

45 **(subpolar) oceanic frontal systems have varied in concordance with Oligocene-**
46 **Miocene glacial-interglacial climate variability.**

47

48 **1. Introduction**

49 The proportion of the East Antarctic ice sheet that is presently grounded
50 below sea level is much larger than originally assumed (Fretwell et al., 2013). This
51 implies that ~~more~~ more ice is sensitive to basal melting by warm waters than
52 previously thought (Shepherd et al., 2012; Rignot et al., 2013; Wouters et al., 2015),
53 and that a ~~much~~ higher amplitude and faster rate of sea-level rise ~~under~~ future
54 climate scenarios than previously thought (IPCC, 2013). Studying the state and
55 variability of Antarctic ice volume during past episodes with high atmospheric CO₂
56 concentrations (pCO₂) ~~might~~ provide additional ~~understanding~~ ^{predicted} ~~in periods~~ ^{insight}
57 feedback processes. Foster and Rohling (2013) compared sea-level and atmospheric
58 pCO₂ concentrations on geological timescales and highlighted that global ice sheets
59 were ~~very~~ ^{when} ~~insensitive~~ ^{ranged} to climate change under atmospheric pCO₂ between 400 and
60 650 parts per million in volume (ppmv). During the Oligocene and Miocene
61 atmospheric pCO₂ ranged between 400 and 650 ppmv (Foster et al., 2012; Badger et
62 al., 2013; Greenop et al., 2014). Crucially, similar pCO₂ levels are expected for the near
63 future given unabated carbon emissions (IPCC, 2013), implying that global ice volume
64 may not change much under these pCO₂ scenarios.

65 In contrast to the invariant global ice volume inferred by Foster and Rohling
66 (2013), a strong (up to 1 per mille; ‰) variability is observed in deep-sea benthic
67 foraminiferal oxygen isotope (hereafter benthic $\delta^{18}\text{O}$) data (Pälike et al., 2006;
68 Beddow et al., 2016; Holbourn et al., 2007; Liebrand et al., 2011; 2017). These

69 benthic $\delta^{18}\text{O}$ data reflect changes in continental ice volume (notably on Antarctica), in
70 combination with deep-sea temperature, with the latter strongly coupled to polar
71 surface-water temperature, as deep-water formation was predominantly located at
72 high latitudes (Herold et al., 2011). High-amplitude variations in benthic $\delta^{18}\text{O}$ thus
73 suggest either (I) strong climate dynamics in the high latitudes with relatively minor
74 ice-volume change (which is in accordance with numerical modelling experiments
75 (Barker et al., 1999) and the inferences of Foster and Rohling (2013)), or (II) strong
76 fluctuations of the Antarctic ice-volume, with relatively subdued temperature
77 variability (which is in accordance with indications for an unstable Antarctic ice
78 sheets under warmer-than-present climates (Cook et al., 2013; Greenop et al., 2014;
79 Rovere et al., 2014). ~~If~~ If one assumes present-day δ -composition (-42‰ versus
80 standard mean ocean water (SMOW)) for the Oligocene–Miocene Antarctic ice-sheets
81 and modern deep water temperature (2.5°C), then the Oligocene–Miocene benthic
82 $\delta^{18}\text{O}$ fluctuations suggest long-term ice-sheet variability ranging between a present-
83 day size for 27–23 Ma and absence during numerous other time intervals (Liebrand
84 et al., 2017). Meanwhile, deep-sea temperatures have fluctuated considerably on
85 geologic time scales (as is evident from ice-free geologic episodes –e.g., Zachos et al.,
86 2008), suggesting there is no reason to assume that it did not fluctuate during the
87 Oligocene or Miocene as well. Therefore, likely a combination of deep-sea
88 temperature and ice-volume changes is represented in these records, but it is
89 intrinsically impossible to determine the relative contribution of both factors from
90 benthic $\delta^{18}\text{O}$ data alone. ~~Given~~ ice-proximal reconstructions of climate, ice sheet and
91 oceanographic conditions are required to provide an independent assessment of the
92 stability of ice sheets under these $p\text{CO}_2$ conditions.

for the

93 While the Oligocene–Miocene may (in terms of $p\text{CO}_2$ conditions), bear analogy
94 to our future, any such investigation must take into account the uncertainties
95 involved in Antarctic paleotopography, which determines the proportion of marine-
96 based versus land-based ice during the Oligocene. A lower Antarctic continent would
97 result in more ice sheets being potentially sensitive to basal melt, and as such a
98 higher sensitivity of the ice sheet to climate change. On top of this one should take
99 note of the fundamentally different paleogeographic configuration of the Southern
100 Ocean during that time as compared to today (Figure 1). The development and
101 strength of the Antarctic Circumpolar Current (ACC) connecting the Atlantic, Indian
102 and Pacific Ocean basins (Barker and Thomas, 2004; Olbers et al., 2004) depend on
103 the basin configuration (width and depth of the gateways and position of continental
104 landmasses). The exact timing when the ACC reached its modern-day strength is still
105 uncertain, ranging from the Middle Eocene (41 Ma) to as young as Miocene (23 Ma,
106 Scher and Martin, 2004; Hill et al., 2013; Scher et al., 2015). Whether, and if so, how
107 the development of the ACC has influenced latitudinal heat transport, ice-ocean
108 interactions and the stability of Antarctic continental ice remains even more elusive.

109 To directly assess the role of ice-proximal oceanography on ice-sheet stability
110 during the Oligocene–Miocene, ice-proximal proxy-records are required. Several
111 ocean drilling efforts in the past have been undertaken to provide insight in the
112 history of the Antarctic ice sheets (Cooper and O'Brien, 2004; Barker et al., 1998;
113 Wise and Schlich, 1992; Barrett, 1989; Robert et al., 1998; Wilson et al., 2000;
114 Harwood et al., 2006; Exon et al., 2004; Escutia et al., 2011a). For some of these
115 sedimentary archives, establishment of age control was particularly challenging due
116 to the paucity of useful and proper means to calibrate the record to the international

?

climate state

was similar to
future
projection

make
more
impersonal

Re
complexity
which

meaning?

what proxies &
dating
techniques

117 time scale. As a consequence, their full use for the generation of paleoceanographic
118 proxy records and ice sheet reconstructions has remained limited.

cored

119 In 2010, Integrated Ocean Drilling Program (IODP) Expedition 318 drilled an
120 inshore-to-offshore transect off Wilkes Land (Fig. 1a), a sector of East Antarctica that
121 is assumed to be highly sensitive to continental ice-sheet melt (Escutia et al., 2011b).

122 The sediments recovered from IODP Hole U1356A are from the continental rise of
123 this margin (Escutia et al., 2011b) and hence contain a mixture of shelf-derived
124 material and pelagic sedimentation. Dinoflagellate cyst events in this record have
125 been accurately tied to the international time scale through integration with
126 calcareous nannofossil, diatom and magnetostratigraphic data (Bijl et al., in press).

for BWT

127 The result is a – for Southern Ocean standards – solid stratigraphic age frame for the
128 Oligocene–Miocene part of the record of Hole U1356 (Fig. 2; Table 1). In this paper,
129 we investigate the dinocyst assemblages from this succession by utilizing the strong
130 relationships between dinocyst assemblage composition and surface-water features
131 of today's Southern Ocean (Prebble et al., 2013). We reconstruct the oceanographic
132 regimes during the Oligocene and mid-Miocene, and speculate on their implications
133 for oceanographic settings. We further compare the palynological data with detailed
134 sedimentological descriptions from Salabarnada et al. (submitted this volume).

? different
word
here

135 Pairing the sedimentological interpretation and biomarker-derived absolute sea
136 surface temperature (SST) reconstructions from the same core (Hartman et al.,
137 submitted this volume) with our dinocyst assemblage data, we assess the
138 oceanographic variability off Wilkes Land from the dinocyst assemblages both at
139 glacial-interglacial and long-term times scales.

140

141 2. Material

142 2.1 Site description for IODP Hole U1356A

143 Samples were taken from IODP Hole U1356A, drilled on the continental rise of
144 the Wilkes Land Margin, East Antarctica (Figure 1a; present coordinates 63°18.6' S,
145 135°59.9' E; Escutia et al., 2011b). We use the paleolatitude calculator
146 www.paleolatitude.org of van Hinsbergen et al. (2015) to reconstruct the
147 paleolatitudinal history of the site (Figure 1, between $-59.8 \pm 4.8^\circ\text{S}$ and $-61.5 \pm 3.3^\circ\text{S}$
148 between 34 Ma and 13 Ma, respectively). The single hole at Site U1356 reaches a
149 depth of 1006.4 m into the seabed (Escutia et al., 2011b). Oligocene to late Miocene
150 sediments were recovered between 890 and 3 mbsf (Figure 2; Tauxe et al., 2012;
151 revised according to Bijl et al., in press). The uppermost 95 meters of the hole were
152 poorly recovered; sediments consisted of unconsolidated mud strongly disturbed by
153 rotary drilling (Escutia et al., 2011b). Hence, we focused our investigation on the
154 interval between Cores 11R to 95R Section 3 (95.4 to 894 mbsf; 10.8-33.6 Ma; Figure
155 2).

156

157 2.2 Lithology in IODP Hole U1356A

158 In the studied interval between 95.4 and 894 mbsf, nine lithologic units have
159 been recognized during shipboard analysis (Figure 2; et al., 2011b). Salabarnada et al.
160 (submitted this volume) presents a detailed lithologic study of the Oligocene
161 sediments. ~~For the grouping of our results, we use the lithologic facies from~~ ^{To} ~~the~~ ^{Litho}
162 Salabarnada et al. (submitted this volume), as outlined in Table 2. For the Miocene
163 interval of Site U1356, such a detailed lithologic description is not yet available;
164 therefore we treat the Miocene sediments as one ~~separate~~ lithologic unit in this

1 / *Willa Breyer-Brandwadt*
are increasingly
consolidation down-core, and
comprise diatom ooze and diatom-rich silty clays. The more consolidated bedding has
caused better preservation of original bedding structures. From 278.4 to 459.4 mbsf,
the lithology lacks gravel-sized clasts, but is otherwise similar to up-core.
171

165 paper. For the Miocene, we here give a brief summary of the observations published
166 in the IODP Expedition 318 post-cruise report (Escutia et al., 2011b). Miocene
167 sediments between 95 and 400 mbsf reflect increasing consolidation down-core, and
168 comprise diatom ooze and diatom-rich silty clays. The more consolidated bedding has
169 caused better preservation of original bedding structures. From 278.4 to 459.4 mbsf,
170 the lithology lacks gravel-sized clasts, but is otherwise similar to up-core.

172 2.3 Bio-magnetostratigraphic age model for IODP Hole U1356A

173 Stratigraphic constraints for the Oligocene–Miocene succession from IODP
174 Hole U1356A are provided through calcareous nannoplankton, radiolarian, diatom
175 and sparse palynological biostratigraphy, complemented with magnetostratigraphy
176 (Tauxe et al., 2012). Bijl et al. (in press) and Crampton et al. (2016) have updated the
177 existing age model for Site U1356 for the Oligocene and Miocene part of the
178 succession, respectively. Thereby, they recalibrated to the international time scale of
179 Gradstein et al., 2012. We here follow these new insights of the age model (Table 1).
180 We infer ages by linear interpolation between tie points (Figure 2; Table 1).

181

182 2.4 Depositional setting IODP Site U1356

183 The depositional setting of Site U1356 changed from a shallow mid-
184 continental shelf in the early Eocene (Bijl et al., 2013a) to a deep continental rise
185 setting in the Oligocene (Houben et al., 2013) due to subsidence of the Wilkes Land
186 Margin (e.g., Close et al., 2009). Regional extrapolation of the lithology at U1356A via
187 seismic profiles suggests a mix of distal-fan and hemipelagic sedimentation during
188 the early Oligocene, grading into channel-levee deposits towards the later Oligocene

189 (Escutia et al., 2011b). The boundary between these two different depositional
190 settings ^{is} occurs at ~650 mbsf; there, sedimentation rates increase, and the
191 documentation of mass-transport deposits from this depth upwards suggest shelf-
192 derived erosion events on the Wilkes Land continental slope (Escutia et al., 2011b).

193

194 **3. Methods**

195 **3.1 Palynological sample processing**

196 We refer to Bijl et al. (in press) for sample processing and analytical
197 procedures used. Both were according to standard procedures (e.g., Bijl et al., 2013b).
198 The 25 species of dinocysts new to science, which are formally (2 species) and
199 informally (23 species) described in Bijl et al. (in press) fit into known and extant
200 genera and therefore could be confidently included in the ecological groups as
201 described below.

202

203 **3.2 Ecological grouping of dinocyst taxa**

204 Bijl et al. (in press) provided additional statistical evidence to distinguish *in*
205 *situ* dinocysts from those that are reworked from older strata. In this paper, we follow
206 the interpretations of Bijl et al. (in press) and divide the dinocyst species into a
207 reworked and an *in situ* part (Table 3). To use the *in situ* dinocyst assemblages for
208 oceanographic reconstructions, we rely on the observation that many taxa in the
209 fossil assemblages have morphologically closely related modern counterparts. This
210 approach takes advantage of studies on present-day relationships between Southern
211 Ocean microplankton in general and dinoflagellates in particular and their surface-
212 water characteristics (e.g., Eynaud et al., 1999; Esper and Zonneveld, 2002, 2007;

Not → refers to
Need more
detail
here
In case
reader
cannot
access this
paper

213 Prebble et al., 2013). We assign Oligocene–Miocene dinocyst taxa to present-day eco-
214 groups interpreted from the clusters identified by Prebble et al. (2013), which seem *are interpreted*
215 to be closely related to the oceanic frontal systems in the Southern Ocean (Figure 3).
216 Supporting evidence for the ecologic affinities for the dinocyst groups comes from
217 *example* *empirical* data (Sluijs et al., 2005), for instance when it comes to the oceanic affinities
218 of *Nematosphaeropsis labyrinthus*, *Operculodinium* spp., *Pyxidinopsis* spp., and *have known oceanic affinities*?
219 *Impagidinium* spp. There is further abundant evidence, both empirically (e.g., Sluijs et
220 al., 2003; Houben et al., 2013) and from modern *observations* (Zonneveld et al., 2013; *distribution* *Mar*)
221 Prebble et al., 2013; Eynaud et al., 1999), which link the abundance of *Important, noted*,
222 protoperidinioid dinocysts to high surface-water primary productivity. The arguably
223 *most important inference from the surface-sample study* of Prebble et al. (2013) is
224 that *Selenopemphix antarctica* is common to dominant (10–90%) in proximal sea-ice
225 settings south of the Antarctic polar front (AAPF). Notably, *none* of the surface
226 samples outside of the AAPF *have* dominant *Selenopemphix antarctica* (Prebble et al.,
227 2013). Another important observation is that the surface samples south of the AAPF
228 *lack* are devoid of gonyaulacean dinocysts, with the exception of two species of
229 *Impagidinium* (i.e., *I. pallidum* and *I. sphaericum*) which can occur, although neither
230 abundantly (Prebble et al., 2013) nor exclusively (e.g., Zevenboom, 1995; Zonneveld
231 et al., 2013), in ice-proximal locations. Another important observation is the
232 occurrence of abundant *Nematosphaeropsis labyrinthus* exclusively in regions outside
233 of the Subantarctic Front, and particularly close to the Subtropical Front. In summary,
234 from proximal Antarctic to outside the frontal systems, Prebble et al. (2013)
235 documents dominance of *S. antarctica* south of the AAPF, dominance of other
236 protoperidinioid dinocysts at and N of the AAPF, mixed protoperidinioid and
1 *or*

237 gonyaulacoid dinocysts (with a notable common occurrence of *Nematosphaeropsis*
238 *labyrinthus* at the SAF and mixed gonyaulacoid dinocysts at and outside of the STF.
239 These trends represents the transition from sea-ice influenced to cold upwelling/high
240 nutrient to warm-temperate/lower nutrient conditions, respectively. We use the
241 affinities obtained by Prebble et al. (2013) to reconstruct past oceanographic
242 conditions at the Wilkes Land continental margin.

243

244 4. Results

245 4.1 Palynological groups

246 In our palynological analysis we separated palynomorph groups into four
247 categories: *In situ* dinocysts, reworked dinocysts (following Bijl et al. *(in press)*, Table
248 3), acritarchs and terrestrial palynomorphs. Our palynological slides further contain a
249 varying amount of pyritized diatoms and a minor component of amorphous
250 palynofacies, which is not further considered ~~in this study~~. The relative abundance of
251 the four palynomorph groups varies considerably ~~throughout the record, as do their~~
252 ~~absolute abundances~~ (Figure 4). Reworked dinocysts are present to common
253 ~~throughout the record, but are particularly abundant in the lowermost 40 meters of~~
254 the Oligocene and in the Upper Oligocene. *In situ* dinocysts ~~dominate the~~
255 palynomorph assemblage ~~during the~~ ⁱⁿ strata
256 spheromorph and *Cymatiosphaera*-type acritarchs (which are not further
257 taxonomically subdivided ~~in this study~~) dominate the assemblage ~~during~~ ⁱⁿ
258 Oligocene ~~and into the mid-Miocene, while terrestrial palynomorphs (which are~~
259 considered *in situ* and not reworked from older strata (Strother et al., 2017)) are a
260 constant minor component of the total palynomorph assemblage (Fig. 4).

reword clarify
)?

261

262 4.2 *In situ* dinocyst assemblages

263 Throughout the Oligocene, *in situ* dinocyst assemblages are dominated by
264 protoperidinioid dinocysts, notably *Brigantedinium* spp., *Lejeuneacysta* spp., *Malvinia*
265 *escutiana*, and *Selenopemphix* spp. (Figure 4), all of which are considered associated
266 *to be* ~~with~~ heterotrophic dinoflagellates. Among these protoperidinioid cysts, *S. antarctica*
267 is common to abundant only in the first 1.5 million years of the Oligocene
268 represented in the core material (33.6–32.1 Ma), and during and after the mid-
269 Miocene climatic transition (<14.2 Ma; Fig. 5). The remainder of the record is
270 ~~generally devoid of~~ *S. antarctica*. This is much in contrast to the dinocyst assemblages
271 ~~near~~ *at* Site U1356 ~~today~~, which are dominated by this taxon (Prebble et al., 2013). Instead,
272 other protoperidinioid dinocysts dominate, such as *Brigantedinium* spp., several
273 *Lejeuneacysta* species and *Selenopemphix nephroides*, which have close affinities to
274 high-nutrient conditions in general (e.g., Harland et al., 1999; Zonneveld et al., 2013)
275 but are not ~~specifically~~ *labeled* restricted to sea-ice-proximity or the Southern Ocean. Today,
276 these three genera dominate dinocyst assemblages in high-nutrient regions at or
277 outside of the AAPF (Prebble et al., 2013). We also encountered a *V* varying abundance
278 of protoperidinioid dinocysts, which could not be placed with confidence into
279 established protoperidinioid dinocyst genera. These are grouped under
280 *Interpreted* *have had* *classifies* *similar* *life-style* *as* *the* *other* *protoperidinioid* *dinocyst* *genera*.
281 Next to peridinioid dinocysts, also gonyaulacoid dinocysts occur commonly to
282 abundantly throughout the record from Site U1356. They comprise both known and
283 previously unknown (Bijl et al., in press) species of *Batiacashaera*, *Pyxidinopsis*,
284 *Sei* *included* *??*

With the exception of the tropicals, likely marked in these taxa, interpreted?? reward

285 *Nematosphaeropsis*, *Impagidinium*, and *Operculodinium* (Fig. 4; 5). Except for the
286 extinct genus *Batiacasphaera*, all the other genera are still extant and are formed by
287 phototrophic dinoflagellates. The abundance of these presumably mostly autotrophic
288 taxa (Zonneveld et al., 2013) goes at the expense of the assumed heterotrophic
289 protoperidinioid dinocysts. A remarkable increase is noted associated with the mid-
290 Miocene Climate Optimum (between ~17 and 15 Ma; Fig. 4, 5; Sangiorgi et al., In
291 review). Of these taxa, *Nematosphaeropsis* is thought to be associated with frontal
292 systems of the present-day Southern Ocean (Prebble et al., 2013) and also in the
293 North Atlantic Ocean (Boessenkool et al., 2001; Zonneveld et al., 2013).

294 facies?

295 4.5 Comparison between palynological data and lithological interpretations

296 The Oligocene sediments from Site U1356 comprise distinctive alternations of
297 lithologic facies throughout the section (Salabarnada et al., submitted this volume).
298 Figure 2). They are interpreted to reflect changes in the oceanographic regime, with
299 relations to glacial-interglacial changes (Salabarnada et al., submitted this volume).
300 Carbonate deposits, pelagic claystones and bioturbated, carbonate-bearing silty
301 claystones were interpreted as interglacial deposits, while the laminated lithologies
302 reflect glacial deposits (Salabarnada et al., submitted this volume). Mass-transport
303 deposits reflect times of major sediment transport from the continental shelf. The
304 lower Oligocene glauconitic sandstones were interpreted to reflect episodes of
305 redeposition of winnowed upper Eocene shelf sediments (Sluijs et al., 2003; Houben,
306 2012). We here evaluate and compare the palynological content of each of these
307 lithologies, both in terms of absolute and relative abundance of the main

Not seen by Versteegen!

308 palynomorph groups: reworked dinocysts, *in situ* dinocysts, acritarchs and terrestrial
309 palynomorphs and relative abundance of *in situ* dinocyst eco-groups.

310

311 4.5.1 Palynomorph groups and lithology

312 There are ~~distinct~~ differences in the relative and absolute abundances of
313 *facies* palynomorph groups between the different lithologies (Figure 6). The highest relative
314 and absolute abundances of reworked dinocysts occur in ~~the~~ lower Oligocene
315 reworked glauconitic sandstones, which is in line with previous inferences of Houben
316 et al. (2013). The ~~mass-transport~~ *deposits* contain abundant reworked dinocysts. The
317 relative and absolute abundance of *in-situ* dinocysts does not vary much between the
318 different lithologies, with the exception of the pelagic clays, in which *in-situ* dinocysts
319 are much lower in relative and absolute abundance (Figure 6). The opposite pattern
320 emerges for acritarchs, which reach highest relative and absolute abundances in the
321 pelagic clays (Figure 6). Terrestrial palynomorphs are most abundant in the
322 glauconitic contorted sandstones (Figure 6).

323

324 4.5.2 *In situ* dinocyst eco-groups and lithology

325 We also compared the *in situ* dinocyst eco-groups with predominant
326 lithological facies (Figure 7). The abundance of *Selenopemphix antarctica* is low
327 throughout the record (0-5%), with the exception of the interval post-dating the
328 Miocene Climatic Optimum (MCO) ~~interval~~ and the lowermost Oligocene. We note
329 that in the lower Oligocene, high abundances of *S. antarctica* and *Malvinia escutiana*
330 are mostly connected to glauconitic sandstones and the mass-transport deposits, and
331 rarely occur in the other lithologies (Figure 7). We however think that these species

10 be assemblage ed by
332 represent part of the *in situ* assemblage in an otherwise dominantly reworked
333 dinocyst assemblage, because these were never found in Eocene sediment in the
334 region before. *Lejeuneocysta* spp. shows significantly higher relative abundances in the
335 mass-transport and glacial deposits, and substantially lower abundance in the pelagic
336 clays, interglacial deposits and in the Miocene. *Brigantedinium* spp. shows invariable
337 relative abundances in the different lithologies, and the *Protoperidinium* spp. pars
338 group shows highest abundance in the pelagic clays (Figure 7). Overall, the relative
339 abundance of all (proto)peridinoid dinocysts in the *in situ* assemblage is highest in
340 the glacial deposits and pelagic clays, and substantially lower in interglacial deposits
341 and in the Miocene. Indeed, several gonyaulacoid dinocyst taxa (such as
342 *Nematosphaeropsis* spp., *Pyxidinopsis* cpx, *Operculodinium* spp., and *Impagidinium*
343 spp.) show higher relative abundances in interglacial than in glacial deposits. We thus
344 observe a marked difference in the relative abundances of gonyaulacoid dinocysts
345 over peridinoid dinocysts between glacial and interglacial deposits.

346

347 5. Discussion

348 5.1 Paleoceanographic interpretation of the dinocyst assemblages
349 5.1.1 Surface-ocean nutrient conditions
350 The dominance of heterotrophic dinoflagellate cysts in the Oligocene-Miocene
351 dinocyst assemblages indicate overall high nutrient levels in the surface waters. We
352 infer therefore that in general, surface-waters overlying Site U1356 experienced
353 upwelling associated to the AAPF during most of the Oligocene and Miocene.
354 However, and surprisingly, the occasionally abundant oligotrophic cyst taxa
355 encountered in our record suggest that at times, surface waters were much less

? subjective

particular

356 nutrient-rich, supporting an oligotrophic dinoflagellate assemblage. These dinocysts
357 are outer shelf to oceanic or outer neritic taxa (e.g., Sluijs et al., 2005; Zonneveld et al.,
358 2013; Prebble et al., 2013), which makes it unlikely they were reworked from the
359 continental shelf. Indeed, these taxa show low relative abundances in the ~~mass-~~
360 transport deposits (Figure 6); hence, we interpret that these taxa are part of the ~~in~~
361 ~~situ~~ pelagic assemblage and reflect warming of surface water, rather than them being
362 reworked. Although species within these genera have relatively long stratigraphic
363 ranges extending back into the Eocene, most of the species ~~encountered~~ at U1356
364 ~~are not present~~ ~~other~~ ~~al~~ ~~have never been found in Eocene continental shelf sediments in the region (e.g., Bijl et~~
365 al., 2011; 2013a, b; Brinkhuis et al., 2003a, b; Levy and Harwood, 2000; Wrenn and
366 Hart, 1988). This lends further support against them being reworked from Eocene
367 shelf material, in addition, the statistical approach also interprets these ~~species to be~~
368 part of the ~~in situ~~ assemblage (Bijl et al., in press). Now that we have abundant
369 evidence that these ~~autotrophic~~ ~~taxa~~ ~~are part of the in situ pelagic assemblage, we can~~
370 interpret these assemblages in terms of their paleoceanographic affinities. The
371 ~~occasional abundance~~ ~~maxima~~ ~~of these~~ ~~assemblages~~ ~~likely~~ ~~occurred~~ ~~in~~ ~~the~~ ~~same~~ ~~region~~ ~~today~~ ~~as~~ ~~now~~
372 low compared to ~~the same region today~~. The absence of these taxa in modern surface
373 waters south of the AAPF is probably caused by a combination of factors: low sea
374 surface temperatures, isolation by strong eastward currents, but also the abundance
375 and seasonal concentration of nutrients, which make the Antarctic proximal surface
376 waters a very specialistic niche. Apparently, surface water conditions during the
377 Oligocene and Miocene were such that these oligotrophic species could at times
378 proliferate so close to the Antarctic margin.

repetition?
clarify

? explain

better
writing

best modern analogue μ_2 of

380 5.1.2 sea-surface temperature 15

381 The average dinocyst assemblages in our record point to the Southern margin of New Zealand and Tasmania as the best modern analogue (inferred from Prebble et al., 382 2013; Figure 2). Those regions today feature a mix between protoperidinioid 383 dinocysts and gonyaulacoid dinocyst genera such as *Nematosphaeropsis*, 384 *Operculodinium* and *Impagidinium*. These assemblages occur at present in surface- 385 waters with mean annual temperatures of 8-17°C (Prebble et al., 2013). A bayesian 386 approach on the TEX₈₆ index values at U1356 (presented in Sangiorgi et al., 387 submitted; Hartman et al., submitted this volume) indicates exactly the same region 388 as modern analogues for the TEX₈₆ index values found (Hartman et al., submitted this 389 volume) as for the dinocysts (Prebble et al., 2013); both approaches indicate the same 390 paleotemperature range for the Oligocene-Miocene at U1356. These two proxies thus 391 independently point to a temperate, much warmer paleoceanographic regime close to 392 Antarctica during the Oligocene and Miocene with the nearest modern analogue 393 being offshore Southern New Zealand and Tasmania. Supporting evidence for 394 warmer 395 temperate Oligocene-Miocene surface waters comes from the abundance of 396 nannofossils encountered in the same Oligocene-Miocene sediments (Escutia et al., 397 2011b). Today, carbonate-producing plankton is ~~not~~ ^{gomes} are rare 398 surface waters south of the AAPF (Eynaud et al., 1999). Moreover, the remains of the 399 few carbonate-producing organisms living at high latitudes rarely reach the ocean 400 floor because strong upwelling of relatively CO₂-rich, corrosive waters (e.g., Olbers et 401 al., 2004). Hence, the presence of carbonate-rich intervals during the Oligocene- 402 Miocene at Site U1356, along with the ~~encountered~~ oligotrophic, temperate dinocysts, 403 suggests fundamentally warmer surface-water conditions than ~~at~~ present.

404

meaning?

405 5.1.3 Paleoceanography

406 The strong similarity of Oligocene–Miocene dinocyst assemblages at Site

407 U1356 to those today occurring much further north (e.g., around Tasmania and

408 Southern New Zealand (Prebble et al., 2013) suggests a fundamentally different

409 *modus operandi* of Southern Ocean oceanography. The strict latitudinal separation of *ice* *state* *strata*

410 dinocyst assemblages throughout the Southern Ocean today (Prebble et al., 2013) is

411 likely due to the different water masses present across the oceanic fronts *and* *where*

412 strong wind-driven divergence around 60°S (known as the Antarctic Divergence; e.g.,

413 Olbers et al., 2004), strong sea-ice season *and/or* the vigorous Antarctic Circumpolar

414 Current *are in place*. The strength and position of the AAPF during the Oligocene–

415 Miocene is not well understood. GCM experiments under Miocene boundary

416 conditions suggest that west and east wind drifts prevailed south and north of 60°S,

417 respectively (Herold et al., 2011). This position of the winds determines the average *to the* *similar*

418 position of the Antarctic Divergence at 60°S during the Oligocene and Miocene, like *suggested*

419 today. This would mean that Site U1356 likely was directly overlain by the AAPF. *nature*

420 However, the significantly warmer, more oligotrophic character of the dinocyst *suggested the area*

421 assemblages offshore Wilkes Land throughout the Oligocene–Miocene argues against *did not lie under*

422 a close position to the AAPF. The position of the AAPF relative to the position of Site *more example*

423 U1356 strongly determines the likelihood of southward transport of low-latitude *? clarify*

424 waters towards the site. A southward position of the AAPF relative to Site U1356

425 would have led to the *would greatly enhance the possibility for southward migration of temperate water*

426 masses towards the site. A northward position of the AAPF relative to the site, would

427 make such much more difficult. The presence of carbonate in these deep marine

Data do not support

428 sediments also suggests that upwelling of corrosive waters through the (proto-) *from mislocation*

429 Antarctic Divergence was either much reduced or located elsewhere. Therefore, we *absent*
430 deduce that the occurrence of the oligotrophic, temperate dinocysts is evidence for a *interpreted here*
431 southward position of the AAPF relative to the position of Site U1356. *27*
Y/ reflect

432 The separate averaging of dinocyst assemblages for glacial and interglacial *variable*
433 deposits (Figure 7) allows us to reconstruct the glacial-interglacial surface *may be used*
434 oceanographic changes throughout the Oligocene. This approach suggests that *marked*
435 substantial paleoceanographic dynamics *were associated with* Oligocene glacial-
436 interglacial cycles. *Alongside the 2-3 °C SST variability during glacial-interglacial*
437 *cycles at this same site (Hartman et al., submitted this volume), dinocyst assemblages*
438 *were* *and* *dominated*
439 *contain more oligotrophic, temperate dinocysts during interglacial* *intervals*
440 *more related to* *similar to that* *variability*

441 This could be the result of a slight latitudinal movement of oceanic frontal systems
442 (notably the AAPF), as has been reconstructed for the Southern Ocean fronts during
443 the most recent glacial to interglacial transition (e.g., Kohfeld, et al. 2013). The *repeating*
444 difference in dinocyst assemblages between glacial and interglacial deposits might be
445 explained by a south position of the AAPF during interglacials, allowing for temperate
446 oligotrophic surface waters to reach the Site, while during glacials the AAPF migrated
447 northward over Site U1356, causing cold, high-nutrient conditions.

448 5.2 Implications for Oligocene-Miocene ocean circulation

449 Only in the lowermost Oligocene and in strata representing the mid-Miocene
450 climatic transition and later (14.4 Ma and younger) the dinocyst assemblages bear *are*
451 similarities to modern proximal-Antarctic assemblages (Prebble et al., 2013), with *short*

These
assemblage are
19
characterised

by

However

Dinocyst

452 high abundances of *Selenopemphix antarctica*. Even in those intervals, however, the
453 relative abundances of *S. antarctica* does not reach present-day values at the same
454 site. The absence of a strong shift towards modern-day ~~the~~ assemblages in our
455 record can be interpreted to reflect a weaker-than-present ACC, in line with
456 numerical models (Herold et al., 2012; Hill et al., 2013). The ACC itself represents an
457 important barrier for latitudinal surface-water transport towards the Antarctic
458 margin, in addition to the Antarctic Divergence (Olbers et al., 2004). Our data suggest
459 an increase in the influence of oligotrophic dinocysts at the Antarctic margin during
460 the late Oligocene and during the MMCO, which argues against the installation of a
461 vigorous ACC at 30 Ma (Scher et al., 2015). No profound changes in surface
462 paleoceanography emerge from our dinoflagellate cyst data around 30 Ma, and there
463 is no major change in the benthic $\delta^{18}\text{O}$ (Figure 5). Instead, if the Tasmanian Gateway
464 had opened to an extent that allowed ACC development (Scher et al., 2015), the ACC
465 must have been much weaker than at present throughout the Oligocene and Miocene.
466 The strongly different dinocyst assemblages compared to present-day at Site U1356
467 throughout our record implies to us that a strong coherent ACC was not installed until
468 after the MMCT (11 Ma). This is consistent with inferences from the lithology at the
469 same site (Salabarnada et al., submitted this volume), suggesting a proto-ACC much
470 weaker than at present and, likewise, weaker Southern Ocean frontal systems. An
471 alternative explanation is that the ACC increased in strength during the Oligocene-
472 Miocene, but that this strengthening had no influence on the dinocyst assemblages at
473 Site U1356. However, the vigorous nature of the ACC influencing surface as well as
474 bottom waters and generating eddy water circulation in the Southern Ocean (Olbers et
475 al., 2004) makes such a scenario very unlikely. Nevertheless, to finally clarify whether

do
but
I have
not
seen
this
paper

relative variability

476 the strength of the ACC changed to its present-day force only after the MMCT (as
477 suggested by our data), ocean-circulation modelling of time slices younger than the
478 Oligocene will be required.

479

480 5.3 Implications for ice sheet and sea-ice variability

relative me
481 The abundance of our sea-ice indicator *Selenopemphix antarctica* throughout
482 ~~the record is consistently lower than that in present-day dinocyst assemblages at Site~~
483 U1356 (Prebble et al., 2013; Figure 3). This suggests that sea-ice conditions were
484 never as severe as today ~~throughout the studied time interval. Only during two time~~
485 ~~intervals sea ice indicators suggest some sea ice near the Site: the first 1.5 million~~
486 ~~years following the Oi-1 glaciation (33.6–32.1 Ma; Figure 5), and during and after the~~
487 mid-Miocene climatic Transition (14–11 Ma; Figure 5). Numerical ice-sheet/sea-ice
488 modelling (DeConto et al., 2007) suggests sea-ice to develop only if the continental ice
489 sheets reach the coastline. Our lack of sea-ice indicators during most of the Oligocene
490 and Miocene ~~could thus suggest that the Antarctic continental ice sheet was much~~
491 ~~reduced during this time. The finding of a weaker sea-ice season throughout most of~~
492 ~~the Oligocene–Miocene at Site U1356 has major implications for regional~~
493 ~~paleoceanography because it suggests a decrease in the potential formation of~~
494 Antarctic bottom waters at this site.

relative 1 *follows*
495 The abundance of our oligotrophic taxa broadly co-varied with long-term
496 Oligocene–Miocene benthic $\delta^{18}\text{O}$: During times of low $\delta^{18}\text{O}$ values in deep-sea benthic
497 foraminifera (and thus high deep-sea temperatures and less ice volume; e.g., at 32 Ma,
498 24 Ma and 15 Ma; Figure 5), the abundance of oligotrophic temperate dinocysts was
499 large (Figure 5). At times of higher $\delta^{18}\text{O}$ values, lower deep-sea temperatures and

500 higher ice volume (e.g. at 33.5 Ma, 27 Ma, 23 Ma and 13 Ma; Figure 5) temperate
501 dinocysts ~~were reduced in abundance~~ ^{became rare} and high-nutrient, sea-ice indicators
502 (re)appeared. ~~Altogether~~ ^{Instead} this suggests on long time scales, ~~that there was stronger~~
503 influence of warm surface waters at the Wilkes Land Margin ~~at times when ice sheets~~
504 were smaller ~~and climate was warmer~~, and less ~~influence of warm surface waters~~
505 during times of larger ice sheets, ~~hence a connection between ice sheet and~~
506 ~~oceanographic variability~~.

507 Oxygen-isotope mass-balance calculations suggest that a modern-day-sized
508 Antarctic ice sheet appeared at the Eocene/Oligocene boundary (DeConto et al.,
509 2008). Benthic $\delta^{18}\text{O}$ records suggest that ice sheets fluctuated considerably in size
510 during the subsequent Oligocene and Miocene (Liebrand et al., 2017). Based on the
511 heavy $\delta^{18}\text{O}$ values for Oligocene benthic foraminifera from Maud Rise, it was inferred
512 that Antarctic ice sheets were near-present-day size throughout the Oligocene
513 (Hauptvogel et al., 2017). Both isotope studies of Liebrand et al (2017) and
514 Hauptvogel et al. (2017) assume constant temperatures of the deep sea and similar-
515 to-present-day $\delta^{18}\text{O}$ of the continental ice. Our data instead show that the regional
516 paleoceanography, ~~together with~~ ^{and} surface-ocean temperature (Hartman et al.,
517 submitted this volume), ~~can vary considerably both on the~~ ^{max have} ~~and~~ long term as on orbital
518 time scales. It remains to be seen whether the variability in paleoceanography found
519 here can be extrapolated to larger parts of the Antarctic margin, including to those
520 regions of deep-water formation. Given the high temperatures and absence of strong
521 sea ice influence, the Wilkes Land margin was likely not the primary sector of deep-
522 water formation, although there is ample evidence for bottom-current activity at the
523 site (Salabarnada et al., submitted this volume). However, if the oceanographic and

leave out speculative

524 climate variability we reconstruct offshore Wilkes Land characterises also regions of
525 deep-water formation, some (if not much) of the variability both on long and on
526 orbital time scales in benthic $\delta^{18}\text{O}$ records is related to deep-sea temperature rather
527 than Antarctic ice volume (see also Hartman et al., submitted this volume).

528 Meanwhile we find little support in our study for the large continental ice sheets
529 ~~that reached the coast~~ during the Oligocene as concluded by Hauptvogel et al. (2017), given the absence of
530 dominance of sea-ice dinoflagellate cysts and *in situ* terrestrial palynomorphs
531 (Strother et al., 2017). As an alternative explanation to the difference in $\delta^{18}\text{O}$ values
532 between Maud Rise and Equatorial Pacific during the Oligocene (Hauptvogel et al.,
533 2017), we suggest that these two records have recorded the characteristics of two
534 fundamentally different deep water masses, with those at Maud Rise being much
535 colder and saltier than those at Shatsky Rise.

536

537 6. Conclusions

538 The dinocyst assemblage changes in the Oligocene–Miocene (33.6–10 Ma) of Site
539 U1356 ~~are~~ *Variable* at
540 comparison of these assemblages to present-day dinocyst assemblages. This
541 approach allows us to hypothesize that the Southern Ocean paleoceanography during
542 the Oligocene–Miocene was fundamentally different from that of today. A strong sea-
543 ice signal (yet still weaker than that of today) emerges for the Wilkes Land Margin
544 only for the first 1.5 million years of the Oligocene (33.6–32.1 Ma) and the mid-
545 Miocene climatic transition (14–10 Ma). The remainder of the Oligocene–Miocene
546 record of surface waters off Wilkes Land were warm, relatively oligotrophic and lack
547 indications of a prominent sea-ice season. Upwelling at the Antarctic Divergence must

Revised

Speculations

? you
mean

ice sheets

that

reached

the

coast.

This does not
preclude

the
existence
of

"large"

ice
sheets

and shedly *the*

548 have been profoundly weaker during Oligocene and Miocene times, compared to
549 today. Furthermore, the continental ice sheet must have been much reduced at the *when* *1 s were smaller*
550 Wilkes Land sub-glacial basin for most of the Oligocene-Miocene compared to today,
551 and continental ice sheets were retreated inland. The strength of the influence of *follows* *water trends*
552 warm oligotrophic surface water was strongly coupled to deep-sea $\delta^{18}\text{O}$ values: With
553 enhanced low-latitude influence of surface water during times of light $\delta^{18}\text{O}$ in the
554 deep sea and *vice versa*. The absence of (a trend towards more) oceanographic
555 isolation of the Wilkes Land margin throughout the Oligocene to mid-Miocene *may have attained its*
556 suggests that the ACC *did not obtain its full*, present-day strength until at least the
557 mid-Miocene Climatic transition. *Moreover*, we note considerable glacial-interglacial *??*
558 variability in this oceanographic setting, with stronger influence of oligotrophic, low-
559 latitude surface waters over Site U1356 during interglacial times and more eutrophic, *prevailed alternately with*
560 colder influence during glacial times. *This may suggest considerable latitudinal*
561 migration of the AAPF over Oligocene and Miocene glacial-interglacial cycles. *related to the*

562

563 Acknowledgements

564 This research used data and samples from the Integrated Ocean Drilling Program
565 (IODP). IODP was sponsored by the U.S. National Science Foundation and
566 participating countries under management of Joined Oceanographic Institutions Inc.
567 PKB and FS thank NWO-NNPP grant no 866.10.110, NWO-ALW VENI grant no
568 863.13.002 for funding and Natasja Welters for technical support. CE and AS thank
569 the Spanish Ministerio de Economía y Competitividad for Grant CTM2014-60451-C2-
570 1-P.

571