Discussion started: 5 April 2017

© Author(s) 2017. CC-BY 3.0 License.

- 1 Hydroclimate variability in Scandinavia over the last millennium insights from a
- 2 climate model-proxy data comparison
- 3 Kristina Seftigen^{1,2,*}, Hugues Goosse², Francois Klein², Deliang Chen¹
- 4 Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden.
- 5 ²Georges Lemaître Centre for Earth and Climate Research (TECLIM), Earth and Life Institute, Université
- 6 catholique de Louvain (UCL), Belgium.
- 7 *Corresponding author:
- 8 E-mail address: kristina.seftigen@gvc.gu.se

9 Abstract

The integration of climate proxy information with General Circulation Model (GCM) results 10 offers considerable potential for deriving greater understanding of the mechanisms underlying 11 climate variability, as well as unique opportunities for out-of-sample evaluations of model 12 13 performance. In this study, we combine insights from a new tree-ring hydroclimate 14 reconstruction from Scandinavian with projections from a suite of forced transient simulations 15 of the last millennium and historical intervals from the CMIP5 and PMIP3 archives. Model simulations and proxy reconstruction data are found to broadly agree on the modes of 16 17 atmospheric variability that produces droughts/pluvials in the region. But despite these dynamical similarities, large differences between simulated and reconstructed hydroclimate 18 time series remain. We find simulated interannual components of variability to be 19 overestimated, while the multidecadal/longer timescale components generally are too weak. 20 21 Specifically, summertime moisture variability and temperature are weakly negatively associated at inter-annual timescales but positively correlated at decadal timescales, revealed 22 from observational and proxy evidences. On this background, the CMIP5/PMIP3 simulated 23 24 timescale dependent relationship between regional precipitation and temperature is 25 considerably biased, because the short-term negative association is overestimated, and the long-term relationship is significantly underestimated. The lack of adequate understanding for 26 mechanisms linking temperature and moisture supply on longer timescales has important 27 28 implication for future projections. Weak multidecadal variability in models also implies that 29 inference about future persistent droughts and pluvials based on the latest generation global climate models will likely underestimate the true risk of these events. 30

Discussion started: 5 April 2017

31

3233

34

35

36

37

38

39 40

41

42

43

44

45 46

47 48

49

50

51

52

53 54

55

56 57

58 59

60 61

62 63

© Author(s) 2017. CC-BY 3.0 License.

1. Introduction

Among the current key priorities in climate research is a more comprehensive understanding of changes in regional- to continental-scale hydroclimate in response to rising levels of atmospheric greenhouse gases on time scales ranging from decades to centuries (Wu et al., 2013; Hegerl et al., 2015). Delineating the role of internal variability and natural forcing, and its contribution to the anthropogenically forced twentieth century climate (Zhang et al., 2007; Sarojini et al., 2016), is immensely important for attributing past and predicting future trajectories in the hydrological cycle, and for strategic approaches to adaptation and planning. Sparse observational evidences limits possibilities of providing tight constraints on the long-term behavior of the climate system. The longest instrumental records (~150-200 years) are too short to fully sample modes of variability that are either rare or occur on multidecadal-to-centennial timescales. This motivates the development of paleoclimatic proxy reconstructions, which extends the observational baseline into the longer spectrum of climate variability and provides a framework to consider both internal and forced climate changes.

Considerable advancements have recently been made in developing tree-ring estimates of late Holocene hydroclimate variability across Scandinavia (Seftigen et al., 2014; Cook et al., 2015). Being located in the high-latitude boreal zone, Scandinavia is well suited for dendroclimatological studies and has a long tradition of climate and environmental research using tree-ring data (Linderholm et al., 2010). The use of tree-ring proxy evidence to study natural hydroclimate variability has however long been secondary when compared to the scientific attention focused on providing local/regional reconstructions (Gunnarson et al., 2011; Esper et al., 2012; McCarroll et al., 2013; Linderholm et al., 2014) and methodologies (Björklund et al., 2012; 2014) to study temperature variability over the last several millennia. Much of the tree-ring research at moisture-limited sites have until recently been limited to a handful of exploratory papers (Helama and Lindholm, 2003; Linderholm et al., 2004; Jönsson and Nilsson, 2009; Drobyshev et al., 2011; Seftigen et al., 2013) that generally develop one or few chronologies to provide local precipitation/drought histories. These studies, together with a steadily growing collection of high-latitude moisture sensitive tree-ring records (e.g., Seftigen et al., 2015), now serves as a basis for new possibilities to expand the detail and accuracy with which the history of Northern European moisture conditions can be described. A recent milestone in the field include the development of the "Old World Drought Atlas" ("OWDA", Cook et al., 2015), a set of tree-ring reconstructed year-to-year maps that provide

temporal and spatial details of droughts and wetness in the last millennium across Europe,

Discussion started: 5 April 2017

© Author(s) 2017. CC-BY 3.0 License.

including Scandinavia. The OWDA has been used to elucidate hydroclimatic blueprints of the Medieval Climate Anomaly (MCA, ~1000-1200 CE). Aligning with prior findings (Helama et al., 2009), the atlas reveals the occurrence of so-called megadroughts in large portions of continental north-central Europe and southern Scandinavia during the MCA period. Interestingly, MCA and other "Old World" droughts seem to coincide with the timing of some severe and persistent droughts documented in the climate history of North America. While this suggests the presence of some common driving mechanisms across the North Atlantic, being possibly related to variations in the Atlantic Ocean SST or/and the North Atlantic Oscillation (Feng et al., 2011; Oglesby et al., 2012), the cause of these megadroughts remains to be an open question.

While the proxy reconstructions undoubtedly play a pivotal role in unraveling statistical qualities of past climate, they are, alone, not able to provide a comprehensive view of the underlying physics governing the climate system. The forced-transient simulations over the last millennium from fully coupled general circulation models (GCMs) (Taylor et al., 2012) therefore offer an important complementary approach to the empirical analyses of proxy estimates. Paleoclimate reconstructions provide an observational basis that spans beyond current climate conditions that were used in developing and tuning such numerical models, thus allowing for out-of-sample evaluations of the models' predictive power. The models, on the other hand, can be used to explore the dynamics that have driven climate variability in the past.

This paper builds on previous tree-ring analyses (Seftigen et al., 2014; 2015) and aims at employing a paleoclimate-data model comparison framework to further explore the drivers and dynamics of drought/pluvials across Northern Europe. We analyze an ensemble of six state-of-the-art GCMs from the Past Model Intercomparison Phase 3 (Schmidt et al., 2011 - PMIP3) and the Coupled Model Intercomparison Phase 5 (Taylor et al., 2012 - CMIP5) and compare them to a new regional tree-ring-based proxy reconstruction of drought and wetness, spanning the last millennium of the Common Era (CE). A combined data approach is used to (1) evaluate to what extent the GCMs are capable in reproducing the key features of the paleoclimate record, and (2) to estimate the role of external forcing versus internal variability in driving the hydroclimatic changes regionally. Inter-annual and decadal/longer-term relationships between hydroclimate, and the two key components of rainfall and surface temperature, are also briefly explored and the ability of the CMIP5/PMIP3 models to simulate the mechanisms by which the regional hydroclimate is constrained by these two variables are evaluated. The collective proxy-model data assessment will help to increase our

Discussion started: 5 April 2017

98

99

100

101

102103

104

105

106

107

© Author(s) 2017. CC-BY 3.0 License.

understanding of decadal/longer climate dynamics in regions and to evaluate the ability of the state-of-the-art GCMs to simulate realistic future hydroclimatology regionally and across a variety of different timescales.

The paper is structured as follows. Sect. 2 reviews the methods and describes the paleoclimate and CMIP5/PMIP3 datasets. Subsequent analyses concentrates on comparing the GCM simulations with the proxy based hydroclimate reconstructions (sect. 3), and delineating the role of external (sect. 4) and internal (sect. 5) sources of variability over the last millennium. The principal results and the implication of this study are discussed in sect. 6.

2. Data and methods

2.1 CMIP5/PMIP3 simulations

- Simulations with six models (CESM1, CCSM4, IPSL-CM5A-LR, MIROC-ESM, MPI-ESM-
- 109 P, BCC-CSM1-1) contributing to the Coupled and Paleo Model Intercomparison Projects
- Phases (CMIP3/PMIP3) (Schmidt et al., 2011; Taylor et al., 2012) have been used (Table I).
- The analyses were restricted to models that have available complete monthly precipitation and
- temperature variables spanning the last millennium (850-1849 CE) through historical (1850-
- 113 2005 CE) time intervals. The six millennium simulations were forced with reconstructed
- solar, volcanic, greenhouse gas (GHG) and aerosol forcing, and partly land use changes,
- whereas the historical simulations included natural and anthropogenic forcing (Schmidt et al.,
- 116 2011; Taylor et al., 2012). Except for CESM1, the analyses were limited to the first r1i1p1
- ensemble member. Supplementary information (sect. S1, Fig. S1) provide an evaluation of six
- selected model rainfall and temperature simulations against instrumental reference data
- focusing on the northern European sector.

2.2. Proxy data

120

- 121 Building on an existing compilation that has previously been used to derive regional
- spatiotemporal drought climatology (Seftigen et al., 2014; 2015), we analyzed a network of
- 123 27 Pinus sylvestris L. tree-ring width (TRW) chronologies from southern Scandinavia (Fig.
- 124 1). The start dates of the chronologies varied across the collection, ranging from 532 to 1790
- 125 CE (Table II). All chronologies extended at least to year 1995. In order to reduce the risk of
- 126 natural/anthropogenic disturbance signal from inflicting non-climate noise upon the
- 127 reconstruction, the tree-ring data has been standardized in previous research (Seftigen et al.,
- 128 2014) by using a flexible "data-adaptive" method of standardization (Cook et al., 1995). This

Discussion started: 5 April 2017

129

130

131

132

133

134 135

136137

138

139 140

141

142

143144

145146

147

148

149

150 151

152

153

154

155

156

157 158

159 160

161162

© Author(s) 2017. CC-BY 3.0 License.

has limited the degree to which longer-timescale climate information can be extracted. Therefore, rather than using the already available hydroclimate reconstruction provided in Seftigen et al. (2014), we have here re-processed the TRW collection with the newest signalfree (SF) method of standardization (Melvin and Briffa, 2008), which has the capacity of preserving long-term variability due to climate changes. The standardization was performed with the ARSTAN software (Cook and Krusic, 2005). Chronologies combining living and historical/subfossil material were standardized with a regional curve standardization (RCS) approach (Briffa et al., 1992), applying a single RCS curve without any pith-offset adjustments to detrend all series. To avoid spurious growth trends in the resulting RCS chronologies stemming from a modern sample bias (Briffa and Melvin, 2011), tree-ring datasets based only on living trees were standardized using the SF method in combination with an age-dependent smoothing spline applied individually to each series. Prior to the standardization, the modern chronology data were high-pass filtered and subsequently grouped by means of a S-mode principal component analysis over the common interval (1792 - 1996 CE). The resulting eigenvector loadings are provided in supplemental material (Fig. S2) and describe the major modes of high-frequency variability within the multiple modern chronologies composing the dataset. The subdivision of the chronologies essentially identified an east-west pattern, broadly corresponding to sub-regional differences in topography and climate across the study domain. This suggested that the sub-regional tree-growth coherence at high frequencies was driven by climate. Hence, it would be rational to expect a common, climatically induced, growth variability also at the medium-frequency time scales, while any disparities in the sub-regional tree-growth signal are likely mostly non-climatic in origin (i.e. local site management practices, stand dynamics or other 'random' site-specific disturbances). Therefore, in order to remove or minimize undesirable non-climatic noise upon our dataset, modern tree-ring series were first merged group-wise as identified by the first four principal components and subsequently detrended as four separate 'batches' using the SF method. The standard version of the resulting tree-growth indices were subsequently separated and averaged for each site to produce individual site chronologies. This procedure enabled us to retain any shared, sub-regional, growth-forcing signal while removing site-specific mediumto high-frequency noise.

Discussion started: 5 April 2017

168

169

170

171

172173

174175

176

177178

179 180

181 182

183

184 185

186

187

188 189

190

191

192

193

194 195

© Author(s) 2017. CC-BY 3.0 License.

all the chronologies (Table II) ranged between 74 and 357 years, and the median MSL across

all sites was 197 years. Although a precise quantification of returned frequency variance in

165 the final SF detrended tree-ring chronologies was not straightforward, the median MSL

166 suggested that it should be possible to use the network to reconstruct climate variability at

time scales up to ~ 200 years.

2.3. Regional hydroclimatology

The CMIP5/PMIP3 inter-model spread in spatial resolution and sophistication of soil moisture schemes makes meaningful inter-model comparison difficult. To bypass some of these challenges, the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2013) was used to characterize the regional hydroclimatology across the study domain. The SPEI, a commonly used metric of soil moisture balance, has successfully been used as a target variable in several prior tree-ring reconstructions (e.g., Seftigen et al., 2014; 2015). The index is not a state variable but rather an offline metric of the surface moisture balance that can be consistently derived across models and therefore provide standard measure of hydroclimatic variability across GCMs. The computation of the index is based on normalized monthly climatic water balance, i.e. cumulative precipitation minus potential evapotranspiration (PET), summed over multiple time scales and computed as standard deviations with respect to long-term mean (Vicente-Serrano et al., 2010). The PET was here estimated with the Thornthwaite approach (Thornthwaite, 1948). The method requires surface temperature and latitude data only, and has therefore frequently been used for PET computations over the historical period. Moreover, the choice of methods is motivated by the larger confidence that is placed on GCM simulations of temperature compared to other variables (vapor pressure, wind speed, net radiation, etc.) that are required for more physically based parameterizations of PET. At each grid point, model SPEI were derived from estimated PET and simulated rainfall over the past1000 and historical periods and then standardized against the 1901-2005 normalization period using the SPEI R package version 1.6 (Vicente-Serrano et al., 2010).

The proxy dataset was generated by a point-by-point regression (PPR) methodology that was applied to the TRW network to produce a SPEI reconstruction spanning the past millennium. The climate field reconstruction method is based on principal component regression procedure using the TRW chronologies as potential predictors to develop a set of nested multivariate stepwise regression models (see Cook et al., 1999 for details). Here we employed the same calibration/validation scheme, predictor selection and pre-processing steps

Discussion started: 5 April 2017

196

197

198

199

200

201

202

203204

205

206207

208

209

210211

212

213214

215

216

217

218

219220

221

222

223

224

225

226

227228

© Author(s) 2017. CC-BY 3.0 License.

as previously described in Seftigen et al. (2015). We performed a full period calibration over the 1901-1995 period of TRW/climate data overlap, and a conventional split period calibration/validation procedure (1901-1948 and 1949-1995 periods) for an independent validation of the SPEI estimates. Each nest was centered and scaled to have the same mean and variance as the observational data in the calibration period. The instrumental SPEI target field for the reconstruction was computed from the CRU TS 3.22 (Harris et al., 2014) 0.5° latitude x 0.5° longitude gridded rainfall and temperature datasets over the southern portion of Scandinavia (55° - 65° N and 5° - 30° E) (Fig. 1), using the same conventions as described above. Simple correlation analysis conclusively demonstrated a short-term early summer moisture sensitivity of the TRW records over most of the study domain (Fig. S3). Based on these findings, we selected June SPEI, aggregated over a 2-month time scale, as the target season data for the reconstruction. A final regional time series was averaged from grid points where the calibration regression models explained at least 20% of instrumental variance and the reduction of error (RE) and coefficient of efficiency (CE) (National Research Council, 2006) verifications metrics exceeded the generally accepted threshold value of zero across all nests (N = 521 grid points). The mean tree-ring hydroclimate reconstruction (henceforth ScandH17) and the corresponding instrumental target dataset are shown in Fig. 1, and a validation of the reconstruction against 20th century instrumental data that have been withheld from the calibration is provided in supplementary materials (Fig. S4). Results are variable depending on the calibration/validation period used; the validation and calibration statistics are stronger for the 1901-1948 period and substantially weaker for the 1949-1995 period. The most recent and well-replicated nests (mid-1600s to present) are generally explaining the greatest amount of instrumental variance ($R^2 > 40\%$ for the majority of the grid points). A loss of grid cells with declining proxy availability and a drop in reconstruction skill is occurring prior to the late-1400s and subsequently in the 1200s. Point-wise correlation with gridded instrumental SPEI dataset shows that ScandH17 is representative for a larger area in southern and central Scandinavia with a correlation 'hot spot' exceeding 0.6 (Fig. 1).

2.4. Analyses

The new proxy-based reconstruction was used to assess the temporal evolution of droughts and pluvials over the last millennium and to elucidate the mechanisms that govern hydroclimate changes in the northern European sector ranging from interannual to multidecadal time scales. We compared regional hydroclimate time-series with the primarily variables governing the moisture balance: precipitation (which supplies moisture) and

Discussion started: 5 April 2017

© Author(s) 2017. CC-BY 3.0 License.

temperature (which modulates potential evapotranspiration in our method) (sect. 5). The CMIP5/PMIP3 hydroclimate was contrasted against corresponding last-millennium and historical simulations of temperature and precipitation. As there are no independent, annually resolved, proxy reconstructions of rainfall variability currently available for the region, we only included temperature estimates in the comparison with ScandH17. For this purpose, the previously published Linderholm et al. (2014) (hereafter ScandT14) summer temperature reconstruction was used. The two reconstructions ScandH17 and ScandT14 share no common predictors and are thus fully independent, which ensures that any circular statement in the comparison can be ruled out. The ScandT14 record is based on tree-ring maximum density (MXD) and blue intensity data from central-northern Scandinavia and is in terms of signal strength and preserved multi-centennial scale variability one of the best temperature reconstructions currently available for the region.

Furthermore, we extended our analyses to the model domain using the methodology of paleoclimate data-model comparison. There were three main components to the combined approach. Firstly, we evaluated the consistency in various datasets and assessed whether the CMIP5/PMIP3 simulations have similar statistical properties as the reconstruction (sect. 3). Spectral and spectral coherency analyses were performed in two ways. The first is the multitaper approach (Thomson, 1982) based on 4 tapers, where a Monte-Carlo procedure is used to estimate phase 95% confidence limits. We also used the wavelet cohere analyses available in the Grinsted et al. (2004) MATLAB package to assess the frequency dependent relationships and phasing between various datasets.

Secondly, we used the Superposed Epoch Analysis (SEA) (Haurwitz and Brier, 1981) to evaluate the influence of volcanic aerosol forcing on hydroclimate, temperature and precipitation of the Scandinavian region at inter-annual time scales (sect. 4). For the last millennium, monthly mean volcanic forcing series were obtained from three different sources: Gao et al. (2008), Crowley and Unterman (2013) and Sigl et al. (2015) datasets. We note that the former two forcings have been used as the boundary conditions for the last millennium CMIP5/PMIP3 simulations. The length of the proxy and model data allowed us to include sets of the 20 largest eruptions since 1100 CE (Table III) from the annual forcing series to assess the mean response. For each series and eruption, anomalies for ten post-eruption years were computed relative to a five-year pre-eruption mean. The confidence intervals around the composite responses were determined using a Monte Carlo block resampling (N = 10 000) of the actual event year windows (see Adams et al., 2003 for details).

Thirdly, we evaluated the skill of the models to represent the dynamics that drive the

Discussion started: 5 April 2017

© Author(s) 2017. CC-BY 3.0 License.

variability in hydroclimate of the Scandinavian region by establishing a link between simulated and reconstructed SPEI series and fields of mean sea level pressure (MSLP) over the Atlantic-European sector (sect. 5). Grid point correlations were computed to assess the spatial features and the strength of the teleconnections patterns over the modern era (1950-2005 CE). The analysis was also extended over the last millennium (1000-1849 CE) to investigate the nature of teleconnection stability without the influence of anthropogenic forcing. The gridded monthly instrumental HadSLP2 dataset spanning 1850-present (Allan and Ansell, 2006) was used for comparison with observed and proxy-based estimates of hydroclimate.

3. Modeled and reconstructed hydroclimate series

The regional warm season hydroclimate variability averaged across the six CMIP5/PMIP3 models together with the new ScandH17 proxy reconstruction over the last millennium are shown in Fig. 2a-b. Individual model SPEI time series are displayed in Fig. 2c-h. All data have been normalized and centred over the common interval from 1000 to 1995 CE, since this first joint proxy-model comparison focuses on the common relative changes rather than on the magnitude and the absolute values. A simple visual comparison reveals that the models and the reconstruction have generally little agreement in the variance structure and trends. The reconstruction is dominated by a large decadal-to-multidecadal variability while the multimodel mean is relatively flat at these time scales. There are some common features in some of the GCMs and the proxy datasets though (Fig. 2c-h), e.g., the drying in the 19th century, but these are rare when the full millennium is considered and are likely occurring by chance. The historical interval in the proxy record is characterized by a drought in the mid-1800s and a gradual increase in wetness over the 20th century, while, with the exception of short dry episode in the early-1900s, there is no long-term trend in the multimodel mean over the modern era.

The very low correlation at inter-annual time scales is to be expected, as the internal variations in the various records represent different realizations of the climate system, which is to a very large extent chaotic at that time scale. The response of each ensemble member to a strong external forcing applied to the model would nevertheless ideally agree (i.e. external punctual perturbations such as volcanic eruptions could induce a coherent short-term response, see sect. 4). Averaging across models or over multiple ensemble members will reduce the contribution from stochastic variability so that the remaining signal can come closer to the model response to external forcing. The comparison between ScandH17 and the

Discussion started: 5 April 2017

296

297298

299

300

301 302

303

304

305

306307

308

309

310311

312313

314

315

316

317

318319

320

321

322

323

324

325

326327

328

© Author(s) 2017. CC-BY 3.0 License.

multimodel assemble mean reveal, however, no statistically significant agreement between the series, neither on the interannual nor on decadal timescales, suggesting that the simulated hydroclimate changes are not strongly tied to exogenous forcing. Moreover, we found no statistically significant correlation between the different ensemble members in the same model (CESM1) (Fig. 2c), which is the only model providing multiple ensemble members (the only difference among these being the air temperature at the start of each ensemble member (Otto-Bliesner et al., 2016) over the historical and past millennium intervals). The poor overlap between CESM1 ensemble members as well as the individual GCM simulations over the past millennium (despite the use of largely similar forcing series to drive the simulations) is indicative of a larger contribution from internal variability on simulated drought/pluvial occurrence than from changes in exogenous forcing.

We compare the spectral properties of the six individual CMIP5/PMIP3 models to the ScandH17 reconstruction, which allows for a general evaluation of potential frequency biases. Fig. 3a confirm that the underlying spectrum of reconstructed hydroclimate variability is significantly redder on decadal-centennial timescales than indicated by the simulated SPEI. In contrast, more hydroclimate variance is concentrated on interannual timescales in the CMIP5/PMIP3 archive than in ScandH17 reconstruction. At frequency bands < 8 years, the power spectral range of most models is systematically above the confidence interval of ScandH17. As a complementary analysis, the numbers of reconstructed and simulated multiyear hydroclimate anomalies greater than a threshold length are compared (Fig. 3d). It is clear that the characteristics of the paleoclimate data are generally not present in the GCM simulations considered here, which suggests that the models are underestimating the risk of persistent multi-year droughts and pluvials in the region. We also consider the agreement between simulated and reconstructed (ScandT14) temperature data in terms of their spectral properties (Fig. 3b). Although the degree of agreement is higher than for hydroclimatology and most models lie within the reconstruction confidence bands, there are some models that have more variance than the reconstruction at periods < 10 years.

4. External sources of variability

Large explosive volcanic eruptions are an important natural radiative forcing mechanism at timescales ranging from seasons to decades (Shindell et al., 2004; Gleckler et al., 2006). The imposed perturbation on the climate system by such events will depend on the nature of the eruption, the magnitude of change in the energy entering the earth's atmosphere, the background climate and internal variability, latitude and season. Analysis of observational

Discussion started: 5 April 2017

© Author(s) 2017. CC-BY 3.0 License.

data (Shindell et al., 2004), tree-ring records (D'Arrigo et al., 2013) and model simulations (Anchukaitis et al., 2010) indicate a considerable spatial variability in the dynamical response of the climate system to volcanic forcing, with some regions experience surface and tropospheric cooling effects and other regions showing no significant change or even warming effect. Here, we assess the magnitude and timing of Scandinavian summer temperature, rainfall and hydroclimate response to short-term radiative cooling due to volcanic aerosols.

A peak cooling is observed one year after the eruption, both in ScandT14 and in the CMIP5/PMIP3 composite average, for all the three forcings considered (Fig. 4). In addition, there is a significant cooling in the year of the event for the Crowley and Unterman (2013) and Sigl et al. (2015) lists. ScandT14 reveal a marginally greater cooling (2.0 °C, mean of the three event lists) than the model average (1.8 °C) one year after the eruption. Remarkably, there is a high degree of similarity in the proxy and in the GCMs not only in terms of the signal timing and the magnitude of the cooling response, but also the rate of recovery. A complete recovery after the volcanic cooling is found two years after the eruption, independent of the forcing list. These results are generally consistent with prior studies (Fischer et al., 2007; Jones et al., 2013; McCarroll et al., 2013) highlighting the importance of explosive volcanism as an external driver of Northern European temperature variability. They also provide a relevant test of the model to radiation perturbations. The agreement between the model simulations and proxy data demonstrates the credibility of the models.

Existing research on the response of high-latitude rainfall and hydroclimate to volcanism is limited (in part because high resolution moisture sensitive proxy records are sparse or unavailable). Fischer et al. (2007) found a weak tendency to drying conditions over southern/central Scandinavia in the summer of year 0 and year 1 after the eruption. Circulation changes to the surface cooling were shown to modulate the directly forced response. On continental and global scales, both observational and modeling studies have found a decrease in precipitation (Iles et al., 2013) and streamflow (Iles and Hegerl, 2015) in response to large explosive eruptions, particularly in climatologically humid regions (Carley and Gabriele, 2014). The short-term drying is caused by a reduction in incoming solar radiation reaching the surface, which reduces evaporation, whilst the widespread cooling stabilized the atmosphere and lowers its water holding capacity (Bala et al., 2008). Here, we apply SEA on ScandH17 and simulated SPEI and precipitation to examine the influence of volcanism on Scandinavian moisture availability. A statistically significant reduction in simulated rainfall is observed for all event lists, ranging between the year of the event

Discussion started: 5 April 2017

© Author(s) 2017. CC-BY 3.0 License.

(Crowley and Unterman, 2013 dataset) and up to two years (Sigl et al., 2015 dataset) following the eruption. We find, however, that the precipitation signal is less consistent across the six CMIP5/PMIP3 models than the cooling effect observed in the simulated temperature series.


The SEA on SPEI time series reveals a statistically significant drying after large volcanism. However, the response is more muted than the response of temperature and rainfall separately. Moreover, the agreement between proxy data and the model composite average is weak and there are large inconsistencies between the different forcing records. ScandH17 show a progressive transition from wet conditions in the event year and preceding years to dryer conditions in the consecutive years with significant dry anomalies five (Crowley and Unterman, 2013 dataset) and seven years (Sigl et al., 2015; Gao et al., 2008 datasets) after the perturbation. For the CMIP5/PMIP3 multimodel multi-eruption average, only the fifth year after the eruption (Crowley and Unterman, 2013 list) is found to be significantly drier than the adjacent years.

The observed weak influence of volcanic forcing on the hydroclimate of the region can be explained by various factors. For example, our results reveal that GCM simulated post-volcanic cooling remains significant for about two years and matches the timescale of the post-volcanic rainfall decrease. Since the SPEI accounts for both supply and demand changes, the net effect would be such that the temperature-driven PET decrease counter a substantial fraction of the precipitation-driven drying, thus producing SPEI values near neutral. Furthermore, the muted response of ScandH17 may arise from autocorrelated biological memory in the TRW data (Esper et al., 2015). The high year-to-year persistence may bias its ability to estimate the abruptness and severity of climatic extremes caused by volcanic cooling. The tree-ring MXD and the blue intensity parameters have, in contrast, been suggested to be superior TRW for recording short term climate perturbations (Wilson et al., 2016), which is likely the reason why the response of ScandT14 is more immediate than that of ScandH17.

5. Internal sources of variability

If the regional hydroclimate variability is indeed dominated by internally generated stochastic components of variability (see sect. 3), atmospheric circulation changes can be the key process shaping regional patterns of moisture availability. Advancing our understanding of the range, stability and strength of teleconnection behavior (defined here as the correlation between hydroclimate and MSLP over the Atlantic-European sector) and its coupling to

Discussion started: 5 April 2017

regional hydroclimate would provide an improved understanding of drought/pluvial dynamics and associated uncertainty. In this section, we first explore major modes of atmosphere variability that impact summertime northern European hydroclimatology. We also assess more extensively the contribution of atmospheric processes (and possible land-atmosphere interactions) by investigating the couplings between hydroclimate and arguably the two most critical variables of the terrestrial climate and the hydrological cycle: precipitation and temperature.

To determine the role of teleconnections, correlation of MSLP fields with the hydroclimatic variables over the recent 50 years of the post-industrial era were computed. Results are shown in Fig. 5. As expected, we find that atmospheric dynamics have a significant role in climate variability in the region: a strong correlation with regional hydroclimate is found when MSLP in concurrent months (i.e. May-June) is considered. The results show that the proxy based and CMIP5/PMIP3 simulated dynamics are largely consistent with those in the instrumental record, indicating that both the proxy and the models contain to some degree realistic teleconnections. A consistent feature across the datasets is a tripole structure that would favor increased moisture supply into the Scandinavian region. The structure is characterized by anomalous cyclonic conditions across Scandinavia and highpressure systems extending over Iceland-Greenland and, albeit less pronounced, over European Russia - Central Asia. Out of the six CMIP5/PMIP3 models, MIROC-ESM is the one showing the largest discrepancy with the major spatial features of the observed correlation map, by failing to reproduce the anti-cyclonic pattern over Iceland-Greenland. Additionally, MIROC-ESM and also CCSM4 show a meridional and zonal shift of the European Russia - Central Asia high-pressure structure towards the Mediterranean region.

Atmospheric circulation has been identified as key contributor to recent changes in the climate of Europe in both summer and winter (van Oldenborgh and Van Ulden, 2003; Jones and Lister, 2009). To assess the stationarity of observed MSLP patterns, the analysis was repeated for the pre-industrial last millennium (1000-1849 CE) period (Fig. 6). The exercise was restricted to five GCMs for which simulated MSLP was available for the pre-industrial era (BCC-CSM1-1 was not included). The simulated dynamical relationships were found to be largely stable for all five models, being consistent with observed correlations patterns in the modern era. This suggests a weak influence of anthropogenic forcing on the structure of the dynamical drivers of Scandinavian hydroclimate. In addition to raw data, correlation analysis with 10-year low-passed data was also completed for the pre-industrial period with the purpose to elucidate the drivers of multidecadal hydroclimate variability. We

Discussion started: 5 April 2017

430

431

432

433

434

435

436 437

438

439

440

441442

443

444445

446

447

448

449

450

451 452

453

454

455

456 457

458

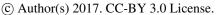
459

460461

462

463

© Author(s) 2017. CC-BY 3.0 License.



find similar, yet weaker, correlation patterns as compared to the high-frequency variations (results not shown).

Precipitation and temperature are the two key variables of the hydrological cycle. Quantifying the covariability between these two variables across various timescales, and the mechanisms that control and modulate it, is therefore of great interest to the study of regional processes on surface energy and water budgets. While past studies have investigated the relationship between temperature and moisture supply in various regions on daily, seasonal and interannual timescales (Adler et al., 2008; Berg et al., 2015; Trenberth, 2011; Madden and Williams, 1978), the nature of concurrent multidecadal/long-term relationship is still far from being clear. A collective comparison of the new hydroclimate reconstruction with the recently published Linderholm et al. (2014- ScandT14) fully independent warm-season temperature record for Scandinavia is provided in Figs. 7 and 8, in conjunction with the CMIP5/PMIP3 simulations of temperature and rainfall. On interannual timescales, five out of six GCMs show a significant (p < 0.05) negative association between simulated interannual temperature and rainfall, with correlation coefficients ranging between r = -0.12 and -0.29(1000-2005 CE period). The presence of an anticorrelation on interannual timescales is also found in the instrumental and proxy records, although the anticorrelation is significant in the instrumental record only (Fig. S5).

Notably, a frequency dependent relationship between the ScandH17 and ScandT14 reconstructions is found. While there is a negative relationship between the two on a year-toyear basis, a simple visual comparison of the two reconstructions shows that they are mostly in phase on decadal and longer timescales (Fig. 7). These results are corroborated by the cross-wavelet coherency analysis (Fig. 8a), revealing that the two reconstructions share significant (p < 0.05) in phase variance in multidecadal frequency throughout most of the last millennium. The coupling seems to arise from overlap in shared frequencies at wavelengths longer than ~ 50 years (c.f. Fig. 3). The observed frequency-dependent shift of the relationship thus suggests that cool summers are likely to be rainy summers on a year-to-year basis, while over longer time, warm decades tend to be wet decades in Scandinavia. Notably, our results reveal that the proxy reconstructions and the CMIP5/PMIP3 models portray considerably different relationships between temperature and moisture supply in Scandinavia on longer timescales. We find that the majority of the CMIP5/PMIP3 models are either underestimating or even lacking the positive association between temperature and moisture supply (Fig. 8b - h). The discrepancy appears to arise largely as the result of the spectral inconsistencies among the model and proxy datasets (see sect. 3). While the modeled

Discussion started: 5 April 2017

464

465

466

467

468

469

470471

472

473

474475

476

477

478479

480 481

482

483

484

485 486

487

488

489 490

491

492

493 494

495

496 497

interannual components of variability are overestimated, the decadal/longer timescale components are generally too weak (Fig. 3).

The observed time-dependent shift of the relationship between regional temperature and moisture availability suggests that different mechanisms governing the climate system might be operating at high (interannual) and low (decadal/longer) frequencies, respectively. The previously discussed strong link between inter-annual regional hydroclimate variability and atmospheric pressure patterns suggests that atmospheric dynamics is likely a dominant driver of hydroclimate in the northern European sector on interannual basis. The inverse covariability between warm-season temperature and moisture supply may arise from synoptic-scale correspondence between reduced cloud cover/rainfall and increased incoming shortwave radiation warming the surface during clear sky conditions. In addition, soil moisture exert a strong influence on the allocation of available energy between latent and sensible heating, especially in the warm-season (Seneviratne et al., 2010). Reduced soil moisture, for example, is associated with reduced latent heat flux and thus increased sensible heating and higher air temperatures near the surface. Resulting positive feedbacks of a modified surface heat flux partitioning on cloud cover and radiation (Gentine et al., 2013) and large-scale circulation (Haarsma et al., 2009) could further strengthen the influence of rainfall variability on the thermal climate.

The positive association between temperature and moisture supply that is found on decadal-to-multidecadal timescales imply that the long-term regional hydroclimate variability is more sensitive to changes in moisture supply (precipitation) rather than to increased evaporative demand due to warming. It also suggests that the regional moisture balance might be favored by the Clausius-Clapeyron relation (Allen and Ingram, 2002), prescribing an increase in rainfall and intensity of the hydrological cycle during warmer periods in the past millennium. This is generally referred to as 'wet-get-wetter'/'dry-get-dryer' mechanism and is attributed to thermodynamics processes (Held and Soden, 2006). In the absence of changes in atmospheric circulation, changes in net moisture supply with warming are related to change in moisture content of the atmosphere. It presupposes that existing circulations will transport more moisture into mesic regions of the globe (e.g., tropics and the mid- to latitudes of Northern Hemisphere), whilst dry regions (e.g., subtropics) will get even dryer, with the fractional change determined by Clausius-Clapeyron relation. In contrast to the proxy records, the model composite average reveals a twentieth-century temperature and rainfall increase yet little change in hydroclimate (Fig. 7b). The multimodel assessment implies that natural variability plays only a subsidiary role in recent changes and that forcing from anthropogenic

Discussion started: 5 April 2017

© Author(s) 2017. CC-BY 3.0 License.

503

498 greenhouse gases (GHG) may have played a more important role (as previously discussed, the

499 effect of GHG-forcing on interannual teleconnection patterns in the modern era seems to be

500 weak). Moreover, the absences of any significant trend in simulated SPEI series indicates that

the gains in moisture from increased precipitation are large enough to compensate for any

502 GHG-induced increase in PET in the post-industrial period.

6. Summary and discussion

This study presents the first comprehensive assessment of past variability and trends in

505 hydroclimate of northern European sector over the last millennium of the Common Era along

with interrelated variables: precipitation, which supplies moisture, and temperature, which

507 modulates evapotranspiration. A combined approach comparing observational (both

instrumental and proxy based) and model-based results is used for evaluation of simulated

and real-world interannual-to-centennial climate variability and the underlying physics

510 governing the climate system. A number of important finding emerge from the collective

511 comparison:

512 [1] Models and proxy data are found to broadly agree on the modes of atmospheric variability

513 (sect. 5) that produces droughts and pluvials in Scandinavia. Despite these dynamical

similarities, the GCMs are, however, not able to reproduce the hydroclimate features in the

515 proxy record. The droughts and pluvials in the forced simulation are not temporally

516 synchronous with those in the proxy record, nor do the GCM spectra agree with the proxy

spectra on the amount of variance present on short and long timescales (sect. 3).

518 [2] The mechanisms that are linking long-term regional summertime moisture variability and

temperature are found to be largely missing in the current generation of models (sect. 5). A

520 weak negative association between the two components is revealed from observational and

proxy evidences on interannual timescales, while on decadal timescales a positive correlation

522 dominates. The timescale dependent relationship between regional precipitation and

temperature is considerably biased in the CMIP5/PMIP3 models, which is reflected in the

524 overestimation of the short-term negative association and significant underestimation of the

525 long-term relationship between them. This discrepancy is most likely arising from the spectral

526 inconsistencies among the model and proxy datasets.

527 [3] There are considerable disagreements among hydroclimate features shown by the

528 CMIP5/PMIP3 simulations (despite the use of largely similar forcing series) (sect. 3).

529 Together, these results point to the possibilities of dominant influence of stochastic processes

Discussion started: 5 April 2017

530

531

532

533

534

535

536537

538

539

540541

542

543

544545

546 547

548

549

550

551552

553

554

555556

557

558

559 560

561

562

563

© Author(s) 2017. CC-BY 3.0 License.

for the regional hydroclimate and/or deficiencies in the models to realistically represent relevant processes in reality.

Essentially, our results reveal that the GCM simulated interannual components of the variability are overestimated, while the multidecadal/longer timescale components are generally too weak. Earlier studies (Ault et al., 2012; Ault et al., 2013) have also argued that most CMIP5/PMIP3 models exhibit less hydroclimate persistence than the instrumental or proxy records. It is difficult to determine explicitly whether it is an external forcing or internal sources that drive the decadal and longer variance in the proxy reconstruction. Prior studies have highlighted the importance of external influences on regional climate variability at different timescales (e.g., Gleckler et al., 2006; Thiéblemont et al., 2015; Sigl et al., 2015). Although we find a short term response of regional hydroclimate to volcanic perturbations (sect. 4), multi-year anomalies in the proxy reconstruction do, however, not appear to correspond well with the epochs following the large volcanic eruptions (e.g., in the 1250s, 1450s and 1810s) used to force the models. Thus we cannot rule out that the variability in the reconstruction largely arise from internal sources of variation. Consequently, if the proxyinferred decadal-to-multidecadal variability is accurate and if the variability is indeed largely unforced, then its magnitude is well beyond what any of the current generation global climate models are able to produce in the region. Underestimation of redness in the models on multidecadal/longer timescales, suggests the GCMs might be lacking/underestimating processes important to the variability at these timescales. There are a number of recognized limitations relating to the dynamics that are relevant to the climatology of the North Atlantic-European sectors. One such example is that models have generally been unable to simulate low-frequency variability in the North Atlantic Oscillation (Osborn, 2004). They have also been shown to underestimate the periodicity of the Atlantic Multidecadal Oscillation (Kavvada et al., 2013), which has implications for the associated hydroclimate impact on neighboring continents (Coats et al., 2015). If, on the other hand, the proxy estimated multidecadal/longer variability in the last millennium is forced by exogenous mechanisms, then either 1) it is a forcing component that is largely missing in the CMIP5/PMIP3 models, alternatively, 2) it is a forcing component that generates a different long-term response in the models compared to the "proxy view" of regional hydroclimatology.

It is not possible to pinpoint which part of the disagreement between models and the proxy comes from uncertainties in the tree-ring reconstruction, deficiencies in the forcing series used to drive the models, or from deficiencies in the model. Our analyses have mainly been based on precipitation simulation – a challenging variable for GCMs to simulate

Discussion started: 5 April 2017

564

565566

567

568

569

570571

572

573

574575

576

577

578579

580 581

582

583

584

585

586 587

588

589 590

591

592

593

594 595

596 597

© Author(s) 2017. CC-BY 3.0 License.

accurately. The coarse spatial resolution of the models gives only an approximate representation of the topographic features, which are important for regional hydroclimate. Another possibility is that the scale of the GCMs is unrepresentative of the point estimate provided by the ScandH17 reconstruction. On the other hand, the mismatch between grid box and point estimates is expected to reduce at longer timescales (Jones et al., 1997). There are also limitations of the tree-ring proxy and uncertainties in the interpretation of the data that cannot be ignored. Tree-rings and other biological archives may integrate climate conditions over multiple years (Zhang et al., 2015), which could potentially overestimating the ratio of low to high frequency variability (Franke et al., 2013). While we have been able to establish that prevailing summer moisture availability has been the main growth limitation of trees in the ScandH17 network on an interannual basis over the twentieth century (Figs. S3 and S6), we cannot verify the drought-tree growth model in the pre-instrumental era or across longer spectrum of variability. We are not able to rule out that there might have been climatic regimes in the past that would have caused dynamical shift in the tree growth response to climate, and potentially have called into question the uniformitarian paradigm traditionally applied in the field of dendroclimatology. There are risks that less well know dynamics outside the climate system may introduce variability into the records at decadal/longer timescales. Advances in the mechanistic understanding of the various proxies and the processes through which they record environmental change, e.g., through development and refinement of process-based forward models (Tolwinski-Ward et al., 2011), is currently an emerging priority in the field.

The discrepancies in CMIP5/PMIP3 simulated and proxy reconstructed hydroclimate variability in the last millennium is an issue that must be addressed when assessing projections of future hydroclimate change. The lack of adequate understanding for mechanisms linking temperature and moisture supply on longer timescales has important implication for future projections. Weak multidecadal variability in models also implies that inference about future persistent droughts and pluvials based on the latest generation global climate models will likely underestimate the true risk of these events. Reconciliations for the apparent proxy – model mismatch will require efforts from the proxy, modeling and statistics groups, including additional proxy records and refined model simulations of hydroclimate variability in the last millennium, together with the development of alternative approaches for joint proxy-model assessments. Having here provided a first comparison of reconstructed and simulated hydroclimate for Scandinavia, our future efforts will include adaptions of the data assimilation approach to paleoclimate reconstruction. Such efforts hold promise for reducing

Clim. Past Discuss., doi:10.5194/cp-2017-36, 2017

Manuscript under review for journal Clim. Past

Discussion started: 5 April 2017

© Author(s) 2017. CC-BY 3.0 License.

- 598 the uncertainties associated with model physics, external forcings, and internal climate
- 599 variability, and ultimately help to refine our view of past and future hydroclimate changes.

600 Data availability

- 601 The raw tree-ring data can be downloaded from the International Tree-Ring Data Bank
- 602 (http://www.ncdc.noaa.gov/paleo/treering.html) and the SAIMA Tree-Ring Data Bank
- 603 (http://lustiag.pp.fi/Saima/dendrotieto.htm) (Table II). The CMIP5/PMIP3 climate model
- 604 output can be obtained though the Earth System Grid Center for Enabling Technologies
- 605 (ESG-CET) portal (http://pcmdi9.llnl.gov/). The ScandH17 hydroclimate reconstruction is
- archived through the NOAA paleoclimate database (citation added on publication).

607 Acknowledgments

- 608 K. Seftigen was supported by the FORMAS mobility starting grant for young researchers
- 609 (grant # 2014-723). H. Goosse is senior research associate with the FRS/FNRS, Belgium. The
- 610 authors wish to acknowledge the World Climate Research Programme's Working Group on
- 611 Coupled Modelling, which is responsible for CMIP, and to thank the climate modeling groups
- 612 (listed in Table I of this paper) for producing and making available their model output. For
- 613 CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and
- 614 Intercomparison provides coordinating support and led development of software
- 615 infrastructure in partnership with the Global Organization for Earth System Science Portals.
- The authors also wish to acknowledge the researchers who have produced and made their
- tree-ring chronologies available.

618 References

- 619 Adams, B. J., Mann, M. E., and Ammann, C. M.: Proxy evidence for an El Nino-like response to
- 620 volcanic forcing, Nature, 426, 274-278, 2003.
- 621 Adler, R. F., Gu, G., Wang, J.-J., Huffman, G. J., Curtis, S., and Bolvin, D.: Relationships between
- 622 global precipitation and surface temperature on interannual and longer timescales (1979–2006),
- 623 Journal of Geophysical Research, 113, 10.1029/2008jd010536, 2008.
- 624 Allan, R., and Ansell, T.: A New Globally Complete Monthly Historical Gridded Mean Sea Level
- 625 Pressure Dataset (HadSLP2): 1850-2004, Journal of Climate, 19, 5816-5842, 10.1175/jcli3937.1,
- 626 2006
- 627 Allen, M. R., and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle,
- 628 Nature, 419, 224-232, 2002.
- 629 Anchukaitis, K. J., Buckley, B. M., Cook, E. R., Cook, B. I., D'Arrigo, R. D., and Ammann, C. M.:
- 630 Influence of volcanic eruptions on the climate of the Asian monsoon region, Geophysical Research
- 631 Letters, 37, n/a-n/a, 10.1029/2010gl044843, 2010.
- 632 Ault, T. R., Cole, J. E., and St. George, S.: The amplitude of decadal to multidecadal variability in
- 633 precipitation simulated by state-of-the-art climate models, Geophysical Research Letters, 39, n/a-n/a,
- 634 10.1029/2012gl053424, 2012.

Discussion started: 5 April 2017

- Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T., St. George, S., Otto-Bliesner, B.,
- 636 Woodhouse, C. A., and Deser, C.: The Continuum of Hydroclimate Variability in Western North
- 637 America during the Last Millennium, Journal of Climate, 26, 5863-5878, 10.1175/jcli-d-11-00732.1,
- 638 2013.
- Bala, G., Duffy, P. B., and Taylor, K. E.: Impact of geoengineering schemes on the global
- 640 hydrological cycle, Proceedings of the National Academy of Sciences, 105, 7664-7669,
- 641 10.1073/pnas.0711648105, 2008.
- 642 Berg, A., Lintner, B. R., Findell, K., Seneviratne, S. I., van den Hurk, B., Ducharne, A., Chéruy, F.,
- 643 Hagemann, S., Lawrence, D. M., Malyshev, S., Meier, A., and Gentine, P.: Interannual Coupling
- between Summertime Surface Temperature and Precipitation over Land: Processes and Implications
- 645 for Climate Change*, Journal of Climate, 28, 1308-1328, 10.1175/jcli-d-14-00324.1, 2015.
- Björklund, J., Gunnarson, B. E., Krusic, P. J., Grudd, H., Josefsson, T., Östlund, L., and Linderholm,
- 647 H. W.: Advances towards improved low-frequency tree-ring reconstructions, using an updated Pinus
- 648 sylvestris L. MXD network from the Scandinavian Mountains, Theor Appl Climatol, 10.1007/s00704-
- 649 012-0787-7, 2012.
- 650 Björklund, J., Gunnarson, B. E., Seftigen, K., Esper, J., and Linderholm, H. W.: Blue intensity and
- density from northern Fennoscandian tree rings, exploring the potential to improve summer
- 652 temperature reconstructions with earlywood information, Climate of the Past, 10, 877-885,
- 653 10.5194/cp-10-877-2014, 2014.
- 654 Briffa, K. R., Jones, P. D., Bartholin, T. S., Eckstein, D., Schweingruber, F. H., Karlén, W.,
- Zetterberg, P., and Eronen, M.: Fennoscandian summers from ad 500: temperature changes on short
- and long timescales, Climate Dynamics, 7, 111-119, 10.1007/bf00211153, 1992.
- 657 Briffa, K. R., and Melvin, T. M.: A Closer Look at Regional Curve Standardization of Tree-Ring
- 658 Records: Justification of the Need, a Warning of Some Pitfalls, and Suggested Improvements in Its
- 659 Application, in: Dendroclimatology: Progress and Prospects, edited by: Hughes, M. K., Swetnam, T.
- W., and Diaz, H. F., Springer Netherlands, Dordrecht, 113-145, 2011.
- 661 Carley, E. I., and Gabriele, C. H.: The global precipitation response to volcanic eruptions in the
- 662 CMIP5 models, Environmental Research Letters, 9, 104012, 2014.
- Coats, S., Cook, B. I., Smerdon, J. E., and Seager, R.: North American Pancontinental Droughts in
- Model Simulations of the Last Millennium*, Journal of Climate, 28, 2025-2043, 10.1175/jcli-d-14-
- 665 00634.1, 2015
- 666 Cook, E. R., Briffa, K. R., Meko, D., Graybill, D. A., and Funkhouser, G.: The 'segment length curse'
- 667 in long tree-ring chronology development for palaeoclimatic studies, The Holocene, 5, 229-237, 1995.
- 668 Cook, E. R., Meko, D. M., Stahle, D. W., and Cleaveland, M. K.: Drought Reconstructions for the
- 669 Continental United States, Journal of Climate, 12, 1145-1162, 1999.
- 670 Cook, E. R., and Krusic, P. J.: Arstan, version 2005, Tree-ring labora- tory, Lamont-Doherty Earth
- Obs., Palisades, N. Y. (Available at http://www.ldeo.columbia.edu/trl), 2005.
- 672 Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., Krusic, P. J., Tegel, W.,
- van der Schrier, G., Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D.,
- 674 Carrer, M., Cooper, R., Čufar, K., Dittmar, C., Esper, J., Griggs, C., Gunnarson, B., Günther, B.,
- Gutierrez, E., Haneca, K., Helama, S., Herzig, F., Heussner, K.-U., Hofmann, J., Janda, P., Kontic, R.,
- Köse, N., Kyncl, T., Levanič, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D., Neuwirth,
- B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A., Seftigen, K., Seim, A., Svarva, H.,
- 678 Svoboda, M., Thun, T., Timonen, M., Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Ważny, T.,
- Wilson, R., and Zang, C.: Old World megadroughts and pluvials during the Common Era, Science
- 680 Advances, 1, 10.1126/sciadv.1500561, 2015.
- 681 Crowley, T. J., and Unterman, M. B.: Technical details concerning development of a 1200 yr proxy
- 682 index for global volcanism, Earth Syst. Sci. Data, 5, 187-197, 10.5194/essd-5-187-2013, 2013.
- 683 D'Arrigo, R., Wilson, R., and Anchukaitis, K. J.: Volcanic cooling signal in tree ring temperature
- 684 records for the past millennium, Journal of Geophysical Research: Atmospheres, 118, 9000-9010,
- 685 10.1002/jgrd.50692, 2013.
- 686 Drobyshev, I., Niklasson, M., Linderholm, H. W., Seftigen, K., Hickler, T., and Eggertsson, O.:
- 687 Reconstruction of a regional drought index in southern Sweden since AD 1750, The Holocene, 21,
- 688 667-679, 10.1177/0959683610391312, 2011.

Discussion started: 5 April 2017

- 689 Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki,
- 690 S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy,
- 691 F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J. P., Ethé, C., Fairhead, L., Fichefet, T.,
- 692 Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F.,
- 693 Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
- 694 Lefebvre, M. P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M.,
- Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., 695
- 696 Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.:
- 697 Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5,
- 698 Climate Dynamics, 40, 2123-2165, 10.1007/s00382-012-1636-1, 2013.
- 699 Esper, J., Frank, D. C., Timonen, M., Zorita, E., Wilson, R. J. S., Luterbacher, J., Holzkamper, S.,
- 700 Fischer, N., Wagner, S., Nievergelt, D., Verstege, A., and Buntgen, U.: Orbital forcing of tree-ring
- 701 data, Nature Clim. Change, 2, 862-866, 2012.
- 702 Esper, J., Schneider, L., Smerdon, J. E., Schöne, B. R., and Büntgen, U.: Signals and memory in tree-
- 703 width and density data, Dendrochronologia,
- 704 http://dx.doi.org/10.1016/j.dendro.2015.07.001, 2015.
- 705 Feng, S., Hu, Q., and Oglesby, R. J.: Influence of Atlantic sea surface temperatures on persistent
- 706 drought in North America, Climate Dynamics, 37, 569-586, 10.1007/s00382-010-0835-x, 2011.
- 707 Fischer, E. M., Luterbacher, J., Zorita, E., Tett, S. F. B., Casty, C., and Wanner, H.: European climate
- 708 response to tropical volcanic eruptions over the last half millennium, Geophysical Research Letters,
- 709 34, n/a-n/a, 10.1029/2006GL027992, 2007.
- 710 Frank, D. C., Esper, J., and Cook, E. R.: On variance adjustments in tree-ring chronology
- 711 development, Tree rings in archaeology, climatology and ecology, TRACE, 4, 56-66, 2006.
- Franke, J., Frank, D., Raible, C. C., Esper, J., and Bronnimann, S.: Spectral biases in tree-ring climate 712
- 713 proxies, Nature Clim. Change, 3, 360-364, 2013.
- 714 Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the past 1500 years: An
- 715 improved ice core-based index for climate models, Journal of Geophysical Research: Atmospheres,
- 716 113, n/a-n/a, 10.1029/2008JD010239, 2008.
- 717 Gentine, P., Holtslag, A. A. M., D'Andrea, F., and Ek, M.: Surface and Atmospheric Controls on the
- 718 Onset of Moist Convection over Land, Journal of Hydrometeorology, 14, 1443-1462, 10.1175/jhm-d-
- 719 12-0137.1. 2013.
- 720 Gleckler, P. J., Wigley, T. M. L., Santer, B. D., Gregory, J. M., AchutaRao, K., and Taylor, K. E.:
- 721 Volcanoes and climate: Krakatoa's signature persists in the ocean, Nature, 439, 675-675, 2006.
- 722 Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet
- 723 coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561-566, 10.5194/npg-11-561-
- 724 2004, 2004.
- 725 Gunnarson, B. E., Linderholm, H. W., and Moberg, A.: Improving a tree-ring reconstruction from
- west-central Scandinavia: 900 years of warm-season temperatures, Climate Dynamics, 36, 97-108, 726
- 727 10.1007/s00382-010-0783-5, 2011.
- 728 Haarsma, R. J., Selten, F., Hurk, B. v., Hazeleger, W., and Wang, X.: Drier Mediterranean soils due to
- 729 greenhouse warming bring easterly winds over summertime central Europe, Geophysical Research
- Letters, 36, n/a-n/a, 10.1029/2008GL036617, 2009. 730
- 731 Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated high-resolution grids of monthly
- 732 climatic observations – the CRU TS3.10 Dataset, International Journal of Climatology, 34, 623-642,
- 733 10.1002/joc.3711, 2014.
- 734 Haurwitz, M. W., and Brier, G. W.: A Critique of the Superposed Epoch Analysis Method: Its
- 735 Application to Solar-Weather Relations, Monthly Weather Review, 109, 2074-2079, 10.1175/1520-
- 736 0493(1981)109<2074:acotse>2.0.co;2, 1981.
- Hegerl, G. C., Black, E., Allan, R. P., Ingram, W. J., Polson, D., Trenberth, K. E., Chadwick, R. S., 737
- 738 Arkin, P. A., Sarojini, B. B., Becker, A., Dai, A., Durack, P. J., Easterling, D., Fowler, H. J., Kendon,
- 739 E. J., Huffman, G. J., Liu, C., Marsh, R., New, M., Osborn, T. J., Skliris, N., Stott, P. A., Vidale, P.-L.,
- 740 Wijffels, S. E., Wilcox, L. J., Willett, K. M., and Zhang, X.: Challenges in Quantifying Changes in the
- 741 Global Water Cycle, Bulletin of the American Meteorological Society, 96, 1097-1115, 10.1175/bams-
- 742 d-13-00212.1, 2015.

Discussion started: 5 April 2017

- 743 Helama, S., and Lindholm, M.: Droughts and rainfall in south eastern Finland since AD 874, inferred
- from Scots pine tree-rings, Boreal Environ Res, 8, 171-183, 2003.
- 745 Helama, S., Merilainen, J., and Tuomenvirta, H.: Multicentennial megadrought in northern Europe
- 746 coincided with a global El Nino-Southern Oscillation drought pattern during the Medieval Climate
- 747 Anomaly, Geology, 37, 175-178, 10.1130/g25329a.1, 2009.
- 748 Held, I. M., and Soden, B. J.: Robust Responses of the Hydrological Cycle to Global Warming,
- 749 Journal of Climate, 19, 5686-5699, 10.1175/jcli3990.1, 2006.
- 750 Iles, C. E., Hegerl, G. C., Schurer, A. P., and Zhang, X.: The effect of volcanic eruptions on global
- precipitation, Journal of Geophysical Research: Atmospheres, 118, 8770-8786, 10.1002/jgrd.50678,
- 752 2013
- 753 Iles, C. E., and Hegerl, G. C.: Systematic change in global patterns of streamflow following volcanic
- 754 eruptions, Nature Geoscience, 8, 838-842, 10.1038/ngeo2545, 2015.
- 755 Jones, P. D., Osborn, T. J., and Briffa, K. R.: Estimating Sampling Errors in Large-Scale Temperature
- 756 Averages, Journal of Climate, 10, 2548-2568, 10.1175/1520-0442(1997)010<2548:eseils>2.0.co;2,
- 757 1997.
- 758 Jones, P. D., and Lister, D. H.: The influence of the circulation on surface temperature and
- 759 precipitation patterns over Europe, Clim. Past, 5, 259-267, 10.5194/cp-5-259-2009, 2009.
- 760 Jones, P. D., Melvin, T. M., Harpham, C., Grudd, H., and Helama, S.: Cool North European summers
- and possible links to explosive volcanic eruptions, Journal of Geophysical Research: Atmospheres,
- 762 118, 6259-6265, 10.1002/jgrd.50513, 2013.
- Jönsson, K., and Nilsson, C.: Scots Pine (pinus sylvestrisL.) on Shingle Fields: A Dendrochronologic
- Reconstruction of Early Summer Precipitation in Mideast Sweden, Journal of Climate, 22, 4710-4722,
- 765 10.1175/2009jcli2401.1, 2009.
- 766 Jungclaus, J. H., Lohmann, K., and Zanchettin, D.: Enhanced 20th-century heat transfer to the Arctic
- 767 simulated in the context of climate variations over the last millennium, Clim. Past, 10, 2201-2213,
- 768 10.5194/cp-10-2201-2014, 2014.
- 769 Kavvada, A., Ruiz-Barradas, A., and Nigam, S.: AMO's structure and climate footprint in
- observations and IPCC AR5 climate simulations, Climate Dynamics, 41, 1345-1364, 10.1007/s00382-
- 771 013-1712-1, 2013.
- Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Conley, A., Lawrence, P. J., Rosenbloom, N., and
- 773 Teng, H.: Last Millennium Climate and Its Variability in CCSM4, Journal of Climate, 26, 1085-1111,
- 774 10.1175/JCLI-D-11-00326.1, 2012.
- 775 Lehner, F., Joos, F., Raible, C. C., Mignot, J., Born, A., Keller, K. M., and Stocker, T. F.: Climate and
- 776 carbon cycle dynamics in a CESM simulation from 850 to 2100 CE, Earth Syst. Dynam., 6, 411-434,
- 777 10.5194/esd-6-411-2015, 2015.
- 778 Linderholm, H., and Molin, T.: Early nineteenth century drought in east central Sweden inferred from
- dendrochronological and historical archives, Climate Research, 29, 63-72, 2005.
- 780 Linderholm, H. W., Niklasson, M., and Molin, T.: Summer Moisture Variability in East Central
- 781 Sweden Since the Mid-Eighteenth Century Recorded in Tree Rings, Geografiska Annaler: Series A,
- 782 Physical Geography, 86, 277-287, 10.1111/j.0435-3676.2004.00231.x, 2004.
- 783 Linderholm, H. W., Björklund, J., Seftigen, K., Gunnarson, B. E., Grudd, H., Jeong, J.-H., Drobyshev,
- 784 I., and Liu, Y.: Dendroclimatology in Fennoscandia from past accomplishments to future potential,
- 785 Climate of the Past, 6, 93-114, 2010.
- 786 Linderholm, H. W., Björklund, J., Seftigen, K., Gunnarson, B. E., and Fuentes, M.: Fennoscandia
- revisited: a spatially improved tree-ring reconstruction of summer temperatures for the last 900 years,
- 788 Climate Dynamics, 45, 933-947, 10.1007/s00382-014-2328-9, 2014.
- 789 Madden, R. A., and Williams, J.: The Correlation between Temperature and Precipitation in the
- 790 United States and Europe, Monthly Weather Review, 106, 142-147, 10.1175/1520-
- 791 0493(1978)106<0142:tcbtap>2.0.co;2, 1978.
- 792 McCarroll, D., Loader, N. J., Jalkanen, R., Gagen, M. H., Grudd, H., Gunnarson, B. E., Kirchhefer, A.
- 793 J., Friedrich, M., Linderholm, H. W., Lindholm, M., Boettger, T., Los, S. O., Remmele, S., Kononov,
- 794 Y. M., Yamazaki, Y. H., Young, G. H., and Zorita, E.: A 1200-year multiproxy record of tree growth
- 795 and summer temperature at the northern pine forest limit of Europe, The Holocene, 23, 471-484,
- 796 10.1177/0959683612467483, 2013.

Discussion started: 5 April 2017

- 797 Melvin, T. M., and Briffa, K. R.: A "signal-free" approach to dendroclimatic standardisation,
- 798 Dendrochronologia, 26, 71-86, 10.1016/j.dendro.2007.12.001, 2008.
- 799 National Research Council: Surface Temperature Reconstructions for the Last 2,000 Years, The
- 800 National Academies Press, Washington, DC978-0-309-10225-4, 160, 2006.
- 801 Oglesby, R., Feng, S., Hu, Q., and Rowe, C.: The role of the Atlantic Multidecadal Oscillation on
- 802 medieval drought in North America: Synthesizing results from proxy data and climate models, Global
- 803 Planet Change, 84–85, 56-65, http://dx.doi.org/10.1016/j.gloplacha.2011.07.005, 2012.
- 804 Osborn, T. J.: Simulating the winter North Atlantic Oscillation: the roles of internal variability and
- greenhouse gas forcing, Climate Dynamics, 22, 605-623, 10.1007/s00382-004-0405-1, 2004.
- 806 Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L., Stevenson, S., Rosenbloom, N.,
- 807 Mai, A., and Strand, G.: Climate Variability and Change since 850 CE: An Ensemble Approach with
- the Community Earth System Model, Bulletin of the American Meteorological Society, 97, 735-754,
- 809 10.1175/bams-d-14-00233.1, 2016.
- 810 Sarojini, B. B., Stott, P. A., and Black, E.: Detection and attribution of human influence on regional
- precipitation, Nature Clim. Change, 6, 669-675, 10.1038/nclimate2976, 2016.
- 812 Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue,
- G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki,
- 814 S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP
- simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33-45, 10.5194/gmd-4-33-2011,
- 816 2011.
- 817 Seftigen, K., Linderholm, H. W., Drobyshev, I., and Niklasson, M.: Reconstructed drought variability
- 818 in southeastern Sweden since the 1650s, International Journal of Climatology, 33, 2449-2458,
- 819 10.1002/joc.3592, 2013.
- 820 Seftigen, K., Björklund, J., Cook, E. R., and Linderholm, H. W.: A tree-ring field reconstruction of
- 821 Fennoscandian summer hydroclimate variability for the last millennium, Climate Dynamics, 44, 3141-
- 822 3154, 10.1007/s00382-014-2191-8, 2014.
- 823 Seftigen, K., Cook, E., Linderholm, H., Fuentes, M., and Björklund, J.: The Potential of Deriving
- 824 Tree-Ring-Based Field Reconstructions of Droughts and Pluvials over Fennoscandia, Journal of
- 825 Climate, 28, 3453-3471, 10.1175/JCLI-D-1300734.s1, 2015.
- 826 Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and
- 827 Teuling, A. J.: Investigating soil moisture-climate interactions in a changing climate: A review, Earth-
- 828 Science Reviews, 99, 125-161, http://dx.doi.org/10.1016/j.earscirev.2010.02.004, 2010.
- 829 Shindell, D. T., Schmidt, G. A., Mann, M. E., and Faluvegi, G.: Dynamic winter climate response to
- 830 large tropical volcanic eruptions since 1600, Journal of Geophysical Research: Atmospheres, 109, n/a-
- 831 n/a, 10.1029/2003JD004151, 2004.
- 832 Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Buntgen, U.,
- 833 Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J.,
- Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schupbach, S.,
- 835 Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.: Timing and climate forcing of volcanic
- 836 eruptions for the past 2,500 years, Nature, 523, 543-549, 2015.
- 837 Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design,
- 838 Bulletin of the American Meteorological Society, 93, 485-498, 10.1175/bams-d-11-00094.1, 2012.
- 839 Thiéblemont, R., Matthes, K., Omrani, N.-E., Kodera, K., and Hansen, F.: Solar forcing synchronizes
- decadal North Atlantic climate variability, Nature communications, 6, 8268, 2015.
- Thomson, D. J.: Spectrum estimation and harmonic analysis, Proceedings of the IEEE, 70, 1055-1096,
- 842 10.1109/PROC.1982.12433, 1982.
- Thornthwaite, C. W.: An Approach Toward a Rational Classification of Climate, Soil Science, 66, 77,
- 844 1948.
- 845 Tolwinski-Ward, S., Evans, M. N., Hughes, M. K., and Anchukaitis, K. J.: An efficient forward model
- of the climate controls on interannual variation in tree-ring width, Climate Dynamics, 36, 2419-2439,
- 847 10.1007/s00382-010-0945-5, 2011.
- 848 Trenberth, K. E.: Changes in precipitation with climate change, Climate Research, 47, 123-138,
- 849 10.3354/cr00953, 2011.

Discussion started: 5 April 2017

© Author(s) 2017. CC-BY 3.0 License.

- van Oldenborgh, G. J., and Van Ulden, A. A. D.: On the relationship between global warming, local
- 851 warming in the Netherlands and changes in circulation in the 20th century, International Journal of
- 852 Climatology, 23, 1711-1724, 10.1002/joc.966, 2003.
- 853 Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A Multiscalar Drought Index Sensitive
- 854 to Global Warming: The Standardized Precipitation Evapotranspiration Index, Journal of Climate, 23,
- 855 1696-1718, 10.1175/2009jcli2909.1, 2010.
- Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I.,
- 857 Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E., and Sanchez-
- 858 Lorenzo, A.: Response of vegetation to drought time-scales across global land biomes, Proceedings of
- the National Academy of Sciences, 110, 52-57, 10.1073/pnas.1207068110, 2013.
- Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase,
- 861 H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.:
- MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci.
- 863 Model Dev., 4, 845-872, 10.5194/gmd-4-845-2011, 2011.
- 864 Wigley, T. M. L., Briffa, K. R., and Jones, P. D.: On the Average Value of Correlated Time Series,
- with Applications in Dendroclimatology and Hydrometeorology, Journal of Climate and Applied
- 866 Meteorology, 23, 201-213, 10.1175/1520-0450(1984)023<0201:otavoc>2.0.co;2, 1984.
- Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E., D'Arrigo, R., Davi, N., Esper, J.,
- 868 Frank, D., Gunnarson, B., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W.,
- 869 Myglan, V., Osborn, T. J., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P., and Zorita, E.:
- Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term
- 871 context, Quaternary Science Reviews, 134, 1-18, 10.1016/j.quascirev.2015.12.005, 2016.
- Wu, P., Christidis, N., and Stott, P.: Anthropogenic impact on Earth/'s hydrological cycle, Nature
- 873 Clim. Change, 3, 807-810, 2013.
- 874 Wu, T., Song, L., Li, W., Wang, Z., Zhang, H., Xin, X., Zhang, Y., Zhang, L., Li, J., Wu, F., Liu, Y.,
- 875 Zhang, F., Shi, X., Chu, M., Zhang, J., Fang, Y., Wang, F., Lu, Y., Liu, X., Wei, M., Liu, Q., Zhou,
- 876 W., Dong, M., Zhao, Q., Ji, J., Li, L., and Zhou, M.: An overview of BCC climate system model
- development and application for climate change studies, Journal of Meteorological Research, 28, 34-
- 878 56, 10.1007/s13351-014-3041-7, 2014.
- 879 Zhang, H., Yuan, N., Esper, J., Werner, J. P., Xoplaki, E., Büntgen, U., Treydte, K., and Luterbacher,
- 880 J.: Modified climate with long term memory in tree ring proxies, Environmental Research Letters, 10,
- 881 084020, 10.1088/1748-9326/10/8/084020, 2015.
- Zhang, X., Zwiers, F. W., Hegerl, G. C., Lambert, F. H., Gillett, N. P., Solomon, S., Stott, P. A., and
- Nozawa, T.: Detection of human influence on twentieth-century precipitation trends, Nature, 448, 461-
- 884 465, 2007.

885

886

887

888

889

890

891

892

Discussion started: 5 April 2017

© Author(s) 2017. CC-BY 3.0 License.

893 **Tables and figures**

894 **Table I.** CMIP5/PMIP3 model description.

Model Name	Resolution [Atmosphere]	Resolution [Ocean]	Reference
CCSM4	192 x 288	384 x 320	Landrum et al. (2012)
CESM1	96 x 144	384 x 320	Lehner et al. (2015)
IPSL-CM5A-LR	96 x 96	149 x 182	Dufresne et al. (2013)
MIROC-ESM	64 x 128	192 x 256	Watanabe et al. (2011)
MPI-ESM-P	96 x 192	220 x 256	Jungclaus et al. (2014)
BCC-CSM1-1	64 x 128	232 x 360	Wu et al. (2014)

Discussion started: 5 April 2017

© Author(s) 2017. CC-BY 3.0 License.

895 **Table II:** Tree-ring network description.

Site	Coord.	Time coverage	Standardization method	MSL ³	Source
Eastern Finland	61.87N, 28.90E	535 -2002 CE	RCS ¹	147 yrs	Helama et al. (2009)
					Online resource: http://lustiag.pp.fi/Saima/dendrotieto.htm
					Date access: January 2013
Gotland Sweden	57.49N, 18.41E	1127-2011 CE	RCS	130 yrs	Investigator: Schweingruber, F.H.
					Online resource:
					https://www.ncdc.noaa.gov/paleo/study/4427
					Date access: January 2013
	#0 #437 0 ##F	4404 4044 00	P.00	4.68	Updated in Seftigen et al. (2015)
Jondalen Norway	59.71N, 9.53E	1185 -2011 CE	RCS	165 yrs	Investigator: Briffa, K.
					Online resource:
					https://www.ncdc.noaa.gov/paleo/study/2826
					Date access: January 2013
D.I.s. G. I	50.0 AV. 12.27E	1606 2002 GE	GEO?	17.4	Updated in Seftigen et al. (2015)
Baljåsen Sweden	59.04N, 12.27E	1686-2002 CE	SF2 ²	174 yrs	Seftigen et al. (2015)
Björbo Sweden	60.27N, 14.44E	1450-2011 CE	SF	177 yrs	Investigator: Axelson, T.
					Online resource: https://www.ncdc.noaa.gov/paleo/study/2667
		4505 \$000 GD	an.		Date access: January 2013
Ekhultebergen Sweden	57.45N, 13.50E	1705-2008 CE	SF1	215 yrs	Seftigen et al. (2015)
Fårhagsberget Sweden	58.08N, 16.14E	1621-2011 CE	SF1	262 yrs	Seftigen et al. (2015)
Helvetets håla Sweden	57.14N, 16.14E	1691-2011 CE	SF1	255 yrs	Seftigen et al. (2015)
Halle-Vagnaren Sweden	57.17N, 15.17E	1718-2009 CE	SF3	186 yrs	Seftigen et al. (2015)
Hornslandet Sweden	59.01N, 11.08E	1590-2011 CE	SF1	270 yrs	Seftigen et al. (2015)
Korphålorna Sweden	61.43N, 17.00E	1790-2011 CE	SF1	199 yrs	Seftigen et al. (2015)
Myrkaby Sweden	57.45N, 15.23E	1669-2011 CE	SF2	294 yrs	Seftigen et al. (2015)
Nämndö Sweden	59.52N, 16.56E	1582-1995 CE	SF1	123 yrs	Investigator: Larsson, L.
					Online resource: https://www.ncdc.noaa.gov/paleo/study/3869
					Date access: January 2013
Valekleven-Ombo Sweden	59.11N, 18.41E	1578-2011 CE	SF1	225 yrs	Seftigen et al. (2015)
Putbergen Sweden	58.37N, 14.32E	1734-2008 CE	SF1	188 yrs	Seftigen et al. (2015)
Salboknös Sweden	59.11N, 16.55E	1486-2011 CE	SF2	357 yrs	Seftigen et al. (2015)
Särö Sweden	61.92N, 11.93E	1712-2002 CE	SF3	176 yrs	Seftigen et al. (2015)
Sisshammer Sweden	59.46N, 14.54E	1661-2003 CE	SF	74 yrs	Investigator: Andreason, T.
					Online resource: https://www.ncdc.noaa.gov/paleo/study/2663
					Date access: January 2013
Skärmarbodabergen Sweden	57.51N, 11.93E	1600-2002 CE	SF3	160 yrs	Seftigen et al. (2015)
Skitåsen Sweden	59.09N, 18.02E	1672-2011 CE	SF2	285 yrs	Seftigen et al. (2015)
Skuleskogen Sweden	59.26N, 15.07E	1448-2011 CE	SF	181 yrs	Seftigen et al. (2015)
Sörknatten Sweden	59.22N, 15.29E	1762-2009 CE	SF3	197 yrs	Seftigen et al. (2015)
Tiurhults mosse Sweden		1655-2011 CE	SF2	268 vrs	Seftigen et al. (2015)
Tjurhults mosse Sweden Tjusthult Sweden	63.06N, 18.29E	1655-2011 CE 1681-2011 CE		268 yrs 221 yrs	Seftigen et al. (2015) Seftigen et al. (2015)
Tjurhults mosse Sweden Tjusthult Sweden Tyresta Sweden		1655-2011 CE 1681-2011 CE 1609-2010 CE	SF2 SF1 SF1	268 yrs 221 yrs 198 yrs	Seftigen et al. (2015) Seftigen et al. (2015) Linderholm and Molin (2005)

⁸⁹⁶ RCS: Regional Curve Standardization;

^{897 &}lt;sup>2</sup> SF: Signal-Free Standardization. The number after the abbreviation indicates the PCA cluster number (Fig. S2);

^{898 &}lt;sup>3</sup>MSL: Mean Segment Length.

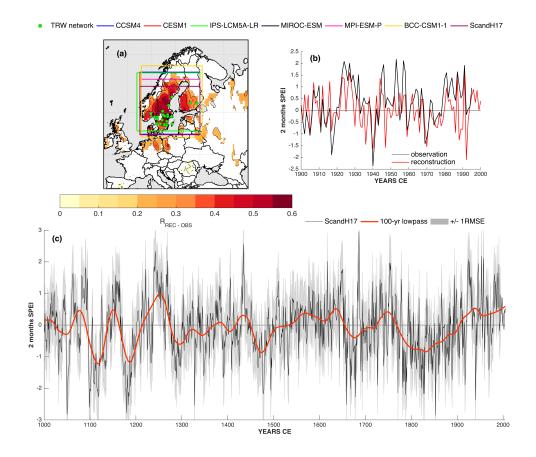
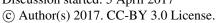
Discussion started: 5 April 2017

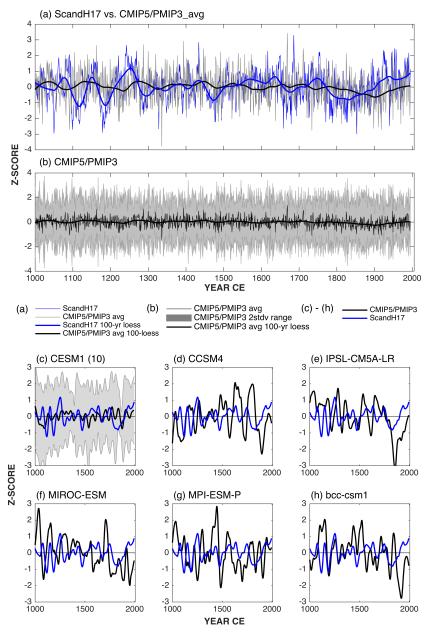
© Author(s) 2017. CC-BY 3.0 License.

Table III. Event years used in the Superposed Epoch Analysis (Fig. 4). The event lists are composedof the 20 strongest eruptions from each record.

Source	Event years (CE)
Gao et al. (2008) (sulfate aerosol	1167, 1176, 1195, 1227, 1258, 1284, 1328, 1452, 1459, 1584,
> 15 Tg)	1600, 1641, 1719, 1783, 1809, 1815, 1831, 1835, 1991
Crowley and Unterman (2013)	1229, 1258, 1259, 1286, 1287, 1456, 1457, 1600, 1601, 1641,
(AOD > 0.13)	1695, 1696, 1809, 1810, 1815, 1816, 1817, 1884, 1992
Sigl et al. (2015) (global forcing	1108, 1171, 1191, 1230, 1258, 1276, 1286, 1345, 1453, 1458,
$< 5.86 \text{ W/m}^2$)	1601, 1641, 1695, 1783, 1809, 1815, 1832, 1836, 1992

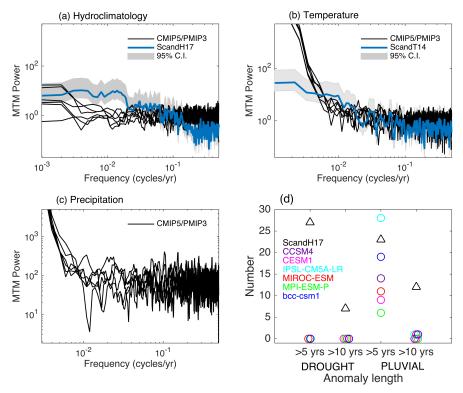
Discussion started: 5 April 2017

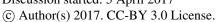

Figure 1: Average regional SPEI time series reconstructed from tree-rings. (a) Location of the tree-ring network used for regional reconstruction and the extent of the CMIP5/PMIP3 model precipitation and temperature grids used to derive regional SPEI estimates. Shaded contours display the correlation (p < 0.1) between the tree-ring reconstruction and fields of instrumental SPEI data over the 1901-1995 period; (b) average regional reconstructed and instrumental 20th century 2-month June SPEI; (c) average regional SPEI nested reconstruction, with the +/- 1RMSE of the regression equations outlined in grey shading. A smoothed version of the reconstruction using a 100-year loess smooth is shown in red. Reconstruction assessment metrics are provided in supplementary materials (Fig. S4).

Discussion started: 5 April 2017

Figure 2: Comparison of reconstructed SPEI with forced model runs. (a) The reconstruction versus the mean of the six CMIP5/PMIP3 models transformed into standard normal deviates (z-scores) over the 1000-1995 CE period and smoothed with 100-year loess filter; (b) multimodel mean and the two standard deviation range (shading) of the six GCMs; (c) mean and two standard deviation (shading) of CESM1 ten smoothed and z-scored ensemble members (blue) together; (d) – (h) the


Discussion started: 5 April 2017

© Author(s) 2017. CC-BY 3.0 License.



reconstruction (blue) versus individual model runs (black). All time series have been smoothed with 100-year loess filter and then z-scored over the 1000-1995 CE period.

Figure 3: Spectral properties (multi-taper approach, 4 tapers) of (a) SPEI, (b) temperature and (c) precipitation over the common 1100-1995 period. For SPEI and temperature, the spectral properties of individual GCMs (r1i1p1 ensemble) are compared to those of the tree-ring ScandH17 and ScandT14 reconstructions. Shaded areas show the 95% confidence interval of the reconstruction spectra. (d) The number of droughts and pluvials in the reconstructed and simulated time series that are > 5 and >10 years in duration. Spectral properties of the individual models are provided in Fig. S7.

Discussion started: 5 April 2017

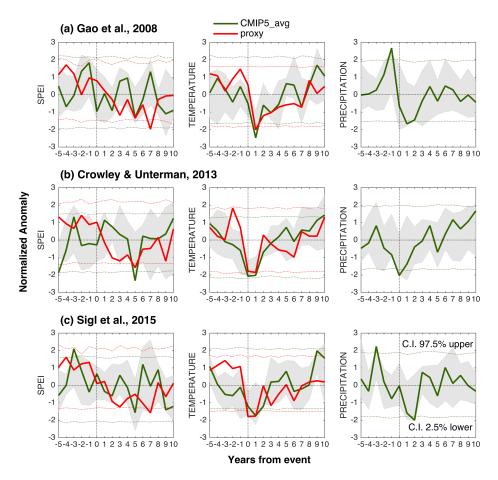
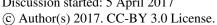



Figure 4: Modeled and reconstructed hydroclimate response to eruptions. Superposed epoch analysis using the 20 largest eruption years from the (a) Gao et al. (2008), (b) Crowley and Unterman (2013), and (c) Sigl et al. (2015). Table III lists the event years used in the analysis. Grey shading indicate the range of modeled hydroclimate response from the six GCMs. Confidence intervals (C.I.) are derived from bootstrap resampling ($N = 10\,000$).

Discussion started: 5 April 2017

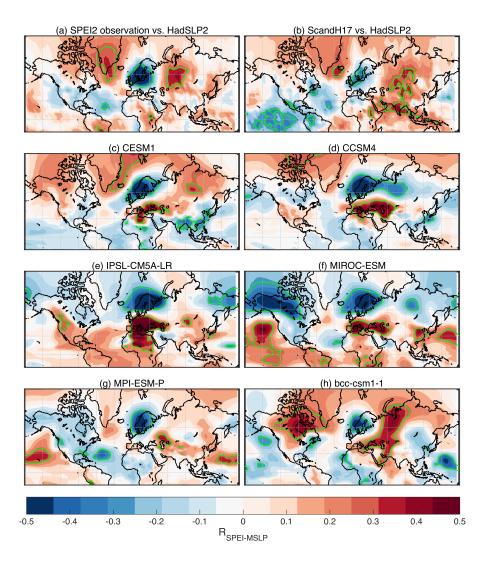
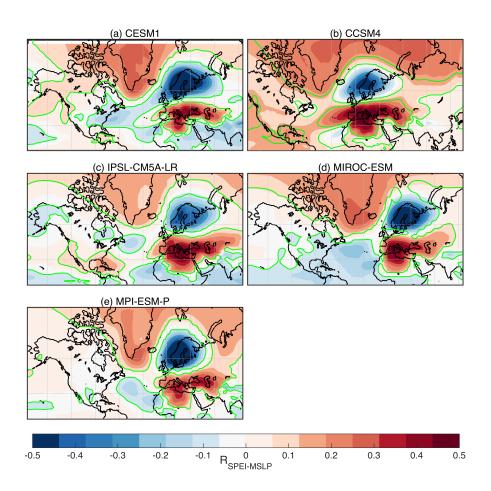
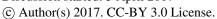
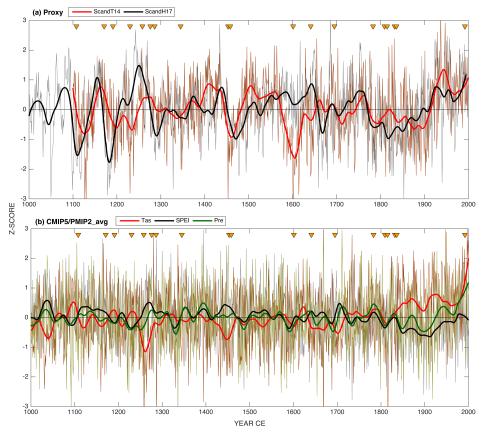


Figure 5: Spatial distribution of correlation coefficient of northern European warm season hydroclimate and mean sea level pressure (MSLP). Association between regional drought index and sea level pressure over the 1950-1995 period. (a) observational, (b) ScandH17, (c)-(g) model based results (including r1i1p1 ensemble only). Regions with significant (p < 0.05) correlations are outlined in green contours.

Clim. Past Discuss., doi:10.5194/cp-2017-36, 2017 Manuscript under review for journal Clim. Past Discussion started: 5 April 2017


Figure 6: Spatial distribution of correlation coefficient of northern European warm season hydroclimate and mean sea level pressure (MSLP). Same as Fig. 5, but for the 850-1849 CE period.

Discussion started: 5 April 2017

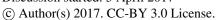


Figure 7: Time series of (a) ScandH17 and ScandT14, and (b) GCM (r1ilp1 ensemble) average temperature, precipitation and SPEI. Smoothed time-series using a 50-year loess filter are shown as thick lines. Individual model data are provided in supplementary material (Fig. S8). The years with volcanic eruptions from Table III are indicated by triangle glyphs.

Discussion started: 5 April 2017

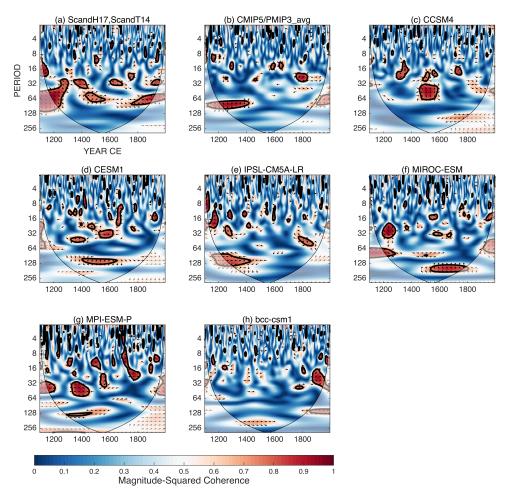


Figure 8: Squared wavelet coherence and phase between (a) ScandH17 and ScandT14, and (b) – (h) CMIP5/PMIP3 simulations of temperature and rainfall. The arrows indicate the relative phase relationship between two series; right (left) pointing arrow indicates in-phase (180 degrees out of phase) relationship. Significant coherence at 95% significance level is shown as thick contour.