
Response to Reviewer 1, Kasia Śliwinska, by Bijl et al. 
 
GENERAL COMMENTS At the beginning, I would like to apologize for the delay in 
delivering my review. It was great to get an opportunity to comment on this paper. For 
some time now, I have been working on the Oligocene from the North Atlantic region. 
Even though our study areas are so far from each other, one cannot fully understand the 
paleoclimatic changes in the high northern latitudes and the global ocean circulation under 
the early icehouse world, without an insight into the oceanic regime in the southern high 
latitudes. This paper provides an important and unique record of the paleogeographical 
reconstruction of the Oligocene to middle Miocene of the East Antarctica based on 
dinoflagellate cysts. Authors apply selected dinocysts genera and taxons as proxies for 
sea-ice reconstruction, nutrients, and temperature. The changes in the composition of 
dinocysts assemblages is additionally correlated with the sedimentology and organic 
biomarker data. I find this manuscript interesting and very needed piece of work for our 
understanding of the oceanic circulation under the early icehouse world conditions. A 
concern however, is the way the sedimentological data are incorporated into the text. The 
results of the present study (i.e. changes in the dinocysts assemblages) need to be clearly 
presented, and other data (sedimentology, biomarkers) should be carefully included but 
only as a data supporting the results based on dinocysts. The part about the lithology 
should not be included in the section with the results but as e.g. the background 
information. Also, a term “Miocene deposits” (Table 2) doesn’t not carry any 
sedimentological information. Why do the authors not keep the terminology by 
Salabarnada et al. (submitted this volume) in this case? This expression is not used in the 
main text, but “Miocene sediments”. The manuscript is well written, however, there is still 
room for improvement (see my suggestions below). Overall, the manuscript represents a 
substantial contribution to the scientific progress within the scope of Climate of the Past. I 
am certain that it will be of great interest for readers of the journal. 
 
We appreciate the positive assessments by Śliwińska regarding our manuscript, 
and her indications as to how to improve our manuscript even further. Śliwińska 
posed several concerns and suggestions, which we can definitely use to improve 
our manuscript. We herein respond to these concerns and suggestions in detail.  
 
SPECIFIC COMMENTS In the Supplementary material, in the sheet with the dinocysts 
counts I see only Selenopemphix cf. antarctica. Is that a typo or the specimen observed in 
the present study only partially resemble the holotype? If it different, then I think that this 
needs a bit of attention in the text. 
This is indeed a typo, it does fall within the species definition of the holotype. We 
will amend this in our next version of the paper. 
 
Bijl et al. (in press) have already discussed which dinocysts are in situ and which not, so I 
think that the first section of the discussion can be tightened up a bit. 
The first section of our discussion aims at providing the necessary details to put 
forward new arguments than those proposed in Bijl et al., in press (now Bijl et al., 
2018) to strengthen and support the reason why we believe that the gonyaulacoid 
dinocysts are in situ. Therefore we do not find this redundant but rather 
complimentary to the results of Bijl et al., 2018, as indicated in lines 366-368. This 
paper targets a different audience than that of Journal of Micropaleontology, an 
audience that does not necessarily want to read detailed micropaleontological 
contemplations, but is merely interested in the paleoceanographic reconstructions. 
Such reconstructions are based on detailed micropaleontological information that 
is now published in Bijl et al., 2018, should the reader be interested. Journal of 
Micropalaeontology is an open access journal, hence available to everyone. 
Because of the above, we opt for maintaining the first section of the manuscript as 



is. 
 
Also, since dinocysts play a key role in this study, I would consider to include a plate with 
photos of the most important taxa.  
Bijl et al. (2018, Journal of Micropalaeontology) also features a large number of 
dinocyst plates, and the publication is open access. This paper however is targeted 
to present the paleoceanographic reconstructions, using the dinocysts as a tool 
rather than the purpose of the study. With that aim in mind, and anticipating on the 
audience expected, we decided that plates are irrelevant in this paper. However, we 
added reference to the plates as published in Bijl et al. 2018 in the methods section 
(3.1) 
 
Terrestrial palynomorphs can include everything from saccate-pollen to spores or fungal 
hyphae, and thus suggests e.g. a different depositional setting for the site. Therefore, I 
think that it may be a bit risky to put them into one category without mentioning any 
details. One way to fix this is to give appropriate overheads in the “dinocysts counts” 
spreadsheet in the supplementary excel file (i.e. in situ dinocysts, reworked dinocysts, 
terrestrial palynomorphs, etc.) and refer to this file in the main text.  
An extensive presentation of the terrestrial palynology and the vegetation and 
climate reconstructions derived from it, is out of the scope of this paper, and will be 
presented elsewhere at a later stage. For the purposes of our paper, we portray the 
total terrestrial organic component in our samples as a crude and qualitative proxy 
for terrestrial input. Since details of terrestrial palynomorphs are meant to be 
presented in another study, we only recorded broad categories of terrestrial 
palynomorphs in our counts, which we present in the figure and in the 
supplementary tables.  
 
The strong upwelling occurring today around Antarctica is causing low abundances of 
carbonates at the sea-floor. How does the upwelling (suggested in line 363) support the 
presence of carbonate rich intervals during the Oligocene and Miocene (e.g. line 401)? I 
think that this needs to be explained a bit more clearly. 
This is explained around lines 429-433, where the oceanographic reconstructions 
are discussed. 
 
TECHNICAL CORRECTIONS Within the entire text “Margin” with a capital letter in “the 
Wilkes Land Margin”. Please correct where needed.  
We will change ‘Margin’ to lower case throughout 
 
It needs to be clearly stated when the authors talk about “dinoflagellates” and when about 
“dinoflagellate cysts (dinocysts)”. “sea-ice” or “sea ice”, please choose only one version  
We will check throughout for consistency 
 
Please define: “common” or “abundant” 
We will rephrase throughout and specify to avoid ambiguity. 
 
Abstract: Please avoid repetitions: “time intervals” line 25,27,44 Done Lines 25-29: “may 
bear information to resolve”? Rephrased please rephrase the two sentences. Lines 37-
38: Consider rephrasing to “Our record shows that a sea-ice indicator, Selenopemphix 
antarctica, occurs only in the earliest Oligocene, following the full Antarctic continental 
glaciation, and after the Middle Miocene Climatic Optimum”. Done Line 39: “during the 
remainder of the : : :” – please rephrase Line 39: perhaps it is better to write: “the 
composition of the dinocyst assemblages imply” Rephrased  
 
Section 1: Line 51: please rephrase: ”: : :much more ice is: : :” Rephrased Lines 72-84: 



perhaps these two very long sentences could be made into few shorter ones. Sentences 
were shortened Lines 95-96: marine-ice? I think that “sea-ice” sounds better We talk 
about marine-based ice and not sea ice in those lines, which have a rather different 
meaning. Line 96: does it mean “a continent with a low topography”? If yes, then please 
rephrase “a lower Antarctic” Done Line 115: please rephrase “: : :establishment of age 
control: : :” Rephrased Line 125: perhaps “recently” instead of “accurately” Rephrased 
Line 127-128: this sentence is poorly constructed Rephrased Line 133-134: it sounds a 
bit weird to compare with “detailed sedimentological descriptions”, I think that it should 
rather be written that the authors “correlate changes in the dinocyst as- semblages with 
the changes in the lithology” or something like that. Rephrased Line 135-139: this 
sentence is missing something. Please rephrase. Rephrased 
 
Section 2: Keep this section in the passive voice. We used passive voice more than in 
the previous manuscript, but not in every case to avoid a too passive tone, which to 
our opinion does not read well. Line 149: “upper Miocene” not “late 
Miocene” Rephrased Line 165-170: this sentence is poorly constructed. It is not correct to 
write that “the lithology lacks” something Rephrased Line 166-170: diatom ooze and 
diatom-rich clay: which one is a turbidite and or hemipelagite (see Table 2)? We agree 
that our initial analyses lacked a detailed description of the Miocene facies. In the 
new version of the manuscript we will add the detailed Miocene lithology to the 
Oligocene one. We have already made this amendment in anticipation of this 
rebubuttal and noticed, however, that this does not affect our conclusions and 
drawn earlier. Line 178-179: this sentence is poorly constructed Rephrased 
 
Section 3: Line 196-197. Avoid active voice. Avoided in most cases. Please rephrase 
both sentences. For me it sounds a bit weird to say “surface sample”. What about “a 
sample from the sea surface” instead? We agree with the comment and will rephrase 
surface-samples to surface-sediment samples. “Another important information” is used 
in line 227 and 231. Consider rephrasing to avoid repetition. Rephrased Line 235-236: 
What does “N” mean? I think it is better to write “north”. Done Please rephrase the 
sentence to make it more clear. Please explain all the abbreviations used in the text for 
the first time, e.g. GCM, STF and SAF. Checked and done 
 
Section 4.1: Please describe the individual groups in the same order as they are 
mentioned at the beginning of the paragraph. We will change the order. Line 249-250: 
“amorphous organic matter (particles)” instead of “amorphous palynofacies”. Done Line 
252: it should be “rare to common” not “present to common”. Rephrased In this section it 
should also be explain how authors define: “rare, “common” and “abundant”. Rephased 
to avoid ambiguity Line 257: one can not write “dominate the assemblage during the late 
Oligocene”. It should be either “are the dominating group in the assemblages from the 
upper Oligocene” or “were dominating/most abundant during the late Oligocene”. 
Rephrased 
Section 4.2: Line 266: if it is not an observation made by the authors, I would suggest to 
add a reference here. Done Line 267-269: I suggest to rephrase the sentence: “is 
common to abundant between 33.6 to 32.1 Ma (earliest Oligocene) and after 14.2 Ma (i.e. 
during and after the mid-Miocene climatic transition)” Done Line 270: please remove 
“generally”. Done Line 270-281: please consider to rephrase this part, so it will be clear 
what was the assemblage composition in the Oligocene-Miocene and what is today. 
Rephrased Line 289: please remove “noted” Done Line 291: Instead of “Of these taxa” it 
should be “ Of the gonyaulacoid taxa” and add “spp.” after Nematosphaeropsis. Changed 
to N. labyrinthus. Line 294: it should be Section 4.3 not 4.5. Please correct in the 
following headings accordingly, i.e. 4.3.1 and 4.3.2. Done Lines 296-306: I am not certain 
if the part describing the lithology fits in the result section. This is not a result of the current 
study, but rather a summary of the (already interpreted) lithological observations by 



Salabarnada et al. However, I see that this is an important part for the manuscript, I 
suggest to keep it, but incorporate it into the earlier part of the manuscript. Indeed, 
lithological details can be avoided and we now refer to Salabarnada et al., for 
details. Section 4.5.1: Line 314: perhaps it should be: “: : :occur in the reworked 
glauconitic sandstones of the lower Oligocene age.”? Done Line 315: Keep sentences 
short: “: : :sandstones. This is in line: : :” Done Line 316: Great, that what one can expect! 
Section 4.5.2 Please, avoid expressions as “we compare”, “we note”, etc. Please change 
it into the passive voice. Done Lines 327-328: repetition of “interval” Rephrased Line 330: 
“restricted to” or “limited to” instead of “connected to” Rephrased Line 333: “in the Eocene 
sediments” done 
Line 334-336: I suggest to rewrite like this: “Within the Oligocene strata Lejeunecysta spp. 
(: : :) lower abundance in the interglacial deposits and pelagic clays. The taxon is also less 
abundant in the Miocene.” Rephrased 
 
Section 5. Discussion Line 353: why upwelling? Is that the only possibility? We believe 
that, given the geographic setting, upwelling is the only possibility. We now 
indicate that more clearly in the text Lines 354- 356: circular argumentation, that 
abundant oligotrophic cyst taxa support oligotrophic dinoflagellate assemblage 
Rephrased to avoid circular argumentation Line 357: which taxa? It may be a good 
idea to list them here as a reminder for readers We really want the reader to focus on 
the paleoceanographic inferences. As we have elaborately described the species in 
the results section, we do not repeat the species names here. Line 359-362: “we 
interpret that these taxa are part of the in situ pelagic assemblage and reflect warming of 
surface waters rather than them being reworked” – I think that this needs rephrasing. 
Done What is more, which taxa are considered as indicators of warming? Is this based on 
the present study or the literature? If on the literature, then please provide proper 
references here. Done Line 366-367: this sentence is poorly constructed Rephrased 
Lines 368-369: active voice should be avoided here Avoided Lines 370-372: 
grammatically something is missing in this sentence. Rephrased Line 381: what does “the 
average assemblage” means? Rephrased Lines 387, 391: add “Site” before U1356 Done 
Line 391: please add “succession at Site U1356”. Done Lines 393-394: repetition of lines 
381-382 Repetition avoided Line 365-396: it sounds weird to compare “Oligocene-
Miocene surface waters” with “the same Oligocene-Miocene sediments”. Please consider 
rewriting Agreed. Rephrased Line 407: “i.e.” instead of “e.g.” Done Line 420: “more 
oligotrophic character of the dinocyst assemblages” – please rephrase Rephrased Line 
430: “an evidence” Done Lines 449-450: this sentence is poorly constructed Rephrased 
Line 451: modern dinocysts assemblages? Rephrased Line 455: “: : :ACC. This is in line 
with numerical: : :” Done Line 460: please explain what does abbreviation MMCO means, 
perhaps even earlier in the text Spelled out Line 465: consider different order, like: 
“weaker throughout the Oligocene and the Miocene, than at present” Done Line 467: 
please remove “to us” Done Line 476: please explain what does abbreviation MMCT 
means, perhaps earlier in the text Done Line 533: “records have recorded”- please 
rephrase Done 
 
Section 6 Avoid repeating “fundamentally different” so close to each other (Lines 534 and 
542), or “that of today” (line 542 and 543), “compared to today” (lines 548, 550) Done 
Lines 545-547: please consider rephrasing this sentence. Done Line 608: it should be 
“data compiled from Site” Rephrased Line 611: please use passive voice Done Line 613: 
perhaps it should be “or calibrating our data against age-scale” Rephrased Line 622: 
“sandstones” – please correct in the entire text Done 
 
Figure captions and references: 
“Bijl et al. in press” not in the reference list “Salabarnada et al. submitted this volume” not 
in the reference list. We added these references 



Fig. 2 – Why does the colour lines reflecting various lithology have different length? This 
was done to improve clarity What does (o) and (y) mean? Now explained in the 
caption Please align overheads “Miocene” and “Oligocene”. Done Please explain what 
the grey colour in the palmag column implies. Now explained in the caption“(from Tauxe 
et al.,2012, but recalibrated to GTS2012 of Gradstein et al., 2012; see Table 1 and 
modified based on Crampton et al., 2016)” - this sentence is poorly constructed 
Rephrased 
Fig. 4 and 5 – what is determining the order of the dinocysts? Shouldn’t Spiniferites cpx 
be moved to the right? Agreed, done And actually, is Spiniferites cpx needed on the 
figure if it is not even mentioned in the main text? Yes it is, as it is one of the most 
common dinocyst genera in many places. The same with Corrudinium, Cerebrocysta – 
these are not mentioned in the text. If they are merged in a complex with Pyxidinopsis 
spp. then please clearly state it in the text or supplementary. Now mentioned in the text. 
Fig. 4 – I think that it is necessary to mark the position of unconformities in e.g. the column 
with “epoch and stage”. Otherwise, Chattian followed immediately by Burdigalian looks a 
bit odd. Done The intervals which look like barren in the column with “ Total 
palynomorphs/ dinocysts”, are not marked as such in the following plots in the figure, 
therefore the figure looks a bit chaotic. Many barren samples are positioned close to 
productive samples. The plot is meant to provide the reader with a comprehensive 
image of the palynological assemblages, similarly to the way they were presented 
and discussed in the text. The overheads for “total palynomorphs/dinocysts” and 
“Palynomorph relative abundance” should be aligned with the overheads to the right (i.e. 
dinocysts taxa and genera). Done Also, I would suggest to add a column with sample 
position on this and the following figure. The sample intervals are already plotted in 
Figure 2. We believe that this information is no longer needed when interpreting the 
data in figures 4 and 5. Are all other dinocysts recorded in the assemblages 
“oligotrophic/outside oceanic fronts” as suggested by the color/filling in the plot? We 
clarified this in the results section in the text. It is not clear to me why 
“oligotrophic/outside oceanic fronts” has two colors (red and dotted orange). We choose 
to give Operculodinium spp. another color because it is such a well-known and 
paleoceanographically significant genus both in this region and in the northern 
hemisphere. Why are absolute abundances not shown in the same way as the relative 
abundances? Absolute abundances of the different dinocyst groups are not 
mentioned or discussed in the text, nor they do have a readily interpretable 
paleoceanographic signal.  
Fig. 5 – While in Fig.2 Oligocene and Miocene are divided into “late”, “middle” and “early” , 
on figs 4 and 5 they are divided into stages. Adding a subdivision of the Oligocene and 
Miocene into “late”, “middle” and “early” on figures 4 and 5 will help readers to directly 
correlate it with figure 2. Agreed. Done This may be a good place to mark a position of 
the climatic events mentioned in the main text, such as the Oi-1 glaciation and MMCO. 
Agreed. Done Please add that the figure shows the distribution of the “in situ dinocyst”, 
like in figure 4. Done in the caption 
Fig. 6-7: According to table 2 “Miocene deposits” consist partially of turbidites. Isn’t that a 
bit odd that turbidite deposits yield so many in situ dinocysts? We agree and thought 
about this. Possibly, turbidites in the Miocene transport very young sediments from 
the shelf. This causes reworking in these turbidites to be overlooked as there is no 
age gap between the species encountered in the turbidites from those encountered 
in the pelagic sediments. We will add this to the main text of the paper, and in any 
case we now separate turbidite deposits from pelagic sediments. However, Fig.7 – I 
would write something like that: “The distribution of eco-groups within various lithologies 
encountered in Site: : :” in the figure caption. Done 
 
With my best regards 
 



Kasia K. Sliwinska 
 
Please also note the supplement to this comment: 
https://www.clim-past-discuss.net/cp-2017-148/cp-2017-148-RC1-supplement.pdf 



Rebuttal to Anonymous Referee #2 by Bijl et al. 
 
This paper presents environmental interpretations of a new dinoflagellate cyst dataset from 
Oligocene and Miocene sediments from a drill core collected off the Wilkes Land coast. The 
environmental interpretations are partly underpinned by published studies on the distribution of 
dinoflagellate cysts in modern sea floor sediments. In particular, assemblages are identified that are 
interpreted to correlate with sea ice. The authors use these assemblages to conclude that sea ice was 
more prevelant during the earliest Miocene [We assume R2 means Oligocene here], and also 
following the Middle Miocene Climatic Optimum. They also observe that assemblages 
representative of interglacial conditions are similar to assemblages of modern temperate 
oligotrophic waters, and thus infer that this reflects a migration of the polar frontal system to the 
south of the drill site. This is an interesting paper, and the dataset is important. It will be of interest 
to the research community. 
I have four main comments on the approach used and the conclusions drawn 
(1) The authors note that in modern settings, Selenopemphix antarctica is dominant in ‘proximal 
sea ice settings south of the Antarctic Polar Front’ (but also that these modern samples from 
Antarctic waters have a range of 10-90% S. antarctica). The authors then infer that the intervals in 
the Wilkes Land core containing the highest relative abundance of S. antarctica represent 
depositional environments proximal to sea ice. However, S. antarctica is never above _15% in any 
of the samples reported in this study (Figure 7): this taxon is not dominant. [Fig. 7 only reports 
the mean and 1sd of the data. The maximum abundance of S. antarctica is 39%. We will 
make the raw data available in a revised version] For context, samples with concentrations of up 
to 20% S. antarctica occur in modern Southern Ocean samples as far north as the Subtropical Front 
(e.g. Zonneveld et al. 2013, doi.org/10.1016/j.revpalbo.2012.08.003). Even if high abundance 
(>80%) of S. antarctica were indicative of sea ice (which is itself not clearly demonstrated, partly 
given the poor modern correlation between the polar front and sea ice extent, and partly due to the 
very sparse coverage of modern samples south of the polar front), that high abundance is not the 
case in the samples reported in this paper. The modern analogue approach used by the authors to 
infer the presence of sea ice is inconclusive in this instance: the data presented could be just as 
easily used to infer a complete lack of sea ice for the duration of the record, as sea ice variability. 
We agree with the reviewer that the complete compilation by Prebble et al. (2013) leaves 
ambiguity about the reliability of S. antarctica as sea ice indicator, and that the absence of 
this species should be taken as absence of sea. Sites south of the subtropical front with lower 
abundances of S. antarctica are all close to the polar front itself, and are in regions with lower 
palaeobathymetry (e.g., Kerguelen and in the South Atlantic). This causes highly variable 
distribution patterns around such bathymetric highs (see, e.g., Armand et al., 2008). 
Meanwhile, on the Antarctic continental shelf proper, where admittedly few published data is 
available in the Prebble et al. (2013) compilation, Selenopemphix antarctica does dominate the 
palynomorph assemblages in all sites available. The dominance of S. antarctica in 
assemblages can be found in the Wilkes Land margin itself (Site U1357; Hartman et al., in 
prep-a), in the Ross Sea (Hartman et al., in prep-b), Prydz Bay (Storkey, 2006), in the Indian 
Ocean (Marret and De Vernal, 1997) and in the Weddell Sea (Esper and Zonneveld, 2002; 
Harland and Pudsey, 1999). We echo the studies from Houben et al. (2013) and Sangiorgi et 
al. (2018), which elaborately discus the potential of S. antarctica as sea-ice indicator and its 
ecological meaning. We understand that the explanation in our manuscript falls short in 
providing the reader sufficient information on this matter. In a new version of the 
manuscript, we will support our inference of S. antarctica as sea ice indicator (and its absence 
as indicator of longer-than-today open water season) more elaborately than we did so far. 
 
(2) The authors conclude they demonstrate ‘variability on glacial/interglacial timescales’. This is 
possibly true, but it has not been illustrated in a convincing way. The key to their interpretation, I 
think, is figures 6 and 7, where the relative abundance of different dinoflagellate cysts are 
illustrated for different lithologies. However, there is no evidence presented in this paper that these 
lithologies are deposited under different glacial conditions. They instead refer to Salabarnada et al. 



(in review submitted to CPD). Salabarnada et al. describe a glacial ‘Facies 1’, and an interglacial 
‘Facies 2’. Although the present authors rely on the cyclo-stratigraphy of Salabarnada et al. for 
their glacial-interglacial interpretation, they choose (confusingly) to apply a different lithological 
scheme in the present paper. Thus, in Table 2, the authors assign ‘Silty claystones and sandstones’ 
to (glacial) Facies 1 of Salabarnada et al., and ‘carbonated rich and pelagic clay lithologies to 
(interglacial) Facies 2. Notwithstanding this, the dinoflagellate cyst assemblages shown in Figures 
6 and 7 do not vary in a consistent way between either the glacial and interglacial facies described 
by Salabarnada et al., or by the glacial and interglacial lithologies assigned by the authors (line 
300-302). The different lithologies do contain different dinoflagellate cyst assemblages, but these 
differences do not appear to fall along the glacial/interglacial divisions proposed by either 
Salabarnada et al. or the authors.  
We agree that the different presentation of the lithologic facies in our ms and that of 
Salabarnada et al may generate confusion. In a new version of the manuscript, we will make 
this consistent. In anticipation of this review, we have already revisited the Miocene lithology, 
made a detailed description and integrated the facies into the other lithologies described in 
Salabarnada et al. This did not lead to any different conclusions than those already made, 
namely a higher relative abundance of protoperidinioid dinocysts in glacial deposits, and 
more gonyaulacoid dinocysts in interglacial deposits, with the lithologic interpretations being 
made independent of the dinocyst results in Salabarnada et al, CP (https://doi.org/10.5194/cp-
2017-152). 
 
However [if] the authors choose to respond to this comment, at a minimum the abstract should be 
adjusted to removed the implication that glacial/interglacial has been investigated for the entire 
record (line 46), as only Oligocene samples have been explored for this variability, and I strongly 
suggest marking clearly on Figures 6 and 7 which lithologies represent glacial and which 
interglacial deposition, or perhaps grouping samples together - the seven columns/lithologies do 
not communicate clearly the variability the authors claim to have identified. 
We agree with the reviewer, a new version of the manuscript will present the dinocyst data in 
fewer lithologic groups. Moreover, the detailed lithologic interpretations will be continued 
into the Miocene part of the sequence. This will only reinforce the interpretations of different 
dinocyst assemblages between glacial and interglacial deposits. 
 
(3) The authors rely on unpublished (submitted, in review) work to justify their division of the 
dinoflagellate cyst assemblage into in situ and reworked components. This is an important step in 
their data processing, and important to completely assess this paper, but the information is not 
available to review at present. 
The paper is now published and available open access in Journal of Micropalaeontology. 
 
(4) The discussion is fairly speculative/not well supported by the data presented – but is thought 
provoking, and should be retained. 
Because the reviewer does not substantiate which part he/she finds speculative, we cannot 
reply any further to this comment at this stage. We will thoroughly revisit the discussion and 
evaluate any speculative aspects. 
 
Minor comments follow: 
L299 relation not relations -done 
L353 can the authors discount input of terrestrial nutrients instead of upwelling? We can for most 
of the record, with reason and argument, not with unequivocal proof. Given the relatively 
small catchment area, and deteriorated climate, the low relative abundance of palynomorphs 
(those that are there are mostly wind-transported pollen) and absence of terrestrially-derived 
amorphous organic matter, and the average outer neritic/oceanic nature of the dinocyst 
assemblage, we argue for marine nutrients instead of terrestrially-derived. Although, the 
Miocene Climatic Optimum might have an additional terrestrially-derived nutrient source. 
We shall add this to the manuscript. 



L422 replace ‘a close position’ with ‘proximal’? This was not found, possible lost in revision 
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Abstract		25	

Next	 to	 atmospheric	 CO2	 concentrations,	 ice-proximal	 oceanographic	26	

conditions	are	a	critical	factor	for	the	stability	of	Antarctic	marine-terminating	27	

ice	 sheets.	 The	 Oligocene	 and	 Miocene	 epochs	 (~34–5	 Ma	 ago)	 were	 time	28	

intervals	 with	 atmospheric	 CO2	 concentrations	 between	 those	 of	 present-day	29	

and	 those	 expected	 for	 the	 near	 future.	 As	 such,	 these	 past	 analogues	 may	30	

provide	 insights	 into	 ice-sheet	 volume	 stability	 under	 warmer-than-present-31	

day	 climates.	 We	 present	 organic-walled	 dinoflagellate	 cyst	 (dinocyst)	32	

assemblages	 from	 chronostratigraphically	well-constrained	Oligocene	 to	mid-33	

Miocene	sediments	from	Integrated	Ocean	Drilling	Program	Expedition	(IODP)	34	

Site	 U1356.	 Situated	 offshore	 the	 Wilkes	 Land	 continental	 margin,	 East	35	

Antarctica,	the	sediments	from	Site	U1356	have	archived	the	dynamics	of	an	ice	36	

sheet	 that	 is	 today	 mostly	 grounded	 below	 sea	 level.	 We	 interpret	 dinocyst	37	

assemblages	in	terms	of	paleoceanographic	change	on	different	time	scales,	i.e.,	38	

with	 regard	 to	 both	 glacial-interglacial	 and	 long-term	 variability.	 Our	 record	39	

shows	that	a	sea-ice	related	dinocyst	species,	Selenopemphix	antarctica,	occurs	40	

only	 for	 the	 first	 1.5	 Ma	 of	 the	 early	 Oligocene,	 following	 the	 onset	 of	 full	41	

continental	 glaciation	 on	 Antarctica,	 and	 after	 the	 mid-Miocene	 Climatic	42	

Optimum.	 Dinocysts	 suggest	 a	 weaker-than-modern	 sea-ice	 season	 for	 the	43	

remainder	 of	 the	 Oligocene	 and	 Miocene.	 The	 assemblages	 generally	 bear	44	

strong	similarity	to	present-day	open-ocean,	high-nutrient	settings	north	of	the	45	

sea-ice	 edge,	 with	 episodic	 dominance	 of	 temperate	 species	 similar	 to	 those	46	

found	in	the	present-day	subtropical	front.	Oligotrophic	and	temperate	surface	47	

waters	prevailed	over	the	site	notably	during	interglacial	times,	suggesting	that	48	
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the	 positions	 of	 the	 (subpolar)	 oceanic	 frontal	 systems	 have	 varied	 in	80	

concordance	with	Oligocene-Miocene	glacial-interglacial	climate	variability.		81	

	82	

1.	Introduction	83	

The	proportion	of	 the	East	Antarctic	 ice	sheet	 that	 is	presently	grounded	below	sea	84	

level	 is	much	 larger	 than	originally	 interpreted	 (Fretwell	 et	 al.,	 2013).	 This	 implies	85	

that	a	 larger	part	of	 the	continental	 ice	 sheet	 is	 sensitive	 to	basal	melting	by	warm	86	

waters	than	previously	thought	(Shepherd	et	al.,	2012;	Rignot	et	al.,	2013;	Wouters	et	87	

al.,	 2015),	 and	 that	 a	 higher	 amplitude	 and	 faster	 rate	 of	 sea-level	 rise	 is	 to	 be	88	

expected	under	future	climate	warming	than	previously	acknowledged	(IPCC,	2013).	89	

Studying	 the	 amount	 and	 variability	 of	 Antarctic	 ice	 volume	 in	 periods	 with	 high	90	

atmospheric	 CO2	 concentrations	 (pCO2)	 provides	 additional	 insight	 into	 ice/ocean	91	

feedback	processes.	Foster	and	Rohling	(2013)	compared	sea-level	and	atmospheric	92	

pCO2	 concentrations	 on	 geological	 timescales.	 Their	 study	 suggests	 that	 global	 ice	93	

sheets	 were	 rather	 insensitive	 to	 climate	 change	 when	 atmospheric	 pCO2	 ranged	94	

between	400	and	650	parts	per	million	in	volume	(ppmv).	During	the	Oligocene	and	95	

Miocene,	atmospheric	pCO2	ranged	between	400	and	650	ppmv	(Foster	et	al.,	2012;	96	

Badger	et	al.,	2013;	Greenop	et	al.,	2014).	Crucially,	similar	pCO2	levels	are	expected	97	

for	 the	 near	 future	 given	 unabated	 carbon	 emissions	 (IPCC,	 2013),	 implying	 that	98	

global	ice	volume	may	not	change	much	under	these	pCO2	scenarios.	99	

In	contrast	 to	 the	 invariant	global	 ice	volume	inferred	by	Foster	and	Rohling	100	

(2013),	a	strong	(up	to	1	per	mille;	‰)	variability	 is	preserved	 in	deep-sea	benthic	101	

foraminiferal	 oxygen	 isotope	 (hereafter	 benthic	 δ18O)	 data	 (Pälike	 et	 al.,	 2006;	102	

Beddow	 et	 al.,	 2016;	 Holbourn	 et	 al.,	 2007;	 Liebrand	 et	 al.,	 2011;	 2017).	 These	103	
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benthic δ18O	data	reflect	changes	in	continental	ice	volume	(primarily	on	Antarctica)	117	

and	 deep-sea	 temperature.	 The	 latter	 is	 strongly	 coupled	 to	 polar	 surface-water	118	

temperature,	 as	 deep-water	 formation	was	 predominantly	 at	 high	 latitudes	 at	 that	119	

time	 (Herold	 et	 al.,	 2011).	 High-amplitude	 variations	 in	 benthic	 δ18O	 thus	 suggest	120	

either	 (i)	 strong	 climate	 dynamics	 in	 the	 high	 latitudes	 with	 relatively	 minor	 ice-121	

volume	 change	 (which	 would	 be	 in	 accordance	 with	 numerical	 modelling	122	

experiments	 (Barker	 et	 al.,	 1999)	 and	 the	 interpretation	 of	 Foster	 and	 Rohling	123	

(2013)),	 or	 (ii)	 strong	 fluctuations	 in	Antarctic	 ice	 volume,	with	 relatively	 subdued	124	

temperature	variability	(which	would	be	in	accordance	with	indications	for	unstable	125	

Antarctic	ice	sheets	under	warmer-than-present	climates	(Cook	et	al.,	2013;	Greenop	126	

et	al.,	2014;	Rovere	et	al.,	2014;	Sangiorgi	et	al.,	2018).	If	one	assumes	a	present-day	127	

δ18O	composition	(-42‰	versus	standard	mean	ocean	water	(SMOW))	for	Oligocene–128	

Miocene	 Antarctic	 ice-sheets	 and	 modern	 deep-water	 temperature	 (2.5°C),	 the	129	

benthic	δ18O	fluctuations	during	the	Oligocene–Miocene	suggest	 long-term	ice-sheet	130	

variability	 to	 have	 fluctuated	 considerably	 (Liebrand	 et	 al.,	 2017).	 Similarly	 strong	131	

fluctuations	 were	 observed	 in	 sedimentary	 records	 from	 the	 Gippsland	 Basin,	132	

southeast	Australia	(Gallagher	et	al.,	2013).	Meanwhile,	deep-sea	temperatures	have	133	

fluctuated	considerably	as	well	during	the	Oligocene	and	Miocene	(Lear	et	al.,	2004),	134	

which	 is	 further	 evident	 from	 ice-free	 geologic	 episodes	 (Zachos	 et	 al.,	 2008).	135	

Therefore,	 a	 combination	of	deep-sea	 temperature	and	 ice-volume	changes	 is	 likely	136	

represented	 in	 these	 records.	 Further	 ice-proximal	 reconstructions	 of	 climate,	 ice-137	

sheet	 and	 oceanographic	 conditions	 are	 required	 to	 provide	 an	 independent	138	

assessment	 of	 the	 stability	 of	 ice	 sheets	 under	 these	 higher-than	 present-day	pCO2	139	

concentrations.	140	
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While	Oligocene–Miocene	climates	may	bear	analogy	to	our	future	in	terms	of	180	

pCO2	concentrations,	the	uncertainties	and	differences	in	Antarctic	paleotopography	181	

must	be	considered	 in	any	such	comparison,	 as	 this	 factor	 critically	determines	 the	182	

proportion	 of	marine-based	 versus	 land-based	 ice.	 An	 Antarctic	 continent	with	 low	183	

topography	would	result	in	more	ice	sheets	being	potentially	sensitive	to	basal	melt	184	

and	as	such	a	higher	sensitivity	of	these	ice	sheets	to	climate	change.	Moreover,	the	185	

fundamentally	different	paleogeographic	configuration	of	the	Southern	Ocean	during	186	

that	 time	 as	 compared	 to	 today	 should	 also	 be	 considered	 (Figure	 1).	 The	187	

development	and	strength	of	the	Antarctic	Circumpolar	Current	(ACC)	connecting	the	188	

Atlantic,	 Indian	 and	 Pacific	 Ocean	 basins	 (Barker	 and	 Thomas,	 2004;	 Olbers	 et	 al.,	189	

2004)	depend	on	the	basin	configuration	(i.e.,	the	width	and	depth	of	the	gateways	as	190	

well	as	 the	position	of	 the	 landmasses).	The	exact	 timing	when	 the	ACC	reached	 its	191	

modern-day	strength	is	still	uncertain,	ranging	from	the	middle	Eocene	(41	Ma)	to	as	192	

young	as	Miocene	(23	Ma;	Scher	and	Martin,	2004;	Hill	et	al.,	2013;	Scher	et	al.,	2015).	193	

Whether	and,	 if	 so,	how	the	development	of	 the	ACC	has	 influenced	 latitudinal	heat	194	

transport,	 ice-ocean	 interactions	 and	 the	 stability	 of	 Antarctic	 continental	 ice	 has	195	

remained	poorly	understood.		196	

To	directly	assess	the	role	of	ice-proximal	oceanography	on	ice-sheet	stability	197	

during	 the	 Oligocene–Miocene,	 ice-proximal	 proxy-records	 are	 required.	 Several	198	

ocean	drilling	expeditions	have	been	undertaken	in	the	past	to	provide	insight	in	the	199	

history	of	 the	Antarctic	 ice	sheets	(Barrett,	1989;	Wise	and	Schlich,	1992;	Barker	et	200	

al.,	1998;	Robert	et	al.,	1998;	Wilson	et	al.,	2000;	Cooper	and	O'Brien,	2004;	Exon	et	201	

al.,	 2004;	 Harwood	 et	 al.,	 2006;	 Escutia	 and	 Brinkhuis,	 2014).	 For	 some	 of	 the	202	

retrieved	 sedimentary	 archives,	 age	 control	was	particularly	 challenging	due	 to	 the	203	
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paucity	 of	 useful	 means	 to	 calibrate	 them	 to	 the	 international	 time	 scale.	 As	 a	233	

consequence,	 the	 full	use	of	 these	archives	 for	 the	generation	of	paleoceanographic	234	

proxy	records	and	ice-sheet	reconstructions	has	remained	limited.	235	

In	2010,	Integrated	Ocean	Drilling	Program	(IODP)	Expedition	318	drilled	an	236	

inshore-to-offshore	transect	off	Wilkes	Land	(Fig.	1a),	a	sector	of	East	Antarctica	that	237	

is	 interpreted	 to	 be	 highly	 sensitive	 to	 continental	 ice-sheet	 melt	 (Escutia	 et	 al.,	238	

2011).	The	sediments	recovered	from	IODP	Site	U1356	are	from	the	continental	rise	239	

of	 this	 margin	 (Escutia	 et	 al.,	 2011)	 and	 hence	 contain	 a	 mixture	 of	 shelf-derived	240	

material	and	pelagic	sedimentation.	Dinocyst	events	in	this	record	have	been	recently	241	

tied	to	 the	 international	 time	scale	 through	 integration	with	calcareous	nannofossil,	242	

diatom	 and	 magnetostratigraphic	 data	 (Bijl	 et	 al.,	 2018).	 By	 Southern	 Ocean	243	

standards,	the	resulting	stratigraphic	age	frame	for	the	Oligocene–Miocene	record	of	244	

Site	 U1356	 (Fig.	 2;	 Table	 1)	 is	 of	 high	 resolution.	 In	 this	 paper,	we	 investigate	 the	245	

dinocyst	 assemblages	 from	 this	 succession	 by	 utilizing	 the	 strong	 relationships	246	

between	 dinocyst	 assemblage	 composition	 and	 surface-water	 conditions	 of	 today’s	247	

Southern	 Ocean	 (Prebble	 et	 al.,	 2013).	 We	 reconstruct	 the	 oceanographic	 regimes	248	

during	 the	Oligocene	 and	mid-Miocene,	 and	 evaluate	 their	 implications.	We	 further	249	

compare	 the	 palynological	 data	 with	 lithological	 observations	 and	 their	250	

interpretations	 from	 Salabarnada	 et	 al.	 (submitted,	 this	 volume).	 Pairing	 the	251	

sedimentological	 interpretations	 and	 biomarker-derived	 absolute	 sea-surface	252	

temperature	(SST)	reconstructions	 from	Site	U1356	(Hartman	et	al.,	 submitted,	 this	253	

volume)	with	our	dinocyst	assemblage	data,	we	reconstruct	the	paleooceanographic	254	

conditions	off	Wilkes	Land	and	assess	their	variability	both	on	glacial-interglacial	and	255	

longer-term	times	scales.		256	
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	291	

2.	Material	292	

2.1	Site	description	for	IODP	Hole	U1356A	293	

Samples	were	taken	from	IODP	Hole	U1356A,	the	only	hole	from	Site	U1356,	cored	on	294	

the	 continental	 rise	 of	 the	Wilkes	 Land	margin,	 East	Antarctica	 (Figure	 1a;	 present	295	

coordinates	63°18.6’	S,	135°59.9’	E;	Escutia	et	al.,	2011).	The	paleolatitude	calculator	296	

of	van	Hinsbergen	et	al.	(2015)	was	used	to	reconstruct	the	paleolatitudinal	history	of	297	

the	site	(Figure	1,	between	-59.8±4.8°S	and	-61.5±3.3°	S	between	34	Ma	and	13	Ma,	298	

respectively).	Hole	U1356A	reaches	a	depth	of	1006.4	m	into	the	seabed	(Escutia	et	299	

al.,	2011).	Oligocene	to	upper	Miocene	sediments	were	recovered	between	890	and	3	300	

mbsf	(meters	below	sea	floor,	Figure	2;	Tauxe	et	al.,	2012;	revised	according	to	Bijl	et	301	

al.,	 2018).	The	uppermost	95	meters	 of	 the	hole	were	poorly	 recovered;	 sediments	302	

consisted	of	unconsolidated	mud	strongly	disturbed	by	rotary	drilling	(Escutia	et	al.,	303	

2011).	Hence,	we	focused	our	investigation	on	the	interval	between	Cores	11R	to	95R	304	

Section	3	(95.4–894	mbsf;	10.8–33.6	Ma;	Figure	2).		305	

	306	

2.2	Lithology	in	IODP	Hole	U1356A	307	

In	the	interval	between	95.4	and	894	mbsf,	nine	lithologic	units	have	been	recognized	308	

during	 shipboard	 analysis	 (Figure	 2;	 Escutia	 et	 al.,	 2011).	 Salabarnada	 et	 al.	309	

(submitted,	 this	 volume)	 present	 a	 detailed	 lithologic	 column	 of	 the	 Oligocene	 and	310	

Miocene	sediments.	The	 lithologic	 facies	described	 in	Salabarnada	et	al.	 (submitted,	311	

this	 volume)	will	 help	 us	 compare	 paleoceanographic	 differences	 between	 climatic	312	

extremes.	Salabarnada	et	al.	(submitted	this	volume)	distinguished	various	lithologies	313	

along	with	interpretations	of	their	depositional	settings	which	can	be	summarized	as:	314	
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1)	 laminated	 silty	 clay	 sediments	 (interpreted	 as	 glacial	 deposits;	 hereafter	 Fg),	 2)		335	

bioturbated	siltstones	and	claystones	that	in	some	intervals	are	carbonate-cemented	336	

(interpreted	as	 interglacial	deposits,	hereafter	Fi),	and	3)	perturbed	mass	 transport	337	

deposits	(MTDs):	slumps	and	debris	flows.	We	refer	to	Salabarnada	et	al.	(submitted	338	

this	 volume;	 Fig	 S2)	 for	 a	 detailed	 description	 of	 these	 facies,	 and	 to	 the	339	

supplementary	datasets	on	pangaea	for	more	detailed	separation	of	our	palynological	340	

results	per	facies	type.		341	

	342	

2.3	Bio-magnetostratigraphic	age	model	for	IODP	Hole	U1356A	343	

Stratigraphic	 constraints	 for	 the	 Oligocene–Miocene	 succession	 from	 IODP	 Hole	344	

U1356A	 are	 provided	 through	 calcareous	 nannoplankton,	 radiolarian,	 diatom	 and	345	

sparse	palynological	biostratigraphy,	complemented	by	magnetostratigraphy	(Tauxe	346	

et	al.,	2012).	Bijl	et	al.	(2018)	and	Crampton	et	al.	(2016)	have	updated	the	existing	347	

age	 model	 for	 Site	 U1356	 for	 the	 Oligocene	 and	 Miocene	 parts	 of	 the	 succession,	348	

respectively.	In	their	efforts,	they	recalibrated	the	tie	points	to	the	international	time	349	

scale	of	Gradstein	et	al.	(2012).	We	here	follow	their	revision	of	the	age	model	(Table	350	

1).	We	infer	ages	by	linear	interpolation	between	tie	points	(Figure	2;	Table	1).		351	

	352	

2.4	Depositional	setting	at	IODP	Site	U1356	353	

The	depositional	setting	at	Site	U1356	changed	from	a	shallow	mid-continental	shelf	354	

in	the	early	Eocene	(Bijl	et	al.,	2013a)	to	a	deep	continental	rise	environment	by	the	355	

Oligocene	 (Houben	et	 al.,	 2013)	due	 to	 subsidence	of	 the	Wilkes	Land	margin	 (e.g.,	356	

Close	 et	 al.,	 2009).	 Regional	 correlation	 of	 the	 facies	 at	 Hole	 U1356A	 via	 seismic	357	

profiles	suggests	a	mix	of	distal-submarine	fan	and	hemipelagic	sedimentation	during	358	
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the	 early	 Oligocene,	 grading	 into	 channel-levee	 deposits	 in	 the	 later	 Oligocene	407	

(Escutia	et	al.,	2011).	The	boundary	between	these	two	different	depositional	settings	408	

is	at	~650	mbsf;	there,	sedimentation	rates	increase,	and	the	documentation	of	mass-409	

transport	deposits	from	this	depth	upwards	suggests	shelf-derived	erosion	events	on	410	

the	Wilkes	Land	continental	slope	(Escutia	et	al.,	2011).		411	

	412	

3.	Methods	413	

3.1	Palynological	sample	processing		414	

The	 sample	 processing	 and	 analytical	 protocols	 as	 followed	 in	 this	 study	 are	 in	415	

accordance	with	standard	procedures	and	have	been	previously	described	by	Bijl	et	416	

al.	(2013b;	2018).	The	25	species	of	dinocysts	new	to	science,	which	are	formally	(2	417	

species)	and	informally	(23	species)	described	in	Bijl	et	al.	(2018),	fit	into	known	and	418	

extant	genera,	and	therefore	could	be	confidently	included	in	the	ecological	groups	as	419	

described	below.	We	refer	 to	Bijl	et	al.	 (2018)	 for	an	extensive	overview	(including	420	

plates)	of	the	dinocyst	species	encountered.	421	

	422	

3.2	Ecological	grouping	of	dinocyst	taxa	423	

Bijl	 et	 al.	 (2018)	 provided	 additional	 statistical	 evidence	 to	 distinguish	 in	 situ	424	

dinocysts	from	those	that	are	reworked	from	older	strata.	In	this	paper,	we	follow	the	425	

interpretations	of	Bijl	 et	al.	 (2018)	and	divide	 the	dinocyst	 species	 into	a	 reworked	426	

and	 an	 in	 situ	 group	 (Table	 2).	 To	 use	 the	 in	 situ	 dinocyst	 assemblages	 for	427	

oceanographic	 reconstructions,	 we	 rely	 on	 the	 observation	 that	 many	 taxa	 in	 the	428	

fossil	 assemblages	 have	morphologically	 closely	 related	modern	 counterparts.	 This	429	

approach	 takes	 advantage	 of	 studies	 on	 the	 present-day	 relationship	 between	430	
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Southern	Ocean	microplankton	 in	general	 and	dinoflagellate	 cysts	 in	particular	 and	454	

their	 surface-water	 characteristics	 (e.g.,	 Eynaud	 et	 al.,	 1999;	 Esper	 and	 Zonneveld,	455	

2002,	 2007;	 Prebble	 et	 al.,	 2013).	 We	 assign	 Oligocene–Miocene	 dinocyst	 taxa	 to	456	

present-day	 eco-groups	 interpreted	 from	 the	 clusters	 identified	 by	 Prebble	 et	 al.	457	

(2013),	 which	 appear	 to	 be	 closely	 related	 to	 the	 oceanic	 frontal	 systems	 in	 the	458	

Southern	 Ocean	 (Figure	 3).	 Supporting	 evidence	 for	 the	 ecologic	 affinities	 of	 the	459	

dinocyst	groups	comes	 from	empirical	data,	such	as	correlation	of	abundances	with	460	

other	 sediment	 properties	 or	 proxies	 (Sluijs	 et	 al.,	 2005;	 Egger	 et	 al.,	 2018),	 for	461	

instance	 with	 regard	 to	 the	 affinities	 of	 Nematosphaeropsis	 labyrinthus,	462	

Operculodinium	 spp.,	 Pyxidinopsis	 cpx.	 (this	 includes	 Corrudinium	 spp.	 and	463	

Cerebrocysta	 spp.)	 and	 Impagidinium	 spp.	There	 is	 further	abundant	evidence,	both	464	

empirically	 (e.g.,	 Sluijs	 et	 al.,	 2003;	 Houben	 et	 al.,	 2013)	 and	 from	 modern	465	

observations	(Zonneveld	et	al.,	2013;	Prebble	et	al.,	2013;	Eynaud	et	al.,	1999),	 that	466	

links	the	abundance	of	protoperidinioid	dinocysts	to	high	surface-water	productivity.	467	

The	 arguably	most	 important	 inference	 from	 the	 surface-sediment	 sample	 study	 of	468	

Prebble	et	 al.	 (2013)	 is	 that	Selenopemphix	antarctica	 is	 common	 to	dominant	 (10–469	

90%)	 south	 of	 the	 Antarctic	 polar	 front	 (AAPF).	 In	 particular,	 the	 Antarctic	470	

continental	 shelf	 exhibits	 a	 consistently	 high	 relative	 abundance	 of	 Selenopemphix	471	

antarctica.	 In	 addition	 to	 the	 surface	 samples	 of	 Prebble	 et	 al.	 (2013),	 this	 is	 also	472	

evident	 at	 the	 Wilkes	 Land	 margin	 proper	 (IODP	 Site	 U1357;	 Hartman,	 Bijl	 and	473	

Sangiorgi,	 pers.	 obs.),	 at	 Prydz	 Bay	 (Storkey,	 2006),	 in	 the	 Weddell	 (Harland	 and	474	

Pudsey,	 1999)	 and	 Ross	 Seas	 (Hartman,	 Bijl	 and	 Sangiorgi,	 pers.	 obs),	 and	 in	 the	475	

southern	 Indian	 Ocean	 (Marret	 and	 de	 Vernal,	 1997):	 samples	 all	 contain	 very	476	

abundant	 to	 dominant	 (>50	 to	 90%)	 S.	 antarctica.	 The	 dominance	 of	 this	 species	477	

Deleted: s478	
Deleted: 	479	

Deleted: seem	480	

Deleted: for	481	

Deleted: :482	

Deleted: when	it	comes483	
Deleted: oceanic	484	
Deleted: spp485	
Formatted: Font:Italic

Formatted: Font:Italic

Deleted: ,486	
Deleted: which	487	
Deleted: primary	488	

Deleted: -489	

Deleted: in	proximal	sea-ice	settings	490	
Deleted: Despite	this	variation	in	491	
abundance	noted	in	Prebble	et	al	(2013),	p492	
Deleted: P493	
Deleted: has494	
Deleted: in495	
Deleted: was	noted	at496	
Deleted: M497	
Deleted: O498	
Deleted: 	IODP	Site	U1357499	
Deleted: Sea	500	
Deleted: the	501	
Deleted: s502	
Deleted: 	503	



	 11	

becomes	even	stronger	when	considering	that	assemblages	in	these	surface	samples	504	

often	 include	 cysts	 that	 are	not	 easily	preserved	 in	older	 sediments	 such	as	 that	of	505	

Polarella	 glacialis.	 Leaving	 these	 dinocyst	 out	 of	 the	 dinocyst	 sum	 increases	 the	506	

relative	abundance	of	Selenopemphix	antarctica	in	surface	samples.	Notably,	surface-507	

sediment	samples	outside	of	the	AAPF	never	have	dominant	(~90%)	Selenopemphix	508	

antarctica	(Prebble	et	al.,	2013).	Another	 important	observation	 is	 that	 the	surface-509	

sediment	samples	south	of	the	AAPF	are	generally	devoid	of	gonyaulacean	dinocysts,	510	

with	the	exception	of	two	species	of	Impagidinium	(i.e.,	I.	pallidum	and	I.	sphaericum)	511	

that	may	 occur,	 although	 neither	 abundantly	 (Prebble	 et	 al.,	 2013)	 nor	 exclusively	512	

(e.g.,	Zevenboom,	1995;	Zonneveld	et	al.,	2013),	 in	 ice-proximal	 locations.	Abundant	513	

Nematosphaeropsis	 labyrinthus	 occurs	 exclusively	 in	 regions	 outside	 of	 the	514	

Subantarctic	 Front,	 and	 particularly	 near	 the	 Subtropical	 Front.	 Thus,	we	 conclude	515	

from	 the	 available	 literature	 a	 dominance	 of	 S.	 antarctica	 south	 of	 the	 AAPF,	 a	516	

dominance	 of	 other	 protoperidinioid	 dinocysts	 at	 and	 north	 of	 the	 AAPF,	 mixed	517	

protoperidinioid	 and	 gonyaulacoid	 dinocysts	 (with	 a	 notable	 occurrence	 of	518	

Nematosphaeropsis	 labyrinthus	 at	 the	 sub-Antarctic	 front	 (SAF),	 and	 mixed	519	

gonyaulacoid	 dinocysts	 at	 and	 outside	 of	 the	 subtropical	 front	 (STF).	 These	 trends	520	

represent	 a	 north-south	 transition	 from	 sea-ice-influenced	 to	 cold	 upwelling/high	521	

nutrient	 to	 warm-temperate/lower	 nutrient	 conditions,	 respectively.	We	 use	 these	522	

affinities	to	reconstruct	past	oceanographic	conditions	at	the	Wilkes	Land	continental	523	

margin.		524	

	525	

4.	Results	526	

4.1	Palynological	groups	527	
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In	our	palynological	analysis	we	separated	palynomorph	groups	into	four	categories:	553	

reworked	dinocysts	(following	Bijl	et	al.	(2018);	Table	2),	in	situ	dinocysts,	acritarchs,	554	

and	 terrestrial	 palynomorphs.	 Our	 palynological	 slides	 further	 contain	 a	 varying	555	

amount	of	pyritized	diatoms	and	a	minor	component	of	amorphous	organic	matter,	556	

which	is	not	further	considered	in	this	study.	The	relative	and	absolute	abundances	of	557	

the	 four	 palynomorph	 groups	 vary	 considerably	 throughout	 the	 studied	 interval	558	

(Figure	 4).	 Reworked	 dinocysts	 are	 ubiquitous	 throughout	 the	 record,	 and	 are	559	

particularly	abundant	in	the	lowermost	40	meters	of	the	Oligocene	and	in	the	Upper	560	

Oligocene.	In	situ	dinocysts	dominate	mid-Oligocene	and	mid-Miocene	palynomorph	561	

assemblages.	Chorate,	sphaeromorph	and	Cymatiosphaera-like	acritarchs	(which	are	562	

not	 further	 taxonomically	 subdivided)	 dominate	 the	 assemblage	 in	 the	 Upper	563	

Oligocene	 and	 into	 the	 mid-Miocene,	 while	 terrestrial	 palynomorphs	 (which	 are	564	

considered	 in	situ	and	not	reworked	 from	older	strata	(Strother	et	al.,	2017))	are	a	565	

constant	minor	 (a	 few	%	 of	 the	 total	 palynomorph	 assemblage)	 component	 of	 the	566	

total	 palynomorph	 assemblage	 (Fig.	 4).	 The	 terrestrial	 palynomorphs	 and	 the	567	

paleoclimatic	 and	 paleoecological	 interpretations	 derived	 from	 them	 will	 be	568	

presented	in	another	study.	569	

	570	

4.2	In	situ	dinocyst	assemblages	571	

Throughout	 the	 Oligocene,	 in	 situ	 dinocyst	 assemblages	 are	 dominated	 by	572	

protoperidinioid	 dinocysts,	 notably	Brigantedinium	spp.,	 Lejeunecysta	spp.,	Malvinia	573	

escutiana,	and	Selenopemphix	spp.	 (Figure	4),	all	of	which	are	cysts	of	heterotrophic	574	

dinoflagellates	 (e.g.,	 Esper	 and	 Zonneveld,	 2007).	 Among	 these	 protoperidinioid	575	

cysts,	S.	antarctica	 is	 frequently	present	 (up	 to	39%	of	 the	 in	 situ	 assemblage),	 but	576	
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only	between	33.6	and	32.1	Ma	(earliest	Oligocene)	and	after	14.2	Ma	(i.e.,	during	and	599	

after	 the	 mid-Miocene	 climatic	 transition;	 Fig.	 5).	 The	 remainder	 of	 the	 record	 is	600	

almost	 entirely	 devoid	 of	 S.	 antarctica.	 This	 is	 much	 in	 contrast	 to	 the	 dinocyst	601	

assemblages	nearby	Site	U1356	today,	which	are	dominated	by	this	taxon	(Prebble	et	602	

al.,	2013).	Instead	of	S.	antarctica,	other	protoperidinioid	dinocysts	dominate	during	603	

the	Oligocene	and	Miocene,	such	as	Brigantedinium	spp.,	several	Lejeunecysta	species	604	

and	Selenopemphix	nephroides,	which	have	close	affinities	to	high-nutrient	conditions	605	

in	general	(e.g.,	Harland	et	al.,	1999;	Zonneveld	et	al.,	2013),	but	are	not	specifically	606	

restricted	 to	 sea-ice-proximity	 or	 the	 Southern	 Ocean.	 Today,	 these	 three	 genera	607	

dominate	 dinocyst	 assemblages	 in	 high-nutrient	 settings	 at	 or	 outside	 of	 the	 AAPF	608	

(Prebble	et	al.,	2013).	A	varying	abundance	of	protoperidinioid	dinocysts	could	not	be	609	

placed	with	confidence	into	established	protoperidinioid	dinocyst	genera.	These	are	610	

grouped	under	 ‘protoperidinioid	spp.	pars’	 (Figure	4;	Bijl	 et	al.,	2018)	and	are	here	611	

assumed	 to	 exhibit	 the	 same	 heterotrophic	 life-style	 as	 the	 other	 protoperidinioid	612	

dinocyst	genera.	613	

Next	 to	 protoperidinioid	 dinocysts,	 gonyaulacoid	 dinocysts	 also	 occur	 in	 relatively	614	

high	abundances	throughout	the	record	from	Site	U1356.	They	comprise	both	known	615	

and	 previously	 unknown	 (Bijl	 et	 al.,	 2018)	 species	 of	 Batiacashaera,	 Pyxidinopsis,	616	

Corrudinium,	 Cerebrocysta,	 Nematosphaeropsis,	 Impagidinium,	 Operculodinium,	 and	617	

Spiniferites	(Fig.	4;	5).	The	‘others’	group	represents	exclusively	gonyaulacoid	species	618	

such	 as	 Invertocysta	 tabulata	 and	 Gelatia	 inflata.	 Except	 for	 the	 extinct	 genera	619	

Batiacasphaera	and	Cerebrocysta	and	some	genera	in	the	‘others’	group,	all	the	other	620	

genera	 are	 still	 extant	 and	 represent	phototrophic	dinoflagellates	 (Zonneveld	 et	 al.,	621	

2013).	 Their	 abundance	 is	 at	 the	 expense	 of	 the	 assumed	 heterotrophic	622	
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protoperidinioid	dinocysts.	A	marked	increase	in	abundance	of	gonyaulacoid	cysts	is	647	

associated	with	the	mid-Miocene	Climate	Optimum	(MMCO	between	~17	and	15	Ma;	648	

Fig.	 4,	 5;	 Sangiorgi	 et	 al.,	 2018).	 Of	 the	 gonyaulacoid	 taxa,	 Nematosphaeropsis	649	

labyrinthus	 is	 associated	 with	 frontal	 systems	 of	 the	 present-day	 Southern	 Ocean	650	

(Prebble	 et	 al.,	 2013)	 and	 of	 the	 North	 Atlantic	 Ocean	 (Boessenkool	 et	 al.,	 2001;	651	

Zonneveld	et	al.,	2013).		652	

	653	

4.3	Comparison	between	palynological	data	and	lithological	facies	654	

The	Oligocene-Miocene	sediments	from	Site	U1356	comprise	distinctive	alternations	655	

of	lithologic	facies	throughout	the	section	(Salabarnada	et	al.,	submitted,	this	volume;	656	

Figure	S2).	Laminated	(Fg)	and	bioturbated	sediments,	that	are	in	some	intervals	are	657	

carbonate-rich	 (Fi)	 alternate	 on	 orbital	 time	 scales	 and	 this	 pattern	 is	 in	 some	658	

intervals	 disrupted	 by	 slumps	 and/or	 debris	 flows.	We	here	 evaluate	 and	 compare	659	

the	palynological	content	of	each	of	these	facies	both	in	terms	of	absolute	and	relative	660	

abundance	of	 the	main	palynomorph	groups:	 reworked	dinocysts,	 in	 situ	dinocysts,	661	

acritarchs	 and	 terrestrial	 palynomorphs,	 and	 relative	 abundance	of	 in	 situ	dinocyst	662	

eco-groups.	663	

	 	664	

4.3.1	Palynomorph	groups	and	lithology	665	
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Reworking	 is	 a	 minor	 component	 of	 the	 palynomorph	 assemblage	 in	 the	 other	712	

lithologies	for	most	samples,	with	a	higher	absolute	abundance	in	Fi	deposits	than	in	713	
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Malvinia	escutiana	abundances	seem	to	be	higher	in	Fi	than	in	Fg	(Figure	7),	although	852	

this	species	has	a	stratigraphic	occurrence	that	is	limited	to	the	early	Oligocene	(Bijl	853	

et	 al.,	 2018).	 	Nematosphaeropsis	 labyrinthus,	Pyxidinopsis	 cpx,	Operculodinium	 spp.,	854	

and	 Impagidinium	 spp.	 reach	 higher	 relative	 abundances	 in	 Fi	 than	 in	 Fg	 facies,	855	

whereas	the	abundance	of	Batiacasphaera	spp.	seems	invariant	to	facies.		856	
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5.	Discussion	858	
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be	the	mid-Miocene	climatic	Optimum	(Sangiorgi	et	al.,	2018)	when	considerable	soil-910	

derived	organic	matter	reached	the	site.		911	
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such	that	these	oligotrophic	species	could	at	times	proliferate	so	close	to	the	Antarctic	984	

margin.		985	

	986	

5.1.2	Sea-surface	temperature	987	
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along	 with	 the	 encountered	 oligotrophic,	 temperate	 dinocysts	 suggests	1044	

fundamentally	warmer	surface-water	conditions	than	today.		1045	

	1046	

5.1.3	Surface	paleoceanography	1047	
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site.	 A	 northward	 position	 of	 the	 AAPF	 relative	 to	 the	 site	 would	 make	 such	 a	1085	

latitudinal	migration	much	more	 difficult.	 The	 presence	 of	 carbonate	 in	 these	 deep	1086	

marine	 sediments	 also	 suggests	 that	 upwelling	 of	 corrosive	 waters	 through	 the	1087	
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while	 it	would	migrate	northward	over	Site	U1356	during	glacials,	 thereby	 causing	1134	

cold,	high-nutrient	surface-water	conditions	and	obstructing	low-latitude	influence.	1135	

	1136	

5.2	Implications	for	Oligocene–Miocene	ocean	circulation		1137	

At	 Site	 U1356,	 dinocyst	 assemblages	 bear	 similarities	 to	 present-day	 proximal-1138	

Antarctic	assemblages	(Prebble	et	al.,	2013)	only	in	the	lowermost	Oligocene	and	in	1139	

strata	 deposited	 after	 the	 mid-Miocene	 Climate	 Optimum	 (after	 14.2	 Ma);	 in	1140	

particular,	they	are	characterized	by	high	abundances	(up	to	39%)	of	Selenopemphix	1141	

antarctica.	Even	in	those	intervals,	however,	the	relative	abundances	of	S.	antarctica	1142	

do	not	reach	present-day	values	at	the	same	site	(Prebble	et	al.,	2013).	The	absence	of	1143	

a	strong	shift	towards	modern-day-like	assemblages	in	our	record	can	be	interpreted	1144	

to	 reflect	 a	weaker-than-present	 ACC.	 This	 interpretation	 is	 in	 line	with	 numerical	1145	

models	(Herold	et	al.,	2012;	Hill	et	al.,	2013).	The	ACC	itself	represents	an	important	1146	

barrier	 for	 latitudinal	 surface-water	 transport	 towards	 the	 Antarctic	 margin,	 in	1147	

addition	 to	 the	 Antarctic	 Divergence	 (Olbers	 et	 al.,	 2004).	 Our	 data	 suggest	 an	1148	

increase	in	the	influence	of	oligotrophic	dinocysts	at	the	Antarctic	margin	during	the	1149	

late	 Oligocene	 and	 during	 the	 MMCO,	 which	 argues	 against	 the	 installation	 of	 a	1150	

vigorous	 ACC	 at	 30	 Ma	 as	 recently	 inferred	 by	 Scher	 et	 al.	 (2015):	 No	 particular	1151	

change	in	sea-surface	conditions	emerges	from	our	dinoflagellate	cyst	data	around	30	1152	

Ma,	and	there	is	no	major	change	in	the	benthic	δ18O	data	either	(Figure	5).	Instead,	if	1153	

the	 Tasmanian	 Gateway	 had	 opened	 to	 an	 extent	 that	 allowed	 ACC	 development	1154	

(Scher	et	al.,	2015),	the	ACC	must	have	been	much	weaker	throughout	the	Oligocene	1155	

and	Miocene	 than	 at	 present,	which	has	 also	 emerged	 from	modelling	 experiments	1156	

(Hill	et	al.,	2013).	The	strongly	different	dinocyst	assemblages	compared	to	present-1157	
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day	nearby	Site	U1356	throughout	our	record	imply	that	a	strong	coherent	ACC	was	1183	

not	installed	until	after	the	mid-Miocene	Climatic	Transition	(MMCT;	11	Ma).	This	is	1184	

consistent	 with	 inferences	 from	 the	 lithology	 at	 the	 same	 site	 (Salabarnada	 et	 al.,	1185	

submitted,	 this	 volume),	 suggesting	a	proto-ACC	much	weaker	 than	at	present	 and,	1186	

likewise,	weaker	Southern	Ocean	 frontal	systems.	An	alternative	explanation	 is	 that	1187	

the	 ACC	 increased	 in	 strength	 during	 the	 Oligocene–Miocene,	 but	 that	 this	1188	

strengthening	had	no	influence	on	the	dinocyst	assemblages	at	Site	U1356.	However,	1189	

the	 vigorous	 nature	 of	 the	 ACC	 influencing	 surface	 as	 well	 as	 bottom	 waters	 and	1190	

governing	 eddy	 water	 circulation	 in	 the	 Southern	 Ocean	 (Olbers	 et	 al.,	 2004)	 in	1191	

combination	with	 the	high	 sensitivity	of	dinoflagellates	 to	 changes	 in	 surface-water	1192	

conditions	 (e.g.,	 Zonneveld	et	al.,	2013;	Prebble	et	al.,	2013)	makes	 such	a	 scenario	1193	

very	unlikely.	Nevertheless,	to	firmly	clarify	whether	the	ACC	reached	its	present-day	1194	

strength	only	after	the	MMCT	(as	suggested	by	our	data),	ocean-circulation	modelling	1195	

of	time	slices	younger	than	the	Oligocene	(Hill	et	al.,	2013)	will	be	required.	1196	

Our	 results	 also	 seem	difficult	 to	 reconcile	with	 indications	 of	 bottom-water	1197	

formation	at	 the	Wilkes	Land	margin,	as	seen	from	neodymium	isotope	analyses	on	1198	

the	same	sediments	(Huck	et	al.,	2017).	It	could	be	that	bottom	water	formation	took	1199	

place	only	when	surface	waters	cooled	down	in	wintertime,	and	the	organic	proxies	1200	

are	 more	 representative	 of	 spring/summer	 conditions.	 Salabarnada	 et	 al.	 (this	1201	

volume)	interpret	bottom-current	activity	in	the	Oligocene	at	Site	U1356	and	suggest	1202	

it	may	be	spilling	over	from	the	Ross	Sea,	like	today.	Our	dinocyst	results	and	the	SST	1203	

reconstructions	 by	 Hartman	 et	 al.	 (submitted	 this	 volume)	 suggest	 that	 surface	1204	

waters	 at	 the	 Wilkes	 Land	 margin	 were	 too	 warm	 to	 allow	 local	 bottom-water	1205	

Deleted: a1206	
Deleted: t1207	
Deleted: ies1208	
Deleted: to	us	1209	
Deleted: 	(1210	

Deleted: the	strength	of	1211	
Deleted: changed	to1212	
Deleted: force	1213	

Deleted: N1214	

Deleted: s1215	



	 23	

formation,	 therefore	our	data	also	supports	 the	suggestion	that	bottom	water	along	1216	

the	Wilkes	Land	margin	was	sourced	from	the	Ross	Sea.		1217	

	1218	

5.3	Implications	for	ice-sheet	and	sea-ice	variability	1219	

The	 relative	 abundances	 of	 the	 sea-ice-related	 Selenopemphix	 antarctica	 are	1220	

consistently	 lower	 in	 our	 record	 than	 in	 present-day	 dinocyst	 assemblages	 nearby	1221	

Site	U1356	(Prebble	et	al.,	2013;	Figure	3).	This	suggests	that	sea-ice	conditions	were	1222	

never	 similar	 to	 today	 during	 the	 studied	 time	 interval.	 More	 specifically,	 our	1223	

dinocysts	 suggest	 the	 occurrence	 of	 sea	 ice	 near	 the	 site	 only	 during	 two	 time	1224	

intervals:	 The	 first	 1.5	 million	 years	 following	 the	 Oi-1	 glaciation	 (33.6–32.1	 Ma;	1225	

Figure	5),	and	during	and	after	 the	mid-Miocene	climatic	Transition	(after	14.2	Ma;	1226	

Figure	5).	Numerical	ice-sheet/sea-ice	modelling	(DeConto	et	al.,	2007)	has	suggested	1227	

sea-ice	 to	develop	only	 if	 the	 continental	 ice	 sheets	 reach	 the	 coastline.	Our	 lack	of	1228	

sea-ice	indicators	during	most	of	the	Oligocene	and	Miocene	could	thus	point	towards	1229	

a	 much-reduced	 Antarctic	 continental	 ice	 sheet	 during	 that	 time.	 The	 finding	 of	 a	1230	

weaker	 sea-ice	 season	 throughout	most	 of	 the	Oligocene–Miocene	 at	 Site	 U1356	 is	1231	

important	 because	 it	 suggests	 a	 decrease	 in	 the	 potential	 formation	 of	 Antarctic	1232	

bottom	waters	at	this	site.			1233	

The	 relative	 abundance	 of	 oligotrophic	 dinocyst	 taxa	 broadly	 follows	 long-1234	

term	Oligocene-Miocene	 benthic	 δ18O	 trends	 (see	 Fig.	 5):	 During	 times	 of	 low	 δ18O	1235	

values	in	deep-sea	benthic	foraminifera	(and	thus	high	deep-sea	temperatures	and/or	1236	

less	 ice	 volume;	 e.g.,	 at	 32	 Ma,	 24	 Ma	 and	 15	 Ma;	 Figure	 5),	 the	 abundance	 of	1237	

oligotrophic	temperate	dinocysts	was	high	(Figure	5).	At	times	of	higher	δ18O	values,	1238	

lower	deep-sea	temperatures	and	higher	ice	volume	(e.g.,	at	33.5	Ma,	27	Ma,	23	Ma,	1239	
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and	 13	 Ma;	 Figure	 5),	 temperate	 dinocysts	 were	 reduced	 in	 abundance	 and	 high-1271	

nutrient,	sea-ice	indicators	(re)appeared.	Altogether,	on	long	time	scales	this	pattern	1272	

suggests	 that	 there	was	 a	 stronger	 influence	 of	warm	 surface	waters	 at	 the	Wilkes	1273	

Land	margin	at	times	when	ice	sheets	were	smaller	and	climate	was	warmer,	and	less	1274	

influence	 of	 warm	 surface	 waters	 during	 times	 of	 larger	 ice	 sheets.	 Hence	 a	1275	

connection	existed	between	ice-	sheet	expansion/retreat	and	paleoceanography.	1276	

Oxygen-isotope	 mass-balance	 calculations	 suggest	 that	 a	 modern-day-sized	1277	

Antarctic	ice	sheet	formed	at	the	Eocene/Oligocene	boundary	(DeConto	et	al.,	2008).	1278	

Benthic	δ18O	records	suggest	that	ice	sheets	must	have	fluctuated	considerably	in	size	1279	

during	 the	subsequent	Oligocene	and	Miocene	(Liebrand	et	al.,	2017),	although	 this	1280	

inference	 lacks	 an	 independent	 assessment	 of	 the	 deep-sea	 temperature	 effect	 in	1281	

these	δ18O	values.	The	same	conclusion	was	reached	based	on	detailed	microfossil,	1282	

geochemical	 and	 facies	 analyses	 on	 sediments	 from	 the	Gippsland	Basin,	 southeast	1283	

Australia	(Gallagher,	et	al.	2013).	This	study	suggests	that	ice	volume	during	the	early	1284	

Oligocene	 varied	 by	 as	 much	 as	 140-–40%	 of	 its	 present-day	 size,	 of	 which	 the	1285	

maximum	ice	volume	estimates	far	exceed	those	implied	by	our	data,.	However,	there	1286	

is	 consistency	 in	 the	 observation	 of	 considerable	 glacial-interglacial	 and	 long-term	1287	

dynamics	 in	 the	 ice-ocean	 system.	 	 This	 is	 in	 contrast	 to	 the	 heavy	 δ18O	 values	 for	1288	

Oligocene	benthic	foraminifera	from	Maud	Rise	(ODP	Site	690),	which	lead	to	suggest	1289	

Antarctic	 ice	 sheets	 were	 near-present-day	 size	 throughout	 the	 Oligocene	1290	

(Hauptvogel	 et	 al.,	 2017).	 It	 remains	 to	 be	 seen	 whether	 the	 variability	 in	1291	

paleoceanography	as	indicated	by	our	data	can	be	extrapolated	to	larger	parts	of	the	1292	

Antarctic	 margin,	 including	 regions	 of	 deep-water	 formation.	 Given	 the	 high	1293	

temperatures	and	only	weak	sea-ice	influence,	the	Wilkes	Land	margin	was	likely	not	1294	
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the	primary	sector	of	deep-water	 formation	(see,	e.g.,	Herold	et	al.,	2012),	although	1324	

there	 is	 ample	 evidence	 for	 bottom-current	 activity	 at	 the	 site	 (Salabarnada	 et	 al.,	1325	

submitted,	 this	 volume;	 Huck	 et	 al.,	 2017).	 Instead,	 it	 appears	 that	 bottom-water	1326	

formation	during	the	Oligocene	was	taking	place	along	the	Wilkes	Land	coast	(Huck,	1327	

et	al.	2017).	If	the	oceanographic	and	climate	variability	that	we	reconstruct	offshore	1328	

Wilkes	Land	also	characterises	regions	of	deep-water	 formation,	some	(if	not	all)	of	1329	

the	variability	both	on	long	and	on	orbital	time	scales	as	documented	in	benthic	δ18O	1330	

records	would	be	due	to	changes	 in	deep-sea	 temperature	rather	 than	Antarctic	 ice	1331	

volume	(see	also	Hartman	et	al.,	 submitted,	 this	volume).	 	Meanwhile,	we	 find	 little	1332	

support	 in	 our	 study	 for	 the	 large	 (and,	 by	 implication,	 marine-terminating)	1333	

continental	ice	sheets	in	this	sector	of	East	Antarctica	during	the	Oligocene	as	implied	1334	

by	Hauptvogel	et	al.	(2017)	given	the	absence	of	dominance	of	sea-ice	dinocysts	and	1335	

the	 presence	 of	 in	 situ	 terrestrial	 palynomorphs	 (Strother	 et	 al.,	 2017).	 As	 an	1336	

alternative	 explanation	 for	 the	 difference	 in	 δ18O	 values	 between	 Maud	 Rise	 (Site	1337	

690)	and	 the	equatorial	Pacific	 (Site	1218)	during	 the	Oligocene	 (Hauptvogel	 et	 al.,	1338	

2017),	 we	 suggest	 that	 these	 two	 sedimentary	 archives	 have	 recorded	 the	1339	

characteristics	 of	 two	 different	 deep-water	 masses,	 with	 those	 at	 Maud	 Rise	 (Site	1340	

690)	 being	much	 colder	 and	more	 saline	 than	 those	 in	 the	 equatorial	 Pacific	 (Site	1341	

1218).		1342	

	1343	

6.	Conclusions		1344	

The	dinocyst	assemblages	in	the	Oligocene–Miocene	(33.6–11	Ma)	of	Site	U1356	were	1345	

interpreted	 in	 terms	 of	 surface-water	 paleoceanography	 via	 comparison	 with	1346	

present-day	dinocyst	distribution	patterns.	Based	on	our	results,	we	suggest	that	the	1347	
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Oligocene–Miocene	 surface	 paleoceanography	 of	 the	 Southern	 Ocean	 was	1377	

fundamentally	different	 from	that	of	 today.	A	sea-ice	signal	(yet	still	weaker	than	at	1378	

present)	emerges	for	the	Wilkes	Land	margin	only	for	the	first	1.5	million	years	of	the	1379	

Oligocene	 (33.6–32.1	Ma)	 and	during	 and	after	 the	mid-Miocene	 climatic	 transition	1380	

(after	14.2	Ma).	During	 the	 remainder	of	 the	Oligocene–Miocene,	 surface	waters	off	1381	

Wilkes	Land	were	warm	and	relatively	oligotrophic;	notably,	they	lack	indications	of	1382	

a	 prominent	 sea-ice	 season.	 Upwelling	 at	 the	 Antarctic	 Divergence	was	 profoundly	1383	

weaker	 during	 Oligocene	 and	 Miocene	 times	 than	 at	 present,	 or	 significantly	1384	

displaced	southward	from	its	present-day	position.	Furthermore,	the	continental	ice	1385	

sheets	 were	 much	 reduced	 at	 the	 Wilkes	 Land	 sub-glacial	 basin	 for	 most	 of	 the	1386	

Oligocene–Miocene	 compared	 to	 today.	 The	 influence	 of	warm	oligotrophic	 surface	1387	

waters	appears	strongly	coupled	to	deep-sea	δ18O	values,	suggesting	enhanced	 low-1388	

latitude	influence	of	surface	waters	during	times	of	light	δ18O	in	the	deep	sea	and	vice	1389	

versa.	The	absence	of	(a	trend	towards	a	stronger)	paleoceanographic	isolation	of	the	1390	

Wilkes	Land	margin	throughout	the	Oligocene	to	mid-Miocene	suggests	that	the	ACC	1391	

may	 not	 have	 attained	 its	 full,	 present-day	 strength	 until	 at	 least	 after	 the	 mid-1392	

Miocene	 Climatic	 transition.	 Moreover,	 we	 note	 considerable	 glacial-interglacial	1393	

amplitude	variability	in	this	oceanographic	setting.	Stronger	influence	of	oligotrophic,	1394	

low-latitude-derived	 surface	 waters	 prevailed	 over	 Site	 U1356	 during	 interglacial	1395	

times	 and	 more	 eutrophic,	 colder	 waters	 during	 glacial	 times.	 This	 pattern	 may	1396	

suggest	considerable	 latitudinal	migration	of	 the	AAPF	over	the	course	of	Oligocene	1397	

and	Miocene	glacial-interglacial	cycles.	1398	
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Figure	captions	1453	

Figure	 1.	 Paleogeography	 of	 the	 Southwest	 Pacific	Ocean	 and	 position	 of	 IODP	 Site	1454	

U1356	 (red	 star)	 at	 (a)	 0	 Ma,	 (b)	 10	 Ma,	 (c)	 20	 Ma,	 and	 (d)	 30	 Ma.	 Figures	 are	1455	

modified	 after	 Bijl	 et	 al.	 (2018).	 Reconstructions	were	 adapted	 from	G-plates,	with	1456	

plate	 circuit	 from	 Seton	 et	 al.	 (2012)	 and	 absolute	 plate	 positions	 of	 Torsvik	 et	 al.	1457	

(2012).		1458	

	1459	

Figure	 2.	 Age	 model	 for	 the	 Oligocene–Miocene	 interval	 of	 Hole	 U1356A.	 Core	1460	

recovery,	 lithostratigraphic	 facies	 after	 Salabarnada	 et	 al.	 (this	 volume;	 see	 also	1461	

Sangiorgi	 et	 al.,	 2018)	 and	 lithostratigraphic	 units	 (Escutia	 et	 al.,	 2011),	 Samples	1462	

taken	 for	palynology	and	age-depth	plot	 (tie	points	were	derived	 from	Tauxe	et	al.,	1463	

2012,	which	has	been	recalibrated	to	the	GTS2012	time	scale	of	Gradstein	et	al.,	2012	1464	

and	modified	based	on	Crampton	et	al.,	2016)).	Grey	intervals	in	paleomagnetic	data	1465	

reflect	unknown	paleomagnetic	orientation,	either	due	to	absence	of	core	recovery	or	1466	

poor	signal.	(o)	=	old	end;	(y)	=	young	end.	Figure	modified	from	Bijl	et	al.	(2018).	1467	

	1468	

Figure	3.	Generic	representation	of	present-day	distributions	of	dinocysts	in	surface	1469	

sediments	in	the	Southern	Ocean.	The	dinocyst	pie	charts	represent	average	dinocyst	1470	

assemblage	compositions	for	surface	sediments	underneath	oceanic	frontal	zones	in	1471	

the	Southern	Ocean.	Figure	modified	from	Sangiorgi	et	al.	(2018),	data	replotted	from	1472	

Prebble	et	al.	(2013).	1473	

	1474	

Figure	 4.	 Core	 recovery	 and	 lithostratigraphic	 facies	 (after	 Salabarnada	 et	 al.,	 this	1475	

volume,	 and	 Sangiorgi	 et	 al.,	 2018)	 and	 lithologic	 units	 (Escutia	 et	 al.,	 2011),	1476	
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chronostratigraphic	 epochs	 (E	 =	 Eocene)	 and	 stages	 (L	 =	 Lutetian,	 Burd.	 =	1497	

Burdigalian,	Ser.	=	Serravallian,	T.	=	Tortonian),	absolute	palynomorph	(grey)	and	in	1498	

situ	 dinocyst	 (black)	 concentrations	 (#	 per	 gram	 of	 dry	 sediment,	 presented	 on	 a	1499	

logarithmic	 scale),	 palynomorph	 content	 (reworked	 dinocysts,	 in	 situ	 dinocysts,	1500	

acritarchs,	 terrestrial	 palynomorphs	 (given	 in	 percentages	 of	 total	 palynomorphs),	1501	

and	 relative	 abundance	 of	 in	 situ	 dinocyst	 eco-groups	 (in	 percentage	 of	 in	 situ	1502	

dinocysts)	for	the	Oligocene–Miocene	of	Hole	U1356A.		1503	

	1504	

Figure	 5.	 Compilation	 of	 benthic	 foraminiferal	 oxygen	 isotope	 data	 from	 Site	 588	1505	

(Zachos	et	al.,	2008),	Site	1090	(Zachos	et	al.,	2008)	Site	1218	(Pälike	et	al.,	2006),	 ,	1506	

Sites	 1264/1265	 (Liebrand	 et	 al.,	 2017),	 Site	 U1334	 (Holbourn	 et	 al.,	 2015),	 Site	1507	

U1337	(Beddow	et	al.,	2016),	all	calibrated	to	the	GTS2012	time	scale	(Gradstein	et	1508	

al.,	 2012)	 with	 	 in	 situ	 dinocyst	 assemblage	 data	 from	 Site	 U1356	 (see	 Fig.	 4	 for	1509	

legend).	 	For	presentation	of	the	dinocyst	data	(see	Fig.	4	for	legend),	the	age-depth	1510	

model	specified	in	Figure	2	and	Table	1	was	used.		1511	

	1512	

Figure	6.	Comparison	of	absolute	(left	bar,	in	#	*	gr	-1	dry	weight)	and	relative	(right	1513	

bar;	 in	%	of	 total	 palynomorphs)	 abundances	of	palynomorph	groups	per	 lithology	1514	

for	 Hole	 U1356A.	 Average	 (black	 lines)	 and	 17–83%	 percentile	 (coloured	 bar)	 of	1515	

absolute	and	relative	abundances	of	total	palynomorphs,	reworked	dinocysts,	in	situ	1516	

dinocysts,	 acritarchs,	 and	 terrestrial	 palynomorphs	 grouped	 for	 the	 different	 facies	1517	

(Salabarnada	et	al.,	submitted	this	volume).			1518	
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Figure	7.	Abundance/concentration	of	in	situ	eco-groups	within	various	lithologies	at	1550	

Hole	U1356A.	Average	(black	line)	and	17–83%	percentile	(coloured	bar)	of	relative	1551	

abundances	of	grouped	taxa	 from	samples	 from	the	different	 facies	 (Salabarnada	et	1552	

al.,	submitted	this	volume).		1553	

	1554	

Table	captions	1555	

Table	1.	Age	constraints	for	the	Oligocene–Miocene	of	Hole	U1356A.	1556	

Table	2.	List	of	assumed	in	situ	and	reworked	dinoflagellate	cyst	taxa	encountered	in	1557	

this	study.	See	Bijl	et	al.	(2018)	for	informal	species	descriptions	and	discussion	about	1558	

which	species	are	considered	reworked	and	in	situ.		1559	
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