
1 

 

Climate signals in a multispecies tree-ring network from central and 1 

southern Italy and reconstruction of the late summer temperatures 2 

since the early 1700s 3 

  4 
Giovanni Leonelli1, Anna Coppola2, Maria Cristina Salvatore2, Carlo Baroni2,3, Giovanna Battipaglia4,5, 5 
Tiziana Gentilesca6, Francesco Ripullone6, Marco Borghetti6, Emanuele Conte7, Roberto Tognetti7, Marco 6 
Marchetti7, Fabio Lombardi8, Michele Brunetti9, Maurizio Maugeri9,10, Manuela Pelfini11, Paolo 7 
Cherubini12, Antonello Provenzale3, Valter Maggi1,3 8 
 9 
1 Università degli Studi di Milano–Bicocca — Dept. of Earth and Environmental Science 10 
2 Università degli Studi di Pisa — Dept. of Earth Science 11 
3 Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche, Pisa 12 
4 Università della Campania — Dept. DiSTABiF 13 
5 University of Montpellier 2 (France) — PALECO EPHE 14 
6 Università degli Studi della Basilicata — School of Agricultural, Forestry, Food and Environmental Sciences, Potenza 15 
7 Università degli Studi del Molise — Dept. of Bioscience and Territory 16 
8 Università Mediterranea di Reggio Calabria — Dept. of Agronomy 17 
9 Istituto di Scienze dell’Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, Bologna 18 
10 Università degli Studi di Milano — Dept. of Physics 19 
11 Università degli Studi di Milano — Dept. of Earth Science 20 
12 Swiss Federal Institute for Forest, Snow and Landscape Research WSL (Switzerland) 21 

Correspondence to: Giovanni Leonelli (giovanni.leonelli@unimib.it) 22 

Abstract. A first assessment of the main climatic drivers that modulate the tree-ring width (RW) and maximum latewood 23 

density (MXD) along the Italian Peninsula and northeastern Sicily was performed using 27 forest sites, which include conifers 24 

(RW and MXD) and broadleaves (only RW). Tree-ring data were compared using the correlation analysis of the monthly and 25 

seasonal variables of temperature, precipitation and standardized precipitation index (SPI, used to characterize meteorological 26 

droughts) against each species-specific site chronology and against the highly sensitive to climate (HSTC) chronologies (based 27 

on selected indexed individual series). We find that climate signals in conifer MXD are stronger and more stable over time than 28 

those in conifer and broadleaf RW. In particular, conifer MXD variability is directly influenced by the late summer (August, 29 

September) temperature and is inversely influenced by the summer precipitation and droughts (SPI at a timescale of 3 months). 30 

Conifer RW is influenced by the temperature and drought of the previous summer, whereas broadleaf RW is more influenced by 31 

summer precipitation and drought of the current growing season. The reconstruction of the late summer temperatures for the 32 

Italian Peninsula for the past 300 yr, based on the HSTC chronology of conifer MXD, shows a stable model performance that 33 

underlines periods of climatic worsening around 1699, 1740, 1814, 1909, 1939 CE and well follows the variability of the 34 

instrumental record. Considering a 20 yr low-pass filtered series, the reconstructed temperature record consistently deviates 35 

<1°C from the instrumental record. This divergence may be due also to the precipitation patterns and drought stresses that 36 

influence the tree-ring MXD at our study sites. The reconstructed temperature variability is valid for the west-east oriented 37 

region including Sardinia, Sicily and the western Balkan area along the Adriatic coast. 38 

1 Introduction 39 

Reconstructions of climate for periods before instrumental records rely on proxy data from natural archives and on the ability to 40 

date them. The build-up of these ‘natural archives’ can exploit physical processes (e.g., ice cores, glacial landforms), biological 41 

growth processes (e.g., tree-rings, corals) or the direct interactions of these elements (e.g., pollen sequences in lacustrine 42 

deposits, or lake varves). The reading of sequences from these archives requires a deep understanding of the many complex 43 
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time-varying interactions between biotic and abiotic processes that characterize any ecosystem and may lead to relative or 1 

absolute chronologies with varying resolutions and time scales, which are different for each type of proxy. Among the various 2 

available proxies, tree rings are one of the most used datasets for reconstructing past climates with annual resolution in 3 

continental areas and are often from the temperature-limited environments with high latitudes and altitudes (e.g., Briffa et al., 4 

2004; Rutherford et al., 2005). They can be used at the regional to global scales (IPCC, 2013) and long chronologies that can 5 

cover millennia, back as far as the early Holocene are available (for Europe: Becker, 1993; Friedrich et al., 2004; Nicolussi et al., 6 

2009). 7 

The reconstruction of past climate variability and the analysis of its effects on forest ecosystems is crucial for understanding 8 

climatic processes and for predicting what responses should be expected in ecosystems under the ongoing climatic and global 9 

changes. In particular, the Mediterranean region is a prominent climate change hot spot (Giorgi, 2006; Turco et al., 2015), and by 10 

the end of this century, it will likely experience a regional warming higher than the global mean (up to +5°C in summer) and a 11 

reduction of the average summer precipitation (up to -30 %; Somot et al., 2007; IPCC, 2013). The increase in droughts during 12 

the growing season is already negatively impacting tree growth, especially at xeric sites in the southwestern and eastern 13 

Mediterranean (e.g., Galván et al., 2014). At the ecosystem level, in the near future, the responses to climate changes will impact 14 

different forest species differently, depending on their physiological ability to acclimate and adapt to new environmental 15 

conditions (e.g., Battipaglia et al., 2009; Ripullone et al., 2009), and on their capacity to grow, accumulate biomass, and 16 

contribute as sinks in the terrestrial carbon cycle. Natural summer fires in the Mediterranean area are also expected to increase in 17 

frequency over the coming decades as a response to increasingly frequent drought conditions, assuming a lack of additional fire 18 

management and prevention measures (Turco et al., 2017). Furthermore, Mediterranean ecosystems are expected to experience 19 

the largest proportional change in biodiversity loss of any terrestrial ecosystem, since they are directly influenced by the major 20 

drivers of climate change and by land use-change (Sala et al., 2000). 21 

1.1 Tree-ring Response to Climate 22 

Climate-growth relationships have been studied for several species in the Mediterranean region, with different objectives: forest 23 

productivity (e.g., Biondi, 1999; Piovesan and Schirone, 2000; Boisvenue and Running, 2006; Nicault et al., 2008; Piovesan et 24 

al., 2008; Babst et al., 2013), forest trees ecophysiology, wood formation and related dating issues (Cherubini et al., 2003) 25 

sustainability of forest management (e.g., Boydak and Dogru, 1997; Barbati et al., 2007; Marchetti et al., 2010; Castagneri et al., 26 

2014), provision of ecosystem services (e.g., Schröter et al., 2005) such as carbon sequestration (e.g., Scarascia-Mugnozza and 27 

Matteucci, 2014; Calfapietra et al., 2015; Borghetti et al., 2016 in press), effective biodiversity conservation (e.g., Todaro et al., 28 

2007; Battipaglia et al., 2009), and climate reconstruction (see next heading), which has led to a variety of associations between 29 

climate variables and growth responses in conifers and broadleaves from different environments and ecosystems. 30 

This study is focused on conifer and broadleaf forest sites located along the whole latitudinal range of the Italian Peninsula. 31 

Here, mainly considering the species of this study, we report the main findings on the climate-growth responses found in the 32 

Mediterranean region. 33 

— Conifers. Studies on silver fir (Abies alba Mill.) growth in the Italian Peninsula reveal a distinct high sensitivity to the climate 34 

of the previous summer, August-1 in particular, positive correlations with precipitation and negative correlations with temperature 35 

(Carrer et al., 2010; Rita et al., 2014). Moreover, tree growth in this region is moderately negatively correlated to the temperature 36 

of the current summer (unlike that in stands located in the European Alps; Carrer et al., 2010), namely, high temperatures in July 37 

and August negatively affect tree growth. A dendroclimatic network of pines (Pinus nigra J.F. Arnold and P. sylvestris L.) in 38 

east-central Spain shows that drought (namely, the Standardized Precipitation-Evapotranspiration Index - SPEI; Vicente-Serrano 39 

et al., 2010) is the main climatic driver of tree-ring growth (Martin-Benito et al., 2013). Temperatures of the previous autumn 40 

(September) and of the current summer (July and August) have inverse effects on tree-ring growth, whereas growth is enhanced 41 

Clim. Past Discuss., doi:10.5194/cp-2017-48, 2017
Manuscript under review for journal Clim. Past
Discussion started: 17 March 2017
c© Author(s) 2017. CC-BY 3.0 License.



3 

 

by summer precipitation, especially in P. sylvestris; overall a higher influence from the climatic conditions of the previous year is 1 

seen in P. nigra. In a P. uncinata network from the Pyrenees, an increasing influence of summer droughts (SPEI) on tree-ring 2 

widths (RW) during the 20th century and the control of May temperatures on maximum latewood density (MXD) is found 3 

(Galván et al., 2015). However, in the proposed analyses, the possible influences of the summer climate variables from the year 4 

prior to the growth were not considered. Elevation, and particularly the related moisture regime, in the eastern Mediterranean 5 

region is the main driver of tree-ring growth patterns in a multispecies conifer network comprised of P. nigra, P. sylvestris and P. 6 

pinea L. specimens (Touchan et al., 2016). A dipole pattern in tree-ring growth variability is reported for Mediterranean pines 7 

ranging from Spain to Turkey (and Italy in the middle), with a higher sensitivity to summer drought in the east than in the west, 8 

and with a higher sensitivity to early summer temperature in the west (Seim et al., 2015). A strong correlation between autumn-9 

to-summer precipitation and between summer drought and tree-ring growth is reported for sites (mainly of conifers) in northern 10 

Africa-western Mediterranean, with trees from Morocco also responding to the North Atlantic Oscillation Index (Touchan et al., 11 

2017). 12 

— Broadleaves. In the western Mediterranean (northern Morocco, Algeria, Tunisia, Italy and southern France), deciduous oaks, 13 

including Quercus robur L., reveal a direct response of tree-ring growth to summer precipitation and an inverse response to 14 

summer temperature (Tessier et al., 1994). Beech (Fagus sylvatica L.) is particularly sensitive to soil moisture and air humidity, 15 

and in past decades, long-term drought has been shown to be the main factor causing a growth decline in the old-growth stands 16 

in the Apennines (Piovesan et al., 2008). Moreover, beech shows different responses to climate at high- vs. low-altitude sites 17 

(Piovesan et al., 2005), with these latter, being positively affected by high May temperatures. Beech seems to present complex 18 

climate growth-responses and also appears to be a less responsive species in the Mediterranean area when compared to conifers 19 

such as P. sylvestris, P. nigra, P. uncinata or A. alba (as found in south-east France; Lebourgeois et al., 2012). 20 

In all cases, the availability of long and reliable time series of meteorological variables, possibly from very close to forest sites, 21 

is crucial to estimating the climate-growth relationships. However, global or regional climatological datasets frequently lack 22 

local resolutions, especially in remote sites. We therefore decided to reconstruct climate variability more accurately, by 23 

considering local behaviors. 24 

1.2 Tree-ring Based Climate Reconstructions 25 

One of the most powerful tools in terrestrial paleoclimatology is obtaining dated information about the past climate and past 26 

environmental conditions in a region by analyzing the tree rings. However, in the Mediterranean region, the low temporal 27 

stability of the recorded climatic signals (e.g., Lebourgeois et al., 2012; Castagneri et al., 2014), the scarcity of long 28 

chronologies, and the high variability of climatic and ecological conditions (Cherubini et al., 2003) often make this analysis 29 

difficult. Ring widths are among the most used variables for climate reconstruction but usually show a higher temporal 30 

instability in their relationship with climate than that of maximum latewood density (for the Pyrenees, see Büntgen et al., 2010). 31 

The potential to analyze relatively long chronologies in the Mediterranean region has allowed for the reconstruction of the past 32 

climate (precipitation and droughts, in particular) back to the 16th century. The 400-yr reconstruction of the October-May 33 

precipitation in Jordan allowed for the identification of dry conditions at the end of the 17th century and a higher variability in 34 

the recent decades 1960-1995 (using Juniperus phoenicia L. tree rings; Touchan et al., 1999). Reconstructed May-August 35 

precipitation for the eastern Mediterranean by means of a multi-species conifer network (mainly P. sylvestris, P. nigra, Juniperus 36 

excelsa M.Bieb. and Cedrus libani A.Rich.) has allowed researchers to identify the period of 1591-1595 as the longest sequence 37 

of consecutive dry years in the past 600 yr and the 1601–1605 and 1751–1755 periods as the wettest on record (Touchan et al., 38 

2005a). Several reconstructions of May-June precipitation have been performed, mainly over the last 300-400 yr, in a region 39 

comprising northern Greece-Turkey-Georgia: in northern Aegean-northern Anatolia a tree-ring network of oaks was used for 40 

reconstructing precipitation variability since 1089 CE (Griggs et al., 2007); in the Anatolian Peninsula a mixed conifer-broadleaf 41 
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tree-ring network (mainly P. nigra, P. sylvestris and oaks; Akkemik et al., 2008), a P. nigra network (Köse et al., 2011) and a 1 

multi-species conifer network (mainly P. nigra, P. sylvestris and Abies nordmanniana (Steven) Spach; Köse et al., 2013) were 2 

used; in Caucasus a mixed conifer-broadleaf tree-ring network was used (mainly P. sylvestris, and A. nordmanniana; 3 

Martin‑Benito et al., 2016). In the southern Anatolian Peninsula, April-August precipitation have been reconstructed using a P. 4 

nigra network (Akkemik and Aras, 2005) and in the northern Anatolian Peninsula besides the dominant signal of precipitation in 5 

these environments, March–April temperature have been reconstructed for the last 200 yr using a multispecies conifer network 6 

(Köse et al., 2017). In central Spain, a higher frequency of exceptionally dry summers has been detected since the beginning of 7 

the 20th century using a mixed tree-ring network of Pinus sylvestris and P. nigra ssp. salzmannii covering the past four centuries 8 

(Ruiz-Labourdette et al., 2014). 9 

Reconstructions of past droughts and wet periods over the Mediterranean region have been created using climatic indices such as 10 

the Standardized Precipitation Index (SPI; McKee et al., 1995) in Spain (modeling 12-month July SPI using several species of 11 

the Pinus genre; Tejedor et al., 2016), in Turkey (modeling May-July SPI using J. excelsa; Touchan et al., 2005b) and in 12 

Romania (3-month August standardized SPI using P. nigra; Levanič et al., 2013), which allows for the identification of common 13 

large-scale synoptic patterns. Droughts have been reconstructed using the Palmer Drought Severity Index (PDSI; Palmer 1965). 14 

Using actual and estimated multispecies tree-ring data, Nicalut et al. (2008) found that the drought episodes at the end of the 15 

20th century are similar to those in the 16th-17th century for the western Mediterranean, whereas in the eastern parts of the 16 

region, the droughts seem to be the strongest recorded in the past 500 yrs. 17 

The climate reconstruction of late summer temperatures published by Trouet (2014) for the period 1675–1980 CE in the 18 

northeastern Mediterranean-Balkan region, which used maximum latewood density chronologies, includes sites from the Italian 19 

Peninsula (used in this paper), the Balkan area, Greece and sites from the central and eastern European Alps to central Romania 20 

and Bulgaria, thus including areas characterized by continental climates. After carefully testing the climatic signals recorded in 21 

the tree-ring RW and MXD from different sites and different species, the reconstruction that is proposed in this study is the first 22 

one including only forest sites from the Italian Peninsula, which has a typical Mediterranean climatic regime at low altitudes and 23 

a Mediterranean-temperate regime at the higher altitudes of the Apennines. 24 

 25 

Overall, the main objectives of this paper are:  26 

(i) to identify the most important climatic drivers modulating tree-ring width (RW) and tree-ring maximum latewood density 27 

(MXD) variability in forest sites from central and southern Italy. To our knowledge, this is the first attempt performed in Italy 28 

with the clear objective to find common response patterns in conifer and broadleaf species using a multispecies tree-ring network 29 

and site-specific historical climatic records; 30 

(ii) to estimate the temporal stability of the climate-growth and climate-density relationships; 31 

(iii) to perform a climatic reconstruction based only on trees highly sensitive to climate (HSTC); and  32 

(iv) to estimate the spatial coherence of the obtained reconstruction in the region. 33 

2. Data and Methods 34 

2.1 Study area and study sites 35 

The study region includes the whole Italian Peninsula and eastern Sicily and covers a latitudinal range from 37° 46’ N to 44° 43’ 36 

N (Fig. 1). The peninsula is roughly oriented NW-SE and its longitudinal axis is characterized by the Apennines, a complex 37 

mountain chain caused by the Adria and African plates subducting under the Eurasian plate. The Apennines reach their 38 

maximum altitude at their center (Corno Grande Mt., 2912 m a.s.l., Gran Sasso Massif); a higher altitude is reached in eastern 39 

Sicily by the Etna Volcano (3350 m a.s.l.). 40 
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The study region is surrounded by the Tyrrhenian and Adriatic Seas and is characterized by a typical Mediterranean climate, with 1 

high temperatures and low precipitation during the summer (from June to September) (Fig. 2). Considering the climatic means at 2 

all of the study sites (at a mean elevation of 1225±520 m a.s.l.) over the period of 1880-2014, the temperatures over the study 3 

region range from 0.2° C (January) to 17.6° C (in July and in August) and only 11 % of the total annual precipitation falls during 4 

the summer (from June to August: 155 mm), whereas 34 % falls during winter (from December-1 to February: 493 mm). Autumn 5 

is the second wettest season (31 % of total annual precipitation) and spring is the third wettest (24 % of total annual 6 

precipitation) (Fig. 2). For monthly temperatures, the standard deviations from the mean values at all sites are almost constant 7 

throughout the year (3.4°C), whereas precipitation ranges from 36.2 mm in July (corresponding to 88 % of the average July 8 

precipitation) to 129 mm in December (corresponding to 69 % of the average December precipitation). 9 

The total forest cover in Italy, excluding the regions including the European Alps, is approximately 5.8 M hectares (Corpo 10 

Forestale dello Stato, 2005) which is 28 % of the surface. Forests characterize the landscape of the inner portion of the Apennine 11 

range, at mid to high elevations, and an additional 1.4 M hectares are covered by woodlands and shrublands, which are the so 12 

called Mediterranean ‘macchia’ that border the forests at low elevations and in areas relatively close to the sea. Overall, 13 

broadleaf species are much more abundant in the study region than conifer species, accounting for approximately ¾ of the forest 14 

cover (Dafis, 1997). 15 

The study sites are distributed along the whole latitudinal range of the Italian Peninsula and tree-ring proxies include both RW 16 

and MXD series collected within the NEXTDATA project, from Italian Universities, and from the ITRDB (www.ncdc.noaa.gov; 17 

see Table 1 for full bibliographic references). The dataset is based on 27 forest sites composed of several species (conifers at 16 18 

sites, and broadleaves at 11 sites), from which tree-ring series of conifers (RW and MXD) and of broadleaves (RW) were 19 

prepared (Fig. 1, Table 1). 20 

2.2 Climate variables 21 

Synthetic records of monthly temperature and precipitation series were reconstructed to be representative of the sampled sites 22 

using the anomaly method (New et al., 2000; Mitchell and Jones, 2005), as described in Brunetti et al. (2012). The 23 

spatiotemporal structure of the signal of a meteorological variable over a given area can be described by the superposition of two 24 

fields: the climatological normals over a given reference period (i.e., the climatologies), which are characterized by distinct 25 

spatial gradients, and the departures from them (i.e., the anomalies), which are characterized by higher spatial coherence and 26 

linked to climate variability. Climatologies and anomalies were reconstructed independently of each other using different data 27 

sets (high spatial density and limited temporal coverage for the climatologies, and low spatial density but long temporal 28 

coverage and accurate homogenization for the anomalies). Climatologies were reconstructed following the procedure described 29 

in Brunetti et al. (2014) and Crespi et al. (2017), i.e., by estimating a local temperature (precipitation)-elevation relationship; the 30 

anomalies were reconstructed using weighted averages of high-quality and homogenized neighboring series from the improved 31 

dataset of Brunetti et al. (2006) (where the improvements consist of a new and more accurate homogenization of the early 32 

instrumental period) and records from the Italian Air Force network (Simolo et al., 2010). Finally, the two fields were 33 

superimposed to find the monthly temperature and precipitation series for each sampling site. The climate series start in different 34 

years due to data availability; however, most of the series start around the mid-19th century. Finally, in order to characterize 35 

meteorological drought conditions, the monthly Standardized Precipitation Index (SPI) was calculated at timescales of 1, 2, 3, 6, 36 

9 and 12 months for all of the sites, based on the monthly values of precipitation, using the SPI_SL_6 code of the National 37 

Drought Mitigation Center at the University of Nebraska (http://drought.unl.edu). 38 

2.3 Chronology construction, climate sensitivity and climate reconstructions 39 

— Raw data. All individual series of RW and MXD were examined for correct dating using visual and statistical crossdating. In 40 

Clim. Past Discuss., doi:10.5194/cp-2017-48, 2017
Manuscript under review for journal Clim. Past
Discussion started: 17 March 2017
c© Author(s) 2017. CC-BY 3.0 License.



6 

 

particular, statistical techniques were used to remove potential dating errors by comparing each individual series from one site 1 

against the mean site chronology, which was constructed without the analyzed individual series. Using the COFECHA software 2 

(www.ldeo.columbia.edu), the individual series are moved forward and backward 10 yr from their initial positions, and similarity 3 

indices are calculated over a 50-yr time window, thus highlighting the potential dating errors. 4 

— Site chronologies. To preserve the low-frequency variability in the site chronologies, the Regional Curve Standardization 5 

approach (RCS; Briffa et al., 1992; Briffa and Melvin, 2011; Esper et al., 2003) was used both with the RW and MXD series. We 6 

used the ARSTAN software (ver. 44 h3, www.ldeo.columbia.edu) and did not consider the pith offset estimates between the first 7 

measured ring and the actual first year of growth. This approach does not significantly affect trends and temporal variability at 8 

any time scale in the resulting chronology (Esper et al., 2009; Leonelli et al., 2016). The regional curve (RC) for the mean 9 

chronology, which was obtained after the series alignment to the first measured ring, was smoothed using a cubic spline with a 10 

width of 10 % of the chronology length (Büntgen et al., 2006). Ratios of raw measurements vs. the values of growth predicted by 11 

the RC were computed for all years of the individual series, and the resulting indexed series were averaged by a biweight robust 12 

mean to obtain the site chronologies of RW and of MXD. The RW and MXD site chronologies were constructed only for sites 13 

with at least 10 individual series fulfilling the following conditions: i) the individual series length was >100 yr; ii) the individual 14 

series correlation with the respective site chronology had r > 0.3; iii) the mean interseries correlation (MIC) had r > 0.3; and iv) 15 

the expressed population signal (EPS; Wigley et al., 1984; Briffa and Jones, 1990) was > 0.7. Only the individual series fulfilling 16 

these conditions were used to construct the site chronologies. However, some exceptions were accepted in order to maximize the 17 

number of sites and chronologies available for analysis (see exceptions in Table 1). 18 

— Climate sensitivity. Species-specific climate sensitivity was assessed for the constructed RW and MXD site chronologies over 19 

the common period of 1880-1980 using correlation analysis using the site-specific monthly variables of temperature, 20 

precipitation and Standardized Precipitation Index, from March of the year prior to growth to September of the year of growth. 21 

Correlations were computed using the DENDROCLIM software (Biondi and Waikul, 2004), applying a bootstrap with 1,000 22 

iterations, and the obtained results were analyzed by grouping together conifer and broadleaf species. The results of the climate 23 

sensitivity analysis were used to detect the driving climate variables (DCV; of temperature, precipitation and SPI) for each of the 24 

three groups of chronologies: MXD conifer, RW conifer and RW broadleaf. Specifically, for each group of chronologies and for 25 

each climate variable, the months with significant correlations at most sites (>50 %) and with mean correlation values of |�| > 26 

0.25 were identified (black-filled squares in Fig. 3). Then, from these months, six DCV were constructed by calculating z-scores 27 

and mean departures at each site and then completing the series; a final conversion to temperature and precipitation values was 28 

performed before the values were averaged between the sites, thus creating yearly records of the regionalized monthly climate 29 

variables; these records where then averaged between two to four consecutive months (according to what was obtained; see the 30 

black-filled squares in Fig. 3), finally obtaining the six DCV. 31 

—HSTC chronologies. Based on the available RW and MXD indexed individual series from all of the sites, six HSTC 32 

chronologies were constructed, as in Leonelli et al. (2016). However, given the smaller number of datasets available in this study 33 

and the shortness of the time series, a modified version of the method was applied. In the present the method, all of the RW 34 

(conifer and broadleaf) and MXD (only conifer) indexed individual series were tested against each of the above-defined six 35 

DCV, and only the individual tree-ring indexed series with correlation values of |�| > 0.25 in both of the 100 yr subperiods of the 36 

climatic dataset (1781-1880 and 1881-1980) were used to build each of the six HSTC chronologies, which was done by simply 37 

averaging together the selected indexed series. The six HSTC chronologies were constructed starting from all of the indexed 38 

individual series of conifer MXD (148 series), of conifer RW (245) and of broadleaf RW (140), which were previously obtained 39 

while constructing the site chronologies (also, the indexed individual series from sites not meeting the fixed quality standards for 40 

a site chronology were included at the beginning of the selection). 41 

— Climate sensitivity through time. To test the stability of the climate signals recorded in the HSTC chronologies, a moving 42 
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correlation analysis was conducted between the six HSTC chronologies and their respective DCV, computing bootstrapped 1 

correlation coefficients with DENDROCLIM over 60 yr time windows that were moved one year per iteration over the longest 2 

available periods. 3 

— Climate reconstruction. The climate reconstruction used only the HSTC chronology showing the highest absolute values of 4 

correlation and the most stable signal over time (i.e., the conifer MXD for late summer temperature; see Results). To extend this 5 

HSTC chronology as far back in time as possible, the oldest available individual MXD indexed series with correlations of |�| > 6 

0.25 with this chronology and that had a minimum length of 100 yr were added. Linear regression and scaling models (Esper et 7 

al., 2005) were calibrated and verified over the periods of 1781-1880 and 1881-1980, respectively, and then the same was done 8 

over the inverted periods, in order to estimate model performances and stability. Reduction of error (RE; Fritts, 1976) and 9 

coefficient of efficiency (CE; Briffa et al., 1988) statistics were computed to assess the quality of the reconstructions. The 10 

reconstructed series of late summer temperatures were then used over the period 1901-1980 to build a spatial correlation map 11 

with the KNMI Climate Explorer (http://www.climexp.knmi.nl; Trouet and Oldenborgh, 2013), using the 0.5° grid of August-12 

September average temperature (CRU TS/E-OBS 13.1; 1901–2009; Mitchell and Jones, 2005; Haylock et al., 2008) and 13 

considering only the grid points with over 30 % valid values. This independent dataset was used instead of the Italian one, as the 14 

primary goal was to analyze how far from the Italian Peninsula the reconstructed climatology is still representative. 15 

3 Results 16 

— Site chronologies. Fifteen RW site chronologies (11 from conifers and 4 from broadleaves) and eight MXD site chronologies 17 

(from conifers) were obtained and were used to estimate climate sensitivity at the site level and to detect the most important 18 

climatic drivers over the study region (for species percentages, see boxes in Fig. 3A, 3A’ and 3A’’). The construction of the 19 

HSTC chronologies (for the analysis of the temporal stability of climate signals and for climate reconstruction) was performed 20 

using also the individual series from the twelve sites (5 from conifer and 7 from broadleaves; see Table 1, gray-shaded areas in 21 

Table 2 and Methods) for which the site chronologies did not meet the quality standards. The maximum time span of tree-ring 22 

data covers the period from 1415 (ITRDBITAL015) to 2013 CE (QFIMP1and QFIMP2). However, the mean chronology length 23 

is 215±130 yr for conifers and of 175±25 yr for broadleaves (values rounded to the nearest 5 yr; Table 2). Over the common 24 

period considered (1880-1980 for all MXD and RW chronologies) the mean series intercorrelation and expressed population 25 

signal are approximately 0.5 and 0.8, respectively. 26 

— Tree-ring sensitivity to climate. The site-specific sensitivity analysis performed over the common period of 1880-1980 reveals 27 

that MXD in conifers records stronger climatic signals than RW in either conifers or broadleaves, in terms of the average 28 

correlation coefficient, the number of months showing statistically significant values (p < 0.05) and the fraction of chronologies 29 

(over the maximum number available) responding to the same climatic variable (Fig. 3). In particular, all conifer MXD 30 

chronologies are positively influenced by late summer temperatures (August and September), whereas precipitation from June to 31 

August is negatively correlated with most of them (Fig. 3A and 3B). In terms of SPI, the highest correlations (for both MXD and 32 

RW) were obtained for the indices calculated at the timescales of 2 and mainly of 3 months (SPI_3; only the latter is reported in 33 

the Results), while longer timescales showed fewer significant correlation values. Most conifer MXD are negatively correlated 34 

with SPI_3 from June to September, highlighting that low index values, i.e., drought periods, are associated with high MXD in 35 

the tree rings, and vice versa (Fig. 3C). 36 

For conifer RW, significant correlation coefficients, i.e., those exceeding the mean value of |�| > 0.25 for more than 50 % of the 37 

available chronologies, were obtained only for the August temperatures of the year prior to growth (a negative correlation; Fig. 38 

3A’). In the other months, correlations are generally low and sometimes show opposite signs for the same climatic variable. 39 

However, a slightly stronger influence from the climatic variables for the summer months prior to growth is noted (black areas in 40 
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Fig. 3A’, 3B’ and 3C’). 1 

Broadleaf RW are positively influenced by high precipitations and low drought occurrences (high SPI_3 values) during the 2 

summer months (June and July precipitation and June to August SPI_3; Fig. 3B’’ and 3C’’), whereas the temperature does not 3 

show a significant influence (Fig. 3A’’). 4 

— Stability of the climatic signal over time. The six comparisons performed between the HSTC chronologies and the DCV were 5 

deemed important to understand the influence of the climate over time on conifers MXD and RW and on broadleaf RW (Fig. 4). 6 

The moving-window correlation analysis reveals that the HSTC conifer MXD chronology holds the strongest and most stable 7 

climatic signal of late summer temperature over time, with values ranging from approximately 0.4 to nearly 0.8 in the more 8 

modern periods analyzed (#1 in Fig. 4). In the other two HSTC chronologies based on conifer MXD (#2 and #3 in Fig. 4), 9 

starting from the time window 1881-1940 up to recent periods, we always find higher absolute values for SPI_3 than for 10 

precipitation, with values of correlation reaching approximately -0.7 and -0.6, respectively, (#3 and #2 in Fig. 4). For the conifer 11 

RW, a strong change in the temperature signal of August prior to growth is found (#4 in Fig. 4), with correlation values shifting 12 

from positive (and statistically non significant) in the early period of analysis to negative (approximately -0.5) in the mid to late 13 

period of analysis. The two HSTC chronologies of broadleaf RW show nearly the same correlation values and similar patterns 14 

with both the June and July precipitation and the June to August SPI_3, with values at approximately +0.5 (#5 and #6 in Fig. 4). 15 

— Climate reconstruction. The reconstruction of the late summer temperature for the Italian Peninsula was therefore based on 16 

the HSTC chronology of conifer MXD, while the conifer RW chronology was disregarded due to its low signal stability over 17 

time. The reconstructed series based on the scaling approach starts in 1657 and has a minimum sample replication of ten trees 18 

since 1713 CE (Fig. 5A); it well reproduces the variability of the instrumental record and underlines the periods of climatic 19 

worsening around 1699, 1740, 1814, 1909 and 1939 CE. The low-pass filtered series emphasize the mid-length fluctuations and 20 

show evidence of periods of temperature underestimations (centered around 1799, 1925 and 1952 CE) and of overestimations 21 

(around 1846) (Fig. 5B); however, the differences from the instrumental record are always within 1° C for both scaling and 22 

regression approaches. The two models show similar statistics for RE, which tends to have higher values when the models are 23 

calibrated for the period 1781-1880 and lower values when they are calibrated for the period 1881-1980 (Table 3). The CE 24 

statistics show similar patterns of RE, are always positive for the regression model, whereas for scaling, CE has a slightly 25 

negative value when the model is calibrated for the 1881-1980 period. 26 

— Spatial coherence of the reconstruction. The spatial coherence of the late summer temperature reconstruction of the Italian 27 

Peninsula performed over the Mediterranean region shows that, for the period of 1901-1980 (defined by the beginning of the 28 

CRU TS/E-OBS 13.1 climate series and the end of the MXD series), the reconstructed series well predict the temperature 29 

variability in the west-east region around the Apennines (Fig. 6), whereas just a few kilometers north of the Apennines (in the Po 30 

Plane) and west the Balkan area (in Slovenia and Hungary), and eastwards, the correlation drops below 0.6. In detail, the 31 

reconstructed temperature highly correlates westward up to Sicily and Sardinia, and eastward to the western Balkan area along 32 

the Adriatic Sea up to northern Greece, whereas r values are already lower than 0.5 in a wide arch including northern Tunisia, 33 

southern France, the inner range of the European Alps, Turkey and southern Anatolia (Fig. 6). 34 

4 Discussion  35 

The climate signals recorded in the multispecies and multiproxy tree-ring network from the Italian Peninsula reveal a general 36 

coherence with other climate-growth analyses performed in Mediterranean environments. As found in the Pyrenees for a conifer 37 

tree-ring network (Büntgen et al., 2010), we find generally strong and coherent signals between species when considering their 38 

MXD. In particular, in our record, the late summer temperature is well recorded in MXD chronologies, and the correlations with 39 

climate are stable over time. The MXD chronologies are mainly related to temperature; however, we found clear signals of the 40 
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influence of summer precipitation and droughts. In the Mediterranean area, especially during summer, high temperature is often 1 

associated with low precipitation and drought; therefore, when interpreting the temperature reconstructions based on tree-ring 2 

MXD in the Mediterranean area, also the associated influence of precipitation and droughts on MXD should be taken in account. 3 

The SPI, which is used here to represent drought conditions, was found to have higher correlations with both MXD and RW for 4 

the index calculated at the timescales of 2 and mainly of 3 months (whereas lower correlations are found at lower (1 month) and 5 

higher (6, 9 and 12 months) timescales); trees respond to the drought signal at this time timescale, which reflects soil moisture 6 

droughts in the root zone (the SPI_3 is also the index used for modeling agricultural droughts, see e.g., WMO, 2012). On the 7 

other hand, trees do not respond to the signal of hydrological droughts at the catchment level (SPI at timescales of above 6 8 

months). 9 

The reconstructed series of the late summer temperatures for the Italian Peninsula show a strong coherence with the instrumental 10 

record and with the reconstruction proposed by Trouet (2014) for the northeastern Mediterranean-Balkan region (Fig. 5C). The 11 

two reconstructions are highly consistent; the reconstruction of Trouet (2014) also includes the sites used in this paper. However, 12 

there are some differences between the two reconstructions: the reconstructed temperature in the Italian Peninsula tends to be 13 

generally less variable over time than in the Balkan area, and while periods of climatic worsening were recorded in both areas in 14 

1741 and 1814, similar events were seen in 1913 and in 1977 in the Balkan area alone. Interestingly, the periods of the larger 15 

differences between the reconstructed temperature and the instrumental records (around 1799, 1846, 1925 and 1952) are also 16 

those with stronger coherences between the two reconstructions, suggesting a regional coherence in the responses to climate, 17 

possibly facilitated by similar precipitation patterns in the two regions during the late summer. 18 

The Apennines and the European Alps often show similar annual changes in precipitation. However, in some periods, they show 19 

opposite decadal trends, such as after 1830, when precipitation was increasing in the north of Italy but decreasing in the south, 20 

and after 2000, when the opposite behavior was observed (Brunetti et al., 2006). In the Italian Peninsula, the summer (JJA) and 21 

the autumn (SON) precipitation in 1835-1845 showed local minimum values in the instrumental record, likely inducing higher 22 

densities in the tree-ring latewood and therefore overestimations in model temperature values (Fig. 5B). Moreover, uncertainties 23 

between the instrumental records and MXD may rise given that trees do not respond linearly to high temperatures, resulting in 24 

divergences between climatological and MXD records (e.g., for the Alps and Europe, Battipaglia et al., 2010). As found in this 25 

study, MXD is influenced by both late-summer temperature and summer precipitation and drought. In the Mediterranean, these 26 

variables are usually negatively correlated. Therefore, in some periods, a given value of MXD could have been caused either by 27 

temperature and less by drought or vice versa. 28 

 29 

Climatic signals recorded in RW tree-ring chronologies of conifers and broadleaves show fewer clear common patterns in their 30 

correlations with climate variables than conifer MXD, although some climatic signals, which are valuable for climate 31 

reconstructions and for understanding climate impacts on tree-ring growth, were detected. In our records, the summer drought 32 

signal was clearly recorded at all broadleaf sites (Fig. 3C’’), with moist periods (low recurrence of drought, i.e., high SPI_3 33 

values) positively affecting tree-ring growth. This signal was fairly stable over time (Fig. 4), suggesting the possibility for 34 

climate drought reconstructions in the Italian Peninsula with the availability of longer dendrochronological series. The signal of 35 

previous August temperatures recorded in conifer chronologies (Fig. 3A’) is too variable over time to allow for a reconstruction 36 

(Fig. 4). Here, the change in sensitivity is probably related to the negative effect of droughts in the summer and autumn (June to 37 

October) prior to growth (see SPI_3 correlations; Fig. 3C’). The question of the temporal stability of climate-growth 38 

relationships is sometimes underestimated in climate reconstructions, even though changes of climate signals over time have 39 

been identified in the Mediterranean region (Lebourgeois et al., 2012; Castagneri et al., 2014) and in the European Alps (Leonelli 40 

et al., 2009; Coppola et al., 2012). Many environmental and physiological factors may influence tree growth processes and tree-41 

ring sensitivities to climate, such as the still-debated fertilization effect due to increasing CO2 concentration in the atmosphere 42 
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(e.g., Brienen et al., 2012). On the other hand, biomass production and tree growth in Mediterranean forests seem to be linked to 1 

nutrient availability and environmental constraints rather than to the availability of CO2 (e.g., Jacoby and D’Arrigo, 1997; 2 

Körner, 2003; Palacio et al., 2013). Local low-energy geomorphological processes, such as sheetfloods (e.g., Pelfini et al., 2006), 3 

air/soil pollution linked to SO2, NO2, or O3 depositions and dust depositions from industrial plants or mines (in central Europe; 4 

Elling et al., 2009, Kern et al., 2009; Sensula et al., 2015), may influence tree-ring sensitivity to climate, and emissions from car 5 

traffic may also alter the tree-ring stable isotope signals (Saurer et al., 2004; Leonelli et al., 2012). The species-specific 6 

physiological responses of tree growth to climate variability may be non-linear when high summer temperatures and low soil 7 

moistures exceed specific physiological thresholds, and can interrupt tree-ring growth during the growing season in 8 

Mediterranean climates (Cherubini et al., 2003). In terms of ecological factors, the recurrent attacks of defoliator insects (e.g., 9 

the pine processionary moth; Hódar et al., 2003), the occurrence of forest fires (e.g., San-Miguel-Ayanz et al., 2013) or herbivory 10 

grazing and land abandonment (Herrero et al., 2011; Camarero and Gutiérrez, 2004) may influence vegetation dynamics and tree 11 

growth in Mediterranean forests, thus potentially introducing non-climatic effects into the chronologies. 12 

 13 

Our reconstruction of the late summer temperature based on conifer MXD shows a clear stable climatic signal over time, and we 14 

could define the spatial coherence of the temperature reconstruction, thus allowing for the determination of the regions that 15 

could be included to extend the reconstruction further back in time. The late-summer temperature reconstruction of Trouet 16 

(2014) is more valid for the region comprising the southern and inner Balkans; our reconstruction is the first fully coherent late 17 

summer temperature reconstruction for Mediterranean Italy, extending in a west-east direction from Sardinia and Sicily to the 18 

Western Balkan area. This spatial approach allows for the definition of areas responding to climatic forcing in homogenous 19 

ways, which may also help predict the forest response to future climate change in the Mediterranean region. 20 

5 Conclusion 21 

The climate sensitivity analysis of a multispecies RW and MXD tree-ring network from the Italian Peninsula reveals that conifer 22 

MXD chronologies record a strong and stable signal of late summer temperatures and, to a lesser extent, of summer precipitation 23 

and drought. In contrast, the signals recorded by both conifer and broadleaf RW chronologies are less stable over time but are 24 

still linked to the summer climates of the year prior to growth (conifer) and the year of growth (broadleaves). 25 

The reconstruction of the late summer temperatures over the past 300 yr (up to 1980 CE), based on the conifer MXD 26 

chronologies, reveals a strong coherence with the reconstruction performed by Trouet (2014) for the northeastern Mediterranean-27 

Balkan region, even though the temperatures reconstructed in our study are less variable, likely because all of our sites are 28 

located along the Italian Peninsula and are relatively close to the sea. According to our reconstruction, 1699, 1740, 1814, 1909 29 

and 1939 were years of particularly low late summer temperatures over the study region, whereas the highest temperature was 30 

found approximately 1945.The reconstruction is representative of a wide area covering the Italian Peninsula, Sardinia, Sicily and 31 

the Balkan area close to the Adriatic Sea, which are areas that could be considered to further enhance the regional reconstruction 32 

we performed and to better assess climate change impacts on forests in homogenous areas within the Mediterranean hot spot. 33 
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Table 1: References for all the dendrochronological data used in this research, information on site locations, types of parameter 1 

used at each site and the tree species. Sites are ordered along a decreasing latitudinal gradient, after differentiating between 2 

conifers and broadleaves (dotted line). 3 

 4 

 5 
 6 
  7 

Database information and site location Type of tree-ring parameter 

Dataset name Database 
Source 

Orignal 
contributor 

Bibliographic 
reference 

Location Name Latitude N Longitude 
E 

Elevation 
(m a.s.l. ) 

RW 
chr. 

RW 
series 

MXD 
chr. 

Species 

ITRDBITAL017 ITRDB Ori, G.G. https://www.ncdc.noaa.g
ov/paleo/study/4079 

Monte Cantiere 44° 16' 48'' 10° 48' 00'' 800 x   Pinus sp. 

ITRDBITAL009 ITRDB Schweingruber, 
F.H. 

https://www.ncdc.noaa.g
ov/paleo/study/4301 

Abetone 44° 07' 12'' 10° 42' 00'' 1400  x x Abies alba 

ITRDBITAL004 ITRDB Biondi, F. https://www.ncdc.noaa.g
ov/paleo/study/2753 

Campolino 44° 06' 45'' 10° 39' 44'' 1650  x  Picea abies 

ITRDBITAL008 ITRDB Schweingruber, 
F.H. 

https://www.ncdc.noaa.g
ov/paleo/study/4540 

Mount Falterona 43° 52' 12'' 11° 40' 12'' 1450 x  x Abies alba 

ITRDBITAL003 ITRDB Biondi, F. https://www.ncdc.noaa.g
ov/paleo/study/2760 

Pineta San Rossore 43° 43' 12'' 10° 18' 00'' 5 x   Pinus pinea 

ITRDBITAL022 ITRDB Becker, B. https://www.ncdc.noaa.g
ov/paleo/study/2706 

Pratomagno Bibbiena - 
Appennini 

43° 40' 12'' 11° 46' 12'' 1050  x  Abies sp. 

ITRDBITAL012 ITRDB Schweingruber, 
F.H. 

https://www.ncdc.noaa.g
ov/paleo/study/4374 

Ceppo Bosque di 
Martense 

42° 40' 48'' 13° 25' 48'' 1700 x  x Abies alba 

Abies-Abeti-
Soprani 

UNIMOL   Colle Canalicchio-Abeti 
Soprani 

41° 51' 40'' 14° 17' 51'' 1350  x  Abies alba 

ITRDBITAL016 ITRDB Schweingruber, 
F.H. 

https://www.ncdc.noaa.g
ov/paleo/study/4536 

Monte Mattone 41° 46' 48'' 14° 01' 48'' 1550 x  x Pinus nigra 

ITRDBITAL001 ITRDB Biondi, F. https://www.ncdc.noaa.g
ov/paleo/study/2752 

Camosciara Mt. Amaro 41° 46' 12'' 13° 49' 12'' 1550 x   Pinus nigra 

ITRDBITAL002 ITRDB Biondi, F. https://www.ncdc.noaa.g
ov/paleo/study/2759 

Parco del Circeo 41° 19' 48'' 13° 03' 02'' 5 x   Pinus pinea 

AAIBA UNIBAS   Ruoti (PZ) 40° 42' 04'' 15° 43' 43'' 925  x  Abies alba 

ITRDBITAL011 ITRDB Schweingruber, 
F.H. 

https://www.ncdc.noaa.g
ov/paleo/study/4541 

Mount Pollino 39° 54' 00'' 16° 12' 00'' 1720 x  x Abies alba 

ITRDBITAL015 ITRDB Schweingruber, 
F.H. 

https://www.ncdc.noaa.g
ov/paleo/study/4644 

Sierra de Crispo 39° 54' 00'' 16° 13' 48'' 2000 x  x Pinus 
leucodermis 

ITRDBITAL010 ITRDB Schweingruber, 
F.H. 

https://www.ncdc.noaa.g
ov/paleo/study/4420 

Gambarie Aspromonte 38° 10' 12'' 15° 55' 12'' 1850 x  x Abies alba 

ITRDBITAL013 ITRDB Schweingruber, 
F.H. 

https://www.ncdc.noaa.g
ov/paleo/study/4304 

AetnaLinguaglossa 37° 46' 48'' 15° 03' 00'' 1800 x  x Pinus nigra 

ITRDBITAL019 ITRDB Nola, P. https://www.ncdc.noaa.g
ov/paleo/study/4042 

Corte Brugnatella 44° 43' 12'' 09° 19' 12'' 900 x   Quercus robur 

Fagus-Parco-
Abruzzo 

UNIMOL   Val Cervara 41° 49' 00'' 13° 43' 00'' 1780  x  Fagus sylvat ica 

Fagus-Gargano UNIMOL   Parco Nazionale del 
Gargano Riserva Pavari 

41° 49' 00'' 16° 00' 00'' 775  x  Fagus sylvat ica 

Fagus-
Montedimezzo 

UNIMOL   Riseva MaB Unesco 
Collemeluccio-
Montedimezzo 

41° 45' 00'' 14° 12' 00'' 1100 x   Fagus sylvat ica 

Cervialto-FASY UNINA2   Monti Picentini 40° 50' 23'' 15° 10' 03'' 800  x  Fagus sylvat ica 

Fagus-Cilento UNIMOL   Parco Nazionale del 
Cilento Ottati 

40° 28' 00'' 15° 24' 00'' 1130  x  Fagus sylvat ica 

QCIBG UNIBAS   Gorgoglione (MT) 40° 23' 09'' 16° 10' 04'' 820  x  Quercus cerris 

QFIMP1 UNIBAS   San Paolo Albanese 
(PZ) 

40° 01' 20'' 16° 20' 26'' 1050 x   Quercus 
frainetto 

QFIMP2 UNIBAS   Oriolo (CS) 40° 00' 10'' 16° 23' 29'' 960 x   Quercus 
frainetto 

Fagus-Sila UNIMOL   Parco Sila 39° 08' 00'' 16° 40' 00'' 1680  x  Fagus sylvat ica 

Fagus-Parco-
Aspromonte 

UNIMOL   Aspromonte 38° 11' 00'' 15° 52' 00'' 1560  x  Fagus sylvat ica 

       1235 mean 
elevation 

15 
sites 

12 
sites 

8 sites  
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Table 2: Main characteristics of the chronologies used in this research, separating RW (comprised of both broadleaf and conifer 1 

species) and MXD (only conifer species). For each site and parameter, the total number of series available and the number of 2 

series showing a correlation value 0.2 < r < 0.3 with the respective master chronology is reported. Gray-shaded areas depict 3 

values that do not exceed the fixed thresholds of MIC > 0.3, EPS > 0.7 and a number of series > 10, determining the exclusion of 4 

the chronology from further analyses. Sites ordered as in Table 1. 5 

a = Mean Interseries Correlation of raw series, calculated using the maximum period available at each site. 6 

b = Expressed Population signal of indexed series in the common period of 1880-1980. 7 

* series up to 80 yr included. 8 

** chronology built with less than 10 series (good EPS). 9 

*** common period with later Start date or earlier End date. 10 

**** sites without chronology [....] are not included in the computation. 11 

 12 

 13 
 14 
  15 

 RW series characteristics MXD series characteristics  on the maximum period available 

Dataset name Start date End date Time span MICa EPSb # series # series 0.2< r 
<0.3 vs. master 

Start 
date 

End 
date 

Time 
span 

MIC1 EPS2 # 
series 

# series 0.2< r 
<0.3 vs. master 

ITRDBITAL017 1856 1989 134 0.43 0.76 14 0 - - - - - - - 

ITRDBITAL009 [1846] [1980] [135] [0.73] [0.66] 13 0 1846 1980 135 0.76 0.86 21 0 

ITRDBITAL004 [1836] [1988] [153] [0.51] [0.49] 11 0 - - - - - - - 

ITRDBITAL008 1827 1980 154 0.62 0.70 12 0 1827 1980 154 0.66 0.87 12 0 

ITRDBITAL003*; 
** 

1861 1988 128 0.51 0.72 9 0 - - - - - - - 

ITRDBITAL022*** [1539] [1972] [434] [0.45] [0.67] 6 1 - - - - - - - 

ITRDBITAL012 1654 1980 327 0.57 0.85 26 0 1654 1980 327 0.59 0.91 25 0 

Abies-Abeti-
Soprani* 

[1838] [2005] [168] [0.53] [0.50] 11 0 - - - - - - - 

ITRDBITAL016 1844 1980 137 0.54 0.84 17 0 1844 1980 137 0.43 0.75 15 0 

ITRDBITAL001 1750 1987 238 0.52 0.77 16 0 - - - - - - - 

ITRDBITAL002* 1878 1988 111 0.51 0.72 16 0 - - - - - - - 

AAIBA* [1866] [2007] [142] [0.51] [0.55] 13 0 - - - - - - - 

ITRDBITAL011 1800 1980 181 0.58 0.85 20 0 1800 1980 181 0.54 0.84 18 0 

ITRDBITAL015 1415 1980 566 0.58 0.95 22 0 1441 1980 540 0.50 0.76 21 0 

ITRDBITAL010 1790 1980 191 0.53 0.76 19 0 1790 1980 191 0.50 0.85 18 0 

ITRDBITAL013 1773 1980 208 0.57 0.88 20 0 1795 1980 186 0.44 0.78 18 0 

ITRDBITAL019 1779 1989 211 0.54 0.82 16 0 - - - - - - - 

Fagus-Parco-
Abruzzo 

[1716] [2008] [293] [0.36] [0.73] 3 0 - - - - - - - 

Fagus-Gargano [1821] [2009] [189] [0.23] [0.42] 3 3 - - - - - - - 

Fagus-
Montedimezzo 

1844 2005 162 0.67 0.85 15 0 - - - - - - - 

Cervialto-FASY [1828] [2003] [176] [0.39] [0.52] 10 0 - - - - - - - 

Fagus-Cilento [1837] [2007] [171] [0.41] [0.26] 7 1 - - - - - - - 

QCIBG*; *** [1897] [2013] [117] [0.60] [0.66] 9 0 - - - - - - - 

QFIMP1 1851 2013 163 0.50 0.78 34 0 - - - - - - - 

QFIMP2 1854 2013 160 0.55 0.79 34 0 - - - - - - - 

Fagus-Sila [1854] [2009] [156] [0.30] [0.21] 4 3 - - - - - - - 

Fagus-Parco-
Aspromonte 

[1874] [2009] [136] [0.27] [ -0.42] 5 2 - - - - - - - 

TOTAL 1785**** 1989**** 205**** 0.55**** 0.80**** 385 10 1750 1980 231 0.55 0.83 148 0 

 mean mean mean mean r mean EPS sum (all sites) sum (all sites) mean mean mean mean r mean EPS sum sum (all sites) 
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Table 3: Reconstruction statistics computed for both regressions and scaling over the inverted subperiods of calibration and 1 
verification. RE = Reduction of error; CE = Coefficient of efficiency. 2 
 3 

Regression Scaling 

R2 RE CE RE CE 

Calib. 1781-1880 0.377   

Verif 1881-1980 0.472 0.289 0.543 0.384 

Calib. 1881-1980 0.510   

Verif 1781-1880 0.390 0.206 0.214 -0.023 

 4 
 5 
  6 
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Figure 3: Bootstrapped correlation analysis performed over the common period of 1880-1980, considering chronologies of 1 

conifer MXD (3A, 3B and 3C), of conifer RW (3A’, 3B’ and 3C’) and of broadleaf RW (3A’’, 3B’’ and 3C’’) vs. monthly 2 

temperature (T), precipitation (P) and SPI_3 (S) from March of the year prior to growth to September of the year of growth. 3 

In A, A’ and A’’ the percentages of the species composing the pool for each site used for the analysis is reported. 4 

Means of statistically significant (p<0.05) correlation coefficient values (r) are depicted with squares, whereas maximum 5 

and minimum significant r values are indicated with gray lines; the blue lines depict the total number of sites in each 6 

comparison and the green lines indicate the total number of sites with statistically significant r values. Black-filled squares 7 

are given for those variables that show significant correlation values for at least 50 % of the total sites and have |�| > 0.25; 8 

where both conditions occur, a circled number in the plot is given and the comparisons are selected for the following 9 

moving correlation analysis (Fig. 4). In each plot the climate variables with the highest number of sites with significant r 10 

values and nearby variables showing up to ¼ of this number are depicted with a black area. 11 

  12 
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