Response to Reviewer 1, Kasia Śliwinska, by Bijl et al.

GENERAL COMMENTS At the beginning, I would like to apologize for the delay in delivering my review. It was great to get an opportunity to comment on this paper. For some time now, I have been working on the Oligocene from the North Atlantic region. Even though our study areas are so far from each other, one cannot fully understand the paleoclimatic changes in the high northern latitudes and the global ocean circulation under the early icehouse world, without an insight into the oceanic regime in the southern high latitudes. This paper provides an important and unique record of the paleogeographical reconstruction of the Oligocene to middle Miocene of the East Antarctica based on dinoflagellate cysts. Authors apply selected dinocysts genera and taxons as proxies for sea-ice reconstruction, nutrients, and temperature. The changes in the composition of dinocysts assemblages is additionally correlated with the sedimentology and organic biomarker data. I find this manuscript interesting and very needed piece of work for our understanding of the oceanic circulation under the early icehouse world conditions. A concern however, is the way the sedimentological data are incorporated into the text. The results of the present study (i.e. changes in the dinocysts assemblages) need to be clearly presented, and other data (sedimentology, biomarkers) should be carefully included but only as a data supporting the results based on dinocysts. The part about the lithology should not be included in the section with the results but as e.g. the background information. Also, a term "Miocene deposits" (Table 2) doesn't not carry any sedimentological information. Why do the authors not keep the terminology by Salabarnada et al. (submitted this volume) in this case? This expression is not used in the main text, but "Miocene sediments". The manuscript is well written, however, there is still room for improvement (see my suggestions below). Overall, the manuscript represents a substantial contribution to the scientific progress within the scope of Climate of the Past. I am certain that it will be of great interest for readers of the journal.

We appreciate the positive assessments by Śliwińska regarding our manuscript, and her indications as to how to improve our manuscript even further. Śliwińska posed several concerns and suggestions, which we can definitely use to improve our manuscript. We herein respond to these concerns and suggestions in detail.

SPECIFIC COMMENTS In the Supplementary material, in the sheet with the dinocysts counts I see only Selenopemphix cf. antarctica. Is that a typo or the specimen observed in the present study only partially resemble the holotype? If it different, then I think that this needs a bit of attention in the text.

This is indeed a typo, it does fall within the species definition of the holotype. We will amend this in our next version of the paper.

Bijl et al. (in press) have already discussed which dinocysts are in situ and which not, so I think that the first section of the discussion can be tightened up a bit.

The first section of our discussion aims at providing the necessary details to put forward new arguments than those proposed in Bijl et al., in press (now Bijl et al., 2018) to strengthen and support the reason why we believe that the gonyaulacoid dinocysts are *in situ*. Therefore we do not find this redundant but rather complimentary to the results of Bijl et al., 2018, as indicated in lines 366-368. This paper targets a different audience than that of Journal of Micropaleontology, an audience that does not necessarily want to read detailed micropaleontological contemplations, but is merely interested in the paleoceanographic reconstructions. Such reconstructions are based on detailed micropaleontological information that is now published in Bijl et al., 2018, should the reader be interested. Journal of Micropalaeontology is an open access journal, hence available to everyone. Because of the above, we opt for maintaining the first section of the manuscript as Also, since dinocysts play a key role in this study, I would consider to include a plate with photos of the most important taxa.

Bijl et al. (2018, Journal of Micropalaeontology) also features a large number of dinocyst plates, and the publication is open access. This paper however is targeted to present the paleoceanographic reconstructions, using the dinocysts as a tool rather than the purpose of the study. With that aim in mind, and anticipating on the audience expected, we decided that plates are irrelevant in this paper. However, we added reference to the plates as published in Bijl et al. 2018 in the methods section (3.1)

Terrestrial palynomorphs can include everything from saccate-pollen to spores or fungal hyphae, and thus suggests e.g. a different depositional setting for the site. Therefore, I think that it may be a bit risky to put them into one category without mentioning any details. One way to fix this is to give appropriate overheads in the "dinocysts counts" spreadsheet in the supplementary excel file (i.e. in situ dinocysts, reworked dinocysts, terrestrial palynomorphs, etc.) and refer to this file in the main text.

An extensive presentation of the terrestrial palynology and the vegetation and climate reconstructions derived from it, is out of the scope of this paper, and will be presented elsewhere at a later stage. For the purposes of our paper, we portray the total terrestrial organic component in our samples as a crude and qualitative proxy for terrestrial input. Since details of terrestrial palynomorphs are meant to be presented in another study, we only recorded broad categories of terrestrial palynomorphs in our counts, which we present in the figure and in the supplementary tables.

The strong upwelling occurring today around Antarctica is causing low abundances of carbonates at the sea-floor. How does the upwelling (suggested in line 363) support the presence of carbonate rich intervals during the Oligocene and Miocene (e.g. line 401)? I think that this needs to be explained a bit more clearly.

This is explained around lines 429-433, where the oceanographic reconstructions are discussed.

TECHNICAL CORRECTIONS Within the entire text "Margin" with a capital letter in "the Wilkes Land Margin". Please correct where needed. **We will change 'Margin' to lower case throughout**

It needs to be clearly stated when the authors talk about "dinoflagellates" and when about "dinoflagellate cysts (dinocysts)". "sea-ice" or "sea ice", please choose only one version **We will check throughout for consistency**

Please define: "common" or "abundant" We will rephrase throughout and specify to avoid ambiguity.

Abstract: Please avoid repetitions: "time intervals" line 25,27,44 **Done** Lines 25-29: "may bear information to resolve"? **Rephrased** please rephrase the two sentences. Lines 37-38: Consider rephrasing to "Our record shows that a sea-ice indicator, Selenopemphix antarctica, occurs only in the earliest Oligocene, following the full Antarctic continental glaciation, and after the Middle Miocene Climatic Optimum". **Done** Line 39: "during the remainder of the : : :" – please rephrase Line 39: perhaps it is better to write: "the composition of the dinocyst assemblages imply" **Rephrased**

Section 1: Line 51: please rephrase: ": : :much more ice is: : :" Rephrased Lines 72-84:

is.

perhaps these two very long sentences could be made into few shorter ones. Sentences were shortened Lines 95-96: marine-ice? I think that "sea-ice" sounds better We talk about marine-based ice and not sea ice in those lines, which have a rather different meaning. Line 96: does it mean "a continent with a low topography"? If yes, then please rephrase "a lower Antarctic" Done Line 115: please rephrase ": : :establishment of age control: :: " Rephrased Line 125: perhaps "recently" instead of "accurately" Rephrased Line 127-128: this sentence is poorly constructed **Rephrased** Line 133-134: it sounds a bit weird to compare with "detailed sedimentological descriptions". I think that it should rather be written that the authors "correlate changes in the dinocyst as- semblages with the changes in the lithology" or something like that. Rephrased Line 135-139: this sentence is missing something. Please rephrase. Rephrased

Section 2: Keep this section in the passive voice. We used passive voice more than in the previous manuscript, but not in every case to avoid a too passive tone, which to our opinion does not read well. Line 149: "upper Miocene" not "late Miocene" Rephrased Line 165-170: this sentence is poorly constructed. It is not correct to write that "the lithology lacks" something **Rephrased** Line 166-170: diatom ooze and diatom-rich clay: which one is a turbidite and or hemipelagite (see Table 2)? We agree that our initial analyses lacked a detailed description of the Miocene facies. In the new version of the manuscript we will add the detailed Miocene lithology to the Oligocene one. We have already made this amendment in anticipation of this rebubuttal and noticed, however, that this does not affect our conclusions and drawn earlier. Line 178-179: this sentence is poorly constructed Rephrased

Section 3: Line 196-197. Avoid active voice. Avoided in most cases. Please rephrase both sentences. For me it sounds a bit weird to say "surface sample". What about "a sample from the sea surface" instead? We agree with the comment and will rephrase surface-samples to surface-sediment samples. "Another important information" is used in line 227 and 231. Consider rephrasing to avoid repetition. Rephrased Line 235-236: What does "N" mean? I think it is better to write "north". Done Please rephrase the sentence to make it more clear. Please explain all the abbreviations used in the text for the first time, e.g. GCM, STF and SAF. Checked and done

Section 4.1: Please describe the individual groups in the same order as they are mentioned at the beginning of the paragraph. We will change the order. Line 249-250: "amorphous organic matter (particles)" instead of "amorphous palynofacies". Done Line 252: it should be "rare to common" not "present to common". Rephrased In this section it should also be explain how authors define: "rare, "common" and "abundant". Rephased to avoid ambiguity Line 257: one can not write "dominate the assemblage during the late Oligocene". It should be either "are the dominating group in the assemblages from the upper Oligocene" or "were dominating/most abundant during the late Oligocene". Rephrased

Section 4.2: Line 266: if it is not an observation made by the authors, I would suggest to add a reference here. Done Line 267-269: I suggest to rephrase the sentence: "is common to abundant between 33.6 to 32.1 Ma (earliest Oligocene) and after 14.2 Ma (i.e. during and after the mid-Miocene climatic transition)" **Done** Line 270: please remove "generally". Done Line 270-281: please consider to rephrase this part, so it will be clear what was the assemblage composition in the Oligocene-Miocene and what is today. Rephrased Line 289: please remove "noted" Done Line 291: Instead of "Of these taxa" it should be "Of the gonyaulacoid taxa" and add "spp." after Nematosphaeropsis. Changed to N. labyrinthus. Line 294: it should be Section 4.3 not 4.5. Please correct in the following headings accordingly, i.e. 4.3.1 and 4.3.2. Done Lines 296-306: I am not certain if the part describing the lithology fits in the result section. This is not a result of the current study, but rather a summary of the (already interpreted) lithological observations by

Salabarnada et al. However, I see that this is an important part for the manuscript, I suggest to keep it, but incorporate it into the earlier part of the manuscript. **Indeed**, **Iithological details can be avoided and we now refer to Salabarnada et al., for details.** Section 4.5.1: Line 314: perhaps it should be: ": : :occur in the reworked glauconitic sandstones of the lower Oligocene age."? **Done** Line 315: Keep sentences short: ": : :sandstones. This is in line: : :" **Done** Line 316: Great, that what one can expect! Section 4.5.2 Please, avoid expressions as "we compare", "we note", etc. Please change it into the passive voice. **Done** Lines 327-328: repetition of "interval" **Rephrased** Line 330: "restricted to" or "limited to" instead of "connected to" **Rephrased** Line 333: "in the Eocene sediments" **done**

Line 334-336: I suggest to rewrite like this: "Within the Oligocene strata Lejeunecysta spp. (: : :) lower abundance in the interglacial deposits and pelagic clays. The taxon is also less abundant in the Miocene." **Rephrased**

Section 5. Discussion Line 353: why upwelling? Is that the only possibility? We believe that, given the geographic setting, upwelling is the only possibility. We now indicate that more clearly in the text Lines 354-356: circular argumentation, that abundant oligotrophic cyst taxa support oligotrophic dinoflagellate assemblage **Rephrased to avoid circular argumentation** Line 357: which taxa? It may be a good idea to list them here as a reminder for readers We really want the reader to focus on the paleoceanographic inferences. As we have elaborately described the species in the results section, we do not repeat the species names here. Line 359-362: "we interpret that these taxa are part of the in situ pelagic assemblage and reflect warming of surface waters rather than them being reworked" – I think that this needs rephrasing. Done What is more, which taxa are considered as indicators of warming? Is this based on the present study or the literature? If on the literature, then please provide proper references here. Done Line 366-367: this sentence is poorly constructed Rephrased Lines 368-369: active voice should be avoided here **Avoided** Lines 370-372: grammatically something is missing in this sentence. Rephrased Line 381: what does "the average assemblage" means? Rephrased Lines 387, 391: add "Site" before U1356 Done Line 391: please add "succession at Site U1356". Done Lines 393-394: repetition of lines 381-382 Repetition avoided Line 365-396: it sounds weird to compare "Oligocene-Miocene surface waters" with "the same Oligocene-Miocene sediments". Please consider rewriting Agreed. Rephrased Line 407: "i.e." instead of "e.g." Done Line 420: "more oligotrophic character of the dinocyst assemblages" - please rephrase Rephrased Line 430: "an evidence" Done Lines 449-450: this sentence is poorly constructed Rephrased Line 451: modern dinocysts assemblages? Rephrased Line 455: ": : : ACC. This is in line with numerical: ::" **Done** Line 460: please explain what does abbreviation MMCO means, perhaps even earlier in the text **Spelled out** Line 465: consider different order, like: "weaker throughout the Oligocene and the Miocene, than at present" Done Line 467: please remove "to us" Done Line 476: please explain what does abbreviation MMCT means, perhaps earlier in the text Done Line 533: "records have recorded"- please rephrase **Done**

Section 6 Avoid repeating "fundamentally different" so close to each other (Lines 534 and 542), or "that of today" (line 542 and 543), "compared to today" (lines 548, 550) **Done** Lines 545-547: please consider rephrasing this sentence. **Done** Line 608: it should be "data compiled from Site" **Rephrased** Line 611: please use passive voice **Done** Line 613: perhaps it should be "or calibrating our data against age-scale" **Rephrased** Line 622: "sandstones" – please correct in the entire text **Done**

Figure captions and references:

"Bijl et al. in press" not in the reference list "Salabarnada et al. submitted this volume" not in the reference list. **We added these references**

Fig. 2 – Why does the colour lines reflecting various lithology have different length? **This was done to improve clarity** What does (o) and (y) mean? **Now explained in the caption** Please align overheads "Miocene" and "Oligocene". **Done** Please explain what the grey colour in the palmag column implies. **Now explained in the caption**"(from Tauxe et al., 2012, but recalibrated to GTS2012 of Gradstein et al., 2012; see Table 1 and modified based on Crampton et al., 2016)" - this sentence is poorly constructed **Rephrased**

Fig. 4 and 5 – what is determining the order of the dinocysts? Shouldn't Spiniferites cpx be moved to the right? Agreed, done And actually, is Spiniferites cpx needed on the figure if it is not even mentioned in the main text? Yes it is, as it is one of the most common dinocyst genera in many places. The same with Corrudinium, Cerebrocysta – these are not mentioned in the text. If they are merged in a complex with Pyxidinopsis spp. then please clearly state it in the text or supplementary. Now mentioned in the text. Fig. 4 – I think that it is necessary to mark the position of unconformities in e.g. the column with "epoch and stage". Otherwise, Chattian followed immediately by Burdigalian looks a bit odd. Done The intervals which look like barren in the column with "Total palynomorphs/ dinocysts", are not marked as such in the following plots in the figure, therefore the figure looks a bit chaotic. Many barren samples are positioned close to productive samples. The plot is meant to provide the reader with a comprehensive image of the palynological assemblages, similarly to the way they were presented and discussed in the text. The overheads for "total palynomorphs/dinocysts" and "Palynomorph relative abundance" should be aligned with the overheads to the right (i.e. dinocysts taxa and genera). Done Also, I would suggest to add a column with sample position on this and the following figure. The sample intervals are already plotted in Figure 2. We believe that this information is no longer needed when interpreting the data in figures 4 and 5. Are all other dinocysts recorded in the assemblages "oligotrophic/outside oceanic fronts" as suggested by the color/filling in the plot? We clarified this in the results section in the text. It is not clear to me why "oligotrophic/outside oceanic fronts" has two colors (red and dotted orange). We choose to give Operculodinium spp. another color because it is such a well-known and paleoceanographically significant genus both in this region and in the northern **hemisphere.** Why are absolute abundances not shown in the same way as the relative

abundances? Absolute abundances of the different dinocyst groups are not mentioned or discussed in the text, nor they do have a readily interpretable paleoceanographic signal.

Fig. 5 – While in Fig.2 Oligocene and Miocene are divided into "late", "middle" and "early", on figs 4 and 5 they are divided into stages. Adding a subdivision of the Oligocene and Miocene into "late", "middle" and "early" on figures 4 and 5 will help readers to directly correlate it with figure 2. **Agreed. Done** This may be a good place to mark a position of the climatic events mentioned in the main text, such as the Oi-1 glaciation and MMCO. **Agreed. Done** Please add that the figure shows the distribution of the "in situ dinocyst", like in figure 4. **Done in the caption**

Fig. 6-7: According to table 2 "Miocene deposits" consist partially of turbidites. Isn't that a bit odd that turbidite deposits yield so many in situ dinocysts? We agree and thought about this. Possibly, turbidites in the Miocene transport very young sediments from the shelf. This causes reworking in these turbidites to be overlooked as there is no age gap between the species encountered in the turbidites from those encountered in the pelagic sediments. We will add this to the main text of the paper, and in any case we now separate turbidite deposits from pelagic sediments. However, Fig.7 – I would write something like that: "The distribution of eco-groups within various lithologies encountered in Site: : :" in the figure caption. Done

With my best regards

Kasia K. Sliwinska

Please also note the supplement to this comment: https://www.clim-past-discuss.net/cp-2017-148/cp-2017-148-RC1-supplement.pdf Rebuttal to Anonymous Referee #2 by Bijl et al.

This paper presents environmental interpretations of a new dinoflagellate cyst dataset from Oligocene and Miocene sediments from a drill core collected off the Wilkes Land coast. The environmental interpretations are partly underpinned by published studies on the distribution of dinoflagellate cysts in modern sea floor sediments. In particular, assemblages are identified that are interpreted to correlate with sea ice. The authors use these assemblages to conclude that sea ice was more prevelant during the earliest Miocene [**We assume R2 means Oligocene here**], and also following the Middle Miocene Climatic Optimum. They also observe that assemblages representative of interglacial conditions are similar to assemblages of modern temperate oligotrophic waters, and thus infer that this reflects a migration of the polar frontal system to the south of the drill site. This is an interesting paper, and the dataset is important. It will be of interest to the research community.

I have four main comments on the approach used and the conclusions drawn (1) The authors note that in modern settings, Selenopemphix antarctica is dominant in 'proximal sea ice settings south of the Antarctic Polar Front' (but also that these modern samples from Antarctic waters have a range of 10-90% S. antarctica). The authors then infer that the intervals in the Wilkes Land core containing the highest relative abundance of S. antarctica represent depositional environments proximal to sea ice. However, S. antarctica is never above 15% in any of the samples reported in this study (Figure 7): this taxon is not dominant. [Fig. 7 only reports the mean and 1sd of the data. The maximum abundance of S. antarctica is 39%. We will make the raw data available in a revised version] For context, samples with concentrations of up to 20% S. antarctica occur in modern Southern Ocean samples as far north as the Subtropical Front (e.g. Zonneveld et al. 2013, doi.org/10.1016/j.revpalbo.2012.08.003). Even if high abundance (>80%) of S. antarctica were indicative of sea ice (which is itself not clearly demonstrated, partly given the poor modern correlation between the polar front and sea ice extent, and partly due to the very sparse coverage of modern samples south of the polar front), that high abundance is not the case in the samples reported in this paper. The modern analogue approach used by the authors to infer the presence of sea ice is inconclusive in this instance: the data presented could be just as easily used to infer a complete lack of sea ice for the duration of the record, as sea ice variability. We agree with the reviewer that the complete compilation by Prebble et al. (2013) leaves ambiguity about the reliability of S. antarctica as sea ice indicator, and that the absence of this species should be taken as absence of sea. Sites south of the subtropical front with lower abundances of S. antarctica are all close to the polar front itself, and are in regions with lower palaeobathymetry (e.g., Kerguelen and in the South Atlantic). This causes highly variable distribution patterns around such bathymetric highs (see, e.g., Armand et al., 2008). Meanwhile, on the Antarctic continental shelf proper, where admittedly few published data is available in the Prebble et al. (2013) compilation, Selenopemphix antarctica does dominate the palynomorph assemblages in all sites available. The dominance of S. antarctica in assemblages can be found in the Wilkes Land margin itself (Site U1357; Hartman et al., in prep-a), in the Ross Sea (Hartman et al., in prep-b), Prydz Bay (Storkey, 2006), in the Indian Ocean (Marret and De Vernal, 1997) and in the Weddell Sea (Esper and Zonneveld, 2002; Harland and Pudsey, 1999). We echo the studies from Houben et al. (2013) and Sangiorgi et al. (2018), which elaborately discus the potential of S. antarctica as sea-ice indicator and its ecological meaning. We understand that the explanation in our manuscript falls short in providing the reader sufficient information on this matter. In a new version of the manuscript, we will support our inference of S. antarctica as sea ice indicator (and its absence as indicator of longer-than-today open water season) more elaborately than we did so far.

(2) The authors conclude they demonstrate 'variability on glacial/interglacial timescales'. This is possibly true, but it has not been illustrated in a convincing way. The key to their interpretation, I think, is figures 6 and 7, where the relative abundance of different dinoflagellate cysts are illustrated for different lithologies. However, there is no evidence presented in this paper that these lithologies are deposited under different glacial conditions. They instead refer to Salabarnada et al.

(in review submitted to CPD). Salabarnada et al. describe a glacial 'Facies 1', and an interglacial 'Facies 2'. Although the present authors rely on the cyclo-stratigraphy of Salabarnada et al. for their glacial-interglacial interpretation, they choose (confusingly) to apply a different lithological scheme in the present paper. Thus, in Table 2, the authors assign 'Silty claystones and sandstones' to (glacial) Facies 1 of Salabarnada et al., and 'carbonated rich and pelagic clay lithologies to (interglacial) Facies 2. Notwithstanding this, the dinoflagellate cyst assemblages shown in Figures 6 and 7 do not vary in a consistent way between either the glacial and interglacial facies described by Salabarnada et al., or by the glacial and interglacial lithologies assigned by the authors (line 300-302). The different lithologies do contain different dinoflagellate cyst assemblages, but these differences do not appear to fall along the glacial/interglacial divisions proposed by either Salabarnada et al. or the authors.

We agree that the different presentation of the lithologic facies in our ms and that of Salabarnada et al may generate confusion. In a new version of the manuscript, we will make this consistent. In anticipation of this review, we have already revisited the Miocene lithology, made a detailed description and integrated the facies into the other lithologies described in Salabarnada et al. This did not lead to any different conclusions than those already made, namely a higher relative abundance of protoperidinioid dinocysts in glacial deposits, and more gonyaulacoid dinocysts in interglacial deposits, with the lithologic interpretations being made independent of the dinocyst results in Salabarnada et al, CP (https://doi.org/10.5194/cp-2017-152).

However **[if]** the authors choose to respond to this comment, at a minimum the abstract should be adjusted to removed the implication that glacial/interglacial has been investigated for the entire record (line 46), as only Oligocene samples have been explored for this variability, and I strongly suggest marking clearly on Figures 6 and 7 which lithologies represent glacial and which interglacial deposition, or perhaps grouping samples together - the seven columns/lithologies do not communicate clearly the variability the authors claim to have identified.

We agree with the reviewer, a new version of the manuscript will present the dinocyst data in fewer lithologic groups. Moreover, the detailed lithologic interpretations will be continued into the Miocene part of the sequence. This will only reinforce the interpretations of different dinocyst assemblages between glacial and interglacial deposits.

(3) The authors rely on unpublished (submitted, in review) work to justify their division of the dinoflagellate cyst assemblage into in situ and reworked components. This is an important step in their data processing, and important to completely assess this paper, but the information is not available to review at present.

The paper is now published and available open access in Journal of Micropalaeontology.

(4) The discussion is fairly speculative/not well supported by the data presented – but is thought provoking, and should be retained.

Because the reviewer does not substantiate which part he/she finds speculative, we cannot reply any further to this comment at this stage. We will thoroughly revisit the discussion and evaluate any speculative aspects.

Minor comments follow:

L299 relation not relations -done

L353 can the authors discount input of terrestrial nutrients instead of upwelling? We can for most of the record, with reason and argument, not with unequivocal proof. Given the relatively small catchment area, and deteriorated climate, the low relative abundance of palynomorphs (those that are there are mostly wind-transported pollen) and absence of terrestrially-derived amorphous organic matter, and the average outer neritic/oceanic nature of the dinocyst assemblage, we argue for marine nutrients instead of terrestrially-derived. Although, the Miocene Climatic Optimum might have an additional terrestrially-derived nutrient source. We shall add this to the manuscript.

L422 replace 'a close position' with 'proximal'? This was not found, possible lost in revision References:

Esper, O. and Zonneveld, K.A.F.: Distribution of organic-walled dinoflagellate cysts in surface sediments of the Southern Ocean (eastern Atlantic sector) between the Subtropical Front and the Weddell Gyre, Marine Micropaleotology, 46, 177-208, 2002.

Harland, R. and Pudsey, C. J., 1999. Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica. Marine Micropaleontology. 37, 77-99.

Hartman, J.D., Bijl, P.K., Sangiorgi, F., et al., in prep-a. Palynological assemblages from the Holocene of IODP Site U1357A, Wilkes Land margin, Antarctica. to be submitted to Journal of Micropaleontology

Hartman, J.D., Sangiorgi, F., Bijl et al., in prep-b. A multi-proxy reconstruction for MIS5 to MIS9 of the Antarctic marginal ice zone in the Ross Sea: sea-ice cover, productivity and temperature for Site AS05-10, Drygaski basin. to be submitted to Paleoceanography and Paleoclimatology.

Houben, A.J.P., Bijl, P.K., Pross, J., Bohaty, S.M., Passchier, S., Stickley, C.E., Röhl, U., Sugisaki, S., Tauxe, L., Van De Flierdt, T., Olney, M., Sangiorgi, F., Sluijs, A., Escutia, C., Brinkhuis, H.: Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic glaciation, Science, 340, 341-344, 2013.

Marret, F. and De Vernal, A., 1997. Dinoflagellate cyst distribution in surface sediments of the southern Indian Ocean. Marine Micropaleontology. 29, 367-392.

Prebble, J. G., Crouch, E. M., Carter, L., Cortese, G., Bostock, H., Neil, H., 2013. An expanded modern dinoflagellate cyst dataset for the Southwest Pacific and Southern Hemisphere with environmental associations. Marine Micropaleontology. 101, 33-48.

Sangiorgi, F., Bijl, P.K., Passchier, S., Salzmann, U., Schouten, S., McKay, R., Cody, R.D., Pross, J., Van De Flierdt, T., Bohaty, S.M., Levy, R., Williams, T., Escutia, C., Brinkhuis, H.: Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene, Nature Communications, 9 (1), art. no. 317, 2018.

Storkey, C.A.: Distribution of marine palynomorphs in surface sediments, Prydz Bay, Antarctica. MSc thesis Victoria University of Wellington, New Zealand. <u>http://hdl.handle.net/10063/21</u>, 2006.

Reply to Reviewer 3 (S. Gallagher) by Bijl et al.

This is an excellent description and interpretation of organic microfossils from the Oligo-Miocene strata off Wilkes Land Margin and their palaeoceanographic significance. I have made extensive comments and suggestions in the attached annotated pdf tex to this paper. I would like to add the following to the discussion:

I appreciate the utility of using isotopes to interpret Antarctic Ice Sheet variability as summarised by Liebrand et al 2017 (www.pnas.org/cgi/doi/10.1073/pnas.1615440114) and this approach is used extensively when discussing the Cenozoic greenhouse icehouse transition. However, there are other sections that have been interpreted using backstripping and stratigraphic data in the Gippsland (Oligocene) and New Jersey (Oligo-Miocene) margins that reflect glacio-eustasy in the Oligocene and relative ice volume (Gallagher et al., 2013), it would be useful to consider the significance of these near field and far field sections in any section reviewing ice volume variability. Gallagher, S. J., G. Villa, R. N. Drysdale, B. S. Wade, H. Scher, Q. Li, M. W. Wallace, and G. R. Holdgate (2013), A near-field sea level record of East Antarctic Ice Sheet instability from 32 to 27 Myr, Paleoceanography, 28, doi: 10.1029/2012PA002326. **This is a good suggestion, we will add this to the revised manuscript.**

More specific comments are below:

Lines 116-117 please clarify these lines they are bit vague. -done

Line 132: I don't think the word is speculate here, perhaps hypothesize? -done

Section 3 Methods: Bijl et al in press, I presume this means the paper published in Jl Micropal so please correct as it is not even in the reference list. **indeed. Done**

Line 217: what does empirical data mean here? Now better explained

Paragraph starting at line 332: I found this section quite confusing, I have attempted to edit this in the annotated text.

5. Discussion section needs a few lines of a preamble. Agreed. Done

Page 22 line 507 onward, as mentioned above there are other records that point to ice sheet instability in the time period being considered, please include in discourse.

Lines 518-527 are too speculative and should be left out or moderated.

In conclusion, once the text has been clarified and the suggestions considered this will be useful addition to the relatively sparsely documented Antarctic (palaeo)climate and oceanographic records.

Please also note the supplement to this comment:

https://www.clim-past-discuss.net/cp-2017-148/cp-2017-148-RC3-supplement.pdf – We will carefully incorporate the comments that were annotated into a new version of the ms.

1	Oligocene-Miocene paleoceanography off the Wilkes Land margin	Deleted: M
2	(East Antarctica) based on organic-walled dinoflagellate cysts	
3		
4	Peter K. Bijl ¹ *, Alexander J. P. Houben ² , Julian D. Hartman ¹ , Jörg Pross ³ , Ariadna	
5	Salabarnada ⁴ , Carlota Escutia ⁴ , Francesca Sangiorgi ¹	
6		
7	1 Marine Palynology and Paleoceanography, Laboratory of Palaeobotany and	
8	Palynology, Department of Earth Sciences, Faculty of Geosciences, Utrecht University.	
9	P.O. Box 80.115, 3508 TC Utrecht, The Netherlands	
10		
11	2 <u>Geological Survey of the Netherlands</u> , Netherlands Organisation for Applied	Deleted: Applied Geoscience Team
12	Scientific Research (TNO), Princetonlaan 6, 3584 CB, Utrecht, The Netherlands	I
13		
14	3 Paleoenvironmental Dynamics Group, Institute of Earth Sciences, Heidelberg	Deleted: University of
15	University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany	
16		I
17	4 Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, 18100 Armilla, Spain	
18		
19	* to whom correspondence should be addressed.	
20	Email: p.k.bijl@uu.nl; phone +31 30 253 9318	
21		

25 Abstract

Next to atmospheric CO₂ concentrations, *ice-proximal* oceanographic 26 conditions are a critical factor <u>for</u> the stability of Antarctic marine-terminating 27 ice sheets. The Oligocene and Miocene epochs (~34-5 Ma_ago) were time 28 29 intervals with atmospheric CO₂ concentrations between those of present-day 30 and those expected for the near future. As such, these past analogues may 31 provide insights into ice-sheet volume stability under warmer-than-present-32 day climates. We present organic-walled dinoflagellate cyst (dinocyst) 33 assemblages from chronostratigraphically well-constrained Oligocene to mid-Miocene sediments from Integrated Ocean Drilling Program Expedition (IODP) 34 Site U1356. Situated offshore the Wilkes Land continental margin, East 35 Antarctica, the sediments from Site U1356 have archived the dynamics of an ice 36 37 sheet that is today mostly grounded below sea level. We interpret dinocyst 38 assemblages in terms of paleoceanographic change on different time scales, i.e., 39 with regard to both glacial-interglacial and long-term variability. Our record shows that a sea-ice related dinocyst species, Selenopemphix antarctica, occurs 40 only for the first 1.5 Ma of the early Oligocene, following the onset of full 41 42 continental glaciation on Antarctica, and after the mid-Miocene Climatic 43 Optimum. Dinocysts suggest a weaker-than-modern sea-ice season for the 44 remainder of the Oligocene and Miocene. The assemblages generally bear strong similarity to present-day open-ocean, high-nutrient settings north of the 45 sea_jce edge, with episodic dominance of temperate species similar to those 46 found in the present-day subtropical front. Oligotrophic and temperate surface 47 48 waters prevailed over the site notably during interglacial times, suggesting that

Deleted: determining

 Deleted: these past episodes

 Deleted: ytime intervals may bear informationbe

 Deleted: instrumental for

 Deleted: to resolve

 Deleted: reducing the uncertainties that still exist in the projection of future

 Deleted: ing

 Deleted: boundary conditions for

 Deleted: decline

Deleted: core Deleted: s Deleted: past

Deleted: on

Deleted	l: S
Deleted	l: indicator
Formatt	ed: Font:Italic
Deletec	l: s
Deletec contine	l: following the full Antarctic ntal glaciation
Deletec	l: during
Deletec	l: ,
Deletec	l: Antarctic
Deletec	l: Middle
Deletec	l: d
Deletec	l: D
Deleted	l: during
Deletec than-mo	l: dinocysts suggest a weaker odern sea-ice season
Deletec	l:
Deleted	l: interval

80~ the positions of the (subpolar) oceanic frontal systems have varied in

81 concordance with Oligocene-Miocene glacial-interglacial climate variability.

82

83 1. Introduction

84 The proportion of the East Antarctic ice sheet that is presently grounded below sea

level is much larger than originally <u>interpreted (Fretwell et al., 2013)</u>. This implies
that <u>a larger part of the continental ice sheet</u> is sensitive to basal melting by warm

87 waters than previously thought (Shepherd et al., 2012; Rignot et al., 2013; Wouters et

al., 2015), and that a higher amplitude and faster rate of sea-level rise is to be

89 <u>expected under future climate warming than previously acknowledged (IPCC, 2013).</u>
90 Studying the amount and variability of Antarctic ice volume in periods with high

Studying the <u>amount</u> and variability of Antarctic ice volume <u>in periods</u> with high
atmospheric CO₂ concentrations (*p*CO₂) provides additional <u>insight</u> into ice/ocean

feedback processes. Foster and Rohling (2013) compared sea-level and atmospheric pCO_2 concentrations on geological timescales. Their study suggests, that global ice sheets were rather insensitive to climate change when atmospheric pCO_2 ranged between 400 and 650 parts per million in volume (ppmv). During the Oligocene and Miocene, atmospheric pCO_2 ranged between 400 and 650 ppmv (Foster et al., 2012; Badger et al., 2013; Greenop et al., 2014). Crucially, similar pCO_2 levels are expected for the near future given unabated carbon emissions (IPCC, 2013), implying that

global ice volume may not change much under these pCO_2 scenarios.

In contrast to the invariant global ice volume inferred by Foster and Rohling
(2013), a strong (up to 1 per mille; ‰) variability is <u>preserved in deep-sea benthic</u>
foraminiferal oxygen isotope (hereafter benthic δ¹⁸O) data (Pälike et al., 2006;

103 Beddow et al., 2016; Holbourn et al., 2007; Liebrand et al., 2011; 2017). These

Deleted	: much more
Deleted	• much
Deleteu	• IIIucii
Deleted	: scenarios
Deleted	: thought
Deleted	: state
Deleted	: during past episodes
Deleted	: might
Deleted	understanding

Deleted: assumed

-(Deleted: and highlight
-(Deleted: ed
-(Deleted: under

Deleted: observed

117	benthic δ^{18} O data reflect changes in continental ice volume (primarily on Antarctica),	_	Deleted: notably
			Deleted: ,
118	and deep-sea temperature, The latter is strongly coupled to polar surface-water		Deleted: in combination with
		\sim	Deleted: , with
119	temperature, as deep-water formation was predominantly at high latitudes at that		Deleted: t
120	time (Herold et al., 2011). High-amplitude variations in benthic δ^{18} O thus suggest		Deleted: located
121	either (j) strong climate dynamics in the high latitudes with relatively minor ice-		Deleted: I
122	volume change (which <u>would be in accordance with numerical modelling</u>		Deleted: is
123	experiments (Barker et al., 1999) and the interpretation of Foster and Rohling	_	Deleted: inferences
124	(2013)), or (ii) strong fluctuations in Antarctic ice_volume, with relatively subdued		Deleted: II
			Deleted: of the
125	temperature variability (which would be in accordance with indications for unstable		Deleted: -
		\sim	Deleted: is
126	Antarctic ice sheets under warmer-than-present climates (Cook et al., 2013; Greenop		Deleted: an
127	et al., 2014; Rovere et al., 2014 <u>; Sangiorgi et al., 2018</u>). <u>If one assumes a present-day</u>		Deleted: Indeed, i
128	δ^{180} composition (-42‰ <i>versus</i> standard mean ocean water (SMOW)) for Oligocene-		Deleted: -
100			Formatted: Font:Italic
129	Miocene Antarctic ice-sheets and modern deep_water temperature (2.5°C), the		Deleted: the
100			Deleted:
130	benthic δ^{18} O fluctuations during the Oligocene-Miocene suggest long-term ice-sheet		Deleted: then
101			Deleted: benthic δ^{18} O fluctuations
131	variability to have fluctuated considerably (Liebrand et al., 2017). Similarly strong		Deleted: -
122	fluctuations were absorbed in addimentative records from the Cinneland Desir	$\langle -$	Deleted: ranging
132	nuctuations were observed in sedimentary records from the Gippsiand Basin,		Deleted: fluctuating
133	southeast Australia (Gallagher et al., 2013). Meanwhile, deep-sea temperatures have		Deleted: between a present-day size for 27–23 Ma and absence during numerous
134	fluctuated considerably as well during the Oligocene and Miocene (Lear et al., 2004).		
101			Deleted: on geologic time scales
135	which is further evident from ice-free geologic episodes (Zachos et al., 2008),	\leq	Deleted: as is evident
126	Therefore a combination of door one townships and ice volume changes is likely.		Deleted: - e.g.,
130	Therefore, a combination of deep-sea temperature and ice-volume changes is <u>likely</u>		Deleted:), suggesting that there is no reason to assume that it did not fluctuate
127	represented in these records. Further is previnal records within a falimeter is		during the Oligocene– or Miocene as well
13/	represented in these records. <u>purtuer</u> ice-proximal reconstructions of climate, ice-		Deleted: likely
120	short and accomparable conditions are required to provide an independent		Deleted: . but it is intrinsically impossible
120	sheet and oceanographic conditions are required to provide an independent		to determine the relative contribution of
130	assessment of the stability of ice sheets under these higher than present day nCO.		botheach of these factors from global botheach δ_{180} data along Clearly
132	assessment of the stability of ite sheets under these <u>ingher-than present-day p</u> CO ₂		Deleted:
140	concentrations		Deleted:
110	poncenta autorito		Deleted: conditions

180	While Oligocene-Miocene <u>climates may bear analogy to our future in terms of</u>		Deleted: the
			Deleted: ,
181	pCO ₂ <u>concentrations</u> , the uncertainties and differences in Antarctic paleotopography	_	Deleted: conditions
102	when the second is sure as he converting this factory with all determines the		Deleted: ,
182	must be considered in any such comparison, as this factor critically determines the	$ \rangle\rangle$	Deleted: bear analogy to o
183	proportion of marine-based versus land-based ice, An Antarctic continent with low	$\backslash \rangle$	Deleted: any such investig into account
101	tonography would regult in more ice shorts being notontially consitive to been malt	/ /	Deleted: involved
104	topography would result in more ice sneets being potentially sensitive to basar merc		Deleted: which
185	and as such a higher sensitivity of these ice sheets to climate change. Moreover, the	$ \setminus $	Deleted: during the Oligoo
			Deleted: A lower
186	fundamentally different paleogeographic configuration of the Southern Ocean during		Deleted: ,
187	that time as compared to today should also be considered (Figure 1). The		Deleted: one should take n
188	development and strength of the Antarctic Circumpolar Current (ACC) connecting the		
189	Atlantic, Indian and Pacific Ocean basins (Barker and Thomas, 2004; Olbers et al.,		
190	2004) depend on the basin configuration (i.e., the width and depth of the gateways as		Deleted: and
191	well as the position of the landmasses). The exact timing when the ACC reached its	_	Deleted: continental
192	modern-day strength is still uncertain, ranging from the $\underline{\mathrm{middle}}$ Eocene (41 Ma) to as		Deleted: M
193	young as Miocene (23 Ma; Scher and Martin, 2004; Hill et al., 2013; Scher et al., 2015).	_	Deleted: ,
194	Whether, and, if so, how the development of the ACC has influenced latitudinal heat	_	Deleted: ,
195	transport, ice-ocean interactions and the stability of Antarctic continental ice has		
196	remained poorly understood.		Deleted: has remaineds ev
		-	Deleted: s
197	To directly assess the role of ice-proximal oceanography on ice-sheet stability		
198	during the Oligocene-Miocene, ice-proximal proxy-records are required. Several		
199	ocean drilling <u>expeditions</u> have been undertaken in the past to provide insight in the		Deleted: efforts
			Deleted: in the past
200	history of the Antarctic ice sheets (<u>Barrett, 1989;</u> Wise and Schlich, 1992; <u>Barker et</u>		Deleted: Cooper and O'Bri Barker et al., 1998;
201	al., 1998; Robert et al., 1998; Wilson et al., 2000; Cooper and O'Brien, 2004; Exon et		Deleted: Barrett, 1989;
202	al., 2004; Harwood et al., 2006; Escutia and Brinkhuis, 2014). For some of the	\langle	Deleted: Exon et al., 2004;
202	ratriavad sadimantary archivas, and control was particularly shallonging due to the		Deleted: these
203	retheved sedimentary archives, age control was particularly chanenging due to the		Deleted: establishment of

Deleted: the
Deleted: ,
Deleted: conditions
Deleted: ,
Deleted: bear analogy to our future,
Deleted: any such investigation must take into account
Deleted: involved
Deleted: which
Deleted: during the Oligocene
Deleted: A lower
Deleted: ,
Deleted: On top of this
Deleted: one should take note of
Deleted: and
Deleted: continental

Deleted:	has remaineds even more elusive
Deleted:	S
Deleted:	efforts
Deleted: Deleted:	efforts in the past
Deleted: Deleted: Deleted:	efforts in the past Cooper and O'Brien, 2004;
Deleted: Deleted: Deleted: Barker et	efforts in the past Cooper and O'Brien, 2004; al., 1998;
Deleted: Deleted: Deleted: Barker et Deleted:	efforts in the past Cooper and O'Brien, 2004; al., 1998; Barrett, 1989;
Deleted: Deleted: Deleted: Barker et Deleted:	efforts in the past Cooper and O'Brien, 2004; al., 1998; Barrett, 1989;

l		
	1	

233 paucity of useful means to calibrate them to the international time scale. As a 234 consequence, the full use of these archives for the generation of paleoceanographic proxy records and ice_sheet reconstructions has remained limited. 235 236 In 2010, Integrated Ocean Drilling Program (IODP) Expedition 318 drilled an 237 inshore-to-offshore transect off Wilkes Land (Fig. 1a), a sector of East Antarctica that 238 is <u>interpreted</u> to be highly sensitive to continental ice-sheet melt (Escutia et al., 239 2011). The sediments recovered from IODP <u>Site U1356</u> are from the continental rise 240 of this margin (Escutia et al., 2011) and hence contain a mixture of shelf-derived 241 material and pelagic sedimentation. Dinocyst events in this record have been recently 242 tied to the international time scale through integration with calcareous nannofossil, 243 diatom and magnetostratigraphic data (Bijl et al., 2018). By Southern Ocean 244 standards, the resulting stratigraphic age frame for the Oligocene-Miocene record of 245 Site U1356 (Fig. 2; Table 1) is of high resolution. In this paper, we investigate the 246 dinocyst assemblages from this succession by utilizing the strong relationships 247 between dinocyst assemblage composition and surface-water <u>conditions</u> of today's 248 Southern Ocean (Prebble et al., 2013). We reconstruct the oceanographic regimes 249 during the Oligocene and mid-Miocene, and evaluate their implications. We further 250 compare the palynological data with lithological observations and their 251 interpretations from Salabarnada et al. (submitted, this volume). Pairing the 252 sedimentological interpretations and biomarker-derived absolute sea_surface temperature (SST) reconstructions from <u>Site JJ1356</u> (Hartman et al., submitted, this 253 254 volume) with our dinocyst assemblage data, we <u>reconstruct</u> the <u>paleo</u>oceanographic 255 conditions off Wilkes Land and assess their variability both on glacial-interglacial and 256 longer-term times scales.

-(Deleted: and proper
-(Deleted: record
-(Deleted: ir
-(Deleted: sedimentary
-(Deleted:

Deleted: assumed	
Deleted: Hole	

Deleted: A

Deleted: flagellate

-	Deleted: in press)
	Deleted: For
-	Deleted:
	Deleted: T
$\langle \rangle$	Deleted: e
	Deleted: result is a – for Southern Ocean standards – solid
$\langle \rangle$	Deleted: part of the
	Deleted: Hole
	Deleted: features

Deleted: speculate on
Deleted: hypothesize
Deleted: oceanographic
Deleted: for oceanographic settings
Deleted: detailed sedimentological descriptions
Deleted:
Deleted: the same core
Deleted: assess
Deleted: variability o
Deleted: from the dinocyst assemblages
Deleted: as well as
Deleted: thereof
Deleted: at

2	a	1
4	7	T

292	2. Material		
293	2.1 Site description for IODP Hole U1356A		
294	Samples were taken from IODP Hole U1356A, <u>the only hole from Site U1356</u> , <u>cored on</u>		Deleted: drilled
295	the continental rise of the Wilkes Land \underline{m}_{argin} , East Antarctica (Figure 1a; present		Deleted: M
296	coordinates 63°18.6' S, 135°59.9' E; Escutia et al., 2011). The paleolatitude calculator		Deleted: We use t
297	of van Hinsbergen et al. (2015) <u>was used</u> to reconstruct the paleolatitudinal history of		Deleted: www.paleolatitude.org
298	the site (Figure 1, between -59.8±4.8°S and -61.5±3.3° S between 34 Ma and 13 Ma,		
299	respectively). <u>Hole_U1356A</u> reaches a depth of 1006.4 m into the seabed (Escutia et		Deleted: The single hole at Site
300	al., 2011). Oligocene to upper Miocene sediments were recovered between 890 and 3		Deleted: late
301	mbsf (<u>meters below sea floor,</u> Figure 2; Tauxe et al., 2012; revised according to Bijl et		Deleted: ottom
302	al., <u>2018</u>). The uppermost 95 meters of the hole were poorly recovered; sediments		Deleted: in press)
303	consisted of unconsolidated mud strongly disturbed by rotary drilling (Escutia et al.,	I	
304	2011). Hence, we focused our investigation on the interval between Cores 11R to 95R		
305	Section 3 (95.4–894 mbsf; 10.8–33.6 Ma; Figure 2).		Deleted:
306			Deleted: to
307	2.2 Lithology in IODP Hole U1356A		
308	In the interval between 95.4 and 894 mbsf, nine lithologic units have been recognized		Deleted: studied
309	during shipboard analysis (Figure 2 <u>; Escutia</u> et al., 2011). Salabarnada et al.		
310	(submitted, this volume) present, a detailed lithologic <u>column</u> of the Oligocene_and		Deleted: s
311	Miocana sadiments. The lithologic facies described in Salaharnada et al. (submitted		Deleted: study
511		\langle	Deleted: For the Deleted: grouping of our results, we use t
312	this volume) will help us compare paleoceanographic differences between climatic		Deleted: from
212	autromos Salabarnada et al (submitted this valuma) distinguished verieve lithologies		Deleted: to
313	extremes, satabarnada et al. (submitted this volume) distinguisned various lithologies		Deleted: ,
314	along with interpretations of their depositional settings which can be summarized as:		Deleted: as outlined in Table 2

335	1) laminated silty clay sediments (interpreted as glacial deposits; hereafter Fg), 2).
336	bioturbated siltstones and claystones that in some intervals are carbonate-cemented
337	(interpreted as interglacial deposits, hereafter Fi), and 3) perturbed mass transport
338	deposits (MTDs): slumps and debris flows. We refer to Salabarnada et al. (submitted
339	this volume; Fig S2) for a detailed description of these facies, and to the
340	supplementary datasets on pangaea for more detailed separation of our palynological
341	results per facies type.

343 2.3 Bio-magnetostratigraphic age model for IODP Hole U1356A Stratigraphic constraints for the Oligocene-Miocene succession from IODP Hole 344 345 U1356A are provided through calcareous nannoplankton, radiolarian, diatom and 346 sparse palynological biostratigraphy, complemented by magnetostratigraphy (Tauxe 347 et al., 2012). Bijl et al. (2018) and Crampton et al. (2016) have updated the existing age model for Site U1356 for the Oligocene and Miocene parts of the succession, 348 349 respectively. <u>In their efforts</u>, they recalibrated <u>the tie points</u> to the international time 350 scale of Gradstein et al_x(2012). We here follow the<u>ir revision</u> of the age model (Table 351 1). We infer ages by linear interpolation between tie points (Figure 2; Table 1). 352 2.4 Depositional setting at IODP Site U1356 353

354	The depositional setting at Site U1356 changed from a shallow mid-continental shelf
355	in the early Eocene (Bijl et al., 2013a) to a deep continental rise <u>environment by the</u>
356	Oligocene (Houben et al., 2013) due to subsidence of the Wilkes Land <u>m</u> argin (e.g.,
357	Close et al., 2009). Regional <u>correlation</u> of the <u>facies</u> at <u>Hole_</u> U1356A via seismic
358	profiles suggests a mix of distal- <u>submarine</u> fan and hemipelagic sedimentation during

	Deleted: Facies 1 –
	Deleted: carbonate-lean
	Deleted: which were
	Deleted: Facies 2
()	Deleted: -
$\langle \rangle$	Deleted:
$\left(\right)$	Deleted: and
	Deleted: carbonate-rich.
	Deleted:
	Deleted: and bioturbated siltstones
	Deleted: sediments
	Deleted: all which were
	Deleted: an which were
	Deleted: M
	Deleted: 1
11	
	Deleted: , Eocene-Oligocene-transition (EOT) slumps
	Deleted:
	description is not yet available; therefore we treat the Miocene sediments as one separate lithologic unit in this paper. For the Miocene, we here give a brief summary of the observations published in the IODP Expedition 318 post-cruise report (Escutia et al., 2011). Miocene sediments between 95 and 400 mbsf reflect increasing consolidation down-core, and comprise diatom ooze and diatom-rich silty clays. The more consolidated bedding has caused better preservation of original bedding structures. From 278.4 to 459.4 mbsf, the lithology lacks gravel-sized clasts, but is otherwise similar to up-core
	Deleted: with
1	Deleted: (in press)
11	Deleted: Thereby
	Deleted:
	Deleted: se
	Deleted: new insights
	Deleted: of
	Deleted: setting
<	Deleted: in
	Deleted: M
	Deleted: extrapolation
	Deleted: lithology

407	the early Oligocene, grading into channel-levee deposits in the later Oligocene		Deleted: towards
408	(Escutia et al., 2011). The boundary between these two different depositional settings	l	
409	js at \sim 650 mbsf; there, sedimentation rates increase, and the documentation of mass-		Deleted: occurs
410	transport deposits from this depth upwards suggests shelf-derived erosion events on		
411	the Wilkes Land continental slope (Escutia et al., 2011).	I	
412			
413	3. Methods		
414	3.1 Palynological sample processing		
415	The sample processing and analytical protocols as followed in this study are in		Deleted: We refer to Bijl et al. (in press) for
416	accordance with standard procedures and have been previously described by Bijl et		Deleted: t
			Deleted: procedures
417	al. (2013b; 2018). The 25 species of dinocysts new to science, which are formally (2	$\langle \rangle$	Deleted: used
440		\mathbb{N}	Deleted: done on the samples used
418	species) and informally (23 species) described in Bijl et al. <u>[2018]</u> , fit into known and	/////	Deleted: for this study, which.
419	extant genera and therefore could be confidently included in the ecological groups as		Deleted: Both
117	exant genera, and therefore could be connucledly metaded in the ecological groups as		Deleted: were
420	described below. We refer to Bijl et al. (2018) for an extensive overview (including	$ \setminus $	Deleted: according to
		$\setminus \setminus$	Deleted: following e.g.
421	plates) of the dinocyst species encountered.	$\langle \rangle$	Deleted: (in press)
100		V/	Deleted: on and
422			Deleted: showing
423	3.2 Ecological grouping of dinocyst taxa		Deleted: on
424	Bijl et al. (2018) provided additional statistical evidence to distinguish in situ		Deleted: (in press)
425	dinocysts from those that are reworked from older strata. In this paper, we follow the		Formatted: Font:Not Italic
426	interpretations of Bijl et al. (2018) and divide the dinocyst species into a reworked		Deleted: (in press)
427	and an in situ group (Table 2). To use the in situ dinocyst assemblages for		Formatted: Font:Not Italic
			Deleted: part
428	oceanographic reconstructions, we rely on the observation that many taxa in the		Deleted: 3
429	fossil assemblages have morphologically closely related modern counterparts. This		Formatted: Font:Not Italic
,	issen assentstages have morphologically closely related modern counterparts. This		
430	approach takes advantage of studies on $\underline{\text{the}}$ present-day relationship, between		Deleted: s

454	Southern Ocean microplankton in general and dinoflagellate, cysts in particular and
455	their surface-water characteristics (e.g., Eynaud et al., 1999; Esper and Zonneveld,
456	2002, 2007; Prebble et al., 2013). We assign Oligocene-Miocene dinocyst taxa to
457	present-day eco-groups interpreted from the clusters identified by Prebble et al.
458	(2013), which appear to be closely related to the oceanic frontal systems in the
459	Southern Ocean (Figure 3). Supporting evidence for the ecologic affinities <u>of the</u>
460	dinocyst groups comes from empirical data <u>, such as correlation of abundances with</u>
461	other sediment properties or proxies (Sluijs et al., 2005; Egger et al., 2018), for
462	instance with regard to the affinities of Nematosphaeropsis labyrinthus,
463	Operculodinium spp., Pyxidinopsis <u>cpx. (this includes <i>Corrudinium</i> spp. and</u>
464	<u>Cerebrocysta spp.</u>) and Impagidinium spp. There is further abundant evidence, both
465	empirically (e.g., Sluijs et al., 2003; Houben et al., 2013) and from modern
466	observations (Zonneveld et al., 2013; Prebble et al., 2013; Eynaud et al., 1999), that
467	links the abundance of protoperidinioid dinocysts to high surface-water productivity.
468	The arguably most important inference from the surface- <u>sediment</u> sample study of
469	Prebble et al. (2013) is that <i>Selenopemphix antarctica</i> is common to dominant ($10_{\overline{k}}$
470	90%) south of the Antarctic polar front (AAPF). <u>In particular, the Antarctic</u>
471	continental shelf exhibits a consistently high relative abundance of Selenopemphix
472	antarctica. In addition to the surface samples of Prebble et al. (2013), this is also
473	evident at the Wilkes Land margin proper (IODP Site U1357; Hartman, Bijl and
474	Sangiorgi, pers. obs.), at Prydz Bay (Storkey, 2006), in the Weddell (Harland and
475	Pudsey, 1999) and Ross Seas, (Hartman, Bijl and Sangiorgi, pers. obs), and in the
476	southern Indian Ocean (Marret and de Vernal, 1997): samples all contain very
477	abundant to dominant (>50 to 90%) S. antarctica. The dominance of this species

Deleted: s

Deleted: seem
Deleted: for
Deleted: :

Deleted: when it comes
Deleted: oceanic
Deleted: spp
Formatted: Font:Italic
Formatted: Font:Italic

Deleted: ,	
Deleted: which	
Deleted: primary	

Deleted: -

Dele	ted: in proximal sea-ice settings
Dele abun	ted: Despite this variation in dance noted in Prebble et al (2013), p
Dele	ted: P
Dele	ted: has
Dele	ted: in
Dele	ted: was noted at
Dele	ted: M
Dele	ted: 0
Dele	ted: IODP Site U1357
Dele	ted: Sea
Dele	ted: the
Dele	ted: s
Dele	ted:

504	becomes even stronger when considering that assemblages in these surface samples	
505	often include cysts that are not easily preserved in older sediments such as that of	
506	Polarella glacialis. Leaving these dinocyst out of the dinocyst sum increases the	D
507	relative abundance of <i>Selenopemphix antarctica</i> in surface samples. Notably, surface	D
508	sediment samples outside of the AAPF <u>never</u> have dominant <u>(~90%)</u> Selenopemphix	D
509	antarctica (Prebble et al., 2013). Another important observation is that the surface-	D
510	sediment, samples south of the AAPF are generally_devoid of gonyaulacean dinocysts,	D
511	with the exception of two species of Impagidinium (i.e., I. pallidum and I. sphaericum)	l
512	that may occur, although neither abundantly (Prebble et al., 2013) nor exclusively	
513	(e.g., Zevenboom, 1995; Zonneveld et al., 2013), in ice-proximal locations. Abundant	
514	Nematosphaeropsis labyrinthus occurs exclusively in regions outside of the	
515	Subantarctic Front, and particularly <u>near</u> the Subtropical Front. <u>Thus, we conclude</u>	
516	from the available literature a dominance of S. antarctica south of the AAPF, a	D A Pi
517	dominance of other protoperidinioid dinocysts at and <u>north</u> of the AAPF, mixed	D
518	protoperidinioid and gonyaulacoid dinocysts (with a notable occurrence of	
519	Nematosphaeropsis labyrinthus at the sub-Antarctic front (SAF), and mixed	D
520	gonyaulacoid dinocysts at and outside of the <u>subtropical front (STF</u>). These trends	D
521	represent, <u>a north-south</u> transition from sea-ice_influenced to cold upwelling/high	D
522	nutrient to warm-temperate/lower nutrient conditions, respectively. We use these	
523	affinities to reconstruct past oceanographic conditions at the Wilkes Land continental	D
524	margin.	I
525		

Deleted: only	
Deleted: none of the	
Deleted:	
Deleted:	
Deleted: about	

Deleted: surface

Deleted: which
Deleted: can
Deleted: Another important observation is t
Deleted: he occurrence of a
Deleted: occurs
Deleted: close to
Deleted: In summary, from proximal Antarctic to outside the frontal systems, Prebble et al. (2013) document
Deleted: s
Deleted: N
Deleted: common
Deleted: SAF
Deleted: STF
Deleted: s
Deleted: the
Deleted:

Deleted: obtained by Prebble et al. (2013)

526 4. Results

527 4.1 Palynological groups

			(
553	In our palynological analysis we separated palynomorph groups into four categories:	_	Deleted: In situ dinocysts,
554	reworked dinocysts (following Bijl et al. <u>(2018)</u> ; Table <u>2), in situ dinocysts,</u> acritarchs,	_	Deleted: (in press)
		\subset	Deleted: 3
555	and terrestrial palynomorphs. Our palynological slides further contain a varying		Formatted: Font:Not Italic
556	amount of pyritized diatoms and a minor component of amorphous organic matter,	_	Deleted: palynofacies
557	which is not further considered in this study. The relative <u>and absolute</u> abundances of		
558	the four palynomorph groups vary, considerably throughout the studied interval		Deleted: ies
			Deleted: record
559	(Figure 4). Reworked dinocysts are <u>ubiquitous</u> throughout the record, <u>and</u> are		Deleted: , as do their absol
		\sim	Deleted: present to comm
560	particularly abundant in the lowermost 40 meters of the Oligocene and in the Upper		Deleted: but
561	Oligocene. In situ dinocysts dominate mid-Oligocene and mid-Miocene palynomorph	_	Formatted: Font:Not Italic
			Deleted: the
562	assemblages, Chorate, sphaeromorph and <i>Cymatiosphaera</i> - <u>like</u> acritarchs (which are		Deleted: during the mid-O mid-Miocene
563	not further taxonomically subdivided) dominate the assemblage in the Upper		Deleted: type
		\square	Deleted: in this study
564	Oligocene and into the mid-Miocene, while terrestrial palynomorphs (which are		Deleted: during
			Deleted: late
565	considered in situ and not reworked from older strata (Strother et al., 2017)) are a		Formatted: Font:Not Italic
566	constant minor (a few % of the total palynomorph assemblage) component of the		
567	total palynomorph assemblage (Fig. 4). The terrestrial palynomorphs and the		
568	paleoclimatic and paleoecological interpretations derived from them, will be		Deleted: se
569	presented in another study.		
570			
571	4.2 In situ dinocyst assemblages	_	Formatted: Font:Not Italic
571			
572	Throughout the Oligocene, in situ dinocyst assemblages are dominated by	_	Formatted: Font:Not Italic
573	protoperidinioid dinocysts, notably Brigantedinium spp., Lejeunecysta spp., Malvinia		
574	escutions and Selenonemphis con (Figure 4) all of which are custs of hotorotrophic		Deleted: considered
5/4	escationa, and scientifinity spp. (Figure 4), an or which are <u>cysts of</u> neterotrophic	\leq	Deleted: associated
575	dinoflagellates (e.g. Esper and Zonneveld 2007) Among these protoperidinioid		Deleted: with

cysts, S. antarctica is frequently present (up to 39% of the in situ assemblage), but 576

1	Deleted: In situ dinocysts,
-(Deleted: (in press)
-(Deleted: 3
(Formatted: Font:Not Italic
-(Deleted: palynofacies

Deleted: jes
Deleteu. les
Deleted: record
Deleted: , as do their absolute abundances
Deleted: present to common
Deleted: but
Formatted: Font:Not Italic
Deleted: the
Deleted: during the mid-Oligocene and mid-Miocene
Deleted: type
Deleted: in this study
Deleted: during
Deleted: late
Formatted: Font:Not Italic

Deleted: considered	
Deleted: associated	

J	Deleted: with
-(Deleted: .
-(Deleted: common to abundant
1	Formatted: Font:Not Italic

599	only between 33.6 and 32.1 Ma (earliest Oligocene) and after 14.2 Ma (i.e., during and	Del
600	after the mid-Miocene climatic transition: Fig. 5). The remainder of the record is	Del
601	almost entirely devoid of S. antarctica. This is much in contrast to the dinocyst	(33. mid-
602	assemblages <u>nearby</u> Site U1356 today, which are dominated by this taxon (Prebble et	Del
603	al., 2013). Instead of <i>S. antarctica</i> , other protoperidinioid dinocysts dominate during	
604	the Oligocene and Miocene, such as Brigantedinium spp., several Lejeunecysta species	
605	and Selenopemphix nephroides, which have close affinities to high-nutrient conditions	l
606	in general (e.g., Harland et al., 1999; Zonneveld et al., 2013), but are not specifically	
607	restricted to sea-ice-proximity or the Southern Ocean. Today, these three genera	I
608	dominate dinocyst assemblages in high-nutrient <u>settings</u> at or outside of the AAPF	Del
609	(Prebble et al., 2013). <u>A</u> varying abundance of protoperidinioid dinocysts could not be	Del
610	placed with confidence into established protoperidinioid dinocyst genera. These are	Del
611	grouped under '_protoperidinioid spp. pars'_ (Figure 4; <u>Bijl et al., 2018)</u> , and are here	Del Del
612	assumed to exhibit the same heterotrophic life-style as the other protoperidinioid	I
613	dinocyst genera.	
614	Next to protoperidinioid dinocysts, gonyaulacoid dinocysts also occur in relatively	Del
615	high abundances throughout the record from Site U1356. They comprise both known	Del
616	and previously unknown (Bijl et al., 2018) species of Batiacashaera, Pyxidinopsis,	Del
617	Corrudinium, Cerebrocysta, Nematosphaeropsis, Impagidinium, Operculodinium, and	Del
618	Spiniferites (Fig. 4; 5). The 'others' group represents exclusively gonyaulacoid species	Del
619	such as Invertocysta tabulata and Gelatia inflata. Except for the extinct genera	Del
620	Batiacasphaera and Cerebrocysta and some genera in the 'others' group, all the other	
621	genera are still extant and <u>represent</u> phototrophic dinoflagellates (Zonneveld et al.,	Del
622	<u>2013)</u> . The <u>ir</u> abundance <u>is at the expense of the assumed heterotrophic</u>	Del
		Laxa

Deleted: to

Deleted: in the first 1.5 million years of the Oligocene represented in the core material (33.6–32.1 Ma), and during and after the mid-Miocene climatic transition (<14.2 Ma;

Deleted: generally Deleted: at

Deleted: regions
Deleted: We also encountered a
Deleted: ,
Deleted: which
Deleted: that
Deleted: ,

		Deleted: also
		Deleted: commonly to abundantly
		Deleted: in press)
1		
		Deleted: and
		Deleted:
-		
		Deleted: genus
-		Delettedi genus
	1	Deleted: are formed by
		Deleted. are for filed by
		Deleted: of these
		Deleted: presumably mostly autotrophic
		taxa (Zonneveld et al., 2013)
	. 7	Deleted: goes

protoperidinioid dinocysts. A <u>marked increase in abundance of gonyaulacoid cysts is</u>
associated with the mid-Miocene Climate Optimum (<u>MMCO between ~17 and 15 Ma;</u>
Fig. 4, 5; Sangiorgi et al., <u>2018</u>). Of <u>the gonyaulacoid taxa</u>, *Nematosphaeropsis Jabyrinthus* is associated with frontal systems of the present-day Southern Ocean
(Prebble et al., 2013) and <u>of</u> the North Atlantic Ocean, (Boessenkool et al., 2001;
Zonneveld et al., 2013).

- 653
- 654 4.3 Comparison between palynological data and lithological facies 655 The Oligocene-Miocene sediments from Site U1356 comprise distinctive alternations of lithologic facies throughout the section (Salabarnada et al., submitted, this volume; 656 657 Figure <u>S2</u>). Laminated (Fg) and bioturbated sediments, that are in some intervals are 658 carbonate-rich (Fi) alternate on orbital time scales, and this pattern is in some 659 intervals disrupted by slumps and/or debris flows, We here evaluate and compare 660 the palynological content of each of these facies, both in terms of absolute and relative 661 abundance of the main palynomorph groups: reworked dinocysts, in situ dinocysts, 662 acritarchs and terrestrial palynomorphs, and relative abundance of in situ dinocyst 663 eco-groups. 664 665 4.3.1 Palynomorph groups and lithology

There are distinct differences in the relative and absolute abundances of the
palynomorph groups between the different lithologies (Figure 6). The highest relative
and absolute abundances of reworked dinocysts occur in the slump and Fi facies (Fig.
6), particularly those of early Oligocene age (EOT slumps and bioturbated siltstones
in Supplementary datasets), in line with observations of Houben et al. (2013).

Deleted: remarkable
Deleted: noted

-1	Deleted: in review
1	Deleted: these
-1	Deleted: spp.
1	Deleted: thought to be
-1	Deleted: also in
1	Deleted:

Deleted: 5 Deleted: interpretations

/	Deleted: and include
_	Deleted: carbonate- rich
	Deleted: carbonate- lean
	Deleted: ,
	Deleted: l,
	Deleted: They are interpreted to reflect changes in the oceanographic regime, with relations to glacial-interglacial changes (Salabarnada et al., submitted this volume). Carbonate deposits, pelagic claystones and bioturbated, carbonate-bearing silty claystones were interpreted as interglacial deposits, while the laminated lithologies reflect glacial deposits (Salabarnada et al., submitted this volume). Mass-transport deposits reflect times of major sediment transport from the continental shelf. The lower Oligocene glauconitic sandstones were interpreted to reflect episodes of redeposition of winnowed upper Eocene shelf sediments (Sluijs et al., 2003; Houben, 2012).
	Deleted: lithologies
$\langle $	Deleted: ,
	Formatted: Font:Not Italic
	Formatted: Font:Not Italic
	Deleted: 5
	Deleted: lower Oligocene reworked glauconitic sandstones
	Deleted: lower
_	Deleted: in
	Deleted: , which is in line with previous inferences of

712	Reworking is a minor component of the palynomorph assemblage in the other		Deleted: compared to
713	lithologies for most samples, with a higher absolute abundance in Fi deposits than in		Deleted: The mass-transport deposits contain abundant reworked dinocyst [1]
714	glacial denosite. This suggests that submaring gracion of Forange continental shelf		Deleted: does not vary in the other lithologies
/14	glacial deposits. This suggests that submarine erosion of Eocene continental shen		Deleted: consistentlyow relative [2]
715	material was particularly prominent during interglacial times, when arguably sea		Deleted: 5
		//////	Formatted: Font:Not Italic
716	level along the Wilkes Land margin was lower (Stocchi et al., 2013). The relative and	//////	Deleted: lithology
- 4 -			Deleted: We also compared t
717	absolute abundance of <i>in-situ</i> dinocysts <u>is highest in the interglacial and glacial</u>		Formatted: Font:Not Italic
718	deposits and the slumps (Figure 6). Acritarchs, reach highest relative and absolute		Deleted: predominanthe lithologi [3] Deleted: haveontains inenerally [4]
710			Deleted: Miocene Climatic Optimum [5]
/19	abundances in <u>F1 facies and in the debris flows</u> (Figure 6). Terrestrial palynomorphs	/ ////	Deleted: interval
720	are most abundant in the lower Oligocene slumps and Fi sediments (Supplementary		Deleted: ithe taxon reaches occasi [6]
720	are most abundant in the <u>lower ongotene stumps and this complementary</u>		Deleted: We note that in the Llower Oligocene,
/21	tables) but have low relative abundance in all lithologies (Figure 6).		Deleted: high abundances of
722			Deleted: and <i>Malvinia escutiana</i> are mostly connected to
700		// /// (Deleted: mostly
/23	4.3,2 In situ dinocyst eco-groups and their abundance per facies	1 11 1	Deleted: mostly
724	The in situ dinocyst eco-groups are also compared with the lithological facies (Figure		Deleted: occur
727	The first a unice yst eco-groups are also compared with the intrological factors (Figure)		Deleted: glauconitic sandstones and the mass-transport deposits
725	7). The Fg glacial facies contains generally more peridinioid (heterotrophic)		Deleted: ,
726	dinacusts, while the Fi interglacial facios contains more genuculaced (eligetrephic)		Deleted: and
720		11	Deleted: but ares less abundant ra[7]
727	dinocysts, but more information is to be seen when focussing on the individual eco-		Deleted: occur
728	groups. The abundance of <i>Selenopemphix antarctica</i> is low throughout the record (0		Deleted: We however think believe that these species to represent part of the in situ assemblage in an otherwise dominantly
729	5%), with the exception of the interval post-dating the $MMCO_{r}$ and the lowermost		they were have never been found in Eocene sediment in the region before.
730	Olycocene where the taxon reaches occasionally more than 20% (Figs 4 5) S		Deleted: s
/ 50	ongocene, where the taxon reaches occusionary shore than 20% (rigs. 1, 5). p.		Deleted:
731	antarctica reaches highest abundances in the slump facies and Fg and is less		Deleted: significantly
732 733	abundant in the other lithologies (Figure 7). <i>Selenopemphix</i> spp. reaches highest		Deleted: substantially higher relative abundances in the mass-transport and glacial deposits, and substantially lowerbut only low abundances in the pelagic clays, connected to interglacial deposits
/ 55	reactive abundances in the rg racies, percurrecysta spp. and rrotopertaintall spp. pars.		Deleted: It
734	show no noticeable variance in relative abundance in any of the lithologies.	1	Deleted: They are and in the
			Deleted: s
735	Brigantedinium spp. is clearly higher abundant in the Fg facies than in the Fi facies.	\leq	Deleted: invariable relative abundances in the different lithologies

Ve however think believe that to represent part of the in situ in an otherwise dominantly nocyst assemblage, because these ave never been found in Eocene ... [8] the region before. ignificantly substantially higher relative in the mass-transport and sits, and substantially lowerbut undances in the pelagic clays, o interglacial deposits hey are and in the ... [9] nvariable relative abundances ent lithologies Deleted:

852	Malvinia escutiona abundances seem to be higher in Fi than in Fg (Figure 7) although		Deleted: s
052		<	Deleted: abundant
853	this species has a stratigraphic occurrence that is limited to the early Oligocene (Bijl		Deleted: and the <i>Protoperidinium</i> spp. pars group shows highest abundance in the palagie show
854	et al., 2018). Nematosphaeropsis <u>labyrinthus</u> , Pyxidinopsis cpx, Operculodinium spp.,		Deleted: Overall the relative abundances
855	and Impagidinium spp, reach higher relative abundances in Fi than in Fg facies,		of all (proto)peridinioid dinocysts in the <i>in</i> situ assemblage is are highest in the glacial deposits and pelagic clays, and substantially
856	whereas the abundance of <i>Batiacasphaera</i> spp. seems invariant to facies.		lower in interglacial deposits and in the Miocene part of the section.
857			Deleted: Indeed, s
858	5. Discussion		Deleted: Several gonyaulacoid dinocyst taxa (such as
			Deleted: spp.
859	5.1 Paleoceanographic interpretation of the dinocyst assemblages		Deleted:)
			Deleted: snow
860	The composition of the dinoflagellate cyst assemblages in the Wilkes Land record		Deleted: interglacial
861	reflect changes in surface-ocean nutrients, sea- surface temperature conditions and		Deleted: glacial deposits
001	Tenece changes in sanace occan nucleurs, sea surface temperature conditions and		Deleted: We thus observe a marked
862	paleoceanographic features. We will discuss these implications in the following.		difference in the relative abundances of
863		$\backslash \rangle$	dinocysts between glacial and interglacial deposits.
			Deleted: sfor
864	5.1.1 Surface-ocean nutrient conditions		Deleted: sfor Deleted: below
864	5.1.1 Surface-ocean nutrient conditions		Deleted: sfor Deleted: below
864 865	5.1.1 Surface-ocean nutrient conditions The <u>general</u> dominance of heterotrophic dinocysts in the Oligocene <u>Miocene</u>		Deleted: sfor Deleted: below Deleted: flagellate
864 865 866	5.1.1 Surface-ocean nutrient conditions The <u>general</u> dominance of heterotrophic dinocysts in the Oligocene_Miocene assemblages indicates overall high nutrient levels in the surface waters. <u>Given the</u>		Deleted: sfor Deleted: below Deleted: flagellate Deleted: - Deleted: dinocyst
864 865 866	5.1.1 Surface-ocean nutrient conditions The <u>general</u> dominance of heterotrophic dinocysts in the Oligocene_Miocene assemblages indicates overall high nutrient levels in the surface waters. <u>Given the</u>		Deleted: sfor Deleted: below Deleted: flagellate Deleted: - Deleted: dinocyst Deleted: We infer therefore that in general
864 865 866 867	5.1.1 Surface-ocean nutrient conditions The <u>general</u> dominance of heterotrophic dinocysts in the Oligocene,-Miocene assemblages indicates overall high nutrient levels in the surface waters. <u>Given the</u> <u>offshore geographic setting</u> , we therefore infer that surface waters at Site U1356		Deleted: sfor Deleted: below Deleted: flagellate Deleted: - Deleted: dinocyst Deleted: We infer therefore that in general Deleted: therefore
864 865 866 867	5.1.1 Surface-ocean nutrient conditions The <u>general</u> dominance of heterotrophic dinocysts in the Oligocene, Miocene assemblages indicates overall high nutrient levels in the surface waters. <u>Given the</u> offshore geographic setting, we therefore infer that surface waters at Site U1356		Deleted: sfor Deleted: below Deleted: flagellate Deleted: - Deleted: dinocyst Deleted: We infer therefore that in general Deleted: therefore Deleted: -
864 865 866 867 868	5.1.1 Surface-ocean nutrient conditions The <u>general</u> dominance of heterotrophic dinocysts in the Oligocene_Miocene assemblages indicates overall high nutrient levels in the surface waters. <u>Given the</u> <u>offshore geographic setting</u> , we therefore infer that surface_waters <u>at</u> Site U1356 experienced upwelling associated to the AAPF during most of the Oligocene and		Deleted: sfor Deleted: below Deleted: flagellate Deleted: - Deleted: dinocyst Deleted: We infer therefore that in general Deleted: therefore Deleted: - Deleted: - Deleted: overlying
864 865 866 867 868 869	5.1.1 Surface-ocean nutrient conditions The <u>general</u> dominance of heterotrophic dinocysts in the Oligocene,-Miocene assemblages indicates overall high nutrient levels in the surface waters. <u>Given the</u> offshore geographic setting, we therefore infer that surface_waters at Site U1356 experienced upwelling associated to the AAPF during most of the Oligocene and Miocene. We can exclude the possibility that nutrients were brought to the site via		Deleted: sfor Deleted: below Deleted: flagellate Deleted: - Deleted: dinocyst Deleted: We infer therefore that in general Deleted: therefore Deleted: - Deleted: - Deleted: overlying
864 865 866 867 868 869 870	5.1.1 Surface-ocean nutrient conditions The <u>general</u> dominance of heterotrophic dinocysts in the Oligocene,-Miocene assemblages indicates overall high nutrient levels in the surface waters. <u>Given the</u> offshore geographic setting, we therefore infer that surface waters at Site U1356 experienced upwelling associated to the AAPF during most of the Oligocene and Miocene. We can exclude the possibility that nutrients were brought to the site via river runoff given the anticipated small catchment area that experienced liquid		Deleted: sfor Deleted: below Deleted: flagellate Deleted: - Deleted: dinocyst Deleted: We infer therefore that in general Deleted: therefore Deleted: overlying
864 865 866 867 868 869 870 871	5.1.1 Surface-ocean nutrient conditions The general_dominance of heterotrophic dinocysts in the Oligocene_Miocene assemblages indicates overall high nutrient levels in the surface waters. <u>Given the</u> offshore geographic setting, we therefore infer_that surface_waters <u>at</u> Site U1356 experienced upwelling associated to the AAPF during most of the Oligocene and Miocene. We can exclude the possibility that nutrients were brought to the site via river_runoff_given_the_anticipated_small_catchment_area_that_experienced_liquid precipitation in the Wilkes Land hinterland, the low amounts of terrestrially-derived		Deleted: sfor Deleted: below Deleted: flagellate Deleted: - Deleted: dinocyst Deleted: We infer therefore that in general Deleted: therefore Deleted: overlying
864 865 866 867 868 869 870 871 871	5.1.1 Surface-ocean nutrient conditions The general_dominance of heterotrophic dinocysts in the Oligocene_Miocene assemblages indicates overall high nutrient levels in the surface waters. <u>Given the</u> offshore geographic setting, we therefore infer that surface_waters <u>at</u> Site U1356 experienced upwelling associated to the AAPF during most of the Oligocene and Miocene. We can exclude the possibility that nutrients were brought to the site via river runoff given the anticipated small catchment area that experienced liquid precipitation in the Wilkes Land hinterland, the low amounts of terrestrially-derived (amorphous) organic matter in the palynological residues and relatively low		Deleted: sfor Deleted: below Deleted: flagellate Deleted: - Deleted: dinocyst Deleted: We infer therefore that in general Deleted: therefore Deleted: - Deleted: - Deleted: overlying
 864 865 866 867 868 869 870 871 872 873 	5.1.1 Surface-ocean nutrient conditions The general_dominance of heterotrophic dinocysts in the Oligocene_Miocene assemblages indicates overall high nutrient levels in the surface waters. <u>Given the</u> offshore geographic setting, we therefore infer_that_surface_waters <u>at</u> _Site U1356 experienced upwelling associated to the AAPF during most of the Oligocene and Miocene. We can exclude the possibility that nutrients were brought to the site via river_runoff given the anticipated small catchment area that experienced liquid precipitation in the Wilkes Land hinterland, the low amounts of terrestrially-derived (amorphous) organic_matter in the palynological_residues_and_relatively_low branched over isoprenoid tetraether (BIT) index values (Hartman et al., submitted		Deleted: sfor Deleted: below Deleted: flagellate Deleted: - Deleted: dinocyst Deleted: We infer therefore that in general Deleted: therefore Deleted: - Deleted: - Deleted: overlying
 864 865 866 867 868 869 870 871 872 873 874 	5.1.1 Surface-ocean nutrient conditions The general_dominance of heterotrophic dinocysts in the Oligocene_Miocene assemblages indicates overall high nutrient levels in the surface waters. <u>Given the</u> offshore geographic setting, we therefore infer that surface_waters at Site U1356 experienced upwelling associated to the AAPF during most of the Oligocene and Miocene. We can exclude the possibility that nutrients were brought to the site via river runoff given the anticipated small catchment area that experienced liquid precipitation in the Wilkes Land hinterland, the low amounts of terrestrially-derived (amorphous) organic matter in the palynological residues and relatively low branched over isoprenoid tetraether (BIT) index values (Hartman et al., submitted this volume) that indicates predominantly marine organic matter. The exception may		Deleted: sfor Deleted: below Deleted: flagellate Deleted: - Deleted: dinocyst Deleted: We infer therefore that in general Deleted: therefore Deleted: - Deleted: overlying

910	be the mid-Miocene climatic 0	ptimum (Sangiorgi et al., 2018	when	considerable soil-

911 derived organic matter reached the site.

912	The occasionally abundant <u>gonyaulacoid</u> cyst taxa encountered in our record
913	suggest that at times surface waters were much less nutrient-rich <u>supported the</u>
914	growth of oligotrophic dinoflagellates, <u>Notably</u> , these <u>taxa</u> are <u>typical for</u> outer-shelf
915	to oceanic or outer neritic <u>settings (</u> e.g., Sluijs et al., 2005; Zonneveld et al., 2013;
916	Prebble et al., 2013), which makes it unlikely that they were reworked from the
917	continental shelf. Indeed, they show low relative abundances in the perturbed
918	deposits (Figure 7). Although the members of these genera have relatively long
919	stratigraphic ranges extending back into the Eocene, most of the species encountered
920	at <u>Site U1356 are not present</u> in Eocene continental shelf sediments in the region
921	(e.g., <u>Wrenn and Hart, 1988; Levy and Harwood, 2000; Brinkhuis et al., 2003a, b;</u> Bijl
922	et al., 2011; 2013a, b). This <u>makes it unlikely that they are reworked</u> from Eocene
923	<u>strata.</u> In addition, statistical <u>analysis</u> also <u>yields that</u> these species <u>are</u> part of the in
924	situ assemblage (Bijl et al., <u>2018)</u> . <u>These different lines of evidence lead us to</u>
925	interpret them as part of the in situ pelagic assemblage in our study, which allows us
926	to interpret their paleoceanographic implications based on their modern affinities.
927	The absence of these taxa in modern surface waters south of the AAPF is probably
928	caused by a combination of <u>different</u> factors: <u>It can be connected to</u> low sea_surface
929	temperatures and an isolation by strong eastward currents, but also the abundance
930	and seasonally concentrated availability of nutrients, all of which make the proximal
931	surface waters off Antarctica a highly specialistic niche unfavourable for these
932	species. Apparently, surface_water conditions during the Oligocene and Miocene were

Deleted:	re
Deleted:	However, and surprisingly, t
Deleted:	oligotrophic
Deleted:	to support
Deleted:	supporting an
Deleted:	assemblage
Deleted:	Т
Deleted:	dinocysts
Deleted:	taxa
Deleted:	these
Deleted:	taxa
Deleted:	mass-transport deposits
Deleted:	6
Deleted:	species within
Deleted:	have never been found
Deleted:	before
Deleted:	lends
Deleted:	further supports a scenario of
against th	em being
Deleted:	in situ and not being
Deleted:	shelf material
Deleted:	in
Deleted:	the
Deleted:	approach
Deleted:	interprets
Deleted:	to
Deleted:	be
Formatte	d: Font:Not Italic
Deleted:	in press)
Deleted:	Hhence, we
Deleted:	that these
Deleted:	taxa are
Formatte	d: Font:Not Italic
Deleted:	them Now that we have
abundant	evidence that these autotrophic
assemblag	ge, we can interpret these
assemblag	ges in terms of
Deleted:	affinities
Deleted:	given
Deleted:	and reflect warming of surface
The occasi	ional abundance of oligotrophic
taxa sugge	ests nutrient levels must h [10]
Deleted:	concentration
Deleted:	Antarctic
Deleted:	very

such that these oligotrophic species could at times proliferate so close to the Antarctic 984

985 margin.

986

007			Deleted
987	5.1.2 Sea-surface temperature		Deleted: s
988	The best modern analogues for the dinocyst assemblages in our record are to be		Deleted: The
		$\overline{}$	Deleted: average
989	sought off the southern margins of New Zealand and Tasmania (as inferred from		Deleted: point to
			Deleted: S
990	Prebble et al., 2013; Figure 2). Today, these regions feature a mix between		Deleted: the best mode
001			Deleted: o
991	protoperidinioid dinocysts <u>along with g</u> onyaulacold dinocyst genera such as		Deleted: today
992	Nematosphaeropsis Operculodinium and Impagidinium. These assemblages prevail in		Deleted: and
,,,			Deleted: occur at prese
993	surface_waters with mean annual temperatures of 8-17°C (Prebble et al., 2013) and		Deleted: -
			Deleted: -
994	therefore suggest relatively warm surface water temperatures close to the Wilkes		
995	Land margin. In support of this, a bayesian approach on the TEX ₈₆ index values at <u>Site</u>	_	Deleted: A
996	U1356 (presented in Sangiorgi et al., 2018 ; Hartman et al., submitted, this volume)		Deleted: submitted
997	also suggests the Southern Ocean mid-latitudes as a modern-analogue region, and	_	Deleted: indicates exac
			Deleted: same region
998	<u>reconstructs a</u> paleotemperature range <u>of 8–20°C for the</u> Oligocene–Miocene at <u>Site</u>		Deleted: s
000	U12E6 with values in success of 24°C for the late Oligonous (Hortman et al. submitted	$\langle \rangle \rangle$	Deleted: for the TEX ₈₆
999	01330, with values in excess of 24 C for the fate ongotene (narthan et al., sublinitied,		Deleted: (Hartman et a
1000	this volume). Futher, supporting evidence for temperate Oligocene–Miocene surface		2013); both approaches
1000			Deleted: the same
1001	waters comes from the abundance of nannofossils encountered in the sediments	/ ///	Deleted: for the
			Deleted: -
1002	(Escutia et al., 2011; Salabarnada et al., submitted this volume). Today, carbonate-		Deleted: 17
1000			Deleted: -
1003	producing plankton is <u>rare</u> in high-latitude surface waters south of the AAPF (Eynaud		Deleted: These two pro
1004	et al 1999) Moreover the remains of the few pelagic carbonate-producing		warmer than today pale
1004	et al., 1999). Moreover, the remains of the rew <u>peragic</u> erbonate-producing		regimewaters close to A
1005	organisms living at high latitudes rarely reach the ocean floor because of strong		modern analogue being
			New Zealand and Tasma
1006	upwelling of relatively CO ₂ -rich, corrosive waters (e.g., Olbers et al., 2004). Hence, the		Deleted: Supporting
			Deleted: same Oligocer
1007	presence of carbonate-rich intervals during the Oligocene_Miocene at Site U1356		Deleted: not abundant

Deleted: s

Deleted: The
Deleted: average
Deleted: point to
Deleted: S
Deleted: the best modern analogue (
Deleted: o
Deleted: today
Deleted: and
Deleted: occur at present
Deleted: -
Deleted: -
Deleted: A

Deleted: indicates exactly
Deleted: same region
Deleted: s
Deleted: for the TEX ₈₆ index values found
Deleted: (Hartman et al., submitted, this volume) as for the dinocysts (Prebble et al., 2013); both approaches indicate
Deleted: the same
Deleted: for the
Deleted: -
Deleted: 17
Deleted: -
Deleted: These two proxies thus independently point to a temperate, much warmer than today paleoceanographic regimewaters close to Antarctica during the Oligocene and Miocene with the nearest modern analogue being offshore Southern New Zealand and Tasmania.
Deleted: Supporting
Deleted: same Oligocene-Miocene

1044 along with the encountered oligotrophic, temperate dinocysts suggests

1045 fundamentally warmer surface-water conditions than <u>today</u>.

1046

1047 5.1.3 <u>Surface p</u>aleoceanography

1048 The strong similarity of Oligocene-Miocene dinocyst assemblages at Site U1356 with 1049 those today occurring much further north (i.e., around Tasmania and Southern New 1050 Zealand (Prebble et al., 2013) suggests a fundamentally different modus operandi of 1051 Southern Ocean <u>surface</u> oceanography. The strict latitudinal separation of dinocyst 1052 assemblages in the Southern Ocean today (Prebble et al., 2013) is likely due to 1053 different surface water masses present across the oceanic fronts where strong wind-1054 driven divergence around 60° S (known as the Antarctic Divergence; e.g., Olbers et al., 1055 2004), strong sea-ice season and/or the vigorous Antarctic Circumpolar Current are 1056 in place. The strength and position of the AAPF during the Oligocene-Miocene is not 1057 well understood. <u>Climate model (GCM)</u> experiments under Miocene boundary 1058 conditions suggest that west and east wind drifts prevailed south and north of 60°S, 1059 respectively (Herold et al., 2011). This wind orientation determined the average 1060 position of the Antarctic Divergence at 60°S during the Oligocene and Miocene, 1061 similar to today. This suggests that Site U1356 was likely directly overlain by the 1062 AAPF. However, the significantly warmer, more oligotrophic dinocyst assemblages off 1063 Wilkes Land throughout the Oligocene-Miocene argue against proximity to the AAPF. 1064 The position of the AAPF relative to that of Site U1356 strongly determines the 1065 likelihood of southward transport of low-latitude waters towards the site. A 1066 southward position of the AAPF relative to Site U1356 would greatly enhance the 1067 possibility for a southward migration of temperate surface water masses towards the

Deleted: at present	
.	
Deleted: P	
Delate La	
Deleted: to	
Delete di	
Deleted: e.g	

Deleted: throughout

Deleted: the

Deleted: position of the Deleted: s Deleted: s

-1	Deleted: like
1	Deleted: would mean
Y	Deleted: was
1	Deleted: character of the
Y	Deleted: shore
$ \neg $	Deleted: s
Y	Deleted: a close position
1	Deleted: the position

site. A northward position of the AAPF relative to the site would make such a 1085 1086 latitudinal migration much more difficult. The presence of carbonate in these deep 1087 marine sediments also suggests that upwelling of corrosive waters through the 1088 (proto-)Antarctic Divergence was either much reduced or located elsewhere. 1089 Therefore, we deduce that the occurrence of the oligotrophic, temperate dinocysts is 1090 an evidence for a southward position of the AAPF relative to the position of Site 1091 U1356. This would allow a higher connectivity between the site and the lower 1092 latitudes, and promote preservation of carbonate on the sea floor. Also, such an 1093 oceanographic setting would be in line with reduced sea ice along the Wilkes Land 1094 margin.

Deleted: as Deleted: t

Deleted: much

Deleted: M

1095	The separate averaging of dinocyst assemblages for glacial and interglacial
1096	facies from Site U1356 (Figure 7) allows us to reconstruct glacial-interglacial changes
1097	in surface-water conditions throughout the Oligocene. First of all, our observations
1098	suggest, that Oligocene glacial-interglacial cycles were connected to substantial
1099	paleoceanographic dynamics <u>off Wilkes Land</u> , <u>In agreement with the 2–3</u> °C SST
1100	variability <u>as documented for this site</u> during glacial-interglacial cycles (Hartman et
1101	al., submitted, this volume), dinocyst assemblages contain more oligotrophic,
1102	temperate dinocysts during interglacial times compared to glacial times when more
1103	eutrophic, colder dinocysts proliferated <u>(Fig. 7)</u> . This could be the result of a slight
1104	latitudinal movement of oceanic frontal systems (notably the AAPF) as it has been
1105	reconstructed for the Southern Ocean fronts during the most recent glacial to
1106	interglacial transition (e.g., <u>Bard and Rickaby, 2009; Kohfeld, et al., 2013; Xiao et al.,</u>
1107	2016). In such a scenario, the AAPF would reach a southern position during
1108	interglacials, allowing for temperate oligotrophic surface waters to reach the site,

-1	Deleted: deposits
1	Deleted: the
-1	Deleted: oceanographic
\neg	Deleted: changes
Y	Deleted: This approach
\neg	Deleted: s
-(Deleted: were associated with
	Deleted: Oligocene glacial-interglacial cycles
्रो	Deleted: Alongside
Υ	Deleted: at this same site
1	Deleted: intervals
1	Deleted: intervals

1	Deleted: Kohfeld, et al., 2013; ;
λ	Deleted: (Xiao, et al. 2016)
1	Deleted: The difference in dinocyst assemblages between glacial and interglacial deposits might be explained by
1	Deleted: This would imply
Y	Deleted: of the AAPF
1	Deleted: S

1134	while it would migrate northward over Site U1356 during glacials, thereby causing
1135	cold, high-nutrient surface-water conditions and obstructing low-latitude influence.
1136	

1137 5.2 Implications for Oligocene_Miocene ocean circulation 1138 At Site U1356, dinocyst assemblages bear similarities to present-day proximal-1139 Antarctic assemblages (Prebble et al., 2013) only in the lowermost Oligocene and in 1140 strata deposited after the mid-Miocene Climate Optimum (after 14.2, Ma); in 1141 particular, they are characterized by high abundances (up to 39%) of Selenopemphix 1142 antarctica. Even in those intervals, however, the relative abundances of S. antarctica 1143 do not reach present-day values at the same site (Prebble et al., 2013). The absence of 1144 a strong shift towards modern-day-like assemblages in our record can be interpreted 1145 to reflect a weaker-than-present ACC. This interpretation is in line with numerical 1146 models (Herold et al., 2012; Hill et al., 2013). The ACC itself represents an important 1147 barrier for latitudinal surface-water transport towards the Antarctic margin, in addition to the Antarctic Divergence (Olbers et al., 2004). Our data suggest an 1148 1149 increase in the influence of oligotrophic dinocysts at the Antarctic margin during the 1150 late Oligocene and during the MMCO, which argues against the installation of a 1151 vigorous ACC at 30 Ma as recently inferred by Scher et al. (2015): No particular 1152 change in <u>sea-surface conditions</u> emerges from our dinoflagellate cyst data around 30 1153 Ma, and there is no major change in the benthic $\delta^{18}O$ <u>data either (Figure 5)</u>. Instead, if 1154 the Tasmanian Gateway had opened to an extent that allowed ACC development 1155 (Scher et al., 2015), the ACC must have been much weaker throughout the Oligocene 1156 and Miocene than at present, which has also emerged from modelling experiments 1157 (Hill et al., 2013). The strongly different dinocyst assemblages compared to present-

1	Deleted: the AAPF migrated northward over Site U1356
-(Deleted: increased
\neg	Deleted: on
$\left(\right)$	Deleted: of
-(Deleted: D
-(Deleted: 0
1	Deleted: representing the mid-Miocene
	climatic transition and later
Ľ	Deleted: 4
$\langle \rangle$	Deleted: and younger
Y	Deleted:), the dinocyst assemblages bear
	similarities to modern proximal-Antarctic
$\left \right $	assemblages (Prebble et al., 2013
(Deleted: with
ľ	Deleted: ?
$\left(\right)$	Deleted: es
1	Deleted: is

_(Deleted: mid-Miocene Climatic Optimum (
-(Deleted:)
-(Deleted: (
	Deleted: profound
-(Deleted: s
\frown	Deleted: paleoceanography

Deleted: than at present

1183	day <u>nearby</u> . Site U1356 throughout our record imply, that a strong coherent ACC was	De
1184	not installed until after the mid-Miocene Climatic Transition (MMCT; 11 Ma). This is	De
1185	consistent with inferences from the lithology at the same site (Salabarnada et al.,	De
1186	submitted, this volume), suggesting a proto-ACC much weaker than at present and,	
1187	likewise, weaker Southern Ocean frontal systems. An alternative explanation is that	
1188	the ACC increased in strength during the Oligocene-Miocene, but that this	
1189	strengthening had no influence on the dinocyst assemblages at Site U1356. However,	
1190	the vigorous nature of the ACC influencing surface as well as bottom waters and	
1191	governing eddy water circulation in the Southern Ocean (Olbers et al., 2004) \underline{in}	
1192	combination with the high sensitivity of dinoflagellates to changes in surface-water	
1193	conditions (e.g., Zonneveld et al., 2013; Prebble et al., 2013) makes such a scenario	
1194	very unlikely. Nevertheless, to firmly clarify whether the ACC reached its present-day	
1195	strength only after the MMCT (as suggested by our data), ocean-circulation modelling	De
1196	of time slices younger than the Oligocene (<u>Hill et al., 2013)</u> will be required.	
1197	Our results also seem difficult to reconcile with indications of bottom-water	
1198	formation at the Wilkes Land margin, as seen from neodymium isotope analyses on	De
1199	the same sediments (Huck et al., 2017). It could be that bottom water formation took	
1200		
	place only when surface waters cooled down in wintertime, and the organic proxies	
1201	place only when surface waters cooled down in wintertime, and the organic proxies are more representative of spring/summer conditions. Salabarnada et al. (this	
1201 1202	place only when surface waters cooled down in wintertime, and the organic proxies are more representative of spring/summer conditions. Salabarnada et al. (this volume) interpret bottom-current activity in the Oligocene at Site U1356 and suggest	De
1201 1202 1203	place only when surface waters cooled down in wintertime, and the organic proxies are more representative of spring/summer conditions. Salabarnada et al. (this volume) interpret, bottom-current activity in the Oligocene at Site U1356 and suggest it may be spilling over from the Ross Sea, like today. Our dinocyst results and the SST	De
1201 1202 1203 1204	place only when surface waters cooled down in wintertime, and the organic proxies are more representative of spring/summer conditions. Salabarnada et al. (this volume) interpret bottom-current activity in the Oligocene at Site U1356 and suggest it may be spilling over from the Ross Sea, like today. Our dinocyst results and the SST reconstructions by Hartman et al. (submitted this volume) suggest that surface	De
1201 1202 1203 1204 1205	place only when surface waters cooled down in wintertime, and the organic proxies are more representative of spring/summer conditions. Salabarnada et al. (this volume) interpret bottom-current activity in the Oligocene at Site U1356 and suggest it may be spilling over from the Ross Sea, like today. Our dinocyst results and the SST reconstructions by Hartman et al. (submitted this volume) suggest that surface waters at the Wilkes Land margin were too warm to allow local bottom-water	De

Deleted: a	
Deleted: t	
Deleted: ies	
Deleted: to us	
Deleted: (

Deleted: the strength of Deleted: changed to Deleted: force

Deleted: N

Deleted: s

1216 formation, therefore our data also supports the suggestion that bottom water along

1217 the Wilkes Land margin was sourced from the Ross Sea.

1218

Deleted: , -; however this cannot be proven with the data at hand.

Deleted:

1219	5.3 Implications for ice ₋ sheet and sea-ice variability
1220	The <u>relative</u> abundances of <u>the</u> sea-ice <u>-related</u> <i>Selenopemphix</i> antarctica <u>are</u>
1221	consistently lower in our record than in present-day dinocyst assemblages nearby
1222	Site U1356 (Prebble et al., 2013; Figure 3). This suggests that sea-ice conditions were
1223	never <u>similar to</u> today <u>during</u> the studied time interval. <u>More specifically, our</u>
1224	dinocysts suggest, the occurrence of sea ice near the site only during two time
1225	intervals; The first 1.5 million years following the Oi-1 glaciation (33.6–32.1 Ma;
1226	Figure 5), and during and after the mid-Miocene climatic Transition (<u>after 14,2 Ma;</u>
1227	Figure 5). Numerical ice-sheet/sea-ice modelling (DeConto et al., 2007) <u>has</u> suggest <u>ed</u>
1228	sea-ice to develop only if the continental ice sheets reach the coastline. Our lack of
1229	sea-ice indicators during most of the Oligocene and Miocene could thus point towards
1230	<u>a much-reduced</u> Antarctic continental ice sheet during that time. The finding of a
1231	weaker sea-ice season throughout most of the Oligocene-Miocene at Site U1356 \underline{is}
1232	important because it suggests a decrease in the potential formation of Antarctic
1233	bottom waters at this site.
1234	The <u>relative</u> abundance of oligotrophic <u>dinocyst</u> taxa broadly <u>follows</u> long-

1235 term Oligocene-Miocene benthic δ^{18} O_<u>trends (see Fig. 5)</u>: During times of low δ^{18} O 1236 values in deep-sea benthic foraminifera (and thus high deep-sea temperatures and/or 1237 less ice volume; e.g., at 32 Ma, 24 Ma and 15 Ma; Figure 5), the abundance of 1238 oligotrophic temperate dinocysts was <u>high (Figure 5)</u>. At times of higher δ^{18} O values, 1239 lower deep-sea temperatures and higher ice volume (e.g., at 33.5 Ma, 27 Ma, 23 Ma,

	Deleted: our
_	Deleted: indicator
	Deleted: throughout the record is
_	Deleted: that
	Deleted: at
	Deleted: as severe as
	Deleted: throughout
_	Deleted: sea-ice indicator
$\overline{}$	Deleted: s
$\langle \rangle$	Deleted: Only
$\left(\right)$	Deleted: during two time intervals
$\langle \rangle$	Deleted: twice
$\left \right $	Deleted: sea ice indicators suggest some sea ice near the Site
/'	Deleted: t
$\langle \rangle$	Deleted: -11
	Deleted: s
	Deleted: suggest
	Deleted: that
	Deleted: the
	Deleted: was much reduced
	Deleted: is
	Deleted: has major implications
	Deleted: for regional paleoceanography

Deleted: our	
Deleted: co-varied with	
Deleted: data	

Deleted: large

and 13 Ma; Figure 5), temperate dinocysts were reduced in abundance and highnutrient, sea-ice indicators (re)appeared. Altogether, on long time scales this pattern
suggests, that there was <u>a</u> stronger influence of warm surface waters at the Wilkes
Land margin at times when ice sheets were smaller and climate was warmer, and less
influence of warm surface waters during times of larger ice sheets. Hence a
connection <u>existed</u> between ice_ sheet <u>expansion/retreat</u> and <u>paleoceanography</u>,

1277 Oxygen-isotope mass-balance calculations suggest that a modern-day-sized 1278 Antarctic ice sheet <u>formed</u> at the Eocene/Oligocene boundary (DeConto et al., 2008). 1279 Benthic δ^{18} O records suggest that ice sheets <u>must have</u> fluctuated considerably in size 1280 during the subsequent Oligocene and Miocene (Liebrand et al., 2017), although this 1281 inference lacks an independent assessment of the deep-sea temperature effect in 1282 these 8180 values. The same conclusion was reached based on detailed microfossil, 1283 geochemical and facies analyses on sediments from the Gippsland Basin, southeast 1284 Australia (Gallagher, et al. 2013). This study suggests that ice volume during the early Oligocene varied by as much as 140--40% of its present-day size, of which the 1285 maximum ice volume estimates far exceed those implied by our data,. However, there 1286 1287 is consistency in the observation of considerable glacial-interglacial and long-term 1288 dynamics in the ice-ocean system. This is in contrast to the heavy δ^{18} O values for 1289 Oligocene benthic foraminifera from Maud Rise (ODP Site 690), which lead to suggest 1290 Antarctic ice sheets were near-present-day size throughout the Oligocene 1291 (Hauptvogel et al., 2017). It remains to be seen whether the variability in 1292 paleoceanography as indicated by our data can be extrapolated to larger parts of the 1293 Antarctic margin, including regions of deep-water formation. Given the high temperatures and <u>only weak sea-</u>ice influence, the Wilkes Land margin was likely not 1294

on long time scales,
М
h
dynamics
paleoceanographic conditions
у
ic variability

Deleted: however was drawn
Deleted: from

Deleted: Although t

Deleted: through

Deleted: Both isotope studies of Liebrand et al (2017) and Hauptvogel et al. (2017) assume constant temperatures of the deep sea and similar-to-present-day $\delta^{18}O$ values of the continental ice. Our data instead show that the regional paleoceanography, together with surface-ocean temperature (Hartman et al., submitted, this volume), can vary considerably both on the longterm as and on orbital time scales. Deleted: Based on Deleted: it was inferred that Deleted: found here Deleted: to those **Deleted:** absence of strong Deleted: sea

1324	the primary sector of deep-water formation <u>(see, e.g., Herold et al., 2012</u>), although	
1325	there is ample evidence for bottom-current activity at the site (Salabarnada et al.,	
1326	submitted, this volume; Huck et al., 2017). Instead, it appears that bottom-water	
1327	formation during the Oligocene was taking place along the Wilkes Land coast (Huck,	(
1328	et al. 2017). If the oceanographic and climate variability that we reconstruct offshore	
1329	Wilkes Land <u>also</u> characterises regions of deep-water formation, some (if not <u>all</u>) of	_
1330	the variability both on long and on orbital time scales as documented in benthic $\delta^{18} O$	
1331	records <u>would be due to changes in deep-sea</u> temperature rather than Antarctic ice	
1332	volume (see also Hartman et al., submitted, this volume). Meanwhile, we find little	
1333	support in our study for the large (and, by implication, marine-terminating)	
1334	continental ice sheets in this sector of East Antarctica during the Oligocene as implied	
1335	by Hauptvogel et al. (2017) given the absence of dominance of sea-ice dinocysts and	
1336	the presence of in situ terrestrial palynomorphs (Strother et al., 2017). As an	
1337	alternative explanation for the difference in δ^{18} O values between Maud Rise (Site	
1338	690) and the equatorial Pacific (Site 1218) during the Oligocene (Hauptvogel et al.,	
1339	2017), we suggest that these two <u>sedimentary archives</u> have recorded the	
1340	characteristics of two different deep-water masses, with those at Maud Rise (Site	
1341	690) being much colder and more saline than those in the equatorial Pacific (Site	
1342	<u>1218)</u> .	
1343		
1344	6. Conclusions	
1345	The dinocyst assemblages in the Oligocene-Miocene (33.6-11 Ma) of Site U1356 were	
1346	interpreted in terms of surface <u>-water</u> paleoceanography <u>via</u> comparison <u>with</u>	
1347	present-day dinocyst distribution patterns. Based on our results, we suggest that the	

Deleted: and	
Deleted: seems	
Deleted: during the Oligocene	
Deleted: However,	$ \longrightarrow $
Deleted: i	
Deleted: also	
Deleted: much	
Deleted: is	
Deleted: related	$ \longrightarrow $
(
Deleted: concluded	
Deleted: flagellate	
Formatted: Font:Not Italic	
Deleted: to	
Deleted: F	
Deleted: records	
Deleted: fundamentally	
Deleted:	$\overline{}$
Deleted: saltier	$ \longrightarrow $
Deleted: at	$ \longrightarrow $
Deleted: Shatsky Rise	$ \longrightarrow $
Deleted: change	
Deleted: 0	
Deleted: based	
Deleted: on a	
Deleted: of these assemblages to	
Deleted: assemblages	
Deleted: This	
Deleted: approach	
Deleted: allows us to	
Deleted: hypothesize	

1377	Oligocene-Miocene surface paleoceanography of the Southern Ocean was		Deleted: paleoceanogra Oligocene-Miocene
1378	fundamentally different from that of today. A sea-ice signal (yet still weaker than at		Deleted: strong
			Deleted: that of today
1379	present) emerges for the Wilkes Land margin only for the first 1.5 million years of the		Deleted: M
1380	Oligocene (33.6–32.1 Ma) and <u>during and after</u> the mid-Miocene climatic transition		
1381	(after_14.2, Ma). During the remainder of the Oligocene-Miocene, surface waters off		Deleted: -
		$\overline{\frown}$	Deleted: -10
1382	Wilkes Land were warm, and relatively oligotrophic; notably, they lack indications of	()	Deleted: The remainder
1383	a prominent searce season. Unwelling at the Antarctic Divergence was profoundly		Deleted: S
1505	a prominent sea lee season. Opwennig at the initiatette Divergence was protounary	$\langle \rangle \rangle$	Deleted: during the rep
1384	weaker during Oligocene and Miocene times than at present, or significantly	$\langle \rangle$	Miocene,
			Deleted: and
1385	displaced southward from its present-day position, Furthermore, the continental ice		Deleted: must have bee
1206	about one much undered at the Million Lond sub elected been for much of the		Deleted: , compared to
1386	sneets were much reduced at the wirkes Land sub-glacial basin for most of the	_	Deleted: must have bee
1387	Oligocene-Miocene compared to today, The influence of warm oligotrophic surface	_	Deleted: -
1388	waters appears strongly coupled to deep-sea δ^{18} O values, suggesting enhanced low-	$\overline{\ }$	Deleted: , and continen retreated inland
		\bigwedge	Deleted: strength of the
1389	latitude influence of surface waters during times of light δ^{18} O in the deep sea and vice		Deleted: was
1390	versa. The absence of (a trend towards a stronger) naleoceanographic isolation of the		Deleted: :
1370	versu. The absence of (a trend towards <u>a stronger</u>) <u>pareoceanographic isolation of the</u>		Deleted: wwith
1391	Wilkes Land margin throughout the Oligocene to mid-Miocene suggests that the ACC		Deleted. more
1392	may not have attained its full, present-day strength until at least after the mid-		Deleted: did not obtain
1393	Miocene Climatic transition. Moreover, we note considerable glacial-interglacial		
1394	amplitude variability in this oceanographic setting Stronger influence of oligotrophic,	_	Deleted: ,
1005		$\overline{\ }$	Deleted: with
1395	low-latitude <u>-derived</u> surface waters <u>prevailed</u> over Site U1356 during interglacial		Deleted: s
1396	times and more eutrophic, colder <u>waters</u> during glacial times. This <u>pattern</u> may		Deleted: influence
1397	suggest considerable latitudinal migration of the AAPF over the course of Oligocene		
1398	and Miocene glacial-interglacial cycles.		
1399			

1400 Acknowledgements **Deleted:** paleoceanography during the Oligocene-Miocene Deleted: strong Deleted: that of today Deleted: M

Del	leted: -
Del	leted: -10
Del Mio	eted: The remainder of the Oligocene- cene record of s
Del	leted: S
Del Mio	leted: during the remainder Oligocene- cene,
Del	leted: and
Del	eted: must have been
Del	leted: , compared to today
Del	eted: must have been
Del	eted: -
Del	eted: , and continental ice sheets were

l	Deleted: , and continental ice sheets were retreated inland
C	Deleted: strength of the
(Deleted: was
$\left(\right)$	Deleted: :
C	Deleted: wWith
(Deleted: more

Deleted: ,	
Deleted: with	

1	Deleted: with
)	Deleted: s

1430 This research used data and samples from the Integrated Ocean Drilling Program 1431 (IODP). IODP was sponsored by the U.S. National Science Foundation and 1432 participating countries under management of Joined Oceanographic Institutions Inc. 1433 PKB and FS thank NWO-NNPP grant no 866.10.110, NWO-ALW VENI grant no 1434 863.13.002 for funding and Natasja Welters for technical support. JP acknowledges 1435 support through the IODP priority program of the German Research Foundation 1436 (DFG). CE and AS thank the Spanish Ministerio de Economía y Competitividad for 1437 Grant CTM2014-60451-C2-1-P. We thank Kasia Śliwińska, Stephen Gallagher and an 1438 anonymous reviewer for their constructive comments that considerably improved 1439 our manuscript. 1440

1441 Author contributions

PKB, FS, CE, and JP designed the research. AJPH, FS and PKB carried out dinocyst
analyses for the earliest Oligocene, Miocene, and Oligocene-Miocene boundary
interval, respectively. AS and CE provided the lithological data. PKB integrated, cross-

validated and compiled the data, and wrote the paper with input from all co-authors.

1446

1447

Deleted: which

Deleted: flagellate
Deleted: the

Deleted: middle Deleted: the

1453 **Figure captions**

(2012).

1454 Figure 1. Paleogeography of the Southwest Pacific Ocean and position of IODP Site

1455 U1356 (red star) at (a) 0 Ma, (b) 10 Ma, (c) 20 Ma, and (d) 30 Ma. Figures are

modified <u>after</u> Bijl et al. <u>(2018)</u>. Reconstructions were adapted from G-plates, with 1456

1457 plate circuit from Seton et al. (2012) and absolute plate positions of Torsvik et al.

- 1458
- 1459

1460	Figure 2. Age model for the Oligocene-Miocene interval of Hole U1356A. Core		
1461	recovery, lithostratigraphic facies after Salabarnada et al. (this volume; see also		Deleted: (
1462	Sangiorgi et al., 2018) and lithostratigraphic units (Escutia et al., 2011), Samples		Deleted: and log
1460			Deleted: s
1463	taken for palyhology and age-depth plot the points were derived from Tauxe et al.,		Deleted: (
1464	2012, which has been recalibrated to the GTS2012 time scale of Gradstein et al., 2012,		Deleted: but
			Deleted: (
1465	and modified based on Crampton et al. 2016]), Grey intervals in paleomagnetic data		Deleted:)
1466	reflect unimous release and is arientation, either due to show as of some resources on	\bigwedge	Deleted: ; see Table 1
1466	reflect unknown paleomagnetic orientation, either due to absence of core recovery or	$\langle \rangle$	Deleted: (
1467	poor signal. (o) = old end; (y) = young end. Figure modified from Bijl et al. (2018).		Deleted: , and samples taken for palynology
1460			Deleted: (in press)
1469	Figure 3. Generic representation of present-day distributions of dinocysts in surface		
1470	sediments in the Southern Ocean. The dinocyst pie charts represent average dinocyst		Deleted: flagellate
1471	assemblage compositions for surface sediments underneath oceanic frontal zones in		
1472	the Southern Ocean. Figure modified from Sangiorgi et al. (2018), data replotted from	_	Deleted: in review
1473	Prebble et al. (2013).		
1474			
1475	Figure 4. Core recovery and lithostratigraphic facies (after Salabarnada et al., this		Deleted: ,
1476	volume, and Sangiorgi et al., 2018) and lithologic units (Escutia et al., 2011),		Deleted: lithostratigraphic log

-(Deleted: R
-(Deleted: were
\neg	Deleted: from
X	Deleted: (in press)

Deleted:	(in press)
Deleted:	flagellate

1497	chronostratigraphic epochs (E = Eocene) and stages (L = Lutetian, Burd. =
1498	Burdigalian, Ser. = Serravallian, T. = Tortonian), absolute palynomorph (grey) and in
1499	situ dinocyst (black) concentrations (# per gram of dry sediment, presented on a
1500	logarithmic scale), palynomorph content (reworked dinocysts, in situ dinocysts,
1501	acritarchs, terrestrial palynomorphs (given in percentages of total palynomorphs),
1502	and relative abundance of in situ dinocyst eco-groups (in percentage of in situ
1503	dinocysts) for the Oligocene–Miocene of Hole U1356A.
1504	
1505	Figure 5. <u>Compilation of b</u> enthic foraminiferal oxygen isotope data from Site 588
1506	(Zachos et al., 2008), Site 1090 (Zachos et al., 2008) Site 1218 (Pälike et al., 2006), ,
1507	Sites 1264/1265 (Liebrand et al., 2017), Site U1334 (Holbourn et al., 2015), Site
1508	U1337 (Beddow et al., 2016), all calibrated to the GTS2012 time scale (Gradstein et
1509	al., 2012) with <u>in situ dinocyst assemblage data from Site U1356 (see Fig. 4 for</u>
1510	legend). For presentation of the dinocyst data (see Fig. 4 for legend), the age-depth
1511	model specified in Figure 2 and Table 1 <u>wasused</u> .
1512	
1513	Figure 6. Comparison of <u>absolute (left bar, in # * gr -1 dry weight) and relative (right</u>
1514	bar; in % of total palynomorphs) abundances of palynomorph groups per lithology
1515	for Hole U1356A. Average (black lines) and <u>17-83% percentile</u> (coloured bar) of
1516	absolute and relative abundances of total palynomorphs, reworked dinocysts, in situ
1517	dinocysts, acritarchs, and terrestrial palynomorphs grouped <u>for the different facies</u>
1518	(Salabarnada et al., submitted this volume),
1519	

Formatted: Font:Not Italic Formatted: Font:Not Italic Deleted: and Deleted: ; Formatted: Font:Not Italic Deleted: assemblages Formatted: Font:Not Italic

Deleted: recalibrated from (

Formatted: Font:Not Italic

Deleted: B

Deleted: D Deleted: see Fig. 4 Deleted: we used the paleomagnetic tie points of Tauxe et al. (2012) (with the exception of the Oligocene-Miocene boundary interval, see text) recalibrated to Gradstein et al. (2012) for calibrating our data to age, following Deleted: legend see Fig. 4 Deleted: t Deleted: t Deleted: applied Deleted: left

Deleted: and absolute (right bar, in # * gr - ¹ dry weight)

Deleted: standard deviation
Deleted: -

Deleted: s

Formatted: Font:Not Italic

Deleted: in

Deleted: lithologies
Deleted: :

Deleted: Miocene sediments, carbonate deposits, bioturbated sediments, pelagic clays, laminated silty claystones, laminated

sand stones, mass-transport deposits, and glauconitic sand stones= = .

1550	Figure 7. <u>Abundance/concentration of in situ eco-groups within various</u> lithologies at	1	Deleted: Comparison of
		\swarrow	Formatted: Font:Not Italic
1551	Hole U1356A, Average (black line) and <u>17-83% percentile</u> (coloured bar) of relative	Ì	Formatted: Justified
		\square	Deleted: y
1552	abundances of grouped taxa from samples from the different <u>facies (Salabarnada et</u>	$\langle \rangle $	Deleted: standard deviation
1552		- \Y	Deleted: -
1553	al., submitted this volume].	Ì	Deleted: u
1554		_	Deleted: lithologies: Miocene sediments.
1001	Υ		carbonate deposits, bioturbated sediments,
1555	Table captions		pelagic clays, laminated silty claystones,
			deposits, and glauconitic sand stones.
1556	Table 1. Age constraints for the Oligocene–Miocene of Hole U1356A.	(Formatted: Justified
1557	Table 2, List of assumed in situ and reworked dinoflagellate cyst taxa encountered in		Deleted: Table 2. Lithologic facies
		\setminus	this volume), and in this paper.
1558	this study. See Bijl et al. (2018) for informal species descriptions and discussion about	$\langle \rangle \rangle$	Deleted: 3
1550	which spacies are considered reworked and in situ	$\backslash /$	Formatted: Font:Not Italic
1559	which species are considered reworked and in situ.	$\langle \rangle \rangle$	Deleted: (in press)
1560		$\langle \rangle$	Deleted: ,
		Y	Formatted: Font:Not Italic

- 1577 References
- 1578 1579 Badger, M.P.S., Lear, C.H., Pancost, R.D., Foster, G.L., Bailey, T.R., Leng, M.J., Abels, H. A.: CO, drawdown following the middle Miocene expansion of the Antarctic Ice Sheet, 1580 Paleoceanography, 28, 42-53, 2013.

Bard, E. and Rickaby, R. E. M.: Migration of the subtropical front as a modulator of glacial climate. Nature. 460, 380-383, 2009. 1581 1582

- Barker, P., Camerlenghi, A., Acton, G., Brachfeld, S., Cowan, E., Daniels, J., Domack, E., Escutia, C., Evans, A., Eyles, N., Guyodo, Y., Iorio, M., Iwai, M., Kyte, F., Lauer, C., Maldonado, A., Moerz, T., Osterman, L., Pudsey, C., Schuffert, J., Sjunneskog, C., Vigar, K., Weinheimer, A., Williams, T., Winter, D., Wolf-Welling, T.: Antarctic glacial history and sea-level change Leg 178 samples Antarctic Peninsula margin sediments, JOIDES Journal 24, 7-10, 1998. 1583 1584 1585
- 1586 1587
- 1588 1589 Barker, P. F., Barrett, P. J., Cooper, A. K., Huybrechts, P.: Antarctic glacial history from numerical models and continental margin sediments, Palaeogeography, Palaeoclimatology, Palaeoecology, 1590 150, 247-267, 1999.
- 1591 1592 Barker, P.F. and Thomas, E.; Origin, signature and paleoclimatic influence of the Antarctic Circumpolar Current, Earth Science Reviews, 66, 143-162, 2004
- 1593 Barrett, P.J.: Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound. Science 1594 Information Publishing Centre DSIR Bulletin, volume 245, Wellington, 1989.
- 1595 Beddow, H._M., Liebrand, D., Sluijs, A., Wade, B._S., Lourens, L.J.: Global change across the 1596 Oligocene-Miocene transition: High-resolution stable isotope records from IODP Site U1334 1597 (equatorial Pacific Ocean), Paleoceanography, 31, 81-97, 2016.
- Bijl, P. K., Bendle, A. P. J., Bohaty, S. M., Pross, J., Schouten, S., Tauxe, L., Stickley, C. E., McKay, R. M., Röhl, U., Olney, M., Sluijs, A., Escutia, C., Brinkhuis, H., Expedition 318 1598 1599
- 1600 scientists; Eocene cooling linked to early flow across the Tasmanian Gateway, Proceedings of the 1601 National Academy of Sciences of the United States of America, 110, 9645-9650, 2013a.
- 1602 Bijl, P.K., Houben, A.J.P., Bruls, A., Pross, J., Sangiorgi, F.: Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East 1603
- 1604 Antarctica, and a zonation proposal: Journal of Micropaleontology, 37(1), pp. 105-138, 2018.
- $1605 \\ 1606 \\ 1607$ Bijl, P.K., Houben, A.J.P., Schouten, S., Bohaty, S.M., Sluijs, A., Reichart, G.J., Sinninghe Damsté, J.S., Brinkhuis, H.: Transient Middle Eocene Atmospheric Carbon Dioxide and Temperature Variations, Science, 330, 819-821, 2010.
- 1608 Bijl, P.K., Pross, J., Warnaar, J., Stickley, C.E., Huber, M., Guerstein, R., Houben, A.J.P., Sluijs, 1609 A., Visscher, H., Brinkhuis, H.: Environmental forcings of Paleogene Southern Ocean 1610 dinoflagellate biogeography. Paleoceanography, 26, PA1202, 2011.
- 1611 Bijl, P. K., Sluijs, A., Brinkhuis, H.: A magneto- chemo- stratigraphically calibrated dinoflagellate 1612 cyst zonation of the early Paleogene South Pacific Ocean. Earth-Science Reviews, 124, 1-31, 2013b.
- 1613

1614 1615 1616 Boessenkool, K. P., Van Gelder, M., Brinkhuis, H., Troelstra, S. R.: Distribution of organic-walled dinoflagellate cysts in surface sediments from transects_across the Polar Front offshore southeast Greenland, J. Quaternary Sci., 16, 661-666, 2001.

1617 Brinkhuis, H., Munsterman, D. M., Sengers, S., Sluijs, A., Warnaar, J., Williams, G. L.: Late 1618 Eocene to Quaternary dinoflagellate cysts from ODP Site 1168, off western Tasmania, in: Exon,

- 1619 N., Kennett, J. P. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, volume 1620 189, U.S. Government Printing Office, College Station, Texas, 2003a.
- 1621 | 1622 | Brinkhuis, H., Sengers, S., Sluijs, A., Warnaar, J., Williams, G.L.: Latest Cretaceous to earliest Oligocene, and Quaternary dinoflagellates from ODP Site 1172, East Tasman Plateau, in: Exon, N.,
- Kennett, J. P. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, volume 189.
- 1623 1624 U.S. Government Printing Office, College Station, Texas, 2003b.
- 1625 | 1626 | Close, D. I., Watts, A. B., Stagg, H. M. J.: A marine geophysical study of the Wilkes Land rifted continental margin, Antarctica, Geophysical Journal International, 177, 430-450, 2009.
- 1627 1628 1629 Cook, C. P., Van De Flierdt, T., Williams, T., Hemming, S. R., Iwai, M., Kobayashi, M., Jimenez-Espejo, F. J., Escutia, C., González, J. J., Khim, B., McKay, R. M., Passchier, S., Bohaty, S. M., Riesselman, C. R., Tauxe, L., Sugisaki, S., Galindo, A. L., Patterson, M. O., Sangiorgi, F., Pierce,
- 1630 E. L., Brinkhuis, H., Klaus, A., Fehr, A., Bendle, J. A. P., Bijl, P. K., Carr, S. A., Dunbar, R. B.,
- Flores, J. A., Hayden, T. G., Katsuki, K., Kong, G. S., Nakai, M., Olney, M. P., Pekar, S. F., Pross, J., Röhl, U., Sakai, T., Shrivastava, P. K., Stickley, C. E., Tuo, S., Welsh, K., Yamane, M.: 1631
- 1632 1633 Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth, Nature Geoscience, 6, 1634 765-769, 2013.
- 1635 | 1636 | Cooper, A. K. and O'Brien, P. E.: Leg 188 synthesis: Transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling, Proceedings of the Ocean Drilling Program: 1637 Scientific Results, 188, 1-42, 2004.
- Crampton, J. S., Cody, R. D., Levy, R., Harwood, D., McKay, R., Naish, T. R.: Southern Ocean 1638 1639 phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years. 1640 Proceedings of the National Academy of Sciences of the United States of America, 113, 6868-1641 6873, 2016.
- 1642 | 1643 | DeConto, R._M., Pollard, D., Harwood, D.: Sea-ice feedback and Cenozoic evolution of Antarctic climate and ice sheets, Paleoceanography, 22, PA3214, 2007.
- DeConto, R.M., Pollard, D., Wilson, P.A., Pälike, H., Lear, C.H., Pagani, M.: Thresholds for 1644 1645 Cenozoic bipolar glaciation, Nature, 455, 652-657, 2008.
- 1646 Egger, L. M., Bahr, A., Friedrich, O., Wilson, P. A., Norris, R. D., van Peer, T. E., Lippert, P. C., 1647 Liebrand, D., Pross, J .: Sea-level and surface-water change in the western North Atlantic across the Oligocene-Miocene Transition: a palynological perspective from IODP Site U1406 (New-1648 1649 foundland margin), Marine Micropaleontology, 139, 57-71, 2018.
- 1650 1651 Escutia, C., Brinkhuis, H.: From Greenhouse to Icehouse at the Wilkes Land Antarctic Margin: IODP Expedition 318 Synthesis of Results, Developments in Marine Geology, 7, pp. 295-328, 1652 2014.
- 1653 1654 Escutia, C., Brinkhuis, H., Klaus, A. and Expedition 318 Scientists; Proceedings of the Integrated Ocean Drilling Program, Initial Results, volume 318, Tokyo (Integrated Ocean Drilling Program 1655 Management International, Inc.), 2011.
- 1656 1657 1658 Esper, O. and Zonneveld, K._A._F.: The potential of organic-walled dinoflagellate cysts for the reconstruction of past sea-surface conditions in the Southern Ocean, Marine Micropaleontology, 65, 185-212, 2007.
- 1659 Esper, O. and Zonneveld, K.-A. F.: Distribution of organic-walled dinoflagellate cysts in surface 1660 sediments of the Southern Ocean (eastern Atlantic sector) between the Subtropical Front and the
- 1661 Weddell Gyre, Marine Micropaleotology, 46, 177-208, 2002.

- 1662 Exon, N. F., Kennet, J. P., Malone, M.: Leg 189 Synthesis: Cretaceous- Holocene history of the Tasmanian Gateway. In Exon, N.F., Kennett, J.P., and Malone, M.J. (Eds.), Proceedings of the 1663 1664 Ocean Drilling Program, Scientific Results, Volume 189, 2004.
- 1665 Eynaud, F., Giraudeau, J., Pichon, J., Pudsey, C.J.: Sea-surface distribution of coccolithophores, diatoms, silicoflagellates and dinoflagellates in the South Atlantic Ocean during the late austral 1666 1667 summer 1995, Deep-Sea Research Part I: Oceanographic Research Papers, 46, 451-482, 1999.
- 1668 1669 Foster, G.L., Lear, C.H., Rae, J.W.B.: The evolution of pCO₂, ice volume and climate during the middle Miocene, Earth and Planetary Science Letters, 341-344, 243-254, 2012.
- 1670 1671 Foster, G.L. and Rohling, E.J.: Relationship between sea level and climate forcing by CO₂ on geological timescales, Proceedings of the National Academy of Sciences of the United States of 1672 America, 110, 1209-1214, 2013.
- 1673 1674 1675 1676 1677 Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A.

- 1678 1679
- 1680
- Bingnam, R. G., Blankensnip, D. D., Casassa, G., Catania, C., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J.W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S.V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A.M., Steinhage, D., Studinger, M., Sun, B., Tinto, B.K., Welch, B.C., Wilson, D., Young, D. A., Xiangbin, C., Zirizzotti, A.: Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica Cryosphere 7, 375-393, 2013 1681
- 1682 thickness datasets for Antarctica, Cryosphere, 7, 375-393, 2013.

Gallagher, S. J., Villa, G., Drysdale, R. N., Wade, B. S., Scher, H., Li, Q., Wallace, M. W., Holdgate, G. R.: A near-field sea level record of east Antarctic ice sheet instability from 32 to 27 1683 1684 1685 Myr. Paleoceanography. 28, 1-13, 2013.

- 1686 Gradstein, F._M., Ogg, J._G., Schmitz, M._D., Ogg, G. M.: The Geologic Time Scale 2012, 1-2, 1-1687 1144, Elsevier, Amsterdam, the Netherlands, 2012.
- 1688 Gradstein, F._M., Ogg, J. G., Smith, A. G.: A geologic timescale 2004, Cambridge University 1689 Press, Cambridge, 2004.
- 1690 Greenop, R., Foster, G. L., Wilson, P. A., Lear, C. H.: Middle Miocene climate instability 1691 associated with high-amplitude CO₂ variability, Paleoceanography, 29, 845-853, 2014.

1692 Hartman, J. D., Sangiorgi, F., Salabarnada, A., Peterse, F., Houben, A. J. P., Schouten, S., Escutia, C., and Bijl, P. K.: Oligocene TEX_-derived seawater temperatures from offshore Wilkes Land (East Antarctica), Clim. Past Discuss., https://doi.org/10.5194/cp-2017-153, in review, 2017. 1693 1694

- 1695 1696 Harland, R. and Pudsey, C. J.:Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica. Marine Micropaleontology. 37, 77-99, 1999.
- 1697 Harwood, D., Levy, R., Cowie, J., Florindo, F., Naish, T., Powell, R., Pyne, A.: Deep drilling with 1698 the ANDRILL program in Antarctica, Scientific Drilling, 1, 43-45, 2006.
- 1699 1700 1701 Hauptvogel, D. W., Pekar, S. F., Pincay, V.: Evidence for a heavily glaciated Antarctica during the late Oligocene "warming" (27.8-24.5): stable isotope records from ODP Site 690, Paleoceanography, PA002972, 384-384-396, 2017.
- 1702 Herold, N., Huber, M., Müller, R. D.: Modeling the Miocene Climatic Optimum. Part I: Land and 1703 atmosphere, Journal of Climate 24, 6353-6373, 2011.
- 1704 Herold, N., Huber, M., Müller, R. D., Seton, M .: Modeling the Miocene Climatic Optimum: Ocean 1705 circulation, Paleoceanography 27, PA1209, 2012.

Deleted: Hartman, J.D., Bijl, P.K., Sangiorgi, F., Peterse, F., Schouten, S., Salabarnada, A., Bohaty, S., Escutia, C., Brinkhuis, H. Oligocene TEX_s-derived sea surface temperatures from the Wilkes Land Margin, Antarctica. Submitted, this volume.

- 1712 Hill, D. J., Haywood, A. M., Valdes, P. J., Francis, J. E., Lunt, D. J., Wade, B. S., Bowman, V. C.: 1713 Paleogeographic controls on the onset of the Antarctic circumpolar current, Geophysical Research Letters, 40, 5199-5204, 2013. 1714
- 1715 | Holbourn, A., Kuhnt, W., Kochhann, K. G. D., Andersen, N., Meier, K. J.: Global perturbation of 1716 the carbon cycle at the onset of the Miocene Climatic Optimum, Geology, 43, 123-126, 2015.
- 1717 Houben, A.J.P.: Triggers and Consequences of glacial expansion across the Eocene-Oligocene 1718 1719 transition. LPP contributions series no. 39, PhD thesis Utrecht University, Utrecht, the Netherlands, 2012.
- 1720 | 1721 1722 Houben, A. J. P., Bijl, P. K., Pross, J., Bohaty, S. M., Passchier, S., Stickley, C. E., Röhl, U., Sugisaki, S., Tauxe, L., Van De Flierdt, T., Olney, M., Sangiorgi, F., Sluijs, A., Escutia, C.,
- Brinkhuis, H.: Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic 1723 glaciation, Science, 340, 341-344, 2013.
- 1724 1725 1726 IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
- University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
- 1727 1728 Knorr, G. and Lohmann, G.: Climate warming during Antarctic ice sheet expansion at the middle Miocene transition. Nature Geoscience, 7, 376-381, 2014.
- 1729 1730 Kohfeld, K. E., Graham, R. M., de Boer, A. M., Sime, L. C., Wolff, E. W., Le Quéré, C., Bopp, L. Southern Hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data 1731 synthesis, Quaternary Science Reviews, 68, 76-95, 2013.
- 1732 1733 1734 Lear, C. H., Rosenthal, Y. Coxall, H. K., Wilson, P. A. Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle, *Paleoceanography*, 19, PA4015, doi: 10.1029/2004PA001039, 2004.
- 1735 1736 1737 1738 Levy, R. H., Harwood, D. M.: Tertiary marine palynomorphs from the McMurdo Sound erratics, Antarctica, in: Stilwell, J. D., Feldmann, R. M. (Eds.), Paleobiology and Paleoenvironments of Eocene rocks, McMurdo Sound, East Antarctica, AGU Antarctic Research Series, pp. 183-242, 2000
- 1739 1740 1741 Liebrand, D., de Bakker, A.-T.-M., Beddow, H.-M., Wilson, P.-A., Bohaty, S.-M., Ruessink, G., Pälike, H., Batenburg, S. J., Hilgen, F. J., Hodell, D. A., Huck, C. E., Kroon, D., Raffi, I., Saes, M. J. M., van Dijk, A. E., Lourens, L. J.: Evolution of the early Antarctic ice ages, PNAS, 110(15), 1742 3867-3872, 2017.
- 1743 Liebrand, D., Lourens, L.J., Hodell, D.A., De Boer, B., Van De Wal, R.S., W., Pälike, H.: 1744 Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene, 1745 Climate of the Past, 7, 869-880, 2011.
- 1746 Marret, F. and De Vernal, A., 1997. Dinoflagellate cyst distribution in surface sediments of the southern Indian Ocean. Marine Micropaleontology. 29, 367-392. 1747
- 1748 Olbers, D., Borowski, D., Völker, C., Wölff, J.: The dynamical balance, transport and circulation of 1749 the Antarctic Circumpolar Current. Antarctic Science, 16, 439-470, 2004.

Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., Shackleton, N. J., 1750 1751 Tripati, A. K., Wade, B. S.: The Heartbeat of the Oligocene Climate System, Science, 314, 1894-1752 1898, 2006.

1753 1754 1755	Prebble, J.G., Crouch, E.M., Carter, L., Cortese, G., Bostock, H., Neil, H.: An expanded modern dinoflagellate cyst dataset for the Southwest Pacific and Southern Hemisphere with environmental associations, Marine Micropaleontology, 101, 33-48, 2013.	I	
1756 1757	Rignot, E., Jacobs, S., Mouginot, J., Scheuchl, B.: Ice-shelf melting around Antarctica. Science, 341, 266-270, 2013.		
1758 1759 1760 1761 1762 1763 1764 1765 1766	Robert, C., Anderson, J., Armienti, P., Atkins, C., Barrett, P., Bohaty, S., Bryce, S., Claps, M., Curran, M., Davey, F.J., De Santis, L., Ehrmann, W., Florindo, F., Fielding, C., Hambrey, M., Hannah, M., Harwood, D.M., Henrys, S., Hoelscher, F., Howe, JA., Jarrard, R., Kettler, R., Kooyman, S., Kopsch, C., Krissek, L., Lavelle, M., Levac, E., Niessen, F., Passchier, S., Paulsen, T., Powell, R., Pyne, A., Rafat, G., Raine, I. J., Roberts, A.P., Sagnotti, L., Sandroni, S., Scholz, E., Simes, J., Smellie, J., Strong, P., Tabecki, M., Talarico, F.M., Taviani, M., Verosub, K.L., Villa, G., Webb, P. N., Wilson, G. S., Wilson, T., Wise, S. W., Wonik, T., Woolfe, K., Wrenn, J. H.: Summary of Results from CRP-1, Cape Roberts Project, Antarctica, Terra Antarctica, 5, 125- 137, 1998.		
1767 1768 1769	Rovere, A., Raymo, M.E., Mitrovica, J.X., Hearty, P.J., O'Leary, M.J., Inglis, J.D.: The Mid-Pliocene sea-level conundrum: Glacial isostasy, eustasy and dynamic topography, Earth and Planetary Science Letters, 387, 27-33, 2014.	I	
1770 1771 1772 1773 1774 1775	Salabarnada, A., Escutia, C., Röhl, U., Nelson, C. H., McKay, R., Jiménez-Espejo, F. F., Bijl, P. K., Hartman, J. D., Ikehara, M., Strother, S. L., Salzmann, U., Evangelinos, D., López-Quirós, A., Flores, J. A., Sangiorgi, F., and Brinkhuis, H.: Late Oligocene obliquity-paced contourite sedimentation in the Wilkes Land margin of East Antarctica: implications for paleoceanographic and ice sheet configurations, Clim. Past Discuss., https://doi.org/10.5194/cp-2017-152, in review, 2017.		Deleted: Salabarnada, A., Escutia, et. al., Lithology of Oligocene of U1356 Submitted
1776 1777 1778 1779	Sangiorgi, F., Bijl, P.K., Passchier, S., Salzmann, U., Schouten, S., McKay, R., Cody, R. D., Pross, J., Van De Flierdt, T., Bohaty, S. M., Levy, R., Williams, T., Escutia, C., Brinkhuis, H.: Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene, Nature Communications, 9 (1), art. no. 317, 2018.		this volume.
1780 1781	Scher, HD. and Martin, EM.: Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth and Planetary Science Letters, 228, 391-405, 2004.		Deleted: Sangiorgi, F., Bijl, P.K., Passchier, S., Salzmann, U., Schouten, S., McKay, R., Cody, R.D., Pross, J., vd Flierdt, T., Bohaty, S.
1782 1783 1784	Scher, H. D., Whittaker, J. M., Williams, S. E., Latimer, J. C., Kordesch, W. E. C., Delaney, M. L.: Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies, Nature, 523, 580-583, 2015.	I	M., Levy, R., Williams, T., Escutia, C., Brinkhuis, H., Warm Southern Ocean linked to a reduced size of the East Antarctic ice sheet during the mid Miocene. In review, Nature communications.
1785 1786 1787	Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., Chandler, M.: Global continental and ocean basin reconstructions since 200Ma, Earth-Science Reviews, 113, 212-270, 2012.		
1788 1789 1790 1791 1792 1793 1794 1795	Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S.B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sørensen, L. S., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., Van Angelen, J. H., Van De Berg, W. J., Van Den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., Zwally, H. J.: A reconciled estimate of ice-sheet mass balance, Science, 338, 1183-1189, 2012.		
1796 1797 1798 1799	Sluijs, A., Brinkhuis, H., Stickley, C.E., Warnaar, J., Williams, G.L., Fuller, M.: Dinoflagellate cysts from the Eocene - Oligocene transition in the Southern Ocean: Results from ODP Leg 189, in: Exon, N., Kennett, J. P. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, volume 189, U.S. Government Printing Office, College Station, Texas, USA, 2003.	l	

1811 1812 1813	Sluijs, A., Pross, J., Brinkhuis, H.: From greenhouse to icehouse; organic walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene, Earth-Science Reviews, 68, 281-315, 2005.	
1814 1815 1816 1817 1818 1819 1820 1821	Stocchi, P., Escutia, C., Houben, A.J.P., Vermeersen, B.L.A., Bijl, P.K., Brinkhuis, H., DeConto, R.M., Galeotti, S., Passchier, S., Pollard, D., Klaus, A., Fehr, A., Williams, T., Bendle, J.A.P., Bohaty, S.M., Carr, S.A., Dunbar, R.B., Flores, J.A., Gonzàlez, J.J., Hayden, T.G., Iwai, M., Jimenez-Espejo, F.J., Katsuki, K., Kong, G.S., McKay, R.M., Nakai, M., Olney, M.P., Pekar, S.F., Pross, J., Riesselman, C., Röhl, U., Sakai, T., Shrivastava, P.K., Stickley, C.E., Sugisaki, S., Tauxe, L., Tuo, S., Van De Flierdt, T., Welsh, K., Yamane, M. Relative sea-level rise around East Antarctica during Oligocene glaciation. Nature Geoscience, 6 (5), pp. 380-384, doi: 10.1038/ngeo1783, 2013.	
1822 1823	Storkey, C. A.: Distribution of marine palynomorphs in surface sediments, Prydz Bay, Antarctica. MSc thesis Victoria University of Wellington, New Zealand. http://hdl.handle.net/10063/21, 2006.	
1824 1825 1826 1827	Strother, S. L., Salzmann, U., Sangiorgi, F., Bijl, P. K., Pross, J., Escutia, C., Salabarnada, A., Pound, M. J., Voss, J., Woodward, J.: A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging, Biogeosciences, 14, 2089-2100, 2017.	
1828 1829 1830 1831 1832 1833	Tauxe, L., Stickley, C. E., Sugisaki, S., Bijl, P. K., Bohaty, S., Brinkhuis, H., Escutia, C., Flores, J. A., Iwai, M., Jimenez-Espejo, F., McKay, R., Passchier, S., Pross, J., Riesselman, C., Röhl, U., Sangiorgi, F., Welsh, K., Klaus, A., Bendle, J. A. P., Dunbar, R., Gonzalez, J., Olney, M. P., Pekar, S. F., van de Flierdt, T.: Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkes Land Margin: constraints for paleoceanographic reconstruction, Paleoceanography, 27, PA2214, 2012.	
1834 1835 1836 1837	Torsvik, T. H., Van der Voo, R., Preeden, U., Niocaill, C. M., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P. J., Cocks, L. R. M.: Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114, 325-368, 2012.	
1838 1839 1840	Van Hinsbergen, D. J. J., De Groot, L. V., Van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A., Langereis, C. G., Brinkhuis, H.: A paleolatitude calculator for paleoclimate studies. PLoS ONE, 10(6), e0126946, 2015.	
1841 1842 1843 1844	Wilson, G. S., Bohaty, S. M., Fielding, C. R., Florindo, F., Hannah, M.J., Hardwood, D. M., Mcintosh, W.C., Naish, T. R., Roberts, A. P., Sagnotti, L., Scherer, R. P., Strong, C. P., Verosub, K. L., Villa, G., Webb, P, Woolfe, K. J.: Chronostratigraphy of CRP-2/2A, Victoria Land Basin, Antarctica, Terra Antarctica 7, 647-654, 2000.	
1845 1846	Wise, S. W. and Schlich, R., Proceedings of the Ocean Drilling Program, Scientific Results, volume 120, U.S. Government Printing Office, College Station, Texas, 1992.	
1847 1848 1849	Wouters, B., Martin-Español, A., Helm, V., Flament, T., van Wessem, J. M., Ligtenberg, S. R. M., van den Broeke, M. R., Bamber, J. L.: Dynamic thinning of glaciers on the Southern Antarctic Peninsula, Science 348 (6237), 899-903, 2015.	
1850 1851	Wrenn, J.H. and Hart, G.F.: Paleogene dinoflagellate cyst biostratigraphy of Seymour Island, Antarctica, Geological Society of America Memoires, 169, 321-447, 1988.	
1852 1853	Xiao, W., Esper, O., Gersonde, R.: Last Glacial - Holocene climate variability in the Atlantic sector of the Southern Ocean. Quaternary Science Reviews. 135, 115-137, 2016	Deleted: .
1854 1855	Zachos, J.C., Dickens, G.R., Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature 451, 279-283, 2008.	

- 1857 1858 Zevenboom, D.: Dinoflagellate cysts from the Mediterranean late Oligocene and Miocene, PhD thesis Utrecht University, Utrecht, the Netherlands, 1995.
- 1859 1860 1861 1862 1863 1864 1865

- Zonneveld, K. A. F., Marret, F., Versteegh, G. J. M., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L., Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt, J., Kim, S., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix, L., Lu, S., Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J., Mildenhall, D. C., Mudie, P., Neil, H.L., Pospelova, V., Qi, Y., Radi, T., Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J., Verleye, T., Wang, Y., Wang, Z., Young, M.: Atlas of modern dinoflagellate cyst distribution based on 2405 data points, Review of Palaeobotany and Palynology, 191, 1-197, 2013. 1866

Deleted:

Page 15: [1] Deleted

The mass-transport deposits contain abundant reworked dinocysts.

Page 15: [1] Deleted				Peter Bijl		02/04/2018 15:37
m)		. 1	••		1 1 1.	

The mass-transport deposits contain abundant reworked dinocysts.

Page 15: [1] DeletedPeter Bijl02/04/2018 15:37The mass-transport deposits contain abundant reworked dinocysts.

Page 15: [1] DeletedPeter Bijl02/04/2018 15:37The mass-transport deposits contain abundant reworked dinocysts.

Page 15: [1] DeletedPeter Bijl02/04/2018 15:37The mass-transport deposits contain abundant reworked dinocysts.

 Page 15: [1] Deleted
 Peter Bijl
 02/04/2018 15:37

The mass-transport deposits contain abundant reworked dinocysts.

Page 15: [1] Deleted	Peter Bijl	02/04/2018 15:37	
The mass-transport deposits contain abundant reworked dinocysts.			

Page 15: [1] DeletedPeter Bijl02/04/2018 15:37The mass transport deposits contain abundant reworked disocycts

The mass-transport deposits contain abundant reworked dinocysts.

Page 15: [1] DeletedPeter Bijl02/04/2018 15:37The mass-transport deposits contain abundant reworked dinocysts.

Page 15: [2] Deleted	Peter Bijl	07/05/2018 16:20
consistently		

Page 15: [2] Deleted	Peter Bijl	07/05/2018 16:20
consistently		

Page 15: [3] Deleted	Peter Bijl	09/02/2018 13:16
nradominant		

predominant

Peter Bijl

Page 15: [3] Deleted	Peter Bijl	09/02/2018 13:16
predominant		
Page 15: [4] Deleted	Joerg	02/05/2018 18:31
have		
Page 15: [4] Deleted	Joerg	02/05/2018 18:31
have		
Page 15: [4] Deleted	loera	02/05/2018 18:31
have		
Page 15: [5] Deleted	Francesca Sangiorgi	28/02/2018 16:37
Miocene Climatic Optimum (Trancesca Sangiorgi	
Page 15: [5] Deleted	Erançosca Sangiorgi	28/02/2018 16:27
Miocene Climatic Ontimum (Francesca Sangiorgi	28/02/2018 10.57
Mocene chinade Optimum (
Dama 15, [C] Dalatad	laava	
rage 15: [6] Deleted	Joerg	02/05/2018 18:31
It		
Page 15: [6] Deleted	Joerg	02/05/2018 18:31
It		
Page 15: [7] Deleted	Peter Bijl	02/04/2018 16:57
but are		
Page 15: [7] Deleted	Peter Bijl	02/04/2018 16:57
hut are		
but are		
but all		
Page 15: [8] Deleted	Peter Bijl	02/04/2018 16:58
Page 15: [8] Deleted We however think believe that t	Peter Bijl hese species to represent po	02/04/2018 16:58 art of the in situ assemblage

in an otherwise dominantly reworked dinocyst assemblage, because these they were

have never been found in Eocene sediment in the region before.

Page 15: [8] DeletedPeter Bijl02/04/2018 16:58We however think believe that these species to represent part of the in situ assemblagein an otherwise dominantly reworked dinocyst assemblage, because these they werehave never been found in Eocene sediment in the region before.

Page 15: [9] DeletedPeter Bijl02/04/2018 17:01They are and in the Miocene.

Page 15: [9] Deleted	Peter Bijl	02/04/2018 17:01
They are and in the Miocene.		

Page 17: [10] DeletedPeter Bijl09/02/2018 13:33and reflect warming of surface waters rather than them being reworked. Theoccasional abundance of oligotrophic taxa suggests nutrient levels must have beenlow compared to the same region today.