
Answer to anonymous referee #2’s commnets

Fallah et al.

February 27, 2018

We would like to thank the reviewer for his comments and general

feedbacks that gave us the opportunity to reconsider and eventually

improve several aspects of the paper. In particular, following her/his

comments, we realized that the goals of the paper were not particu-

larly clear in the manuscript and that the reviewers were expecting a

real paleoclimate application, for which the manuscript was initially

designed. For this purpose, we will change the structure of the paper

as follows:

1- introduction, 2- data and method, 3- Results: 3.1- Unconstrained

Ensemble Runs, 3.2 Constrained Ensemble Runs (Perfect model ex-

periment), 3.3 Application to a paleo study: the case of summer

temperatures over Europe at the mid-Holocene, 4- discussions and

conclusions

The case study we selected for the application of the proposed DA

offline method, is one that has been the subject of a long-standing

debate within the paleoclimate community, with contrasting inter-

pretations arising from climate model simulations and from different

proxy types. Indeed, it is particularly suitable for the scope of paleo-

data assimilation: joining together climate records and physical rep-

resentation of the climate system could offer a more reliable picture

than single proxy-datasets or climate models, and contribute to such

1



complex debates. We make the new intents of the paper clear and,

in particular, that our focus is to introduce, test and apply a data as-

similation method to a specific paleoclimate case-study. Our answer

contains 11 new figures located at the end of this answer. We answer

the comments(italic) point by point in Bold:

1- In this paper, the authors test an offline DA approach using a high res-

olution regional climate model. The experiments test how error is reduced by

assimilating pseudo and real observations. The experiments are scientifically

sound, but I have significant concerns about the applicability of the results in the

current manuscript to the general paleoclimate reconstruction problem. What

the authors have done in showing error reduction in some idealized reconstruc-

tions is a necessary first step in showing that the DA works, but I don’t think the

results shown here warrant publication. Many other previous studies have shown

that DA for paleoclimate at a range of time and spatial scales works (monthly

to decadal and coarse to ∼ 1 degree resolution), so that’s not really in question.

In so far as the applicability is concerned, the experiments use a very dense

observation network with very high SNR values, while the paleoclimate recon-

struction problem has the opposite characteristics: low observation density and

low SNR values. Typically reconstructions of this kind use a network based on

actual proxy sites and SNR values of around 0.5. These choices have significant

impacts on the skill of the reconstructions and the some of the conclusions that

can be drawn from them. If a dense proxy network and a larger SNR are chosen,

then this needs to be vigorously defended based on the scientific goals of the study.

The aim of our work is not the repetition of experiments done in

previous studies. We propose a method for data assimilation that

could be applied to paleoclimate studies. In particular we consider

the case of mid Holocene for Europe since it is one of the most impor-

tant case of debate between climate modelers and proxy community.

We select the data of [Russo and Cubasch, 2016] since they are one

of the most recent simulations for the period. This choice does not

exclude the possibility to apply the Offline DA method to other peri-

2



ods or simulations. This case study is done with realistic proxy data

(numbers, locations, SNR, ...), therefore we believe that we cover all

your critics mentioned above.

In the paper we have already done series of DA experiments for

winter and summer with different SNR values starting from 0.1 to 10.

Figure 4 of the submitted manuscript shows the results with different

SNR values. You mentioned that the SNR value of 3 is very high in

our experiment set-up. However, the difference in field-mean RMSE

for SNR=0.1 and SNR=3.0 in summer is not significant (<0.003 K)

and for Winter (<0.01 K). For clarity we have plotted again the RMSE

map for SNR=0.1 and SNR=3.0 for winter and summer here (Fig.1

and Fig.2). The RMSE maps show very little differences between

SNR=0.5 and SNR=3.0. We hoped that the figure 4 was clear for

the readers, if that is not the case, we could add the maps along with

the figure 4 in new version of the manuscript.

Regarding the number of assimilated observations, we had up-

loaded two movies in the assets part of the publication, which show

changes in RMSE with increasing number of observations from 100

to 2700. We repeated the DA experiment 54 times, 2(seasons)×

27(sets of stations). It was already shown in the videos that with

even small number of observations the analysis has still significant

skill. Here we plot the RMSEs again for 100 to 400 assimilated

observations for winter and summer (Figs 3 and 4). On the other

hand in very recent studies focusing on reconstruction of climatic

variables the number of records used are similar to the number we

have chosen: for example [Mauri et al., 2015] have used “879 se-

lected pollen sites representing nearly 60,000 pollen counts” (see

Figure 1 of their paper https://ars.els-cdn.com/content/image/1-s2.

0-S0277379115000372-gr1.jpg). Or [Franke et al., 2017] have used a

proxy network which is very dense over Europe (Figure 3 of their

paper :https://www.nature.com/articles/sdata201776/figures/3). Or

the location of sites in the study of [Marlon et al., 2017] in North
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America is also a dense one. Or [Cook et al., 2010b] where they used

1,854 annual tree-ring chronologies over North America (Figure 5 of

their study : http://onlinelibrary.wiley.com/doi/10.1002/jqs.1303/

pdf). Or the study of [Cook et al., 2010a] where they used a 327-series

tree-ring chronology network to reconstruct the Palmer Drought in-

dex over Asian mansoon area (Figure 1 of their paper : https://

d2ufo47lrtsv5s.cloudfront.net/content/sci/328/5977/486/F1.large.jpg).

Therefore, we believe 500 stations over Europe looks realistic with

new advances in paleo-data collection, synthesis and stewardship (for

example https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/

datasets). Even if that is not the case, we showed fewer numbers of

observations still work for error reduction of analysis. Please note

that we do not only show the results of perfect model experiments,

but on the 3rd set-up we are assimilating the real temperature data

from E-OBS.

However, to clear any further doubts, we set up a new experiment

in which we assimilated real observation during the Holocene. Please

read the answer to question 5.

2- However, with the current climate model simulations they have, the authors

are well positioned to answer some important questions that would be directly

relevant to paleoclimate reconstructions. Such questions include: What benefits

come from using the very high resolution simulations compared to the simula-

tions that people have used so far?

This question is challenging the usage of nested RCM simulations

for paleo-climate studies or if RCM simulations have additional value

compared to the GCM simulations. Generally speaking, such ques-

tions might be a topic for a new study and it is out of the scope of

our research in this paper. However, the questions regarding the ad-

vantage of RCMs over GCMs for paleoclimate, relatively to the con-

sidered case study (temperature over europe at the mid Holocene)

has been answered in [Russo and Cubasch, 2016]. Even though the
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paper did not solve the issue, it gives a relatively important support

to the choice of the CCLM simulations for the purposes of our new

study. There exist several methods for testing the added values of

RCM simulations in capturing more details of the climate state. In

the context of offline DA, the background should be a dynamically

consistent state of the climate. It might come from a random draw

from any climatology or from ensemble of free simulations (without

re-initializations). There is no limit on the background to be global

or regional. In most of the Ensemble Kalman Filtering approaches

one considers covariance localization to remove spurious correlations

and the covariance is not calculated globally. If the background can

capture more details of the climate correctly, it might add value to

the analysis as well. Here the offline DA plays as a postprocessing

agent and tries to correct the background and if RCM background

is more skilful than in the GCM simulations, is out of our research

scope. However, we present some discussions in the answer to the

next two questions.

3- Can you get better reconstructions using very high resolution climate mod-

els?

This question is very close to the previous one. It is a question

about which benefits one can get by using RCM simulations. The

resolution of the reconstructed field is the one of the background

state. Usually the usage of RCM simulations in pealo studies are

bounded in the time integragtions of several decades which is called

time-slice simulation methods. Where one needs to explore the cli-

mate state over a specific region with more details. Studies using the

GCM simulations as their background, however, are mostly interested

in longer time-scales of several thousand years, and the climatic in-

terconnections. The approach presented here is an additional tool for

magnifying the interesting time-slices within the driving GCM with

more details which are not captured by GCMs locally. In practice it

would be very beneficial to assimilate the observations in both the
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RCM and the driving GCM.

4- Are reconstructions that focus on specific regions more skillful than recon-

structions designed on a global scale? Are certain variables better reconstructed

in a regional framework? Etc.

This could be tested in an additional study. However, one should

first set the skill metric for such comparisons. Most of the paleo

GCM simulations (if fully coupled) are at low/middle resolutions and

number of the ensemble members are very limited. If the RCM can

capture more realistic details of the climate state, then it would be

beneficial to use them for time-slice simulations. We should mention

that one of our main motivations is to resolve the gap of regional to

local scale climate change, which might be of interest in the paleo-

community. For example the uncertainties of proxy data are bound at

regional scales. However, the performance of the RCM might vary for

different variables. Assuming that in an RCM there are more realistic

physical processes implemented than the GCM (especially complex

topography) which otherwise had to be parameterised in GCMs, the

resolution of such models are of advantage when comparing with the

proxy data. One problem of using coarse GCM data might be for

example the process of selecting the best observation within a grid cell

for DA scheme (“data thinning”) or sampling with averaging for the

observations within a grid cell (“super-obing”). By using the RCMs,

we are reducing such problems. For comparison of proxy and GCM,

one might use classical approaches (statistical downscaling, upscaling,

forward model), however, such methods for a coarse resolution of

GCM might be very challenging as one has to evaluate or train such

models with very short observation time-window. The proxy-data

relation might also change over time (not stationary). On the other

hand, the feedback of regional climatic changes on the global scale is

ignored using one-way nesting approach applied in our simulations.

Finally, we should mention that with our domain set up the RCM is

constrained by the GCM at the lateral boundaries and therefore its
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internal variability is similar to the driving GCM at large scale. This

behavior is detectable by the maps of ensemble spread shown in the

manuscript and answer to reviewer 1. By changing the domain or

initialization time, the RCM simulations do not vary dramatically.

5- So while I recommend that the paper not be published, I would strongly

encourage the authors to resubmit the paper using reconstructions that are more

clearly connected to the larger paleoclimate reconstruction problem.

We would like to ask you to give us a second chance to modify the

manuscript accordingly. We hope the revised version could be ac-

cepted in the CP. As recommended, we have done additional exper-

iments using real proxies(pollen-based) and precomputed COSMO-

CLM simulations during several time-slices of the Holocene. A com-

plete explanation of the experiments will be implemented in the new

version of the manuscript. Here we briefly explain the method and

show the results for one summer-time (JJA) time-slice of 6000 years

before present(6KBP):

We have used the pollen-based temperature reconstructions of [Mauri et al., 2015],

(for more information on the data ref. to [Mauri et al., 2015] and the

references therein) and the model simulations of [Russo and Cubasch, 2016].

For evaluation, we keep 22% of the proxy data as the test data, and

assimilate the rest 78%. The test data is selected randomly. We

tested two approaches for averaging the proxy data for the target

time-slices: a) averaging with respect to their distance to the tar-

get year (6KBP) and b) averaging with respect to their uncertainties

provided as standard error by [Mauri et al., 2015] at the observation

time:

a): We chose a time window centered on the target year, (e.g.,

reference time ∓500 years) and weight the values and the standard

errors by their time distance to the target year. The weights are cho-

sen from a normal distribution with standard deviation of 100. To-

tally 3 weighting time-spans are defined. Figure 5 shows the weights
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assigned to each time interval with respect to the reference time.

b): We chose the observations within the time window of reference

year ∓500 years. Then we apply the weighted arithmetic mean of the

temperature and its standard error to calculate the time-slice values

(6KBP). Each proxy is weighted first by its standard error. Then the

weighted mean is calculated by:

x̄ =

∑n
i=1(xiσ

−2
i )∑n

i=1 σ
−2
i

(1)

The uncertainty of the weighted mean is given then by:

σ2
x̄ =

1∑n
i=1 σ

−2
i

(2)

Where the σ is the standard error. Figure 6 shows the schematic of

weighting of observations with respect to their standard errors.

Finally, for the model, we assign the 25-year time-average as the

expected value and the standard deviation from the mean as uncer-

tainty measure. Figure 7 shows the schematic of the approach. Please

note that for each time-slice we have a single model run of 25 years.

We assume that each year of the model simulation could serve as an

ensemble member for each target time-slice (6KBP). Therefore, the

analysis is done for a single step using the background information of

the 25 years.

DA Results:

Figure 8.a shows the analysis results for summer T2m tempera-

ture anomalies (6KBP-0.2KBP) over Europe along with the testing

observations (circles) superposed on their standard error(squares).

The analysis and the proxy show a good agreement especially for

observations with low standard error. In contrast, the model fore-

cast (without assimilation) and the proxies (Fig. 8.b) show little

agreement. The assimilated observation are shown in Figure 9. The

positive anomalous region over Romanian in the analysis is due to

the cluster of proxy data with low standard error over this region.
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Overall, we conclude that the proposed DA approach is contributing

to the error reduction in the analysis values where the pure model

outputs might not capture the local patterns.

Repeating the analysis approach with the different weighted mean

of observations (method b) leads to very similar patterns in analysis

(Figures 10 and 11). In the final version of the manuscript we will

publish the maps and the netcdf files of the analysis and model for

summer and winter for 6 different time slices during the Holocene

(6KBP to 1KBP).

Additional minor comments: Section 3.2: Where does the localization function

come from? What are x, y, and n? Does this function have compact support?

Also, I don’t think that one can choose an ”optimal” localization independent of

information about the observations.

We will move this part to the OI basics where the P, x, y and are

defined and will work on this comment in the new version of the

manuscript.

The ensemble size appears to change between experiments. Is it possible to

keep it the same size for all the experiments?

We could remove the experiment with short integration runs, how-

ever we thought that the effect of ensemble size might be interesting

for the readers. On the other hand reviewer 1 is asking to set up a

new sets of experiment with increasing the ensemble size for longer

simulations by using random draws from climatology.

The figure captions are rather sparse. I’d recommend further explanation of

the plots in the captions. Many of the equations could benefit from a more con-

densed notation instead of writing out fully ”Analysis” or ”Trace”, for example.

Done in new version of manuscript.
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[Franke et al., 2017] Franke, J., Brönnimann, S., Bhend, J., and Brugnara, Y.

(2017). A monthly global paleo-reanalysis of the atmosphere from 1600 to

2005 for studying past climatic variations. Scientific Data, 4:170076–.

[Marlon et al., 2017] Marlon, J. R., Pederson, N., Nolan, C., Goring, S., Shu-

man, B., Robertson, A., Booth, R., Bartlein, P. J., Berke, M. A., Clifford, M.,

Cook, E., Dieffenbacher-Krall, A., Dietze, M. C., Hessl, A., Hubeny, J. B.,

Jackson, S. T., Marsicek, J., McLachlan, J., Mock, C. J., Moore, D. J. P.,

Nichols, J., Peteet, D., Schaefer, K., Trouet, V., Umbanhowar, C., Williams,

J. W., and Yu, Z. (2017). Climatic history of the northeastern united states

during the past 3000 years. Clim. Past, 13(10):1355–1379.

[Mauri et al., 2015] Mauri, A., Davis, B., Collins, P., and Kaplan, J. (2015).

The climate of europe during the holocene: a gridded pollen-based reconstruc-

tion and its multi-proxy evaluation. Quaternary Science Reviews, 112(Sup-

plement C):109–127.

[Russo and Cubasch, 2016] Russo, E. and Cubasch, U. (2016). Mid-to-late

holocene temperature evolution and atmospheric dynamics over europe in

regional model simulations. Clim. Past, 12(8):1645–1662.

10



(a) SNR=0.5

45°N

60°N

30°N

15°N

0° 20°E

45°N

60°N

30°N

15°N

0° 20°E 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
E
 [

K
]

(b) SNR=3.0
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Figure 1: (a): 10-year RMSE [K] of analysis for summer(JJA) with SNR=0.5

and (b) SNR=3.0.
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(a) SNR=0.5
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(b) SNR=3.0
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Figure 2: (a): 10-year RMSE [K] of analysis for winter(DJF) with SNR=0.5

and (b) SNR=3.0.
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(a) Without Assimilation for summer
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(b) Number of Obs. = 100
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(c) Number of Obs. = 200
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(d) Number of Obs. = 300
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(e) Number of Obs. = 400
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Figure 3: Analyis RMSE for different number of observations for summer (JJA)

(a): without assimilation, (b); with 100, (c): with 200, (d): with 300 and (e):

with 400 observations.
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(a) Without Assimilation for winter
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(b) Number of Obs. = 100
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(c) Number of Obs. = 200
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(d) Number of Obs. = 300
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(e) Number of Obs. = 400
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Figure 4: Analyis RMSE for different number of observations for winter (DJF)

(a): without assimilation, (b); with 100, (c): with 200, (d): with 300 and (e):

with 400 observations.
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Figure 5: Schematic showing the weights for observations with respect to their

distance to the target year. Time window of 1000 years is chosen. The obser-

vations are weighted depending on their distances to the reference time.
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Figure 6: Schematic showing the weights for observations with respect to their

standard error. Time window of 1000 years is chosen. The red dots resemble the

proxies in the 1000-year time window and the green dot resembles the weighted

mean.
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Figure 7: Schematic showing how the expected value (the mean) and the de-

viation from the mean for each time-slice simulation is selected. The model

simulation is 25 years long. Green line resembles the model state.
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Figure 8: DA results using weighted arithmetic mean by time distances: (a):

Analysis values along with the testing observations (circles) and their standard

error (squares). Values with error covariance of analysis greater than 0.9 are

masked out from analysis, and (b) the model forecast.

17



4

2

0

2

4

Figure 9: Weighted arithmetic mean using time distances: Anomalies ((6KBP

- 0.2KBP)) of assimilated observations (circles) superposed on their standard

errors(squares) with values in K. Color-bar of the standard errors as in Figure

8.a.
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Figure 10: DA results using weighted arithmetic mean by standard errors: (a):

Analysis values along with the testing observations (circles) and their standard

error (squares). Values with error covariance of analysis greater than 0.9 are

masked out from analysis, and (b) the model forecast.
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Figure 11: Weighted arithmetic mean using standard errors: Anomalies ((6KBP

- 0.2KBP)) of assimilated observations (circles) superposed on their standard

errors(squares) with values in K. Color-bar of the standard errors as in Figure

8.a.
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