Clim. Past Discuss., https://doi.org/10.5194/cp-2017-20-AC2, 2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

CPD

Interactive comment

Interactive comment on "Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea" by Kirsi Keskitalo et al.

Kirsi Keskitalo et al.

keskitalo.kirsi@gmail.com

Received and published: 8 August 2017

Please find attached a detailed author response and the revised manuscript and supplementary information as track-changes documents.

Interactive comment on Clim. Past Discuss., https://doi.org/10.5194/cp-2017-20, 2017.

Printer-friendly version

CPD

1 Author responses to reviews and edits to Climate of the Past manuscript

2 titled "Sources and characteristics of terrestrial carbon in Holocene-scale

sediments of the East Siberian Sea"

by K.Keskitalo, T.Tesi, L. Bröder, A. Andersson, C. Pearce, M. Sköld, I.P. Semiletov, O.V. Dudarev and Ö.
Gustafsson

6 We are grateful to all the three reviewers for their comments on the manuscript. These constructive and

7 overall positive comments have improve the manuscript during revisions. All the referee comments with

- 8 our responses are detailed below. The referee comments are given in italics and our response in regular
- 9 font. All references to line numbers refer to the revised track-changes document.

10

3

11 Reviewer #1, anonymous

12 GENERAL COMMENTS

- 13 "This paper uses novel proxy analyses to identify the provenance of the organic carbon in marine sediments
- 14 during the Holocene. The results show that total organic carbon flux was high during the early Holocene and
- 15 that it was primarily from terrestrial Pleistocene permafrost and mostly from shoreline erosion during the
- 16 sea level transgression."

17 RESPONSE

18 Thank you for your comment. This is exactly what we are trying to show.

19

20 Reviewer #2, Thomas Cronin

- 21 GENERAL COMMENTS
- 22 "This is an excellent, well-written paper. Minor queries are made as inserted comments in the attached PDF.
- 23 Minor revision is needed, but an organic geochemist should also read the paper."

24 RESPONSE

25 Thank you for the positive and supportive comment.

26 SPECIFIC POINTS

- 27 1) "This sentence "The CuO-derived lignin and cutin product" sounds like all readers will know what
- 28 you are talking about, can you expand and clarify a little." (L24-26)
- 29 An explanation about lignin and cutin products has been added to the text (L25). There is also a method
- 30 description given in Sect 2.5 and a more detailed explanation of lignin and cutin compounds in lines
- 31 283-286.

Fig. 1. Author response

Interactive comment

Printer-friendly version

Discussion paper

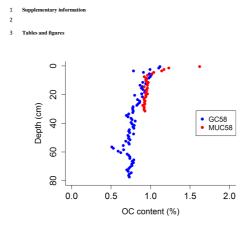
CPD

1	Sources and characteristics of terrestrial carbon in Holocene-
2	scale sediments of the East Siberian Sea
3	
4	Kirsi Keskitalo ¹ , Tommaso Tesi ^{1,3,4} , Lisa Bröder ^{1,3} , August Andersson ^{1,3} , Christof Pearce ^{2,3} ,
5	Martin Sköld ⁵ , Igor P. Semiletov ^{67,8} , Oleg V. Dudarev ^{7,8} and Örjan Gustafsson ^{1,3,*}
6	
7	¹ Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE 10691,
8	Sweden
9	² Department of Geological Sciences, Stockholm University, Stockholm, SE 10691, Sweden
10	³ Bolin Centre for Climate Research, Stockholm University, Stockholm, SE 10691, Sweden
11	⁴ CNR-National Research Council of Italy, ISMAR-Marine Science Institute, Bologna, IT 40129, Italy
12	⁵ Department of Mathematics, Stockholm University, Stockholm, SE 10691, Sweden
13	⁶ International Arctic Research Center, University Alaska Fairbanks, Fairbanks, AK 99775, USA
14	⁷ Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, RU 690041, Russia
15	⁸ Tomsk National Research Polytechnical University, Tomsk, RU 634050, Russia
16	
17	*Correspondence to: Örjan Gustafsson (orjan.gustafsson@acces.su.se)
18	
19	Abstract. Thawing of permafrost carbon (PF-C) due to climate warming can remobilise considerable amounts
20	of terrestrial carbon from its long term storage to the marine environment. PF-C can be then buried in sediments
21	or remineralised to CO2 with implications for the carbon-climate feedback. Studying historical sediment records
22	during past natural climate changes can help to understand the response of permafrost to current climate
23	warming. In this study, two sediment cores collected from the East Siberian Sea were used to study terrestrial
24	organic carbon sources, composition and degradation during the past ~9,500 cal yrs BP. The CuO-derived lignin
25	and cutin products-(i.e. compounds solely biosynthetised in terrestrial plants) combined with 613C suggest that
26	there was a higher input of terrestrial organic carbon to the East Siberian Sea between ~9,500 and 8,200 cal yrs
27	BP than in all later periods. This high input was likely caused by marine transgression and permafrost
28	destabilisation in the early Holocene climatic optimum. Based on source apportionment modelling using dual-
29	carbon isotope ($\Delta^{14}C$, $\delta^{13}C$) data, coastal erosion releasing old Pleistocene permafrost carbon was identified as a

30 significant source of organic matter translocated to the East Siberian Sea during the Holocene.

1

Interactive comment


Printer-friendly version

Discussion paper

Fig. 2. Revised manuscript

CPD

4

5 Figure S1. Comparison between the organic carbon (OC) content (%) of the sediment cores GC58 and

6 MUC58. Based on the comparison, we deduced that the top 3cm of GC58 were lost during sampling.

Printer-friendly version

Discussion paper

Fig. 3. Revised Supplementary Information

1

Interactive comment