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Abstract. We present a detailed multi-proxy data record to reveal the late Quaternary changes in marine sedimentation and 

biogeochemical processes of the upper bathyal Maldives (equatorial Indian Ocean) and how they are related to the benthic 

ecosystem dynamics. We investigated the sediment core SO-236-052-4 from the central part of the Inner Sea, Maldives, 

focusing on Fe/Ca and Si/Ca ratios as proxies for terrigenous sediment delivery, as well as Total Organic Carbon (TOC) and 

Ba/Ca ratios as proxies for marine productivity. Benthic foraminiferal fauna distributions, sortable silt records and stable 15 

oxygen and carbon isotope analyses were used for reconstructing the past ecosystem, as well as changes in the intermediate 

water circulation, bottom water current velocity and oxygenation.   

This multi-proxy data record shows an enhanced dust supply during the glacial intervals, represented by increased Fe/Ca 

and Si/Ca ratios, an overall coarsening of the sediment and increasing amount of agglutinated benthic foraminifera. The 

enhanced dust fluxes can be attributed to higher dust availability in the Asian desert and loess areas and its transport by 20 

intensified winter monsoon winds during glacial conditions. These combined effects of wind-induced mixing of surface 

waters and dust fertilisation during the cold phases resulted in increased surface water productivity and related organic 

carbon fluxes. Thus, the development of highly diverse benthic foraminiferal faunas and the distribution of certain detritus 

and suspension feeders were fostered. 

The difference in the stable carbon isotope signal between epifaunal and deep infaunal benthic foraminifera reveals 25 

intermediate water oxygen concentrations between approximately 40 and 100 µmol kg
-1

. The pattern of oxygen changes 

resembles that from the deep Arabian Sea suggesting an expansion of the Oxygen Minimum Zone (OMZ) from the Arabian 

Sea into the tropical Indian Ocean, further controlled by the inflow of the Antarctic Intermediate Water (AAIW). The 

precessional circulation pattern of the bottom water oxygenation is overprinted by glacial-/interglacial changes resulting in a 

long phase of reduced ventilation during the last glacial period. The latter process is likely linked to the combined effects of 30 

generally enhanced oxygen consumption rates during high-productivity phases, reduced AAIW production and restriction of 

bathyal environments of the Inner Sea of the Maldives during sea-level lowstands. Thus, this multi-proxy record provide a 

close linkage between the Indian monsoon oscillation, intermediate water circulation, productivity and sea-level changes on 

orbital time-scale. 
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1 Introduction 

Sedimentation and biogeochemical processes of the tropical and subtropical northern Indian Ocean are closely linked to the 

intensity and seasonal changes of the Indian monsoon system. From June to October, the region is dominated by the SW 

monsoon, while the NE monsoon operates from December to April (Wyrtki, 1973; Schott and McCreary, 2001). During the 

SW monsoon, coastal and open-ocean upwelling in the Arabian Sea results in maximum surface water productivity and 40 

related organic matter fluxes (Nair et al., 1989, Rixen et al., 1996). At the same time, the Southwest Monsoon Current 

(SMC) transports high-saline surface waters from the Arabian Sea into the equatorial region (Schott and McCreary, 2001). 

During the NE monsoon, the current system reverses and the Northeast Monsoon Current (NMC) transports lower-saline 

surface waters from the Bay of Bengal into the western Indian Ocean. While chlorophyll concentrations strongly decrease in 

the Arabian Sea during the NE monsoon, elevated concentrations are mainly restricted to the Indian west coast. In the 45 

Maldives area, mean chlorophyll concentrations reach their maximum during the NE monsoon (Sasamal, 2007; de Vos et al., 

2014; NASA MODIS-Aqua, 2014). 

The decay of organic matter in the water column and the generally reduced ventilation of regional subsurface waters in 

the Indian Ocean result in the development of a strong Oxygen Minimum Zone (OMZ) between 200 and 1200 m water depth 

(Reid, 2003; Stramma et al., 2008). The oxygen depletion is fostered by the semi-enclosed nature of the northern Indian 50 

Ocean, the long pathway of intermediate water from its main formation sites at 40°S in the central South Indian Ocean 

(Antarctic Intermediate Water, AAIW) and Indonesia (Indonesian Intermediate Water, IIW) (Olson et al., 1993; You, 1998), 

and the contribution of low-oxygen outflow waters from the Red Sea and the Persian Gulf (Jung et al., 2001; Prasad and 

Ikeda, 2001). The OMZ extends from the Arabian Sea into the equatorial Indian Ocean. While oxygen concentrations in the 

Arabian Sea can be as low as 0.1 ml l
-1

 (or 5 µmol kg
-1

) (Reid, 2003), they still reach low oxic values around 1 ml l
-1

 (or 45 55 

µmol kg
-1

) in 500 to 1000 m water depths of the Maldives region (Weiss et al., 1983; Reid, 2003).  

The evaluation of deep-sea sediment archives from the Arabian Sea delivered comprehensive information on the pacing 

and intensity of the Indian summer monsoon and response of deep-sea environments on orbital (Clemens and Prell, 1990; 

Clemens et al., 1991) and suborbital (Schulz et al., 1998; Gupta et al., 2003) time scales. Summer monsoon changes are 

strongly coherent over the precessional band and reveal a close but lagged response to maxima in northern hemisphere 60 

summer insolation (Clemens and Prell, 2003). Phases of intensified OMZ are related to increased organic matter fluxes and 

microbial oxygen consumption rates during summer monsoon maxima (Den Dulk et al., 2000). In contrast, deep vertical 

mixing and erosion of the OMZ occurred during phases of intensified winter monsoon (Reichart et al., 1998). More recent 

studied revealed that the intensity of the OMZ and dynamics of deep-sea benthic ecosystems are paced by the superposition 

of regional monsoon dynamics and super-regional changes of intermediate and deep-water ventilation (Schmiedl and 65 

Leuschner, 2005; Pattan and Pearce, 2009; Das et al., 2017). 
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Records from the equatorial Indian Ocean provide a more diverse and partly contradictory picture since this region is not 

only influenced by the summer and winter monsoons but also by the strength of Indian Ocean Equatorial Westerlies (IEW) 

which are strongest during the intermonsoon seasons in spring and fall and are inversely related to the Indian Ocean Dipole 

(Hastenrath et al., 1993; Beaufort et al., 2001). Variations in surface water properties in the southeastern Arabian Sea at a 70 

site close to the Maldives platform revealed maximum productivity at times of enhanced winter monsoon winds associated 

with precessional maxima in ice volume (Rostek et al., 1997). An upper bathyal benthic foraminiferal record from the 

Maldives Ridge suggests that late Quaternary changes in organic matter fluxes are either driven by summer monsoon winds 

(Sarkar and Gupta, 2009) or linked to changes in the IEW strength (Sarkar and Gupta, 2014). The precessional variability in 

productivity records from the equatorial Indo-Pacific Ocean has been attributed to the influence of low-latitude insolation on 75 

the IEW strength and on long-term dynamics of the El Niño-Southern Oscillation (ENSO) (Beaufort et al., 1997, 2001). 

Here we present a multi-proxy data set on the links between climate variability, ocean circulation, sedimentation and 

biogeochemical processes of the Maldives Inner Sea. Specifically, our study addresses the following questions: (1) Which 

impact did orbital-scale changes of the Indian monsoon have on dust fluxes and marine environments of the Maldives? (2) 

How did global sea-level changes influence the sedimentation processes and benthic ecosystems of the Maldives Inner Sea? 80 

(3) Can we trace the influence of changes in the configuration of intermediate waters and how are these changes related to 

super-regional oceanographic processes?  

The sediment archive of the Maldives Inner Sea is ideally situated to answer the above questions because it lies in the 

central part of the Indian Ocean and therefore it is in the zone where the different processes introduce above acts. The 

Maldives also appear as an ideal place to trace back paleoceanographic variations in time, as seismic surveys (Betzler et al. 85 

2009, 2013a, 2013b, 2016; Lüdmann et al., 2013) have shown that the Maldives are comparable to a large natural sediment 

trap with a continuous Neogene succession. 

 

2 Material and Methods  

2.1 Sediment cores and material descriptions 90 

For this study, two sediment cores were retrieved from different sites in the Inner Sea of the Maldives (Fig. 1). The 5.97 m 

long sediment core SO-236-052-4 was obtained by means of a gravity corer in the framework of R/V SONNE cruise SO236 

in August 2014, E of the North Ari Atoll in the central part of the Inner Sea (03°55.09’N; 73°08.48’E) and from a water 

depth of 381.9 m. The 12.94 m long sediment core M74/4-1143 is a piston core from R/V METEOR cruise M74/4, obtained 

in 2007 from E of the Goidhoo Atoll (04°49.50’N; 73°05.04’E) at a water depth of 386.8 m (Fig. 1). This study is focused on 95 

the first 6.00 m of core M74/4-1143. 

The sediment of core SO-236-052-4 consists of an alternation of non-lithified fine-grained ooze with abundant pteropods, 

sponge spicules, planctonic and benthic foraminifera, and echinoid remains, with minor otolites and fragments of gastropods 

and bivalves. There are locally some intervals that present up to 4 cm bioclast including solitary corals and thin-shelled 
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bivalves. The entire succession is intensely reworked by bioturbation. Just a few primary structures, usually main boundaries 100 

between facies are preserved (i.e. the sharp contacts at 2.35 mbsf and at 3.90 mbsf). Discrete burrows are scarce. The 

succession recovered at site M74/4-1143 has been described by Betzler et al. (2013b). The core consists mainly of 

periplatform ooze with planktic foraminifers, pteropods, otoliths, mollusc remains, benthic foraminifers, sponge spicules, 

and echinoid debris. Down the core, light and dark colored greenish to olive gray intervals alternate, with the light colored 

intervals correlating to isotopically lighter intervals and the darker colored intervals correlating to isotopically heavier 105 

intervals (Betzler et al., 2013b). 

 

2.2 Geochemical analyses 

Scanning X-Ray Fluorescence (XRF) element analysis of core SO-236-052-4 was carried out at the MARUM, University of 

Bremen, using an Avaatech XRF Core Scanner II. Element analysis was performed at 1 cm intervals, using generator 110 

settings of 50 kV (1.0 mA current), 30 kV (1.0 mA) and 10 kV (0.2 mA), and a sampling time of 20 seconds per 

measurement. Raw data spectra were processed using the software package WIN AXIL. Element ratios (Ba, Fe, Si, Sr 

against Ca) were calculated and used for environmental interpretations following Croudace and Rothwell (2015). 

The calcium carbonate and Total Organic Carbon (TOC) content of core SO-236-052-4 was measured at 5 cm spacing. 

The carbon content of the grain-size fraction < 63 µm was determined using a LECO DR144 carbon analyser. All samples 115 

were freeze dried. Subsequently, one subsample was measured at 1350 °C to obtain the total carbon content. A second 

subsample was heated to 550 °C for 5 hours to remove the organic carbon prior to measurement in the LECO; this gave the 

inorganic carbon content. The difference between total carbon- and inorganic carbon- is regarded as the organic-carbon 

content. Calcium carbonate contents were calculated from the inorganic carbon content. 

 120 

2.3 Grain-size analyses 

For bulk grain size analysis core SO-236-052-4 was sampled equidistantly (1.5 cm³ each 1 cm). Samples were wet-sieved 

(2000 µm) to remove very coarse particles, and subsequently suspended in water with addition of a 0.05 % solution of Tetra-

Sodium Diphosphate Decahydrate as dispersant. 

The mean grain size of the non-carbonate fraction between 10 to 63 µm, the sortable silt, has been shown to be a reliable 125 

proxy for palaeocurrent strength in predominantly siliciclastic sediments (Manighetti and McCave, 1995; McCave et al., 

1995a, 1995b; Hall et al., 1998; Bianchi et al., 1999; McCave and Hall, 2006). The method makes use of the non-carbonate 

fraction only and is therefore expected to be unaffected by primary carbonate production and burial diagenesis. Samples for 

the determination of the sortable silt component (c. 20 cm³ each) were taken equidistantly (at 5 cm intervals down to 1 m 

below the sea floor and at 10 cm intervals underneath for core M74/4-1143 and at 5 cm downcore intervals for core SO-236-130 

052-4). Subsequently to wet-sieving, the fraction < 63µm was cooked in H2O2 to remove the organic portion, and treated 
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with 1M Ca3COOH to dissolve the carbonate. Biogene opal was removed with 2M NaHCO3. The remainder was dispersed 

in water for grain-size determination. 

All grain-size measurements were done using a Helos KFMagic Laser particle size analyzer and measuring ranges of 

either 0.5/18-3500 µm (for bulk grain size) or 0.25/87.5 µm (for the non-carbonate fraction). To ensure accuracy of 135 

measurements and absence of a long-term instrumental drift, an in-house grain-size standard was measured regularly. Grain 

size statistics are based on the graphical method (Folk and Ward, 1957) and were calculated using the software 

GRADISTAT (Blott and Pye, 2001). 

 

2.4 Foraminiferal faunal and stabile isotope analyses 140 

For stable isotope analyses core SO-236-052-4 was sampled at 5 cm spacing and for benthic foraminiferal faunal analysis at 

10 cm spacing. All Samples were wet-sieved over a 63 µm screen and the residues subsequently dried at 38 °C. The benthic 

foraminiferal analysis was carried out on the > 125 µm size fraction and based on allocate splits in order to obtain 

approximately 300 tests. Genus and species identifications mainly based on Loeblich and Tappan (1988), Hottinger et al. 

(1993), Jones (1994), Debenay (2012), Milker and Schmiedl (2012) and Holbourn et al. (2013). The genera Cymbaloporetta 145 

and Tretomphaloides were summarized as meroplanktonic benthic foraminifera (BF) since they are known to have 

planktonic drift phases as part of their dispersal strategy (Banner et al., 1985; Alve, 1999). For analysis based on the test 

material all individuals of the foraminiferal orders Astrorhizida, Lituolida and Textulariida were summarized as agglutinated 

BF.  

Benthic foraminiferal assemblages were defined by Q-mode Principal Component Analysis (PCA) with varimax rotation 150 

using the software SYSTAT, version 5.2.1. Following Schmiedl et al. (1997) only foraminiferal taxa with percentages ≥ 1 % 

in at least one sample and/or taxa, which occur at least in two samples were used for the statistical analysis. Loadings ≥ 0.5 

were defined as significant (Backhaus et al., 2008). The Shannon-Wiener diversity index H(S) was calculated after Murray 

(2006) based on the function H(S) = (-1)              
 
   , where S is the species number and pi the relative abundance of 

the i-th species. 155 

Stable oxygen and carbon isotope records were generated for planktonic and benthic foraminifera. Approximately 10 

tests of the planktonic foraminifer Globigerinoides ruber (white) were selected from the 250-350 µm size fraction of core 

SO-236-052-4. Stable isotope data of G. ruber (white) of core M74/4-1143 were taken from Betzler et al. (2013b).  

In addition, approximately 2-5 tests of the epibenthic foraminifera Cibicides mabahethi and of the deep infaunal species 

Globobulimina affinis s.l. were selected from the size fraction > 125 µm of core SO-236-052-4. Stable oxygen and carbon 160 

isotope analyses were performed with Finnigan MAT 253 gas mass spectrometers coupled to automatic carbonate 

preparation devices Kiel II or IV, respectively. The mass spectrometers were calibrated to the PDB scale via international 

standard NBS19, and results are given in δ-notation versus VPDB. Based on measurements of an internal laboratory standard 
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(Solnhofen limestone) together with samples over a 1-year period, precision was better than 0.08 ‰ for δ
18

O and 0.06 ‰ for 

δ
13

C, respectively.  165 

For site SO-236-052 changes in bottom water oxygen concentrations were estimated based on the δ
13

C difference 

between the epifaunal (C. mabahethi) and deep infaunal (G. affinis s.l.) benthic foraminifera using the function Δδ
13

C = 

0.00772 x [O2] + 0.41446, wherein concentrations [O2] < 235 µmol kg
-1 

are considered as significant (Hoogakker et al., 

2015). For comparison, oxygen concentration changes of a deep sea sediment core from an Arabian Sea site (GeoB3004, 

1803 m water depth) were taken from Schmiedl and Mackensen (2006). These data based on the difference between the 170 

epifaunal Cibicides wuellerstorfi and G. affinis. Further, the δ
13

C gradient between G. ruber (white) and C. mabahethi of 

core SO-236-052-4 was estimated for assess the sea surface and bottom-water stabile carbon isotope difference and water 

column mixing. 

 

2.5 Radiocarbon dating and compilation of the age model 175 

Accelerator Mass Spectrometry (AMS) radiocarbon dating was carried out at the Beta Analytic Radiocarbon Dating 

Laboratory on mixed surface-dwelling planktonic foraminifera from 35 cm, 80 cm and 140 cm depth of core SO-236-052-4 

(Table 1). Conventional radiocarbon ages were calibrated using the radiocarbon calibration program CALIB (version 7.0.4; 

Stuiver and Reimer, 1993) and the calibration curve Marine13 (Reimer et al., 2013). Local reservoir corrections were not 

applied. Additional age tie points were derived from graphical correlation of the benthic δ
18

O record of core SO-236-052-4 180 

with the LR04 standard benthic stack (Lisiecki and Raymo, 2005) using the software AnalySeries 2.0 (version 5/2005; 

Paillard et al., 1996). The age model of core M74/4-1143 (Betzler et al., 2013b) was revised by graphical correlation with the 

planktonic δ
18

O record of core SO-236-052-4 (Fig. 2). 

 

3 Results  185 

3.1 Age model and sedimentation rate 

Based on the radiocarbon ages and the alignment of the stable oxygen isotope stratigraphy, core SO-236-052-4 comprises 

sediments of the past 207.7 ka, respectively (Fig. 2). The top 6 m of sediment core M74/4-1143 comprise the past 242.3 ka. 

Average sedimentation rates varied between 3.5 cm ka
-1

 in SO-236-052-4 and 4.4 cm ka
-1

 in M74/4-1143. Maximum 

sedimentation rates occurred during interglacial intervals, with 6.8 cm ka
-1

 (SO-236-052-4) and 8.4 cm ka
-1

 (M74/4-1143) 190 

for the Eemian, and 7.1 cm ka
-1 

(SO-236-052-4) to 3.0 cm ka
-1

 (M74/4-1143) for the Holocene (Fig. 2). 

 

3.2 Foraminiferal stable oxygen and carbon isotope records 

The δ
18

O values of core SO-236-052-4 vary between -3.09 and -0.68 ‰ in the planktonic G. ruber, between 0.91 and 2.51 

‰ in the epibenthic C. mabahethi, and between 1.10 and 5.02 ‰ in the deep infaunal G. affinis (Fig. 3). Generally, the δ
18

O 195 
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records reveal a consistent picture with relatively higher values during glacial intervals and lower values during interglacial 

intervals.  

The δ
13

C values of core SO-236-052 vary between 0.12 and 1.25 ‰ in G. ruber, between 0.22 and 0.91 ‰ in C. 

mabahethi, and between -0.84 to 0.27 ‰ in G. affinis (Fig. 3). Despite considerable short-term variability, all records reveal 

a stepwise increase of δ
13

C values with lowest values during the Marine Isotope Stage (MIS) 6 and highest values during the 200 

Holocene (Fig. 3).  

Considering the past bottom-water oxygen concentration reconstruction for core SO-236-052-4 by using the Δδ
13

CCm-Ga 

estimation, the values varied between 10.43 and 139.45 µmol kg
-1

 with average values of approximately 65.50 µmol kg
-1

. In 

addition, a long-lasting oxygen depletion was observed, starting from the end of MIS 5 to the end of MIS 3 (duration of ~50 

ka), and with average oxygen concentrations of approximately 52.50 µmol kg
-1

. The oxygen concentration of sediment core 205 

GeoB3004 (W Arabian Sea) showed an average oxygen content of approximately 81.75 µmol kg
-1

 (Schmiedl and 

Mackensen, 2006). In comparison both cores represented a precessional pattern during MIS 6 to late MIS 5, in which they 

were almost in phase. A comparable long lasting oxygen depletion, as documented at site SO-236-052, could not be 

identified for GeoB3004.  

The Δδ
13

CGr-Cm calculation for site SO-236-052 showed maximum differences of the planktic and epibenthic stabile δ
13

C 210 

values during the full interglacial periods of MIS 7, 5 and 1, coinciding with the global sea-level highstands. Accordingly, 

minimum differences were documented for the glacial periods MIS 6 and 2 and sea-level lowstands.  

 

3.3 Sedimentological and geochemical records 

The detailed sedimentological and geochemical data of core SO-236-052-4 reveal a glacial-interglacial pattern but also 215 

considerable short-term variability (Figs. 4a-d). Sortable silt records are available for both sites and in general they show 

coarser means in interglacial times (Figs. 4a, 5). However, absolute values and variability are much greater in core M74/4-

1143 which is located in the drift of the Kardiva Channel (Betzler et al., 2013b) compared to core SO-236-052-2 from the 

more sheltered southern part of the Inner Sea. In core M74/4-1143, sortable silt shows an increase towards the MIS 6/5 

transition (Termination II) followed by generally elevated values during the MIS 5.5, whereas there is much less variability 220 

at the same time in the data from core SO-236-052-4. Both cores show a coarsening of the sortable silt towards the MIS 1. 

Bulk mean grain size shows a pronounced glacial-interglacial variability with up to 57 µm during the MIS 2 and MIS 6 

and values between 10 and 30 µm for the remainder (Fig. 4a). Finest sediments occur during the early MIS 5 and the MIS 1. 

Total Organic Carbon (TOC) and carbonate (CaCO3) content of core SO-236-052-4 reveal reverse glacial-interglacial 

trends with maximum TOC content during glacial- and maximum carbonate contents during interglacial periods. TOC varies 225 

between 0.85 wt. % (interglacial) and 2.06 wt. % (glacial), whereas the carbonate content varies between 77.03 wt. % 

(glacial) and 89.40 wt. % (interglacial) (Fig. 4b). 
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The Fe/Ca and Si/Ca records reveal generally higher values during glacial and lower values during interglacial periods. 

Both Fe/Ca and Si/Ca records are characterized by an abrupt and short-lasting maximum at Termination II (Fig. 4c). The 

Ba/Ca ratio is comparatively low but shows a similar glacial-interglacial pattern, such as the Fe/Ca and Si/Ca records, with 230 

generally higher ratios during glacial periods and lower ratios during interglacial periods, but with additional variability on 

orbital time scales (Fig. 4d). Inverse patterns are observed for the Sr/Ca record, which follows the inversed δ
18

O curve and 

shows higher values during interglacial and lower values during glacial periods (Fig. 4d).  

 

3.4 Benthic foraminiferal record 235 

In sediment core SO-236-052-4, a total of 256 different benthic foraminiferal species were distinguished, with 51 to 93 

different species per sample. The diversity H(S) of core SO-236-052-4 is relatively high and varies between 3.3 and 4.0, with 

a slight long-term decrease towards today (Fig. 6a). The three-component model of the Q-mode PCA explains 89.14 % of 

the total variance (Fig. 6, Table 2). Assemblage 1 (PC1) explains 31.54 % of the total variance and is dominated by N. 

proboscidea and D. araucana, with Hyalinea inflata, Cymbaloporetta squammosa, Bulimina marginata and Rosalina 240 

vilardeboana as associated taxa. This assemblage occured mainly during the late MIS 7 and 5 and is less pronounced during 

MIS 4 to early MIS 2 (Fig. 6b). Assemblage 2 (PC2) explains 30.54 % of the total variance and is dominated by C. 

mabahethi, with Discorbinella bertheloti, Siphogenerina columellaris, Gyroidina umbonata, Reophax sp., H. inflata, and D. 

araucana as associated taxa (Table 2). The assemblage 2 occured mainly during MIS 6 and 1 (Fig. 6c). Assemblage 3 (PC3) 

explains 27.06 % of the total variance and is dominated by N. proboscidea and Hoeglundina elegans, with D. bertheloti, 245 

Cibicidoides subhaidingeri, Discorbis sp., Spiroplectinella sagittula s.l., and C. mabahethi as associated taxa (Table 2). 

Assemblage 3 occured during MIS 4 to 2 (Fig. 6d). 

The distribution of the most important benthic foraminiferal species, which characterize the three faunal assemblages, are 

displayed in Figs. 6e-g. The most abundant species include C. mabahethi (maximum relative abundance of ~17 % during 

MIS 6), the weakly hispid N. proboscidea (maximum of ~16 % at the end of MIS 5) and D. araucana (maximum of ~11 % 250 

during the onset of MIS 5). Meroplanktonic benthic foraminifera (genera Cymbaloporetta and Tretomphaloides) occured in 

elevated numbers during interglacial periods, particularly during MIS 5 (Figs. 5d and 6e). 

The foraminiferal fauna at the Inner Sea is dominated by hyaline taxa. In comparison, agglutinated individuals were less 

abundant, but with increasing relative abundances up to approximately ≥ 20 % of the entire fauna during the glacial periods. 

 255 

4 Discussion 

4.1 Monsoon variability, dust fluxes and marine productivity 

The Fe/Ca and Si/Ca ratios at site SO-236-052 were interpreted as proxies for terrigenous sediment delivery, deposited by 

aeolian dust fluxes in the Maldives Inner Sea. Local sources of Fe-rich sediments can be excluded since the sediments of the 

Maldives islands and adjacent deep-water environments are characterized by carbonates comprising reef and lagoon 260 
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carbonates of the islands and pelagic deep-water carbonates (Betzler et al., 2013b; Reolid et al., 2017). Calcite content is also 

very high at site SO-236-052 throughout the past 200 ka (Fig. 4b). Studies on modern aerosols of the North Pacific region 

indicate that most of the oceanic iron input is derived from atmospheric transport after mobilisation from the central Asian 

deserts and Chinese loess plateau (Duce and Tindale, 1991). Accordingly, the most likely dust sources for the observed Fe in 

the sediments of the Maldives are the Indian subcontinent and the Asian desert and loess areas (Roberts et al., 2011), 265 

although a minor contribution from Africa and Arabia cannot be excluded (Sirocko and Lange, 1991; Chauhan and Shukla, 

2016). Coincident to the prevailing wind system, the majority of dust is transported via the NE monsoon, which blows 

during northern hemisphere winter. Elevated Fe/Ca ratios during the glacial intervals of MIS 6 and MIS 4-2 indicate the 

combined effects of enhanced glacial dust availability in the source areas and dust transport to the Maldives with generally 

strengthened NE monsoon winds. Enhanced glacial dust fluxes were also observed in the Arabian Sea associated with a 270 

strengthening of northwesterly winds, which blow dust from the Arabian peninsula into the marine areas (deMenocal et al., 

1991; Sirocko and Lange, 1991). On a global scale, the generally colder and drier glacial conditions resulted in a two- to 

fivefold increase of dust fluxes (Maher et al., 2010). Enhanced glacial dust concentrations were also detected in polar ice 

cores (Ruth et al., 2003; EPICA Community Members, 2004) and a multitude of marine records (deMenocal et al., 1993; Liu 

et al., 1999; Zhang et al., 1999; Winckler et al., 2008; Maher et al., 2010).  275 

The observed response of the winter circulation of the Maldives to glacial conditions is in line with the finding of a 

general strengthening of the NE Indian monsoon after initiation of the northern hemisphere glaciation (Gupta and Thomas, 

2003). However, our Fe/Ca record lacks significant variability on the precessional band, which should be expected if the dust 

fluxes were directly proportional to the intensity of the winter monsoon (Caley et al., 2011a, b). Therefore the dust record of 

the Maldives Inner Sea is mainly driven by the generally enhanced dust availability during glacial intervals. As a major dust 280 

source, the Chinese loess plateau is strongly influenced by the East Asian Monsoon (EAM). During the late Quaternary, 

EAM and related vegetation changes are characterized by predominant excentricity cycles associated with the advance and 

retreat of the boreal ice sheets (Ding et al., 1995; Liu et al., 1999; Sun et al., 2006; Hao et al., 2012). On the Chinese loess 

plateau the onset of glacial conditions led to an abrupt increase of atmospheric dust loadings (Zhang et al., 2002) suggesting 

the operation of climate-vegetation feedbacks. Enhanced deposition of dust particles at site SO-236-052 led to a generally 285 

coarsening of the glacial sediment (Fig. 4a) and fostered the distribution of agglutinated benthic foraminifera, which reach a 

relative abundance of up to ~20 % during the last glacial period (Fig. 7e). Most agglutinated foraminifera in core SO-236-

052-4 belong to the Textulariida, such as Spiroplectammina sagittula, Textularia calva or Textularia pala. These and related 

taxa are often associated with relatively coarse-grained substrates and preferentially use siliciclastic grains for test 

construction (Allen et al., 1999; Murray, 2006; Armynot du Châtelet et al., 2013).  290 

The equatorial Indian Ocean is limited in the micronutrient iron (Wiggert et al., 2006; Maher et al., 2010) and therefore, 

enhanced Fe fluxes during glacial periods may have resulted in increased surface water productivity, similar to observations 

from the Southern Ocean (Anderson et al., 2014; Martínez-García et al., 2014) and the equatorial Pacific Ocean (Costa et al., 
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2016). The TOC and Ba contents of marine sediments are widely used as proxies for organic matter fluxes and surface water 

productivity (Müller and Suess, 1979; Gingele et al., 1999; McManus et al., 1999; Rühlemann et al., 1999). But the 295 

applicability of both proxies in quantitative reconstructions is limited by the specific sedimentological and biogeochemical 

processes at the sediment-water interface, including the bulk accumulation rate and bottom water oxygenation (Möbius et al., 

2011; Schoepfer et al., 2015; Naik et al., 2017).  

Elevated TOC and Ba/Ca values in core SO-236-052-4 suggest generally enhanced organic matter fluxes during glacial 

periods, which may reflect the influence of Fe fertilisation (Fig. 7b-d). The benthic foraminiferal faunas at site SO-236-052 300 

reveal a marked glacial-interglacial pattern (Figs. 6, 7f). The diversity, microhabitat partitioning and species composition of 

deep-sea benthic foraminiferal faunas is mainly controlled by the combined influences of quantity and quality of food supply 

and oxygen content of the bottom and pore waters (Jorissen et al., 1995; Fontanier et al., 2002). The diversity of the faunas is 

high, with H(S) values always > 3.2, throughout the studied time interval, suggesting the absence of extreme environmental 

conditions at the sea floor of the study site. Therefore, the observed faunal changes likely reflect variations in the amount and 305 

quality of food supply.    

The most abundant species of the three benthic foraminiferal assemblages comprise C. mabahethi, N. proboscidea and D. 

araucana, all with PC scores > 3 in at least one assemblage (Table 2). Microhabitat studies demonstrated that most species 

of the genera Cibicides and Cicididoides live as suspension feeders on or elevated above the sea floor (Lutze and Thiel, 

1989; Linke and Lutze, 1993), therefore we assume a similar microhabitat preference for C. mabahethi. In the Red Sea this 310 

species is adapted to relatively high oxygen contents and low organic matter fluxes (Edelman-Furstenberg et al., 2001; 

Badawi et al., 2005). The cosmopolitan N. proboscidea inhabits an epifaunal to very shallow infaunal microhabitat 

(Fontanier et al., 2002; Licari et al., 2003) and has been described as detritus feeder from various bathyal and abyssal 

environments. In the South Atlantic Ocean, N. proboscidea is associated with well-ventilated and oligotrophic conditions 

(Schmiedl et al., 1997). Whereas this species thrives under moderate to high organic matter fluxes and oxygen-depleted 315 

intermediate waters in the Indian Ocean (Murgese and De Deckker, 2007; De and Gupta, 2010) and was used as a proxy for 

the strength of the SW monsoon (Gupta and Srinivasan, 1992; Gupta and Thomas, 2003; Sarkar and Gupta, 2014). These 

observations and the high relative abundance of N. proboscidea in core SO-236-052-4 during the last glacial intervals MIS 

4-2, as well as the interglacial interval MIS 5 suggest an adaptation to a wide range of trophic conditions and confirms its 

tolerance to moderate oxygen depletion. Little information is available on the ecology of D. araucana but its flat trochospiral 320 

morphology and distribution in the North Atlantic Ocean suggest an epifaunal microhabitat and adaptation to suspended food 

sources (Corliss and Chen, 1988; Koho et al., 2008). Similar to the closely related D. bertheloti it may prefer mesotrophic 

and oxic conditions (De, 2010) with a tolerance to moderate oxygen depletion (Edelmann-Furstenberg et al., 2001). The 

shallow infaunal Hoeglundina elegans is commonly associated with low to moderate organic matter fluxes, fresh 

phytodetritus and high oxygen contents (Corliss, 1985; Koho et al., 2008). 325 
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The ecological preferences of the dominant taxa suggest that faunal changes at site SO-236-052, although pronounced, 

were driven by rather subtle changes in the amount of organic matter fluxes. Instead, the faunal changes likely reflect 

variations in lateral suspension of food particles, substrate-specific development of infaunal niches, and the influence of 

oxygen changes on the quality of the organic matter. The high dominance of the detritus feeders N. proboscidea and H. 

elegans in assemblage 3 suggest highest organic matter fluxes during the last glacial MIS 4-2 (Fig. 7f). In contrast, the 330 

dominance of the epifaunal suspension feeder C. mabahethi in assemblage 2 during the penultimate glacial (MIS 6) suggests 

relatively lower organic matter fluxes. The N. proboscidea/D. araucana assemblage 1 of MIS 5 reveals some similarity to 

assemblage 3 but the high abundance of D. araucana suggests an overall lower food flux with a considerable amount of 

suspended particles. In addition, the relatively finer-grained substrate likely opened infaunal niches as indicated by the 

presence of the shallow to deep infaunal Bulimina marginata during the MIS 5 (Jorissen and Wittling, 1999) (Fig. 6e).   335 

While the benthic foraminiferal fauna preliminary show changes on glacial-interglacial time scale, the TOC content and 

Ba/Ca ratio are characterized by additional variability in the precessional band. The surface water productivity of the 

northern Indian Ocean is strongly linked to wind-induced mixing of the upper water column and upwelling of nutrient-rich 

subsurface waters and thus reveals a close association with seasonal changes of the monsoonal wind system (Nair et al., 

1989). Accordingly, productivity changes in the northern and northwestern Arabian Sea are coherent to the strength of the 340 

SW monsoon (Ivanova et al., 2003; Leuschner and Sirocko, 2003; Singh et al., 2011), and along the Indian west coast to the 

strength of the NE monsoon (Rostek et al., 1997; Singh et al., 2011). Elevated TOC and Ba/Ca ratios at site SO-236-052 

during phases of reduced northern hemisphere summer insolation suggest a direct influence of the Indian winter monsoon on 

productivity and related organic matter fluxes of the Maldives Inner Sea during the past 200 ka, which is consistent with the 

present-day situation (de Vos et al. 2014). The close link between the winter monsoon intensity and surface water 345 

productivity in the study area is confirmed by the difference between the δ
13

C values of the epipelagic G. ruber (Gr) and the 

epibenthic C. mabahethi (Cm) (Figs. 3, 8). Low Δδ
13

CGr-Cm values indicate enhanced vertical mixing of the water column, 

which is associated with increased supply of nutrients from subsurface waters into the photic zone, based on enhanced 

surface water productivity. 

 350 

4.2 Sea-level changes, sedimentation processes and benthic ecosystem dynamics 

The close association of changes in sediment composition (i.e. bulk grain size, carbonate content) at site SO-236-052 with 

the LR04 stable benthic isotope stack (Lisiecki and Raymo, 2005) suggest a dominant influence of sea-level changes on the 

depositional environments of the Maldives Inner Sea. This is also corroborated by the Sr/Ca variations in the core. In 

periplatform ooze, i.e. areas around shallow water carbonate banks, higher Sr contents are a consequence of higher input of 355 

shallow water aragonite (Dunbar and Dickens, 2003), which is produced in the neritic parts of the platforms and exported to 

the areas around the platform by currents. 
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The observed changes in bottom currents likely influenced the lateral transport of suspended organic particles as is 

suggested by variations in the relative abundance of suspension feeders in the different benthic foraminiferal assemblages 

(Figs. 6, 7, Table 2). The dominance of D. araucana during MIS 5 and C. mabahethi during MIS 6 and MIS 1 indicate 360 

phases of enhanced lateral food supply, which for the interglacial periods (MIS 5, MIS 1) correlate with reconstructed higher 

current velocities (Fig. 5). The interglacial intervals of SO-236-052-4 (mainly MIS 5 and MIS 7, Fig. 5) contain high 

abundances of meroplanktonic benthic foraminifera (Cymbaloporetta, Tretomphaloides), which build floating chambers for 

dispersal (Banner et al., 1985; Alve, 1999). These taxa are commonly found in shelf environments (Milker and Schmiedl, 

2012). Their acme during the last interglacial maximum at bathyal depth of the Maldives Inner Sea coincides with almost 365 

absence of other displaced species from reef and lagoon environments, such as Elphidium, Amphistegina or Operculina 

(Parker and Gischler, 2011). This implies a repeated colonization of bathyal environments with meroplanktonic taxa from 

submerged neritic environments during sea-level highstands and strengthened bottom water velocity.  

 

4.3 Changes in intermediate water circulation and oxygenation 370 

The epibenthic stable carbon isotope record of core SO-236-052-4 lacks a coherent glacial-interglacial pattern but reveals an 

overall δ
13

CCm increase of ~0.5 ‰ over the past 200 ka (Fig. 3). Long-term trends of similar magnitude have been recorded 

from sites bathed by the Antarctic Intermediate Water mass (AAIW) in the southwestern Pacific Ocean (Pahnke and Zahn, 

2005; Elmore et al., 2015; Ronge et al., 2015). The general resemblance of the various epibenthic δ
13

C records suggests a 

significant role of AAIW in ventilation of bathyal environments of the Maldives Inner Sea, which is consistent with the 375 

modern oceanographic situation (You, 1998).  

Following the approach of Hoogakker et al. (2015) we estimated changes in the oxygen content of the intermediate water 

mass of the Maldives Inner Sea based on the Δδ
13

CCm-Ga signal, i.e. the difference between the δ
13

C values of the epifaunal C. 

mabahethi and the deep infaunal G. affinis s.l. The resulting O2 concentrations never dropped substantially below 45 µmol 

kg
-1

 (~1 ml l
-1

) (Fig. 8). Moreover, the oxic to low oxic conditions (O2 > 1 ml l
-1

) did not seem to pose stress to the benthic 380 

foraminiferal fauna. Instead, the proportion of the deep infauna increases exponentially under dysoxic conditions, i.e. at O2 

values significantly below 1 ml l
-1

 (Jorissen et al., 2007). The lack of dysoxic conditions at site SO-236-052 at any time of 

the past 200 ka is corroborated by the persistent high diversity across glacial and interglacial periods and the low abundance 

of deep infaunal taxa.  

The reconstructed O2 record reveals precessional changes between oxic and low oxic conditions during northern 385 

hemisphere insolation maxima and minima, respectively. Detailed stable isotope records from the southwestern Pacific 

Ocean indicate enhanced AAIW formation during warm intervals (Pahnke and Zahn, 2005; Elmore et al., 2015; Ronge et al., 

2015). Accordingly, the strength of the Oxygen Minimum Zone (OMZ) at the Maldives Inner Sea, which is preconditioned 

by the southward expansion of the OMZ from the Arabian Sea (Reid, 2003), is controlled by the inflow of the AAIW from 

the Subantarctic Southern Ocean and thus contains a strong southern hemisphere climate signal. The reconstructed O2 390 
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changes in intermediate waters at site SO-236-052 resemble those from the deep OMZ of the western Arabian Sea, which is 

influenced by the advection of oxygen-rich North Atlantic Deep Water (NADW) (Schmiedl and Mackensen, 2006). The 

dependence of oxygen changes in Indian Ocean intermediate and deep-water masses from the inflow of Atlantic and 

Antarctic water masses is corroborated by a number of recent observations from the northwestern and southeastern Arabian 

Sea (Pattan and Pearce, 2009; Das et al., 2017; Naik et al., 2017). 395 

The long period of lowered O2 values below 60 µmol kg
-1

 centred at MIS 4-3 coincides with a marked monsoon and 

upwelling maximum in the Arabian Sea (Hermelin and Shimmield, 1995; Clemens and Prell, 2003; Leuschner and Sirocko, 

2003; Caley et al., 2011a, b), which caused a strengthening and deepening of the OMZ (Almogi-Labin et al., 2000; Den Dulk 

et al., 2000; Schmiedl and Leuschner, 2005). The expansion of the Arabian Sea OMZ southward into the equatorial region 

likely preconditioned the oxygen levels of intermediate waters of the Maldives Inner Sea. There, oxygen changes were 400 

further lowered by the reduced glacial advection of oxygen-rich AAIW and enhanced regional microbial oxygen 

consumption reflecting a superposition of high and low-latitude climate signals. The resulting changes in biogeochemical 

processes at site SO-236-052 are illustrated by the establishment and long-term persistence of the benthic foraminiferal 

assemblage 3 underlining the positive response of N. proboscidea and associated species such as H. elegans and D. 

bertheloti to moderately reduced oxygen and increased food levels.  405 

Abrupt O2 drops occur at the end of the last two glaciations suggesting short phases of reduced AAIW advection or 

increased surface water productivity and related oxygen consumption at depth (Fig. 8). The recorded events correlate with 

phases of increased Agulhas leakage, which have been linked to a strengthening of the Indian monsoon and Indian Ocean 

equatorial winds (Peeters et al., 2004). Accordingly, an additional impact of changes in the strength of the Indian Ocean 

Equatorial Westerlies (IEW) on environmental changes of the Maldives Inner Sea appears likely (Beaufort et al., 1997, 410 

2001). However, our new results imply that on orbital time scales changes of the winter monsoon and AAIW advection seem 

to play the dominant role.  

 

5 Conclusions 

The integrated evaluation of sedimentological, geochemical and micropaleontological proxy records from the Maldives Inner 415 

Sea (tropical Indian Ocean) furthers our understanding of links between equatorial climate variability, sea-level changes, 

changes in intermediate water ventilation and benthic ecosystem dynamics on orbital time scales during the past 200 ka. The 

main conclusions are:  

(1) Aeolian dust fluxes were considerably enhanced during glacial intervals (MIS 6 and MIS 4-2) as indicated by 

increased Fe/Ca and Si/Ca ratios, generally coarsening of the bulk sediment, and increased abundance of agglutinated 420 

benthic foraminiferal taxa, which use siliciclastic grains for test formation. The enhanced dust input was linked to phases of 
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generally increased atmospheric dust loads and northeast winds, suggesting a close link of Maldives marine environments to 

the aridity of the central Asian loess areas and the strength of the Indian winter monsoon.  

(2) Increased vertical mixing during glacial phases of intensified winter monsoon resulted in enhanced surface water 

productivity and associated organic carbon fluxes to the sea-floor as indicated by TOC values and composition of the benthic 425 

foraminiferal fauna. The Cibicidoides mabahethi (assemblage 2) and Neouvigerina proboscidea (assemblage 3) faunas 

dominate during MIS 6 and MIS 4-2 respectively, suggesting differences in the amount and quality of the food delivery for 

the two glacial intervals. The Δδ
13

CGr-Cm, Ba/Ca and TOC records reveal additional changes on the precessional band, which 

are inversely correlated to northern hemisphere summer insolation underlining a close link of regional vertical mixing of the 

water column and marine productivity to the Indian winter monsoon. 430 

(3) Glacial-interglacial changes in sea level controlled the downslope transport of sediment from the Maldives islands to 

the deep-sea environments and influenced the current strength at the benthic boundary layer of the Inner Sea resulting in 

different grain size and substrates. Hand in hand with sea level changes there was a change in the bottom current regime. The 

drift deposits recovered by core M74/4-1143 show that highest current intensities occurred during and after the glacial 

terminations (Fig. 5). Bottom currents in general were stronger during interglacials than during glacials, although core SO-435 

236-052-4 records lower current velocities and lower amplitude of change. Strongest current intensities at the sea floor likely 

favoured the distribution of certain suspension feeding benthic foraminiferal taxa, such as D. araucana. 

 (4) The long-term trend in the benthic δ
13

C record mirrors the basin-wide change in the composition of intermediate 

waters, implying a close linkage to the main formation sites of the AAIW in the Southern Ocean. The precessional changes 

of estimated oxygen concentrations of intermediate waters are coherent with changes in the deep Arabian Sea. This suggests 440 

an influence of the lateral expansion of oxygen minimum waters from the Arabian Sea into the equatorial intermediate 

Indian Ocean and modulation by inflowing AAIW from the south. The predominance of N. proboscidea during a long phase 

of reduced oxygen concentrations (with average oxygen concentrations around 50 µmol kg
-1

) during late MIS 5 to late MIS 3 

suggests an adaption of this species to the particular biogeochemical conditions and food quality associated with low oxic 

conditions. 445 
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Table Captions 

Table 1: Accelerator Mass Spectrometry (AMS) radiocarbon dating results based on mixed surface-dwelling planktonic 

foraminifera (Gr = Globigerinoides ruber, white; Gs = Globigerinoides sacculifer) from 35 cm, 80 cm and 140 cm sediment 765 

depth of core SO-236-052-4. Conventional radiocarbon ages were calibrated using the radiocarbon calibration program 

CALIB (version 7.0.4; Stuiver and Reimer, 1993) and the calibration curve Marine13 (Reimer et al., 2013).  

 

No. Sample ID Lab ID Material 
Core 
depth 

12
C/ 

13
C 

14
C age Calibrated age (ΔR 0) 

       
cal BP (2s ranges, 95.4 % probability) 

    
[mbsf] o/oo ya BP 

range 
[years] 

rel. area u. 
distr. 

median of prob. 
[ka] 

          
1 

SO236-
052-035 

Beta-
418574 

Gr, Gs 0.35 +1.4 7940 ±30 
8330 - 
8480 

1.00 8.4 ± 0.08 

2 
SO236-
052-080 

Beta-
418575 

Gr, Gs 0.80 +1.6 
12890 
±40 

14310 - 
15020 

1.00 14.7 ± 0.36 

3 
SO236-
052-140 

Beta-
418576 

Gr, Gs 1.40 +1.8 
23930 
±100 

27480 - 
27850 

1.00 27.7 ± 0.19 

 

 770 

Table 2: Species composition of benthic foraminiferal assemblages. Principal component number, dominant and important 

associated species with principal component scores (Q-mode) and explained variance in percent of total variance are given. 

  

Q-mode Principal 
Components 

Species Scores Explained variance [%] 

PC1 Neouvigerina proboscidea 5.812 31.54 

 
Discorbinella araucana 3.948 

 

 
Hyalinea inflata 2.562 

 

 
Cymbaloporetta squammosa 1.913 

 

 
Bulimina marginata 1.729 

 

 
Rosalina vilardeboana 1.595 

 

PC2 Cibicides mabahethi 7.466 30.54 

 
Discorbinella bertheloti 1.756 

 

 
Siphogenerina columellaris 1.622 

 

 
Gyroidina umbonata 1.589 

 

 
Reophax sp. 1.387 

 

 
Hyalinea inflata 1.214 

 

 
Discorbinella araucana 1.109 

 

PC3 Neouvigerina proboscidea 4.608 27.06 

 
Hoeglundina elegans 3.952 

 

 
Discorbinella bertheloti 3.004 

 

 
Cibicidoides subhaidingeri 2.311 

 

 
Discorbis sp. 2.161 

 

 
Spiroplectinella sagittula s.l. 1,808 

 

 
Cibicides mabahethi 1,084 

 
 

  775 
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Figure Captions 

Figure 1: Location maps of the Maldives archipelago in the Indian Ocean (a, b) and the setting of the study area (c) 

(modified after Betzler et al., 2013a), showing the location of sediment core M74/4-1143 in the Kardiva Channel and core 

SO-236-052-4 in the central part of the Inner Sea (red circles). 

 780 

Figure 2: Full resolution stable oxygen isotope records of the planktonic foraminifer G. ruber (a) and age-depth plots for the 

sediment cores SO-236-052 (light blue) and M74/4-1143 (grey). Orange triangles indicate radiocarbon dates and circles 

indicate age control points derived from correlation with the LR04 benthic isotope stack of Lisiecki and Raymo (2005). 

Sedimentation rates are derived from linear interpolation between age data. MIS denotes the Marine stable oxygen isotope 

stages. 785 

 

Figure 3: Stable oxygen and carbon isotope records of planktonic and benthic foraminifera of sediment core SO-236-052. 

Displayed are the planktonic species G. ruber (light blue), the epibenthic species C. mabahethi (dark blue) and the deep 

infaunal species G. affinis s.l. (red). MIS denotes the Marine stable oxygen isotope stages. 

 790 

Figure 4: Sedimentological and geochemical records of sediment core SO-236-052-4 from the central part of the Maldives 

Inner Sea. a) Sortable silt (black) and bulk sediment (grey) MEAN values, b) Total Organic Carbon (TOC) (dark green) and 

calcium carbonate (light green) content of the sediment, c) iron (dark blue) and silicium (light blue), and d) barium (pink) 

and strontium (purple). All element count rates are given in relation to the calcium counts of the XRF core scans. Thin lines 

represent full-resolution data, bold lines indicate five-point running averages. Only the Ba/Ca ratio is displayed with a 795 

fifteen-point running average. MIS denotes the Marine stable oxygen isotope stages. 

 

Figure 5: a) Epibenthic stable oxygen isotope record of core SO-236-052-4 (dark blue) in comparison with the LR04 benthic 

stable isotope stack (dashed grey line; Lisiecki and Raymo 2005). b-c) Comparison of the sortable silt records of sediment 

cores M74/4-1143 and SO-236-052-4, and d) relative abundance of meroplanktonic Benthic Foraminifera (BF; including the 800 

genera Cymbaloporetta and Tretomphaloides) in sediments of core SO-236-052-4. Thin lines represent full-resolution data, 

bold lines indicate five-point running averages. MIS denotes the Marine stable oxygen isotope stages. 

 

Figure 6: Comparison of benthic foraminiferal faunal records of core SO-236-052-4 from the central part of the Maldives 

Inner Sea. a) Shannon-Wiener diversity index H(S), b-d) Q-mode benthic foraminiferal assemblages, including the N. 805 

proboscidea-/D. araucana-fauna (assemblage 1), the C. mabahethi-fauna (assemblage 2), and the N. proboscidea-/H. 

elegans-fauna (assemblage 3). Loadings ≥ 0.5 are defined as significant after Backhaus et al. (2008). e-g) Distribution of 
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selected important and associated benthic foraminiferal taxa, given in percent. The meroplanktonic Benthic Foraminifera 

(BF) comprise the genera Cymbaloporetta and Tretomphaloides.  

 810 

Figure 7:  Variation of the insolation difference between the June and December solstice at 30° N (after Laskar, 2004; 

calculated with AnalySeries 2.0: Paillard et al. 1996) (a) in comparison with geochemical and benthic foraminiferal 

productivity records of core SO-236-052-4. b) Total Organic Carbon (TOC) content and c) Ba/Ca ratio as derived from XRF 

scanning count rates as indicator for surface water productivity. d) Fe/Ca ratio and  e) relative abundance of agglutinated 

benthic foraminifera as indicator for enhanced dust supply. f) Principal Components (PC) show the C. mabahethi-fauna 815 

(assemblage 2) and N. proboscidea-/H. elegans-fauna (assemblage 3). Thin lines represent full-resolution data, bold lines in 

b), d) and e) indicate five-point running averages, the bold line in c) indicate a fifteen-point running average. MIS denotes 

the Marine stable oxygen isotope stages.  

 

Figure 8:  Water mass circulation changes obtained from stable δ
13

C data of core SO-236-052-4 (Indian Ocean) in 820 

comparison to ventilation changes in the Arabian Sea. a) δ
13

C records of the planktonic G. ruber (light blue) and the 

epibenthic C. mabahethi (dark blue), b) difference between the planktonic and epibenthic stabile carbon records (Δδ
13

CGr-

Cm), c) differences between epibenthic and deep endobenthic δ
13

C records of SO-236-052-4 (dark blue) from the intermediate 

Maldives Inner Sea in comparison to that of GeoB3004 (purple) from the deep Arabian Sea (Schmiedl and Mackensen, 

2006). Changes in intermediate- and deep-water oxygen concentrations are calculated by the linear regression between the 825 

Δδ
13

C and O2 < 235 µmol kg
-1

 after Hoogakker et al. (2015). Variation of the insolation difference between the June and 

December solstice at 30° N (yellow) were estimated after Laskar (2004) with AnalySeries 2.0 (Paillard et al., 1996). All lines 

indicate five-point running averages. MIS denotes the Marine stable oxygen isotope stages. Cib. = Cibicides, Cm = Cibicides 

mabahethi, Cw = Cibicides wuellerstorfi, Ga = Globobulimina affinis, Gr = Globigerinoides ruber.   
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Figure 1   830 

Clim. Past Discuss., doi:10.5194/cp-2017-54, 2017
Manuscript under review for journal Clim. Past
Discussion started: 3 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



29 

Figure  2  

Clim. Past Discuss., doi:10.5194/cp-2017-54, 2017
Manuscript under review for journal Clim. Past
Discussion started: 3 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



30 

Figure 3  
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Figure 4  
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Figure 6   835 
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Figure 7  
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