensional 

model output fields are reduced to scalar values through simple summarizing algorithms and by singular value 

decomposition.” The reader gets very little information from this sentence. I would recommend rewriting the abstract, 

making it more results-oriented. 

We have deleted this sentence, and made amendments to the abstract to make it less vague, with more focus on the 

results, including our additional work on climate sensitivity, and using the emulators. 

 

Page 2, line 30: suggestion: “The Earth resided in a greenhouse state” 

We don't understand the reason behind this suggestion.  Our intention was to emphasise that the greenhouse state had been 

continuous since the early Cretaceous, so we will leave the sentence unchanged. 

Page 3, line 4: What do you mean with “high levels of radiative forcing”? Only eccentricity influences the total amount of 

solar energy received by the Earth: : : but the amplitude of that variability is only 0.15 

Huber & Caballero (2011) used CO2 as a proxy for all changes to incoming and outgoing radiation.  They commented "We 

have not addressed whether the enhanced radiative forcing was due to pCO2, methane, other greenhouse gases, novel cloud 

feedbacks, or other “missing” factors. We have also not established whether large forcing is actually necessary, the 

alternative being high values of climate sensitivity as in the study of Heinemann et al. (2009) and only moderate increases in 

forcing." 

We have amended the text to clarify this: 

Huber and Caballero (2011), hereafter HC11, have demonstrated that with sufficiently high levels of CO2 (as a proxy 

for all forms of radiative forcing), climate models can generate global air temperature distributions in broad 

agreement with the proxy temperature measurements. 

 

Page 2, line 9: Either you provide the reader with information on which kind of evidence exists. Or you rewrite like: “During 

the PETM, the emission of organic carbon was initially in the form of methane, which later oxidized to CO2”. 

We have amended the text to give brief details of the evidence, and we will include an additional citation: 

There is some evidence from analysis and modelling of the timing and duration of variations in 13C and 13O 

observed in nannoplankton fossils that some of the GHG emissions were initially in the form of CH4 (Dickens, 2011; 

Lunt et al., 2011; Thomas et al., 2002), which is rapidly oxidised in the atmosphere to CO2. 

Page 2, line 23: “broadly similar” is quite a subjective, interpretative qualification. I find the Eocene paleogeography quite 

different from todays, given that the Tethys Ocean was still open. If you want to point to the similarity with the present-day, 

you could state that the majority of the continents were located in the northern hemisphere. 
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We have used the phrase “broadly similar” in the sense that the continental configuration is instantly recognisable, unlike for 

example, the Triassic period, with a single supercontinent just starting to break up into those that we’re familiar with today.  

We have amended this paragraph:  

The arrangement of the continents and oceans in the Early Eocene was broadly similar to that of the present, with the 

Earth’s land mass divided into the same major continents, and with most of the land mass in the northern hemisphere.  

India had not yet collided with the Eurasian continent, and the closure of the Tethys Ocean was not yet complete. 

Such tectonic movements may have effected some changes to the climate system.  In particular, the configuration of 

ocean gateways strongly influences modes of ocean circulation, and hence affects energy transport throughout the 

climate system (Lunt et al., 2016; Sijp et al., 2014). 

Page 4, line 10 and many other occurrences: “dominant periods of 100 kyr and 405 kyr”. In an eccentricity power spectrum 

there are 4 peaks around 100 kyr, but only a single one at 405 kyr. Therefore, I would suggest the above notation. 

We note that there are multiple peaks in the power spectra for eccentricity, equivalent to a single peak with a period of 

approximately 100 ka, together with an isolated peak for eccentricity with a period of 405 ka.  There are similar clusters of 

peaks around 40 ka for obliquity, and around 20 ka for precession.  We have amended the text to use the approximation 

symbol '~' in respect of the obliquity, precession and 100 ka eccentricity cycles, but not in respect of the 405 ka eccentricity 

cycle: 

The main oscillations are the eccentricity of the Earth’s orbit around the Sun, with periods of ~100 ka and 405 ka, the 

obliquity or tilt of the Earth’s axis of rotation, with a period of ~40 ka, and precession, the relative timing between 

perihelion and the seasons, with a period of ~20 ka (Berger et al., 1993). 

Page 4, line 16: Jacques Laskar does not calculate time scales. He calculates astronomical solutions. 

We have replaced “astronomical time scale” with “astronomical solution”. 

 

Page 5: Why is Section 3 not a subsection of Section 4 “Methods”? 

This section has been moved to the Methods as suggested by both reviewers. 

Page 5, line 3: What is “T21”? 

We have amended this sentence to clarify that T21 denotes the resolution obtained through spectral modelling: 

We apply the model at a spectral T21 atmospheric resolution, which corresponds to a triangular truncation applied at 

wave number 21 and a horizontal resolution of 5.625°, with 10 layers, and a matching ocean grid with 32 depth 

levels. 

 

Page 6, lines 9-11: An injection of carbon into the atmosphere is measured in tons of C, whereas the concentration of CO2 in 

the atmosphere is measured in ppm. These are thus two different things, with two different units. You have to rephrase this 

sentence to correct for that. 

We have amended the sentence as follows:  

Although the maximum mass of CO2 injected into the atmosphere during CIEs, and in particular the PETM, remains 

uncertain, there is broad agreement that the atmospheric concentration of CO2 did not exceed 3000 ppm (e.g. Gehler 

et al., 2016), and that it did not fall below the pre-industrial level of 280 ppm at any time during the early Eocene. 

 

Page 6, lines 13-16: It’s not immediately clear to me how knowledge on the phase relationship between carbon isotope 

excursions and the astronomical parameters would influence the experimental design of your study. If you would know these 

phase relationships, would you then have designed your experiments differently? 
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If these relationships were known, we would have been able to concentrate our investigation on combinations of the orbital 

forcing parameters of particular interest, i.e. those considered to be important in respect of the CIEs.  We have amended this 

paragraph: 

Since the absolute astronomical time scale for the early Eocene has an uncertainty which is greater than the periods of 

the obliquity and precession cycles, and there remains disagreement as to which phases of the eccentricity cycles are 

related to CIEs, there are no combinations of the orbital forcing parameters which can be known a priori to be of 

greater importance in their effects on the Eocene climate in general, and on their contributions to the initiation, 

duration and termination of the CIEs in particular.  We therefore select values of orbital parameters independently, 

and from the full range of each parameter’s variation during the early Eocene. 

Page 6, line 26: What do you mean with “quasi-steady state”? 

We have added the phrase "a spin-up period of" to clarify that the "quasi-steady" state is the state of approximate 

equilibration of the model after the model has run for long enough such that the initial conditions have been 'forgotten'. 

 

Page 7, line 7-8: The atmospheric circulation patterns during the Eocene were most definitely different from those in the 

modern world. I think you can remove the “are likely to”. 

We agree, and we have replaced “are likely to have differed” with “will have differed”. 

 

Page 7 line 27: Spell out SVD 

We have amended this sentence to accommodate suggestions from both reviewers: 

We perform a singular value decomposition to identify the PCs and empirical orthogonal functions (EOFs) of 

temperature and precipitation fields in the full ensemble 

Page 8 line 9: Please provide the appropriate references where these criteria are defined. 

We have provided the appropriate references for the Akaike information criterion (Akaike, 1974), and Bayes information 

criterion (Schwarz, 1978), and since these are of a highly technical nature, we have added a reference to a much cited 

textbook on model selection: 

Burnham and Anderson (2003) provide a detailed discussion of the application of information criteria in model 

selection. 

Page 8 lines 23-24: The Figure 3 that you are referring to, only contains global annual mean SST’s, not the Arctic winter 

SST’s you are discussing. 

We have amended the text: 

We note that the Arctic winter median air temperature is below freezing over both land and sea in the PLASIM-

GENIE ensemble, (see Fig 3) and the Arctic does not remain ice-free throughout the year in any of the 50 simulations 

in our study. 

 

Page 9, line 1: It is unclear to me what exactly you mean with “parametric uncertainty” 

We have amended the text for clarification: 

Quantification of model-related uncertainty is beyond the scope of the present study. 

Page 10, line 17: JJA instead of JJF. 

We have corrected this error. 

 

Page 10, line 15: Shouldn’t this be Table 4? 

We have corrected this error – it is now Table 5, following earlier insertion of an additional table. 
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The paper contains a few important shortcomings when it comes to appropriately referencing 

pre-existing work. 

For example, the authors do not refer to the Deep-time Model Intercomparison Project 

(Deep-MIP, Lunt et al., 2017, gmd-10-889-2017). The authors do not frame their study within that project, nor do they 

differentiate their study from that project. A statement on this topic is indiscernible, given that both this study and the Deep-

MIP project explicitly focus on simulating (early) Eocene warm climates and that both are using the same paleogeographic 

configuration from Herold et al. (2014). 

 

This paper was at the final stages of preparation when Lunt et al. (2017) was published online (on 23 February 2017).  We 

are pleased to note that their recommended palaeogeography is that of Herold et al. (2014) which we have used as the basis 

for the palaeogeography in our study.  We have amended the first sentence in the description of our model configuration: 

This study was designed before Lunt et al. (2017) presented their 'DeepMIP' guidelines for model simulations of the 

latest Paleocene and early Eocene.  However, our palaeogeography is based on the high-resolution digital 

reconstruction of the early Eocene published by Herold et al. (2014), and which Lunt et al. (2017) recommended 

should be used as the standard for all palaeoclimate simulations within the DeepMIP framework.  We have used the 

dataset of Herold et al. (2014) as an initial configuration for the tectonic layout, topography and bathymetric 

boundary conditions in our study. 

We have also added a comment on the solar constant: 

We note that Lunt et al. (2017) have recommended that a modern value of 1361.0 W m-2 should be applied to studies 

within the DeepMIP framework, in order to facilitate comparison between simulations with modern and pre-industrial 

levels of CO2, and to offset the absence of elevated levels of CH4. 

The authors refer to Bounceur et al. (2015), who applied a “similar emulator approach” (p. 8 line 13). First of all, I am 

unsure whether that statement is technically correct. Secondly, this reference is missing from the reference list. 

We have ensured that Bounceur et al. (2015) are included in the reference list, and we have amended the text to clarify our 

comparison with their approach: 

Our emulator approach uses linear regression, rather than a Gaussian process (GP), and is therefore simpler than the 

methods applied by Bounceur et al. (2015) in a study of the response of the climate-vegetation system in interglacial 

conditions to astronomical forcing, and by Araya-Melo et al. (2015) in their study of the Indian monsoon in the 

Pleistocene. 

 

On page 4, line 28, the authors give credit to Ruddiman (2006, cp-2-43-2006) for noting “a relationship between obliquity 

and the extent of northern ice sheets”. First of all, this is a Pleistocene-focused paper, of which I don’t really see the 

relevance when discussing orbital configurations during the Eocene and possible influence on climate.  Moreover, the 

relationship between obliquity-induced minima in NH summer insolation and ice age cycles was already suggested by 

Milutin Milankovitch in 1941. 

We agree that this is misleading, and adds little to the paper.  We have deleted it. 
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Abstract. The early Eocene, from about 56 Ma, with high atmospheric CO2 levels, offers an analogue for the response of the 5 

Earth’s climate system to anthropogenic fossil fuel burning. In this study we present an ensemble of 50 Earth system model 6 

runs with an early Eocene palaeogeography and variation in the forcing values of atmospheric CO2 and the Earth’s orbital 7 

parameters.  Two-dimensional model output fields are reduced to scalar values through simple summarising algorithms and 8 

by singular value decomposition.  Relationships between these scalar resultssimple summary metrics of model outputs and 9 

the forcing parameters are identified by linear modelling, providing estimates of the relative magnitudes of the effects of 10 

atmospheric CO2 and each of the orbital parameters on important climatic features, including tropical-polar temperature 11 

difference, ocean-land temperature contrast, and Asian, African and S. American monsoon rains, and climate sensitivity.  12 

Our results indicate that although CO2 exerts a dominant control on most of the climatic features examined in this study, the 13 

orbital parameters also strongly influence important components of the ocean-atmosphere system in a greenhouse Earth.  In 14 

our ensemble, atmospheric CO2 spans the range 280 - 3000 ppm, and this variation accounts for over 9590% of the effects on 15 

mean air temperature, southern winter high-latitude ocean-land temperature contrast and northern winter tropical-polar 16 

temperature difference.  However, the variation of precession accounts for over 8075% of the influence of the forcing 17 

parameters on the Asian and African monsoon rainfall, and obliquity variation accounts for over 65% of the effects on winter 18 

ocean-land temperature contrast in high northern latitudes, and northern summer tropical-polar temperature difference.  Our 19 

results indicate a bimodal climate sensitivity, with values of 4.36°C and 2.54°C, dependent on low or high states of 20 

atmospheric CO2 concentration respectively, with a threshold at approximately 1000 ppm in this model, and due to a 21 

saturated vegetation-albedo feedback.  Our method gives a quantitative ranking of the influence of each of the forcing 22 

parameters on key climatic model outputs, with additional spatial information from our singular value decomposition 23 

approach providing insights into likely physical mechanisms. The results demonstrate the importance of orbital variation as 24 

an agent of change in climates of the past, and we demonstrate that emulators derived from our modelling output can be used 25 

as rapid and efficient surrogates of the full complexity model, to provide estimates of climate conditions from any set of 26 

forcing parameters. 27 

1 Introduction 28 

In the early Eocene several episodes of global warming coincided with carbon isotope excursions (CIEs), pulses of 29 

isotopically light carbon injected into the atmosphere and oceans, and recorded in high-resolution marine and terrestrial 30 
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sediments (Kennett and Stott, 1991).  In one large CIE, at the Palaeocene-Eocene transition at ~56 Ma, the Palaeocene-1 

Eocene Thermal Maximum (PETM), evidence from both tropical (e.g. Zachos et al., 2003) and polar (e.g. Sluijs et al., 2006) 2 

regions indicates that temperatures increased by ~5°C in less than 10 kyr.  Although the greenhouse gas (GHG) sources, and 3 

the duration of the onset phase of the PETM are uncertain, the relatively short time scale and global extent of the PETM 4 

strongly suggest that a large and sudden increase in GHGs in the atmosphere was the primary climatic forcing factor (Zachos 5 

et al., 2007). Since the PETM is the most recent period in Earth's history for which estimated atmospheric GHG 6 

concentrations are similar in magnitude to those of the present-day, and expected to arise fromSince estimates of GHG 7 

emissions during the PETM are similar in magnitude to present-day emissions produced by fossil fuel burning, the PETM 8 

may provide a valuable analogue for anthropogenic climate change (e.g. McInerney and Wing, 2011; Zeebe et al., 2016; 9 

Zeebe and Zachos, 2013). 10 

The CIEs of the early Eocene show similar regularity in their timing to periodic changes in the Earth’s orbit around the sun 11 

(Lourens et al., 2005), and the search for causal relationships between orbital cycles and Paleogene climate is an active area 12 

of research (e.g. Lauretano et al., 2015; Laurin et al., 2016; Lunt et al., 2011). 13 

Although the climatic state in the early Eocene cannot be directly measured, much information on temperature and 14 

biogeochemical conditions can be inferred from measurements of proxy data: preserved natural records of climate 15 

variability, which can be linked to the property of interest through physical processes (Jones and Mann, 2004). But there are 16 

major uncertainties in proxy data from the Eocene due to incomplete preservation and alteration over time, with additional 17 

uncertainties as to the seasonality of contributory processes, and for ocean proxies, the depth at which the property of 18 

interest, e.g. temperature, influences the proxy (Dunkley Jones et al., 2013).  Climate models therefore have an important 19 

role to play in exploring the mechanistic functioning of palaeoclimates (Huber, 2012). 20 

Climate simulations with high temporal and spatial resolution can be obtained from General Circulation Models (GCMs), 21 

but the requirement of GCMs for powerful computers and long run-times precludes their use inmakes them difficult to 22 

deploy for large ensembles of model simulations and restricts their ability to investigate the large uncertainties in forcings 23 

and model parameterisations. Such ensembles are more practical with more heavily parameterised and hence more 24 

computationally efficient Earth system Models of Intermediate Complexity (EMICs), (Weber, 2010), although we note that 25 

Araya-Melo et al. (2015) and Lord et al. (2017) have deployed the GCM HadCM3 in ensemble-based studies of orbital 26 

forcing effects on climates of the Pleistocene and late Pliocene respectively.. 27 

In this study we deploy an EMIC, PLASIM-GENIE (Holden et al., 2016), in an ensemble of model runs to investigate the 28 

effects of varying GHG concentration and orbital parameters on the palaeoclimate of the Earth, with an Eocene configuration 29 

of the oceans and continents.  We reduce the dimensionality of the model output by computing simple scalar metrics to 30 

denote key climatic features of each ensemble member, and we apply singular value decomposition (SVD) to identify the 31 

principal components (PCs) of temperature and precipitation fields in the full ensemble, for comparison with the variation in 32 

the forcing parameters. 33 
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By applying the linear modelling and emulation methods of Holden et al. (2015), we regress both the simple scalar metrics 1 

and the SVD reduced dimension model outputs onto the forcing parameters, and from the derived relationships, we infer 2 

main effects indices denoting the effect of each explanatory term in the linear model, and total effects indices denoting the 3 

effect of each forcing parameter, on the variation in the scalar metrics and on the temperature and precipitation output fields.  4 

We demonstrate that emulators derived in respect of tropical precipitation metrics can be used to estimate Eocene monsoonal 5 

responses to any combination of GHG and orbital forcing parameter values. 6 

2 The Early Eocene and the PETM 7 

2.1 Climate of the Early Eocene 8 

During the Eocene, the Earth remained in the ‘greenhouse’ state, which had persisted since the early Cretaceous, with polar 9 

air temperatures remaining above 0°C for most of the year (Wing and Greenwood, 1993), no permanent polar ice-caps, 10 

reduced equator-pole temperature gradients, and lower ocean-land temperature contrasts, inferred from fossil and isotope 11 

indicators of temperature and environmental conditions.  Climate modellers have experienced difficulty in simulating 12 

Cretaceous and Palaeogene ‘equable climates’ (Sloan and Barron, 1990; Wing and Greenwood, 1993) with sufficient 13 

warming at high latitudes, without overheating the tropics, although Huber and Caballero (2011), hereafter HC11,  have 14 

demonstrated that with sufficiently high levels of CO2 (as a proxy for all forms of radiative forcing), climate models can 15 

generate global air temperature distributions in broad agreement with the proxy temperature measurements. 16 

The onset of the PETM, at approximately 55.9 Ma (Westerhold et al., 2009), is recognised as the boundary between the 17 

Palaeocene and Eocene epochs (Aubry et al., 2007), and is characterised by a large CIE, indicating large GHG emissions, 18 

accompanied by a sudden rise in global temperature (Kennett and Stott, 1991), extensive extinction and origination of 19 

nannoplankton (Gibbs et al., 2006), and widespread ocean anoxia (Dickson et al., 2012).  There is some evidence from 20 

analysis and modelling of the timing and duration of variations in 13C and 13O observed in nannoplankton fossils that some 21 

of the GHG emissions were initially in the form of CH4 (Dickens, 2011; Lunt et al., 2011; Thomas et al., 2002), which is 22 

rapidly oxidised in the atmosphere to CO2.  The PETM is also marked by enhanced precipitation and continental weathering 23 

(Carmichael et al., 2016; Chen et al., 2016; Penman, 2016), rapid and sustained surface ocean acidification (Penman et al., 24 

2014; Zachos et al., 2005),  and  shares many features of the global-scale oceanic anoxic events of the Cretaceous and 25 

Jurassic periods (Jenkyns, 2010).  See McInerney and Wing (2011) for a review of PETM research. 26 

The duration of the onset phase of the PETM is uncertain.  Cui et al. (2011) have suggested that the peak rate of addition of 27 

CO2 to the atmosphere was much lower than the present-day rate of anthropogenic GHG emissions, but this is disputed by 28 

Sluijs et al. (2012).  Zeebe et al. (2016) have estimated that the initial release of carbon at the onset of the PETM lasted at 29 

least 4 Ka, at a rate which was little more than one tenth of the present rate of anthropogenic emissions, so the Earth may 30 

already be in a 'no-analogue' state, with anthropogenic climate change likely to exceed that of the PETM. However rapid the 31 
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onset, the greenhouse conditions of the early Eocene, and particularly the PETM, provide an opportunity to apply lessons 1 

from the past, with a view to improving predictions of the future (Lunt et al., 2013). 2 

2.21 Palaeogeography of the Early Eocene 3 

Although tThe arrangement of the continents and oceans in the Early Eocene was broadly similar to that of the present, with 4 

the Earth’s land mass divided into the same major continents, and with most of the land mass in the northern hemisphere.  5 

India had not yet collided with the Eurasian continent, and the closure of the Tethys Ocean was not yet complete.  Such 6 

tectonic movements may have effected some changes to the climate system.  In particular, the configuration of ocean 7 

gateways strongly influences modes of ocean circulation, and hence affects energy transport throughout the climate system 8 

(Lunt et al., 2016; Sijp et al., 2014). 9 

2.21.1 Continental and Ocean Configurations during the Early Eocene 10 

Although the Bering Strait was closed throughout the Palaeogene (Marincovich et al., 1990), and the Western Interior 11 

Seaway linking the Arctic to the Pacific was closed by the end of the Cretaceous (Slattery et al., 2015), the Arctic Ocean was 12 

connected to the major oceans during the early Eocene through the Turgai Strait, also known as the Western Siberian 13 

Seaway (Akhmetiev et al., 2012; Radionova and Khokhlova, 2000).  The Lomonosov Ridge, from which core samples have 14 

been obtained by the Arctic Coring Expedition (ACEX) of the Integrated Ocean Drilling Program Expedition (IODP) 302 15 

(Backman et al., 2008), was on the edge of the Arctic basin rather than across the pole as in the present configuration 16 

(O'Regan et al., 2008). 17 

Both the Drake Passage between South America and Antarctica (Barker and Burrell, 1977) and the Tasman Gateway 18 

between Australia and Antarctica (Exon et al., 2004) were closed during the early Eocene, preventing the development of an 19 

Antarctic Circumpolar Current and allowing greater southern hemisphere meridional heat transport than in the modern 20 

world. 21 

2.12.2 Orbital Configurations 22 

Throughout Earth's geological history, oscillations in the relative positions of the Earth and Sun have influenced both the 23 

Earth's climate, and rates of sedimentation in some climate-sensitive environmental settings (Hinnov and Hilgen, 2012).  The 24 

main oscillations are the eccentricity of the Earth’s orbit around the Sun, with dominant periods of ~100 ka and ~4050 ka, 25 

the obliquity or tilt of the Earth’s axis of rotation, with a period of ~40 ka, and precession, the relative timing between 26 

perihelion and the seasons, with a period of ~20 ka (Berger et al., 1993).  By correlating oscillations preserved in the 27 

geological record with computed time series of changes in insolation received by the Earth, an absolute astronomical time 28 

scale may be constructed for recent time-spans with a complete sedimentary record, but where the geological evidence is 29 

incomplete, or where uncertainties in the orbital model are too great further back in time, only a relative time scale may be 30 

derived (Hilgen et al., 2010).  An absolute astronomical time scalesolution has been computed back to 50 Ma (Laskar et al., 31 
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2011), and an absolute age of 55.53 ±0.05 Ma has been proposed for the onset of the PETM at the start of the Eocene epoch 1 

by Westerhold et al. (2012). 2 

Lourens et al. (2005) noted the apparent astronomical pacing of global warming events in the late Palaeocene and early 3 

Eocene, with correlations to both the long and short periods of eccentricity.  Sexton et al. (2011) suggested that although the 4 

smaller hyperthermal events of the early Eocene were driven by cycles of carbon sequestration and release in the ocean, 5 

paced by the eccentricity cycles, the PETM was likely to have been driven by carbon injection from a sedimentary source.  6 

Laurin et al. (2016) applied a method which allows the phase of the ~4050 Ka eccentricity cycle to be identified from 7 

interference patterns and frequency modulation of the ~100 Ka eccentricity cycle, and concluded that four hyperthermals in 8 

the early Eocene were initiated at ~4050 Ka eccentricity maxima, but in a study of terrestrial sediments with apparent 9 

correlation to the ~100 Ka eccentricity cycle, Smith et al. (2014) suggested that hyperthermals occurred during eccentricity 10 

minima, rather than maxima. 11 

Ruddiman (2006) noted a relationship between obliquity and the extent of northern ice sheets, and also some correlation 12 

between precession and northern summer monsoons, but this was thought to be related to feedbacks in the growth and decay 13 

of ice-sheets, and so may not be pertinent to the climate of the Eocene. 14 

3 Methods 15 

3.13 The PLASIM-GENIE Model 16 

 17 

PLASIM-GENIE (Holden et al., 2016) is an intermediate complexity AOGCM. We apply the model at a spectral T21 18 

atmospheric resolution, which corresponds to a triangular truncation applied at wave number 21 and a horizontal resolution 19 

of 5.625°, with 10 layers, and a matching ocean grid with 32 depth levels.  We apply the calibrated parameter set of Holden 20 

et al (2016). The component modules are as follows: 21 

PLASIM (Fraedrich, 2012) is built around the 3D primitive equation atmosphere model PUMA (Fraedrich et al., 2005). The 22 

radiation scheme considers two wavelength bands in the short wave and uses the broad band emissivity method for long 23 

wave. Fractional cloud cover is diagnosed. Other parameterised processes include large-scale precipitation, cumulus and 24 

shallow convection, dry convection and boundary layer heat fluxes. 25 

GOLDSTEIN is a 3D frictional-geostrophic ocean model (Edwards and Marsh, 2005; Marsh et al., 2011), dynamically 26 

similar to classical GCMs, except that it neglects momentum advection and acceleration. Barotropic flow around the four 27 

continental islands (Fig. 1) is derived from linear constraints that arise from integrating the depth-averaged momentum 28 

equations. 29 

GOLDSTEINSEAICE (Edwards and Marsh, 2005) solves for the fraction of the ocean surface covered by ice within a grid 30 

cell and for the average sea-ice height. A diagnostic equation is solved for the ice surface temperature. Growth or decay of 31 



 

23 

 

sea ice depends on the net heat flux into the ice (Hibler III, 1979; Semtner Jr, 1976). Sea-ice dynamics are represented by 1 

diffusion and advection by surface currents.  2 

ENTS (Williamson et al., 2006) models vegetative and soil carbon densities, assuming a single plant functional type. 3 

Photosynthesis depends upon temperature (with a double-peaked response representing boreal and tropical forest), 4 

atmospheric CO2 concentration and soil moisture availability. Self-shading is parameterised. Land surface albedo, moisture 5 

bucket capacity and surface roughness are parameterised in terms of the simulated carbon pool densities. 6 

The computational efficiency of PLASIM-GENIE is achieved mainly through low spatial resolution (~5°) and, relative to 7 

high-complexity Earth system models, simplifying assumptions in physical processes.  These include, for instance, 8 

simplified parameterisations of radiative transport and convection in the atmosphere, the neglect of momentum transport in 9 

the ocean, and the representation of all vegetation as a single plant functional type.  Climate sensitivity, the response of the 10 

climate to a doubling of atmospheric CO2 concentration, including feedbacks, is an emergent property of the model.   11 

4 Methods 12 

3.21 Model Configuration 13 

3.21.1 Model Grid 14 

This study was designed before Lunt et al. (2017) presented their 'DeepMIP' guidelines for model simulations of the latest 15 

Paleocene and early Eocene.  However, our palaeogeography is based on the high-resolution digital reconstruction of the 16 

early Eocene published by Herold et al. (2014), and which Lunt et al. (2017) recommended should be used as the standard 17 

for all palaeoclimate simulations within the DeepMIP framework.  We have used the dataset of Herold et al. (2014)published 18 

a high-resolution dataset of Eocene palaeogeography, which we have used as an initial configuration for the tectonic layout, 19 

topography and bathymetric boundary conditions in our study.  We have reduced the resolution of the Eocene 20 

palaegeography provided by Herold et al. (2014) to a configuration of 64 longitude x 32 latitude cells, with each cell 21 

representing 5.625° in each orientation. Cells at high latitudes therefore represent smaller land areas than cells at low 22 

latitudes.  Our vertical resolution is 32 ocean depths and 10 atmospheric layers.  We have incorporated the ocean gateway 23 

configurations discussed in section 2.1.1.  The Turgai Strait is open in our configuration, and is the only connection between 24 

the Arctic Ocean and other oceans.  The Drake Passage and Tasman Gateway are both closed. 25 

The palaeogeography (Fig. 1) comprises four land masses: N America and Eurasia; Antarctica combined with S America and 26 

Australia; Africa; and India.  Red rectangles in Fig. 1 indicate the boundaries of areas used to calculate simple metrics of 27 

centennially averaged seasonal precipitation, as empirical indicators of African, Asian and S. American monsoons. 28 

3.21.2 Forcing and Other Input Parameters 29 

In order to investigate the sensitivity of the Eocene climate to variation in atmospheric CO2 and orbital parameters, we have 30 

constructed an ensemble of 50 model configurations, each with a unique set of forcing parameters comprising atmospheric 31 
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CO2, eccentricity (e), obliquity () and precession (), the angle on the Earth’s orbit around the Sun between the moving 1 

vernal equinox and the longitude of perihelion (Berger et al., 1993).  When e is zero, the Earth's distance from the Sun is 2 

constant at all points on the orbit, so there is no precessional effect.  The magnitude of precessional effects is controlled by e, 3 

while phase is controlled by , so precessional effects are commonly described by the precession index given by esin.  The 4 

only orbital parameter which alters the total annual solar radiation received by the Earth is e, although the range of variation 5 

is very small.  We include e and  as separate and independent forcing parameters, rather than combined as the precession 6 

index, or in the form ecos.  This approach does not make the assumption that the only effect of eccentricity on the Earth's 7 

climate is through its effect on the amplitude of the precession cycle, but allows experimental results to be examined for 8 

effects of e and  either separately or in combination.    with aAn additional dummy parameter is included to test for 9 

possible overfitting of relationships between forcing parameters and model output fields. 10 

Although the maximum value mass of CO2 injected into the atmosphere during CIEs, and in particular the PETM, remains 11 

uncertain, there is broad agreement that the atmospheric concentration of CO2 it did not exceed 3000 ppm (e.g. Gehler et al., 12 

2016), and that it did not fall below the pre-industrial level of 280 ppm at any time during the early Eocene. We allocate 13 

these values as the limits of a uniform range from which our ensemble of CO2 values is selected. 14 

Since the absolute astronomical time scale for the early Eocene has an uncertainty which is greater than the periods of the 15 

obliquity and precession cycles, and there remains disagreement as to which phases of the eccentricity cycles are related to 16 

CIEs, there are no combinations of the orbital forcing parameters which can be known a priori to be of greater importance in 17 

their effects on the Eocene climate in general, and on their contributions to the initiation, duration and termination of the 18 

CIEs in particular.  Wwe therefore select values of orbital parameters independently, and from the full range of each 19 

parameter’s variation during the early Eocene. 20 

To ensure the best coverage of the five-dimensional state-space comprised of the four forcing parameters and the additional 21 

dummy parameter in a limited number of model runs, we apply the Latin hypercube method (McKay et al., 1979), a 22 

constrained Monte Carlo sampling scheme in which the range to be sampled for each variable is divided into non-23 

overlapping intervals, and one value from each interval is randomly selected (Wyss and Jorgensen, 1998).  This provides 24 

adequate coverage of the state space more efficiently than can be achieved by a simple Monte-Carlo sampling approach 25 

(Rougier, 2007).  The present study has been designed to facilitate direct comparison between the results for specific 26 

ensemble members and their direct counterparts in a future study using the EMIC model GENIE-1 (Edwards and Marsh, 27 

2005), which will include additional forcing parameters not used by this PLASIM-GENIE study.  We have applied an 28 

iterative method to generate a pair of corresponding hypercubes with five and eleven dimensions for the PLASIM-GENIE 29 

and GENIE-1 studies respectively, in which the minimum Euclidean distance between any two points is maximised, and 30 

linear correlation between any two parameters is minimised. Details of the steps taken to generate the hypercubes are 31 

provided in Appendix A.  The absolute value of the r correlation coefficient doesid not exceed 0.1 for any pair of input 32 
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(forcing and dummy) parameters.  Uniform ranges for each of the forcing parameters and the dummy parameter are shown in 1 

Table 1, and the values applied in all 50 PLASIM-GENIE ensemble members are shown in Table 2. 2 

The intensity of radiation emitted by the Sun has increased steadily over time, and we apply the linear model of Gough 3 

(1981), and select a solar constant of 1358.68 W m-2 Gough (1981).  We note that Lunt et al. (2017) have recommended that 4 

a modern value of 1361.0 W m-2 should be applied to studies within the DeepMIP framework, in order to facilitate 5 

comparison between simulations with modern and pre-industrial levels of CO2, and to offset the absence of elevated levels of 6 

CH4. 7 

3.21.3 Running the Models 8 

Each simulation was run for a spin-up period of 1000 years to reach a quasi-steady state, with key output fields recorded as 9 

seasonal averages for each of the three-month periods December, January and February (DJF) and June, July and August 10 

(JJA), representing both winter and summer seasons in both the northern and southern hemispheres.  Although model output 11 

includes time series of some fields and output values every 100 years, in this study only the field values recorded at the end 12 

of the 1000 years of modelling are used for analysis of the results. 13 

3.32 Analysis of Model Output 14 

Comparison of the forcing parameters applied in the ensemble with the model output fields can be more efficiently achieved 15 

by reducing the dimensionality of the model output while retaining information on key components of the climate system. 16 

3.32.1 Simple Metrics 17 

In studies of the Earth’s modern climate, it is recognised that the tropical-polar temperature difference (TPTD) influences 18 

poleward energy flux, and the ocean-land temperature contrast (OLC) affects monsoon intensity (Jain et al., 1999; Karoly 19 

and Braganza, 2001; Peixoto and Oort, 1992). Although atmospheric circulation patterns in the early Eocene are likely towill  20 

have differed from those in the modern world, in selecting latitude regions to represent the TPTD, we adopt the approach of 21 

Abbot and Tziperman (2008), who configured their model of the Cretaceous climate with latitude ranges of 0–30°, 30–60°, 22 

and 60–90°, the approximate boundaries of the Hadley, Ferrel and Polar cells observed in the modern world (Peixoto and 23 

Oort, 1992).  On our model grid in which each cell spans 5.625° of latitude, for the purposes of deriving scalar metrics, we 24 

define the tropical regions to be between 0.0° and 33.75° North and South, and the polar regions to be between 56.25° to 90° 25 

North and South. 26 

From the output values of air temperature in the lowest level of the atmosphere, weighted by grid cell area, we derive scalar 27 

values for each model run, of global annual mean air temperature (MAT), northern and southern hemisphere seasonality 28 

(mean area-weighted DJF-JJA temperature differences in the above-defined polar regions), TPTD for summer and winter in 29 

each hemisphere, and ocean-land temperature contrastOLC for summer and winter in tropical and polar regions in each 30 

hemisphere. 31 
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Monsoons are related to seasonal variations in tropical and subtropical winds and precipitation (Trenberth et al., 2006).  1 

Wang and Fan (1999) noted that the choice of an index to denote monsoon behaviour in the modern world is difficult and 2 

arbitrary, with commonly applied indices based on average summer precipitation, maximum summer precipitation, winter-3 

summer difference in precipitation, or wind circulation patterns within defined geographical areas.  In this study, we derive 4 

simple scalar metrics to denote indices for monsoons for Asia, Africa and South America from the difference inby 5 

subtracting winter rainfall from summer rainfall in DJF and JJA, for defined geographical regions, denoted on Fig. 1, and 6 

selected for their similarity to monsoonal regions in the modern continental configuration. 7 

3.32.2 Singular Value Decomposition, Linear Modelling and Model Emulation 8 

We perform a singular value decomposition to identify theapply the linear algebraic tool SVD to identify the PCs and 9 

empirical orthogonal functions (EOFs) of temperature and precipitation fields in the full ensemble , although we note that 10 

climate variability may not be due to physical processes which vary orthogonally, and identification of PCs can be 11 

influenced by aspects of the experimental design.  A detailed presentation of the use of this method in the analysis of climate 12 

data is given by Hannachi (2004).   13 

We use the linear modelling method of Holden et al. (2015), to regress both the simple scalar metrics and the SVD reduced 14 

dimension model outputs onto the forcing parameters.  Values of the forcing parameters CO2, e eccentricity and obliquity  15 

(with its very small angular range considered to be approximately linear) were normalised to the same range [-1, 1] as the 16 

sines and cosines of precession valuesand combined with sin and cos, to form a 50-element column vectors for 17 

eachrepresenting the forcing factors.  Each 2-D (32 x 64) result field for each ensemble member was unrolled to form a 18 

column vector of 2048 elements, comprising a single column within a 2048 x 50 matrix of full ensemble values. 19 

SVD was applied to decompose the full ensemble matrix for each 2-D result field, providing a 2048 x 50 matrix of PCs, a 50 20 

x 50 matrix of PC scores, and a 50 x 50 matrix of diagonal values. 21 

Linear modelling was applied to determine relationships between the normalised forcing factors and the first six columns of 22 

the PC scores, including products of pairs of forcing factors, and squares of each forcing factor, with the best fitting 23 

relationships selected according to the Akaike information criterion (Akaike, 1974) then refined using Bayes information 24 

criterion (Schwarz, 1978).  Burnham and Anderson (2003) provide a detailed discussion of the application of information 25 

criteria in model selection.  The resulting relationship provides a simple emulator which can be used to estimate a PC score 26 

for the 2-D model field, given a single set of forcing parameter values.  Applying derived emulators in respect of temperature 27 

and precipitation for both seasons, demonstrated high correlation between emulated PC scores and PC scores derived 28 

directly through SVD (Table 23). 29 

Our emulator approach uses linear regression, rather than a Gaussian process (GP), and is therefore simpler than the 30 

methodsA similar emulator approach has been applied by Bounceur et al. (2015)Bounceur et al. (2015) in a study of the 31 

response of the climate-vegetation system in interglacial conditions to astronomical forcing, and by Araya-Melo et al. (2015) 32 

in their study of the Indian monsoon in the Pleistocene.  Total effects indices, which denote the effect of each forcing 33 
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parameter on the full-ensemble variation in the scalar metrics and on the temperature and precipitation output fields, are 1 

inferred from the derived relationships. Unlike linear models, GP models are intrinsically stochastic and give a more 2 

accurate quantification of their own error in emulating the input data. However, GP models can become computationally 3 

demanding in high dimensional space, and their results can be more difficult to interpret. 4 

  In order to analyse the results of each of our linear models, we apply the method described in detail by Holden et al. (2015) 5 

to derive the main effects (Oakley and O'Hagan, 2004), which provide a measure of the variation in the linear model output 6 

due to each of the terms (first order, second order and cross products), derived from their coefficients, and total effects 7 

(Homma and Saltelli, 1996), which separate the effect of each forcing parameter on the variation in the model output.  8 

Although the forcing factors are all scaled within the range [-1, 1], the trigonometrical precession terms are not uniformly 9 

distributed across this range.  We have therefore computed the variances of the first order, second order and cross product 10 

terms directly for all parameters, rather than applying the respective approximations of 1 ,
3

  1
9

and 4
45

, and we have 11 

applied these values as scaling factors in calculating the main effects and total effects. 12 

5 4 Results 13 

4.1 Model Output - Temperature and Precipitation 14 

Analysis of the model results has focused on variation in surface air temperature and precipitation in both winter and 15 

summer in each hemisphere, although it should be noted that our experiment has not been designed such that mean values in 16 

our ensemble output represent direct estimates of the Eocene climate mean.  In the left column of Fig. 2, median 17 

temperatures at each grid cell for the full ensemble are plotted for DJF (top) and for JJA (bottom), with the standard 18 

deviations plotted in the right column.   19 

Ranges of median temperatures over land are greater than over the oceans, but TPTD is smaller in both seasons and both 20 

hemispheres than simulated in the modern world (see Fig. 2, Holden et al 2016). It is apparent from the standard deviation 21 

field that the tropical-polar temperature difference varies substantially across the ensemble, particularly in northern winter.  22 

The temperature distributions are similar to those of the 2240 ppm CO2 simulation of HC11, regarded as their “mid to late 23 

Eocene” analogue (they consider elevated CO2 as a proxy for all radiative forcing, including uncertain climate sensitivity). 24 

The principal difference is in high northern latitude winter temperatures; the Arctic ocean remains above freezing in HC11. 25 

We note that the Arctic winter median air temperature is below freezing over both land and sea in the PLASIM-GENIE 26 

ensemble, (see SST plots in Fig 3) and the Arctic does not remain ice-free throughout the year in any of the 50 simulations in 27 

our study.  Tropical temperatures in excess of 35°C were simulated in some cases, as in HC11, which they regarded as their 28 

“most troubling result”, although they note observational data is currently insufficient to rule this out. Finally, we note that 29 

multi-model ensembles have found significant inter-model differences including, for instance a 9°C spread in global average 30 

temperature under the same CO2 forcing (Lunt et al 2012). Quantification of model-related uncertainty is beyond the scope 31 
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of the present studyA future analysis of PLASIM-GENIE parametric uncertainty is anticipated, but beyond the scope of this 1 

paper. 2 

Full ensemble distributions of mean latitudinal distributions of annual mean sea surface temperature (SST), with mean 3 

latitudinal distributions of maritime and continental surface air temperature in both DJF and JJA are plotted in Fig. 3, 4 

together with ensemble medians and 5% and 95% percentiles of global annual mean SST, and maritime surface air 5 

temperature in both DJF and JJA.  The greater range of temperatures below rather than above median values reflects our use 6 

of a uniform range of CO2 forcing values, and the logarithmic response of temperature to increasing CO2 concentration. 7 

There is substantial variation of mean temperature across the ensemble, around 20 degrees over land, but the temperature 8 

offset varies little with latitude outside of polar regions where snow and ice greatly reduce winter temperatures in the colder 9 

simulations. The variation in TPTD across the ensemble thus appears to be essentially driven by the strength of snow and ice 10 

albedo feedbacks.   11 

Our ensemble distributions of sea and air temperatures are in broad agreement with the values from the Eocene model 12 

studies compared by Lunt et al. (2012), hereafter L12, and with the tables of marine and terrestrial proxy data compiled by 13 

Lunt et al. (2012)L12 and HC11, but it should be noted that these proxy data spanned the entire Eocene eracovering the early 14 

Eocene, and including some records from the very latest Paleocene, but not including the PETM. Our palaeogeography 15 

specifically represents the early Eocene, but our range of CO2 and orbital inputs is more representative of the variation in 16 

forcing across the whole era.  L12 have summarised variations of SST with latitude from their proxy data set, in their Fig. 1, 17 

including large error bars representing uncertainty which they attribute to assumptions about seawater chemistry, possible 18 

non-analogous behaviour between modern and ancient systems, and uncertainty in calibrations of relationships between 19 

proxy data and properties of the palaeoclimate.  Our median values of SST are close to the median estimates of SST in L12 20 

at mid latitudes, and well within the uncertainty indicated by error bars at high latitudes.  21 

 22 

Median values and standard deviations of precipitation at each grid cell are plotted in Fig. 4.  Higher precipitation values and 23 

variation are largely confined to the tropics, especially to regions associated with monsoons in the present day: Africa and S. 24 

America in DJF, and S.E. Asia in JJA. 25 

4.2 Simple Metrics 26 

In Figs. 5 and 6, CO2, obliquity () and precession index (esin) are plotted against MAT, northern seasonality, northern 27 

winter TPTD and northern summer TPTD (Fig. 5), and southern winter polar OLC, northern winter polar OLC, Asian 28 

monsoon index, and African monsoon index and American monsoon index (Fig. 6).  Subplots for obliquity and precession 29 

index in Figures 5 and 6 denote the CO2 level on a continuous colour scale.  The dominant effect of CO2 on MAT and 30 

northern seasonality is apparent in Fig. 5, and it can also be seen that CO2 strongly affects the northern TPTD in the winter, 31 

but not in the summer, when the combined influence of obliquity and precession index is discernible, suggesting that 32 

temperature proxies with seasonal bias may have a significant orbital imprint.  The plot of atmospheric CO2 against N. 33 
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Winter TPTD shows a change in gradient at approximately 1000 ppm CO2 and 32°C. This may be related to the logarithmic 1 

dependence of radiative forcing on CO2 concentration, as well as the disappearance of ice above some threshold level, cf Fig. 2 

3, and a minimum level of land surface albedo related to maximum vegetation cover.  A possible sea ice related threshold 3 

mechanism influencing both SST and maritime air temperature in high northern latitudes may be observed in Fig. 3, and this 4 

is strongly associated with the increase in northern winter TPTD at low CO2 levels. Zeebe et al. (2017) have analysed a high 5 

resolution benthic isotope record covering the late Palaeocene - early Eocene, and have concluded that orbitally paced cycles 6 

are unlikely to have been driven by high latitude mechanisms, but our PLASIM-GENIE modelling suggests that while 7 

northern TPTD is not orbitally paced in the winter, being controlled by CO2, it is orbitally paced in the summer, by a 8 

combination of obliquity and precession.  9 

It can be observed in Fig. 6 that there is strong correlation between CO2 and southern winter polar OLC. The African and 10 

Asian monsoon indices are both correlated with the precession index, a well established feature of Quaternary records (e.g. 11 

Cruz et al., 2005).  The American monsoon index is fairly strongly correlated with the precession index at high levels of 12 

CO2, and negatively correlated with CO2 at low levels of CO2.  In each of these the other examples, there is no apparent 13 

correlation between the simple metric and two of the three forcing factors. We have selected these simple metrics with 14 

visible correlations to the forcing parameters for further analysis with the linear modelling and emulation methods.  Total 15 

effects on the simple metrics have been calculated for each of the forcing parameters, with eccentricity and precession 16 

considered separately, rather than combined within the precession index, and are shown in Table 43. 17 

The total effects of CO2 on MAT, northern winter TPTD and southern winter polar OLC, and of precession on both the 18 

Asian and African monsoon indices are all very high (> 0.905), and the total effects of obliquity on northern winter polar 19 

OLC and northern summer TPTD, and of precession on both the Asian and African monsoon indices are bothall fairly high 20 

(> 0.65), providing quantitative confirmation of the correlations visible in Figs. 5 and 6. 21 

4.3 Climate Sensitivity and Mean Air Temperature 22 

Figure 7 shows the relationship between CO2 (plotted on a logarithmic scale), and MAT, with an abrupt change of gradient 23 

clearly visible at a CO2 concentration of 1000 ppm.  From the two gradients, we derive climate sensitivity values for a 24 

doubling of CO2 concentration at CO2 levels below 1000 ppm, and at CO2 levels above 1000 ppm, of 4.36°C and 2.54°C 25 

respectively.  We note that our modelled values of carbon in vegetation in the ENTS module remain low outside of the 26 

tropics at low CO2 concentration, but as CO2 concentration increases, land areas at higher latitudes reach maximum values of 27 

carbon in vegetation, with all land areas showing no further capacity for increased carbon in vegetation at an atmospheric 28 

concentration of ~1000 ppm.  The increase in land vegetation cover, with corresponding reduction in albedo, appears to acts 29 

as a positive feedback to rising temperature caused by increasing CO2, but this feedback mechanism ceases to operate when 30 

all available land is at its maximum vegetation capacity, with a consequent reduction in the climate sensitivity. 31 

For a pre-industrial atmospheric CO2 concentration of 280 ppm, the value of MAT indicated by our results for our early 32 

Eocene palaeogeography is 14.0°C.  Holden et al. (2016) applied an identically configured PLASIM-GENIE to a modern 33 
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geography, and their results show that with a pre-industrial CO2 concentration, the model climate sensitivity is 3.8°C, and 1 

MAT is 12.9°C. 2 

Our results also indicate values of global MAT for double, and four-times pre-industrial levels of CO2 of 18.5°C and 22.5°C 3 

respectively; both these values are within the ranges of results for land near-surface air temperature in the modelling studies 4 

compared by L12, and shown in their Fig. 2b. 5 

4.4 Singular Value Decomposition 6 

Figure 7 8 shows the first three PCs of surface air temperature in DJF and JJA, with the percentages of temperature variation 7 

explained by each PC. Each of these plots illustrates the PC scaled by the standard deviation of the PC scores, thereby 8 

reflecting the variability across the ensemble.  Note the variable scales for each of the subplots.  In both DJF and JJA, PC1 9 

explains over 95% of the variance, with TPTD clearly visible in both hemispheres in DJF, but apparent only in the southern 10 

hemisphere in JJA.  OLC is apparent in the plots of PC1 in both DJF and JJA.  OLC is discernible in PC2 for DJF 11 

temperature, which explains 2.4% of variance, but less apparent, at least in the southern hemisphere, for JJA temperatures, in 12 

which PC2 explains 2.6% of the variance.  For temperature in both DJF and JJA, PC3 explains less than 1% of the variance, 13 

with some indication of TPTD and OLC in DJF, but only of weak OLC at high latitudes in JJA. It is worth noting that even 14 

though lower order PCs explain small percentages of global variances, these PCs are generally associated with specific 15 

regions where they are comparably important to the first PC. 16 

In their presentation of the SVD method applied in this study, Holden et al. (2015) investigated the effects of orbital 17 

parameters on the Earth’s climate in the present day, but without including CO2 as a forcing parameter in their ensemble, and 18 

found that obliquity had a dominant effect on the PC score of annual average surface air temperature.  In our study of the 19 

Eocene climate, CO2 is strongly correlated with N. seasonality (Fig. 5), and obliquity is weakly correlated with TPTD in JJF 20 

JJA (Fig. 5) and with OLC in DJF (Fig. 6). The first three PCs of precipitation in DJF and JJA are shown in Fig. 89.  PC1 21 

explains approximately 55% of the variance in both seasons, with PC2 and PC3 explaining over 20% and over 5% 22 

respectively, in both seasons.  In both PC2 and PC3, areas of high seasonal contrast appear to correspond to areas which 23 

experience monsoons in the modern world. 24 

Correlations between the PC scores of temperature and precipitation are provided in Table 54. The first PC scores of 25 

temperature, reflecting a global warming signal, are highly correlated with the first PC scores for precipitation, suggesting 26 

that these PCs reflect a strengthening of the hydrological cycle in response to warming. Similar considerations reveal 27 

connections between lower order PC scores, though we note that the 2nd (3rd) component of DJF temperature is associated 28 

with the 3rd (2nd) component of DJF precipitation. In order to address the drivers of these modes, we first consider the 29 

correlation coefficients, r, between forcing factors and the PC scores, shown in Table 65.  These demonstrate that for each 30 

output there is a mode of variability driven by CO2 and another mode driven by precession, suggesting they reflect global 31 

warming (and associated hydrological strength) and precessional forcing of the monsoon system.  32 
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There is strong correlation (r2 > 0.5) between CO2 and the first PC scores of temperature in DJF and JJA.  There are also 1 

strong correlations between precession index and the third PC scores for DJF temperature, and between precession index and 2 

the second PC scores for JJA temperature. 3 

CO2 is strongly correlated with the first PC scores of precipitation in both DJF and JJA, and there is a strong relationship 4 

between precession index and the second PC scores of precipitation in both DJF and JJA.  An increase in the second PC 5 

scores for JJA precipitation in the Asian monsoon region (Fig. 9) corresponds to a decrease in the second PC scores for JJA 6 

temperature (Fig. 8), and as already noted, the second PC scores for both temperature and precipitation in JJA are strongly 7 

correlated to the precession index.  This temperature reduction during the Asian monsoon was also observed by Holden et al. 8 

(2014), and attributed to a reduction in incoming solar radiation associated with increased cloud cover and surface 9 

evaporation. 10 

4.5 Linear Modelling and Emulation 11 

The relationships between the forcing parameters (with precession expressed as both sin and cos) and the simple metrics, 12 

and between the forcing parameters and the PC scores of 2-D fields, derived through linear modelling, include first and 13 

second order terms of forcing factors, together with products of forcing factors.  In all cases most of the main effects are 14 

confined to the first order terms, and in no case does eccentricity have a significant effect independently of either of the 15 

precession terms, the effect of which eccentricity always augments slightly.  All significant effects of the precession terms 16 

are accompanied by a small effect of eccentricity. 17 

In Fig. 10, we therefore neglect the higher order terms and plot the emulator coefficients of the first order terms (also termed 18 

the 'main effects') of the forcing parameters on the first three PCs of temperature and precipitation for DJF.  Figure 11 shows 19 

the main effects of the forcing parameters on the first three PCs of temperature and precipitation plotted for JJA.   20 

In both seasons, PC1 for temperature and precipitation can be almost entirely explained by CO2, reinforcing the earlier 21 

conclusion that these describe a connected mode, global warming with associated effects on the hydrological cycle.  The 22 

main effects also suggest connections between the modes of variability of temperature and precipitation in lower-order 23 

components. In both seasons, and apparent in both variables,  there is a mode that is driven by precession;  we interpret this 24 

as a monsoon signal, given precessional forcing and spatial patterns of rainfall that are characteristic of modern monsoons 25 

(Figs. 7 8 and 89).  In JJA this is the second component of both variables. The mode is associated with precipitation 26 

variability of ~2.5 mm/day and temperature variability of ~3°C, with increased precipitation associated with a surface air 27 

cooling (note the negative correlation in Table 3, so that positive change in one field is associated with negative change in 28 

the other). In both cases, the local magnitude of variability is comparable to that driven by CO2. In DJF the precessional 29 

signal is again apparent in the second mode of precipitation, but the third mode of temperature. This mode is notable, in that 30 

it drives changes in simulated precipitation over East Africa (5 mm/day) that exceed CO2-driven variability. The remaining 31 

modes are more complex, and may not represent a clear mode of variability that can be straightforwardly attributed. For 32 
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instance, the third-order mode of JJA temperature is driven by an interaction between CO2 and obliquity, but in precipitation 1 

can be explained almost exclusively by a combination of precession and CO2. 2 

We apply the linear models derived from the forcing factors and monsoon indices as emulators to estimate values of 3 

monsoon indices corresponding to the full range of precession (), with eccentricity fixed at its high limit of 0.06, low and 4 

high values of CO2 (300 ppm and 3000 ppm), and low and high values of obliquity (22.0° and 24.5°).  Precession index 5 

(esin) and emulated values of the Asian, African and American monsoon indices are plotted in Figures 12, 13 and 14 6 

respectively. Relationships between the precession index and the monsoon indices which are visually suggested in Figure 6 7 

are shown with clear structure in Figures 12, 13 and 14.  In each of the monsoon areas, the increase in precipitation due to 8 

precession effects is more pronounced at high atmospheric concentration of CO2, and also at high obliquity. 9 

 10 

6 5 Summary and Conclusions 11 

Our ensemble of 50 model runs of the EMIC PLASIM-GENIE has used an early Eocene palaeogeography incorporating 12 

recent understanding of the configuration of the continents and ocean gateways, with climate forcing by a randomly selected 13 

combination of atmospheric GHG emissions and orbital parameters for each model run. Relationships between forcing 14 

parameters and scalar summaries of model results have been derived through linear modelling. 15 

Given the input range of CO2, our results show that, at the global scale, variability in patterns of surface air temperature is 16 

strongly dominated by a single mode of variation with a strong imprint of TPTD, focused in northern winter, that is entirely 17 

controlled by CO2 (> 95% variance in both seasons). We note, however, that regions under the influence of monsoon 18 

systems exhibit precession-driven temperature variability that is comparable in magnitude to the variability driven by CO2 19 

(in large part the high proportion of variance explained by the CO2 mode arises because the signal is global).  In contrast to 20 

the unimodal dominance of CO2 on the modelled global temperature fields, precipitation shows a somewhat more nuanced 21 

response. The first mode of precipitation, while still controlled entirely by CO2, is much less dominant (maximum 57% 22 

variance in DJF cf 21% for PC2). In the second and third spatial modes of precipitation variability, CO2 is still important, but 23 

no more so than orbital parameters, with PC2 controlled more strongly by precession index.  24 

The importance of orbital forcing to precipitation signals is seen more clearly in the OLC and monsoon indices. In spite of 25 

large variation in atmospheric CO2, variation in obliquity accounts for well over half of the variation in high northern latitude 26 

ocean-land temperature contrast, and the variation in precession strongly influencesis the dominant influence on seasonal 27 

variation in precipitation in tropical Africa and Asia, and combines with CO2 to influence seasonal precipitation in tropical 28 

America. Our results strongly suggest the presence of monsoons in the early Eocene, but these climatic features would have 29 

developed without the effects of orography and high altitude plateau heating which are important factors in the modern south 30 

Asian monsoon (Boos and Kuang, 2010). 31 
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We note that the relative amplitude of the CO2-driven modes depends critically on the actual amplitude of CO2 variability in 1 

the period of interest.  While the ranges for orbital parameters are well defined, this is less true of CO2 variability over the 2 

Eocene.  If atmospheric CO2 remained within a narrower range throughout the period, for example in the range 700 to 1800 3 

ppm, indicated for the early Eocene by Anagnostou et al. (2016) in a recent study using boron isotopes, then and outside of 4 

short-lived hyperthermals, the relative influence of CO2 and orbital inputs might have been more evenly balanced.  We have 5 

carried out an additional SVD of the 23 ensemble members with CO2 in the range 700 to 1800 ppm, indicated for the early 6 

Eocene by Anagnostou et al. (2016) in a recent study using boron isotopes. This analysis allocates 91% (86%) of the DJF 7 

(JJA) SAT variance and 55% (48%) of the DJF (JJA) precipitation variance to the first (CO2-driven) principal components 8 

thus, for global temperature patterns, the orbitally driven components contribute around twice as much variance as in the full 9 

ensemble. 10 

Our modelling results suggest that climate sensitivity is state dependent, with a value of 4.36°C in a low CO2 state, and 11 

2.54°C in a high CO2 state, due to a positive feedback mechanism in which albedo reduces as vegetation increases to its 12 

maximum value when CO2 concentration reaches 1000 ppm. 13 

We have demonstrated that emulators derived from linear modelling of the PLASIM-GENIE ensemble results can be used as 14 

a rapid and efficient method of estimating climate conditions from any set of forcing parameters, without the need for further 15 

deployment of the EMIC. 16 

PLASIM-GENIE is to our knowledge the most sophisticated climate model that has been applied to an ensemble of Eocene 17 

simulations, but we note that increasing computing power is now enabling ensembles of simulations with moderately higher 18 

resolution models, such as HadCM3 (3.75° × 2.5°) (e.g. Araya-Melo et al., 2015; Lord et al., 2017), to be run, although with 19 

some limitation in the model years in each simulation. It will never be possible to apply state of the art climate models to 20 

large ensembles because, given the continual striving for the highest possible resolution, single simulations with such models 21 

will always be at the limits of what is practicable with available computing power.  EMICs therefore have an important role 22 

in furthering our understanding of past, present and future climate systems, and in the rapid identification of influencing 23 

factors and modes of response which may be targeted for study by slower but more powerful models. 24 

Our study of the early Eocene climate and the PETM using PLASIM-GENIE has shown that variability in orbital parameters 25 

can exert significant climatic influence, particularly in regard to tropical temperature and precipitation, and they should not 26 

be ignored in modelling studies of climates of the past. 27 

Data Availability 28 

Details on access to the model code, and instructions on compiling the model are given in Holden et al. (2016). 29 
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Appendix A Hypercube Generation 1 

This study has been designed together with a future study using the EMIC model GENIE-1 (Edwards and Marsh, 2005).  2 

The GENIE-1 model will use all four of the forcing parameters and the dummy parameter, used in the present study, together 3 

with an additional six forcing parameters not used by the PLASIM-GENIE study.  For PLASIM-GENIE we have run 50 4 

simulations with five parameters, while in GENIE-1 we will run 100 simulations with 11 parameters, so that the number of 5 

runs in each ensemble is approximately 10 times the input dimension (Loeppky et al., 2012).  6 

The overall design for both studies is based on a maximin Latin hypercube with 100 rows and 11 columns produced by 7 

repeatedly invoking the lhsdesign function in MATLAB (MathWorks), with the command: 8 

hyperCube = lhsdesign(100, 11, 'criterion', 'maximin', 'iterations', 100); 9 

to select from 100 iteratively generated hypercubes, the one which best fits the maximin criterion, i.e. where the minimum 10 

Euclidian distance between points in hyperspace is at a maximum.  This MATLAB command is repeated until the absolute 11 

value of correlation between columns falls below a selected value, or until a selected number of attempts has been made.  12 

The ability of this ‘brute force’ approach to produce a hypercube which satisfies the maximin criterion, with the required low 13 

correlation between columns decreases rapidly with an increasing number of columns, and a decreasing target correlation, 14 

but in several minutes it can generate a hypercube with 100 rows, each representing a design point for an ensemble member, 15 

and 11 columns, each representing a forcing or dummy parameter, with correlation between any two parameters not 16 

exceeding 0.1. 17 

We then modify the overall design by first picking a subset of 50 of the 100 design points to give good coverage of the 18 

PLASIM-GENIE subspace. We randomly select an initial point, and iteratively select from the remainder, without 19 

replacement, the point which provides the largest increase in the number of populated sectors across all the two-dimensional 20 

projections of PLASIM-GENIE parameter space defined by dividing each two-dimensional subspace into 6 x 6 equal 21 

sectors.  22 

This defines a template comprising a 50-member subset of 11 parameter values. 23 

Copying the template and discarding the six parameters which are only used in the GENIE-1 ensemble yields the final 24 

hypercube design for the PLASIM-GENIE ensemble, comprising 50 sets of five parameters. 25 

A second copy of the template forms the top half of the GENIE-1 hypercube, and the bottom half is partially constructed by 26 

duplicating only the five PLASIM-GENIE parameters from the first 50 rows, with the remaining six parameters determined 27 

by choosing a previously unselected point, without replacement, from the initial 100 x 11 hypercube that maximises the 28 

Euclidean distance between the pair of points in the subspace of the remaining six parameters. 29 

Following this procedure, the two hypercubes for the PLASIM-GENIE and GENIE-1 studies both show very good state-30 

space coverage and low correlation, and each member of the PLASIM-GENIE ensemble has two corresponding members in 31 
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the GENIE-1 ensemble, with identical values for the parameters in common, but widely differing sets of values for the 1 

parameters only used by GENIE-1. 2 
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Table 1  Uniform ranges for forcing and dummy parameters 1 

 

min max 

pCO2 (ppm) 280 3000 

Precession ( ° ) 0 360 

Obliquity ( ° ) 22.0 24.5 

Eccentricity ( - ) 0.00 0.06 

Dummy ( - ) 0 1 

 2 

Table 2 Forcing factors and dummy values for each member in the ensemble.  Precession = , the angle between the 3 

moving vernal equinox and the longitude of perihelion. 4 

Member (-) CO2 (ppm) Eccentricity (-) Precession (°) Obliquity (°) Dummy (-) 

1 975.6 0.0022 142.5 22.37 0.822 

2 2418.7 0.0256 165.2 23.95 0.907 

3 1259.4 0.0007 307.1 23.91 0.323 

4 801.3 0.0163 270.4 23.50 0.276 

5 1720.1 0.0559 206.7 23.82 0.402 

6 327.1 0.0595 135.9 23.53 0.681 

7 2937.7 0.0418 287.1 22.53 0.650 

8 1200.3 0.0237 313.2 24.12 0.978 

9 1420.7 0.0158 297.1 23.86 0.931 

10 2157.6 0.0432 100.6 23.74 0.661 

11 1791.7 0.0241 247.2 23.43 0.429 

12 2369.0 0.0425 78.9 22.65 0.167 

13 2502.9 0.0296 0.5 22.69 0.122 

14 2149.2 0.0405 249.9 24.23 0.347 

15 1061.7 0.0394 40.9 23.94 0.189 

16 711.3 0.0199 274.6 22.08 0.913 

17 1817.1 0.0578 291.4 23.08 0.888 

18 722.1 0.0463 195.8 24.38 0.865 

19 2988.5 0.0039 110.1 24.40 0.049 

20 539.4 0.0251 212.5 23.29 0.234 

21 450.6 0.0335 96.1 22.28 0.674 

22 2700.1 0.0049 165.9 23.66 0.630 

23 2025.4 0.0320 189.4 23.63 0.087 

24 2268.7 0.0308 233.3 22.86 0.461 

25 1447.2 0.0364 62.0 23.40 0.541 

26 1168.3 0.0300 147.4 22.97 0.947 

27 1317.6 0.0377 12.4 23.04 0.714 

28 1639.5 0.0265 150.9 22.98 0.524 

29 399.0 0.0589 262.7 23.46 0.028 

30 2876.3 0.0411 203.0 22.05 0.608 

31 2611.1 0.0170 54.3 22.84 0.746 

32 2831.7 0.0564 187.2 23.72 0.696 

33 1998.5 0.0372 278.8 24.19 0.805 
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34 1465.0 0.0439 38.9 23.50 0.376 

35 1660.0 0.0109 85.3 22.88 0.896 

36 2393.7 0.0587 127.9 24.27 0.191 

37 286.3 0.0004 27.1 23.99 0.391 

38 667.4 0.0509 116.5 22.71 0.569 

39 2246.8 0.0450 317.4 22.90 0.103 

40 2334.2 0.0096 294.7 23.61 0.532 

41 2968.2 0.0346 329.8 22.51 0.314 

42 768.2 0.0085 218.3 23.00 0.000 

43 925.8 0.0450 327.2 24.32 0.753 

44 384.5 0.0081 60.6 22.59 0.436 

45 850.7 0.0551 322.9 23.21 0.459 

46 1112.8 0.0150 356.7 23.27 0.579 

47 1255.8 0.0116 212.2 22.31 0.487 

48 1124.1 0.0530 343.7 22.40 0.065 

49 2113.9 0.0276 9.9 22.19 0.856 

50 1681.0 0.0354 175.5 22.45 0.287 

 1 

 2 

Table 32  R2 correlation between PC scores from SVD and PC scores emulated with the linear models.   3 

 

PC1 PC2 PC3 

DJF_temperature 0.95 0.58 0.75 

JJA_temperature 0.97 0.97 0.72 

DJF_precipitation 0.97 0.92 0.64 

JJA_precipitation 0.99 0.99 0.89 

 4 

 5 

Table 43  Total effects of forcing parameters on simple scalar metrics. 6 

 

CO2 Eccentricity Obliquity Precession 

MAT 0.996 0.002 0.000 0.002 

N. seasonality 0.873 0.025 0.013 0.088 

N. winter TPTD 0.974 0.009 0.010 0.007 

N. summer TPTD 0.084 0.046 0.640 0.229 

S. winter POLC 0.996 0.000 0.000 0.004 

N. winter POLC 0.268 0.018 0.659 0.055 

Asian monsoon index 0.087 0.078 0.073 0.762 

African monsoon index 0.061 0.137 0.010 0.792 

   7 

 8 

 9 
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  CO2 Eccentricity Obliquity Precession 

MAT 0.993 0.002 0.000 0.005 

N. seasonality 0.766 0.003 0.011 0.220 

N. winter TPTD 0.939 0.006 0.039 0.017 

N. summer TPTD 0.144 0.000 0.673 0.183 

S. winter POLC 0.979 0.004 0.005 0.012 

N. winter POLC 0.088 0.000 0.789 0.122 

Asian monsoon index 0.094 0.004 0.063 0.840 

African monsoon index 0.017 0.001 0.001 0.981 

American monsoon index 0.490 0.004 0.020 0.486 

  1 
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Table 54  R2 correlation values for PC scores for temperature and precipitation in DJF and JJA. Values where R2 >= 0.5 1 
are shown in red. 2 

  

DJF_precipitation 

  

PC1 PC2 PC3 

 
PC1 0.993 -0.004 -0.080 

 DJF_temperature PC2 -0.067 -0.364 -0.864 

  PC3 0.005 0.783 -0.354 

     

  

JJA_precipitation 

  

PC1 PC2 PC3 

 
PC1 0.976 0.091 0.157 

 JJA_temperature PC2 0.098 -0.947 0.082 

  PC3 -0.180 -0.049 0.795 

 3 

 4 

Table 65  R2 correlation values for forcing factors and PC scores. Values where R2 >= 0.5 are shown in red. 5 

  

CO2 
precession 

index obliquity 

  PC1 -0.859 -0.018 -0.057 

DJF_temperature PC2 0.381 -0.087 -0.354 

  PC3 0.038 -0.924 0.311 

  PC1 -0.899 0.178 -0.066 

JJA_temperature PC2 -0.018 -0.875 0.362 

  PC3 0.342 0.056 -0.239 

  PC1 -0.867 0.003 -0.025 

DJF_precipitation PC2 -0.198 -0.820 0.044 

  PC3 -0.278 0.465 0.164 

  PC1 -0.953 0.065 0.008 

JJA_precipitation PC2 -0.070 0.960 -0.131 

  PC3 0.219 0.191 -0.029 
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1 
Figure 1: Eocene palaeogeography and geographic areas used to determine simple metric values 2 

  3 
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 1 

Figure 2: Ensemble temperature medians (left column) and standard deviations (right column) in DJF (top row) and JJA (bottom 2 
row). 3 
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 1 

Figure 3: Top: full ensemble distributions of mean latitude values of global annual mean sea surface temperature (SST), with 2 
mean latitude maritime surface air temperature in DJF and JJA. 3 

Middle: mean latitude continental surface air temperature in DJF and JJA. 4 

Bottom: ensemble medians and 5% and 95% percentiles of global annual mean SST, and maritime surface air temperature in DJF 5 
(red) and JJA (blue). 6 

 7 
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 1 

Figure 4: Ensemble precipitation medians (left column) and standard deviations (right column) in DJF (top row) and JJA (bottom 2 
row). 3 
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1 
Figure 5: Correlation between three forcing factors CO2 , obliquity and precession index (in columns from left to right), and the 2 
simple metrics MAT, northern seasonality, northern winter tropical-polar temperature difference and northern summer tropical-3 
polar temperature difference (in rows from top to bottom).  CO2 is plotted in colour in the obliquity and precession plots (blue = 4 
low, red = high) 5 

  6 
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Figure 6: Correlation between three forcing factors CO2 , obliquity and precession index (in columns from left to right), and the 1 
simple metrics southern winter polar OLC, northern winter polar OLC, Asian monsoon index, and African monsoon index and 2 
American monsoon index (in rows from top to bottom).  CO2 is plotted in colour in the obliquity and precession plots (blue = low, 3 
red = high) 4 

 5 

 6 

7 

 Figure 7: Mean air temperature plotted against CO2 on a logarithmic scale, with regression lines plotted for CO2 < 1000 ppm 8 

(blue), and CO2 > 1000 ppm (red), with climate sensitivities for a doubling of CO2 from both of the regressions.  9 
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 1 

 2 

Figure 78: The first three principal components of DJF_temperature (top row) and JJA_temperature (bottom row).  Percentages 3 
of variance explained by each principal component are shown above each plot. 4 

 5 

 6 

 7 

Figure 89: The first three principal components of DJF_precipitation (top row) and JJA_precipitation (bottom row).  Percentages 8 
of variance explained by each principal component are shown above each plot. 9 

 10 
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 1 

Figure 910: Main effects of forcing parameters on the first three principal components of DJF_temperature (top row) and 2 
DJF_precipitation (bottom row). 3 

 4 

 5 

 6 
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 1 

Figure 1011: Main effects of forcing parameters on the first three principal components of JJA_temperature (top row) and 2 
JJA_precipitation (bottom row). 3 
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 1 

Figure 12: Emulated values of the Asian monsoon index, for the full range of the precession index (esin), at low and high values 2 
of CO2 and obliquity (). 3 
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 1 

Figure 13: Emulated values of the African monsoon index, for the full range of the precession index (esin), at low and high values 2 
of CO2 and obliquity (). 3 
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 1 

Figure 14: Emulated values of the Amerian monsoon index, for the full range of the precession index (esin), at low and high 2 
values of CO2 and obliquity (). 3 


