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Abstract: The climate during the Cretaceous Period represented one of the 13 

“greenhouse states” of Earth’s history. Significant transformation of climate patterns 14 

and a mass extinction event characterised by the disappearance of dinosaurs occurred 15 

across Cretaceous–Palaeogene boundary. However, most records of this interval are 16 

derived from marine sediments. The continuous and well-exposed red strata of the 17 

Nanxiong Basin (SE China) provide ideal material to develop continental records. 18 

Considerable research into stratigraphic, palaeontological, chronologic, 19 

palaeoclimatic, and tectonic aspects has been carried out for the Datang Profile, which 20 

is a type section of a non-marine Cretaceous–Palaeogene stratigraphic division in 21 

China. For this study, we reviewed previous work and found that: 1) the existing 22 

chronological framework of the Datang Profile is flawed; 2) precise palaeoclimatic 23 

reconstruction is lacking because of the limitations of sampling resolution (e.g. 24 

carbonate samples) and/or the lack of efficient proxies; and 3) comparisons of climate 25 
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changes between marine and continental records are lacking. To resolve these 26 

problems, detailed field observations and sampling, as well as environmental 27 

magnetic and rare earth element (REE) measurements, were carried out. The results 28 

show that: 1) more accurate ages of the Datang Profile range from 72 Ma to 62.8 Ma, 29 

based on a combination of the most recently published radiometric, palaeontological 30 

and palaeomagnetic ages; 2) there is considerable evidence of palaeosol generation, 31 

which indicates that the red strata formed in a long-term hot, oxidizing environment 32 

that lacked of underwater condition; 3) haematite was the dominant magnetic mineral 33 

in the red strata, and the variation trend of magnetic susceptibility was consistent with 34 

the oxygen isotope records from deep-sea sediments, which indicates that the content 35 

of hematite was controlled by global climate; and 4) the palaeoclimate changes from 36 

72 Ma to 62.8 Ma in the Nanxiong Basin were consistent with global patterns, and 37 

can be divided into three stages: a relatively hot and wet stage during 72–71.5 Ma, a 38 

cool and arid stage during 71.5–66 Ma, and a relatively hot and wet stage again 39 

during 66–62.8 Ma with a notable drying and cooling event at 64.7–63.4 Ma. 40 

Moreover, there are several sub-fluctuations during each stage. This work provides 41 

basic information for further palaeoclimate reconstruction with higher resolution and 42 

longer time scales for the Cretaceous to Palaeocene in the Nanxiong Basin, and may 43 

even help to test ocean–land climate interactions in the future. 44 

Keywords: Cretaceous–Palaeogene boundary; Nanxiong Basin; Palaeosol; 45 

Environmental magnetism; Palaeoclimate evolution  46 

1 Introduction 47 

The Earth existed in a greenhouse state during the Late Cretaceous (Hay, 2011; 48 

Friedrich et al., 2012; Wang et al., 2014); palaeoclimate studies show that based on 49 
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marine records, the seawater surface temperature near the equator reached up to 36℃ 50 

during the Late Cretaceous (Linnert et al., 2014), and reconstructed CO2 51 

concentrations reach up to 837 ppm across the Cretaceous–Tertiary boundary, as 52 

recorded in palaeosol carbonates in NE China (Huang et al., 2013). The correlation 53 

between extreme greenhouse climate and high CO2 concentration across this 54 

boundary may provide insights for global warming in the present (Wang et al., 2013b). 55 

The palaeotemperature decreased significantly from the Mesozoic Era to the Cenozoic 56 

(Zachos et al., 2001; Hay, 2011), and a mass extinction event occurred across the 57 

Cretaceous–Palaeogene boundary (Schulte et al., 2010; Renne et al., 2013); climate 58 

changes and biological evolution during this interval have therefore become a 59 

research hotspot. However, most studies of climate change across the Cretaceous–60 

Palaeogene boundary have been derived from marine records (Huber et al., 1995; 61 

Barrera and Savin, 1999; Cramer et al., 2009; Friedrich et al., 2012; Bodin et al., 62 

2015). Terrestrial palaeoclimate records are few, and published comparisons and 63 

correlations between marine and terrestrial palaeoclimate records are even fewer 64 

(Wang et al., 2013b).  65 

There are many basins with Cretaceous continental sediments distributed across 66 

China (Li et al., 2013), such as the Songliao Basin (NE China, Wu et al., 2009; 67 

Bechtel et al., 2012; Chamberlain et al., 2013; Wang et al., 2013a, b; Wan et al., 68 

2013), the Sichuan Basin (SW China; Li, 1988; Huang et al., 2012; Li et al., 2015), 69 

and the Nanxiong Basin (SE China; Zhao et al., 1991, 2002, 2009; Buck et al., 2004; 70 

Clyde et al., 2010; Li et al., 2010; Wang et al., 2015), which provide ideal records for 71 

investigation of Cretaceous climate change. Among these basins, continuous and 72 

well-exposed red strata consisting of mudstone and sandstone are preserved in the 73 

Nanxiong Basin, and many fossils have been found in these red strata, such as 74 
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charophytes, palynomorphs, ostracods, dinosaurs, dinosaur eggs, and mammals 75 

(Zhang, 1992; Zhang et al., 2006, 2013; Clyde et al., 2010; Li et al., 2010). Many 76 

studies have focused on the Datang Profile, which is also called the CGY–CGD 77 

profile by Chinese and Germany scientists (Zhao et al., 1991; Yang et al., 1993; Zhao 78 

& Yan, 2000). Studies of this profile have investigated its stratigraphy, palaeontology, 79 

geochronology, and palaeoclimatology (Zhao et al., 1991; Zhang, 1992; Zhang et al., 80 

2006, 2013; Clyde et al., 2010; Tong et al., 2013; Wang et al., 2015), because it spans 81 

from the Upper Cretaceous to the Lower Palaeocene and is a type section for non-82 

marine Cretaceous–Palaeogene stratigraphic division in China. However, precise 83 

reconstruction of the palaeoclimatic evolution of this section and comparison with 84 

marine records are still lacking because of the lack of efficient proxies. Moreover, 85 

many Cretaceous–Palaeogene records are also lacking from low-latitudes in this part 86 

of the word, therefore, it is of great significance to carry out paleoclimate change 87 

studies here. 88 

Environmental magnetism as a proxy has been widely used in the studies of 89 

palaeoclimatic changes in Quaternary loess–palaeosol successions (Evans & Heller, 90 

2001; Hao & Guo, 2005; Maher & Possolo, 2013; Maher, 2016), Tertiary red clay 91 

successions (Liu et al., 2003; Nie et al., 2008; Zhao et al., 2016), and other older 92 

aeolian deposits (Hao et al., 2008; Tao et al., 2011), as well as in studies of lake 93 

sediments (Snowball et al., 1999; Fu et al., 2015; Hu et al., 2015), and marine 94 

sediments (Larrasoaña et al., 2008; Peters et al., 2010). In this paper, we review 95 

previous work (mainly in terms of geochronology and palaeoclimatology) and report 96 

some defects in the established chronological framework and palaeoclimatic record. 97 

Therefore, the aims of this work are to: 1) establish a new chronological framework 98 

for the Datang Profile, 2) reinterpret the environment in which the red strata formed, 3) 99 
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try to reconstruct the palaeoclimatic changes using magnetic parameters, and 4) 100 

compare the terrestrial records with marine records to provide reliable terrestrial 101 

records for future investigation of ocean–land climate interactions. 102 

2 Geological background, materials, and methods 103 

2.1 Geological background 104 

The Nanxiong Basin (25°03′–25°16′N, 114°08′–114°40′E) is a rift basin that 105 

developed on pre-Jurassic basement, and is controlled by the Nanxiong Fault (Shu et 106 

al., 2004). Most of this basin is located in northern Guangdong Province, SE China 107 

(Fig. 1A). The basin is elongated with its axis oriented northeast–southwest (Fig. 1B), 108 

and is distributed in an area between the Zhuguang and Qingzhang granites (Shu et al., 109 

2004). The modern mean annual rainfall and temperature are ~1,555 mm and ~19.9℃, 110 

respectively (data from China Meteorological Data Service Center). Continuous 111 

successions of red fluvial–lacustrine clastics, with a maximum thickness of more than 112 

7 km, are preserved in the basin. These successions span the Upper Cretaceous, 113 

represented by the dinosaur-bearing Nanxiong Group (Changba, Jiangtou, Yuanpu, 114 

Dafeng, Zhutian, and Zhenshui Formations), and the Lower Palaeocene, represented 115 

by the mammal-bearing Luofuzhai Group (Shanghu, Nongshan, and Guchengcun 116 

Formations) (Zhang et al., 2013). Components of conglomerate and coarse-grained 117 

sandstone in the basin are similar to those of adjacent strata; moreover, pebbles found 118 

in the basin are relatively coarse, poorly sorted, and sharp-edged, which implies that 119 

the sediment source was not far from the basin (Shu et al., 2004), and that erosion was 120 

stable though the Late Cretaceous to Early Palaeocene (Yan et al., 2007). 121 
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 122 

Fig. 1 Sketch map of the Nanxiong Basin: A) location of Nanxiong Basin, B) 123 

stratigraphy of the Nanxiong Basin (from the Dafeng Formation to the Guchengcun 124 

Formation, modified from Li et al., 2010), C) sampling route of the Datang Profile, D) 125 

stratigraphy of the Datang Profile (modified from Zhang et al., 2006). Note that the 126 

Zhutian Formation in Datang Profile is just the top part of the whole Zhutian 127 

Formation. 128 

Several profiles in the basin have been investigated since the 20th century (Zhao 129 

et al., 1991, 2002; Zhang & Li, 2000; Zhang et al., 2006, 2013; Zhang & Li, 2015). Of 130 

these profiles, the Datang Profile (Fig. 1C), with a vertical thickness of ~700 m, was 131 

the most thoroughly investigated because of clear stratigraphic succession and 132 

abundant fossils. The Datang Profile consists of three formations (Fig. 1D, Zhang et 133 

al., 2006); from bottom to top these are the Zhutian Formation (105 m), the Zhenshui 134 
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Formation (295.5 m), and the Shanghu Formation (288.3 m), which are described in 135 

detail below (Zhang et al., 2006; Wang, 2012; Zhang, 2016). 136 

The Zhutian Formation consists mainly of brown-red, dark purple muddy 137 

siltstone, and silty mudstone with fine sandstone interbeds. Large quantities of 138 

ostracods and charophytes, and minor amounts of gastropods, conchostracans, and 139 

dinosaur footprints have been discovered. Several moderately to fully mature 140 

palaeosol layers with calcareous nodules generated in this formation. 141 

The Zhenshui Formation is predominantly composed of coarse clastic deposits, 142 

represented by grey-purple sandstone and conglomerate with red silty mudstone 143 

interbeds. This formation is rich in vertebrate and dinosaur eggs, with minor amounts 144 

of ostracods, charophytes, bivalves, and gastropods. A few moderately to fully mature 145 

palaeosol layers generated in this formation. 146 

The Shanghu Formation is predominantly composed of purple and dark brown 147 

muddy siltstone and silty mudstone with numerous calcareous nodules and thin 148 

interbeds of sandstone and conglomerate. This formation is rich in microfossils such 149 

as ostracods and charophytes, and also contains fossils of mammals, turtles, 150 

gastropods, and pollen. A great deal of moderately to fully mature palaeosol layers 151 

generated in this formation. 152 

2.2 Materials and methods 153 

Powder samples were collected from the Datang Profile; because of strong 154 

weathering of the Zhenshui Formation, the sampling intervals for this formation were 155 

larger than those for the other formations. To eliminate the effects of particle size on 156 

magnetic parameters, the selected samples were mainly muddy siltstone or silty 157 
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mudstone. All samples were dried naturally in a laboratory, gently ground to 158 

disaggregate the grains, and then packed into small non-magnetic plastic boxes (8 cm
3
) 159 

before measurement. Magnetic susceptibility (χ) was measured using a Bartington 160 

MS2-B meter at 470 Hz and then normalised by mass. Anhysteretic remanent 161 

magnetisation (ARM) was imparted with a peak AF field of 100 mT and a DC bias 162 

field of 0.05 mT using a Molspin alternating field demagnetiser, and then measured 163 

with a Molspin Minispin magnetometer. Isothermal remanent magnetisation (IRM) 164 

was conducted using a Molspin 1 T pulse magnetiser and measured by employing the 165 

Minispin magnetometer. The IRM at 1 T was regarded as saturation IRM (SIRM). 166 

Backfield remagnetisation of SIRM was carried out using reverse fields at 10 mT 167 

steps, and remanence coercivity (Bcr) was calculated using linear interpolation. High-168 

temperature magnetic susceptibility curves-T curves) were obtained using an Agico 169 

KLY-3 Kappabridge with a CS-3 high-temperature furnace.  170 

Rare earth element (REE) measurements were completed using an X-SERIES 171 

inductively coupled plasma-mass spectrometer (ICP-MS). Before measurement, bulk 172 

samples were successively treated with HF and HNO3 (3:1), HClO4, HNO3 173 

(HNO3:H2O = 1:2), and ultrapure water. 174 

The diffuse reflectance spectroscopy (DRS) of fine powdered samples (<38m, 175 

both before and after heated by 200℃ for 2 hours) was recorded from 190 to 1100 nm 176 

in 5 nm steps, using a UV-2600 spectrophotometer (Shimadzu Instruments 177 

Manufacturing Co., Ltd.). In this study, only the records from 400 to 700nm ( visible 178 

spectrum) were shown and the first derivative spectral patterns were calculated to 179 

determine the presence of hematite/goethite. 180 

All measurements were conducted at the Key Laboratory for Subtropical 181 

Mountain Ecology, Fujian Normal University. 182 
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3 Results 183 

3.1 DRS 184 

The DRS technique provides a quantitative method to determine the haematite 185 

and goethite, which has been successfully used in marine deposits (Balsamand Deaton, 186 

1991) and loess sections from the Chinese Loess Plateau (Ji et al., 2001; Balsam et al., 187 

2004; Torrent et al., 2007). The peaks of the bands at 575 nm  and 435/535 nm in the 188 

first derivative spectral (FDV) patterns are interpreted as haematite and goethite, 189 

respectively. However, the clay minerals (such as Chlorite and Illite) also show peaks 190 

at 435nm (Ji et al., 2006). In Fig.2, all curves show significant peak at ~575 nm, 191 

indicating the existence of haematite. Besides, there are small peaks at ~440nm which 192 

maybe related to goethite or clay minerals. However, the ~440nm peaks are still exist 193 

even after 200℃heated for 2 hours (Fig. 2B). Goethite will be transformed to 194 

haematite under 200℃ (Ma et al., 2013), so the  ~440nm peaks probably related to the 195 

clay minerals but not goethite. 196 

 197 

Fig.2 First-derivative curves of pilot samples before (A) and after 200℃ heated (B). 198 

After 200℃ heated, the presence of first-derivative peaks are similar with before 199 

heated. All curves show significant peak at ~575 nm, indicating the existence of 200 

haematite. 201 
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3.2 -T curves 202 

High-temperature -T curves can be used to identify magnetic phases according 203 

to their Curie/Neel temperatures (Tc/TN) or specific decomposition temperatures 204 

during the heating process; for example, the Tc/TN of magnetite and haematite are 205 

~580℃ (Smith, 1956; Levy et al., 2012) and ~670℃ (Lu & Meng, 2010), respectively. 206 

Partial substitution of Fe in magnetite or haematite with Ti or Al will decrease their 207 

Tc temperatures (Jiang et al., 2012, 2015). Maghemite generated during pedogenic 208 

processes is generally unstable during heating, as represented by its transformation to 209 

haematite at 300–400℃ (Liu et al., 1999). In addition to being affected by the 210 

magnetic mineral type, -T curves are also affected by magnetic particle size due to 211 

that some fine particles could change their domain state  during the heating/colling 212 

process (Liu et al., 2005). 213 

The -T curves of pilot samples from the Datang Profile are similar (Fig. 3); 214 

heating curves decrease with increasing temperature from room temperature to 215 

~200℃, which suggests the presence of paramagnetic minerals (Evans & Heller, 216 

2003). And then gradually increases from 200℃ to ~500-600℃, which may be 217 

related to the unblocking effects of fine magnetic particles (Liu et al., 2005). After 218 

this step, a TN of about 640–660℃ is shown, which indicates the presence of 219 

haematite, and the decreased TN temperatures may be related to partial substitution of 220 

Fe elements with Al (Jiang et al., 2013, 2014). Most heating and cooling curves are 221 

nearly reversible, which indicates that no new magnetic minerals are generated during 222 

the heating process; therefore, the haematite is original in the samples. 223 
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 224 

Fig. 3 The -T curves of pilot samples from the Datang Profile (red lines represent 225 

heating curves, whereas blue lines indicate cooling curves) 226 

3.3, SIRM, HIRM, and Bcr 227 

The  values are controlled by the types, concentrations, and particle sizes of 228 

magnetic minerals in the samples; all ferromagnetic, ferrimagnetic, antiferromagnetic, 229 

and paramagnetic minerals have effects on  In contrast, SIRM, HIRM, and Bcr are 230 

not affected by paramagnetic minerals or superparamagnetic particles. Therefore, 231 

and SIRM can be used to indicate the concentration of magnetic minerals in cases 232 

where one magnetic mineral is dominant. HIRM can be used to indicate the 233 

concentration of hard magnetic minerals such as haematite. The value of Bcr can be 234 

used to indicate the ratio of hard to soft magnetic minerals (Thompson & Oldfield, 235 

1986; Evans & Heller, 2003). As shown in Fig. 4, the values of SIRM, and HIRM 236 

are low: varies from 1.67 to 19.14 × 10
−8

 m
3
 kg

−1
 with an average value of 7.25 × 237 

10
−8

 m
3
 kg

−1
; SIRM varies from 55.27 to 626.26 × 10

−5
 Am

2
 kg

−1
 with an average 238 

value of 212.36 × 10
−5

 Am
2
 kg

−1
; HIRM varies from 24.42 to 341.87 × 10

−5
 Am

2
 kg

−1
 239 
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with an average value of 124.11 × 10
−5

 Am
2
 kg

−1
. In addition, the variation trends of 240 

these three parameters are similar: high with clear fluctuations in the Zhutian 241 

Formation, a sharply decrease from the Zhutian Formation to the Zhenshui Formation, 242 

low values with numerous fluctuations in the Zhenshui Formation, an increase in the 243 

Pingling Part of the Shanghu Formation, and an overall decease again with significant 244 

variations in the Xiahui Part of the Shanghu Formation. The Bcr values vary from 300 245 

to 600 mT with an average value of 430 mT, which indicate the dominant role of hard 246 

magnetic minerals. 247 

In addition to haematite, there were significant amounts of paramagnetic 248 

minerals in the samples, as shown in -T curves (Fig. 3); the presence of 249 

paramagnetic minerals may affect when the overall value of  is low. However, 250 

SIRM and HIRM are not affected by paramagnetic minerals, and their variation trends 251 

are similar to those of , which suggests that the variations of  SIRM, and HIRM 252 

are mainly controlled by the concentration of haematite (Thompson & Oldfield, 1986). 253 
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 254 

Fig. 4 Magnetic parameter variations of the Datang Profile; X axis indicates the 255 

stratigraphic thickness from the Zhutian Formation to the Shanghu Formation. 256 

3.4 REEs 257 

There are a variety of distribution patterns of REEs in different types of 258 

sediments because of their diverse origins and sources, and the evolution of the 259 
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palaeoenvironment. Therefore, REEs can be used as efficient tracer elements (Shunso 260 

et al., 2010; Fagel et al., 2014). The REE values of the Datang Profile samples vary 261 

from 153.71 to 210.18 g/g, with an average value of 183.28 g/g. The REE 262 

distribution patterns of the pilot samples nearly overlap (Fig. 5); these patterns are 263 

characterised by a negative slope, moderate enrichment of LREEs, and a relatively 264 

flat HREE pattern, as well as by a prominent negative Eu anomaly, which suggests 265 

that the provenance of the red strata remained stable (Yan et al. 2007). These patterns 266 

are consistent with those of eight samples from the Zhuguang and Qingzhang granites 267 

(Shu et al., 2004), which indicates that they are closely related. However, the Eu 268 

anomaly of the granites is more significant than those of the red strata, which is likely 269 

related to post-depositional chemical weathering or mixing with other Cambrian–270 

Jurassic sediments (Shu et al., 2004). 271 

 272 

 273 

Fig. 5 REE distribution patterns (normalised by chondrite) of pilot samples from the 274 

Datang Profile and samples of the surrounding granite (average values of eight 275 

samples, Shu et al., 2004) 276 
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 277 

4 Discussion 278 

4.1 Chronological framework of the Datang Profile 279 

A great deal of geochronology research, including palaeomagnetic, isotopic, and 280 

palaeontological studies, has been carried out on the Datang Profile (Zhao et al., 1991; 281 

Zhang et al., 2006; Clyde et al., 2010; Li et al., 2010; Tong et al., 2013). The most 282 

significant event recorded in this profile is the extinction of the non-avian dinosaurs 283 

and the subsequent evolutionary radiation of mammals, which indicate the end of the 284 

Cretaceous and the beginning of the Palaeogene (Zhao et al., 1991; Zhang et al., 2006; 285 

Clyde et al., 2010). Based on the palaeontological data and two basalt K–Ar ages 286 

(67.04 ± 2.34, 67.37 ± 1.49 Ma) from the top of the Yuanpu Formation (which 287 

corresponds to the Zhutian Formation in this paper), Zhao et al. (1991) suggested that 288 

the palaeomagnetic age of the Datang Profile is between 27R and 31R (Fig. 6A). 289 

However, Russell et al. (1993) challenged this chronology because of the wide 290 

variation of sedimentation rate, which varied by more than an order of magnitude 291 

during each chron, proposed an alternative (Fig. 6B), and suggested that several 292 

millions of years of deposition was absent from the lowermost part of Palaeocene 293 

record. However, there are some fundamental flaws in Russell et al.’s age model. First, 294 

a lack of exact ages for palaeomagnetic chron identification made the age model 295 

inconclusive. Secondly, based on field observations, no hiatus occurred between the 296 

Shanghu Formation and the Zhenshui Formation (Ye et al., 2000; Zhang et al., 2006). 297 

Thirdly, it is reasonable to assume that the sedimentary rate differed during different 298 

chrons in the Nanxiong Basin, as a continental basin (Ye et al., 2000). Moreover, two 299 

U–Pb ages (59.76 ± 0.78, 60.76 ± 0.90 Ma) of a tephra layer from the middle part of 300 
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the Nongshan Formation, above the Shanghu Formation, were recently obtained 301 

(Tong et al., 2013), and confirm that the age model of Russell et al. was incorrect. To 302 

further clarify the palaeomagnetism framework of the Datang Profile, Clyde et al. 303 

(2010) collected samples from the uppermost 465 m of the Datang Profile (i.e. the 304 

lower part of Zhenshui Formation and Shanghu Formation) and the DT05 profile 305 

(Nongshan Formation and the lower part of Guchengcun Formation), and combined 306 

the results with palaeontological data and 
13

C and 
18

O isotopic composition data 307 

from palaeosol carbonates. The results show that the upper 465 m of the Datang 308 

Profile has five well-defined polarity zones (30N, 29R, 29N, 28R, and 28N), whereas 309 

the DT05 section is characterised by a single long, reversed-polarity zone (26R), 310 

which has been confirmed by the U–Pb ages of the tephra layer from the Nongshan 311 

Formation (Tong et al., 2013), and suggests that this chronological work is reasonable. 312 

However, the ages of the Zhutian Formation to the upper part of Zhenshui Formation 313 

remain unclear. 314 

 315 
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Fig. 6 Palaeomagnetic chronology framework of Datang Profile, A) Zhao et al., 1991; 316 

B) Russell et al., 1993; C) Clyde et al., 2010; D) this paper; E) Magnetic polarity time 317 

scale (Gradstein et al., 2012) 318 

The age of the Zhutian Formation to the upper part of the Zhenshui Formation in 319 

Zhao’s model is controversial; the basalts whose age was used for palaeomagnetic 320 

chron identification were actually intrusive rocks that formed after the Zhutian 321 

Formation was deposited, and therefore cannot be regarded as the top age of the 322 

Zhutian Formation. Thus, the top age of the Zhutian Formation should be older than 323 

67.4 Ma (Zhang & Li, 2000), and it was confirmed with biostratigraphic data 324 

(Tenuestheria) that the Zhenshui Formation correlates with Maastrichtian formations, 325 

whereas the Zhutian Formation correlates with lower Santonian–Campanian 326 

formations (Li et al., 2010). Therefore, it was incorrect to use 67.4 Ma as the top age 327 

of the Zhutian Formation in Zhao’s model. The Zhenshui Formation is predominantly 328 

composed of coarse clastic deposits, and the top 45.2 m of the lower part is covered in 329 

farmland (Fig. 1D and Fig. 6); therefore, it is not possible to obtain samples for 330 

palaeomagnetic analysis, which likely led to the absence of two short time chrons—331 

30R (0.173 Ma, Gradstein et al., 2012) and 31N (0.9 Ma, Gradstein et al., 2012)—332 

from the palaeomagnetic results. Therefore, a new alternative can be proposed, as 333 

shown in Fig. 6D: 30R, 31N, and 31R in Zhao’s model are modified to 31R, 32N.1n, 334 

and 32N.1r. The calculated boundary age of the Zhenshui and Zhutian Formations is 335 

~71.5 Ma according to the new age model. This is slightly differ from the 336 

biostratigraphic age (~72.1Ma, i.e. the boundary age between Maastrichtian and 337 

Campanian), the reasons probably are 1) the samples for biostratigraphic age were 338 

collected from the whole Zhutian Formation that is more than 1000m in depth, while 339 

the Zhutian Formation in Datang Profile is just the top part of the whole Zhutian 340 
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Formation (Fig.1), and 2) the dereferences in sampling or time resolution between 341 

these two dating methods; therefore, it is reasonable to cause a little error between 342 

palaeomagnetic and biostratigraphic ages. If 72.1Ma (within C32N.2n) was regarded 343 

as the boundary age of the Zhenshui and Zhutian Formations，then 30R (0.173 Ma), 344 

31N (0.9 Ma), 31R (2.18Ma) and 32N.1n (0.24Ma) were missing due to the covered 345 

farmland, and thus only 45.2m sediments deposited during more than 3.4Ma, which 346 

seems unreasonable to have such a low sedimentary rate in this period. According to 347 

the chronological framework obtained above, the bottom and top ages of the Datang 348 

Profile can be calculated using linear extrapolation as 72 Ma and 62.8 Ma, 349 

respectively. 350 

4.2 Sedimentary environment analysis 351 

Many aquatic fossils, such as ostracods and charophytes, were found in the red 352 

strata, and there are many coarse sandstone and conglomerate layers; therefore, the 353 

sediments were interpreted as fluvial or lacustrine facies in previous studies (Zhang et 354 

al., 2006; Clyde et al., 2010; Wang et al., 2015). In greater detail, the Zhutian 355 

Formation was regarded as floodplain and shallow lake deposits, the Zhenshui 356 

Formation was interpreted as fluvial deltaic deposits, and the Shanghu Formation was 357 

regarded as shallow lake deposits (Wang, 2012). However, there are dozens of 358 

calcareous nodule layers (Fig. 7A and 7B), generated by pedogenic processes, 359 

distributed in muddy sandstone and sandy mudstone layers (Clyde et al., 2010; Wang, 360 

2012), especially in the Shanghu and Zhutian Formations. In addition to calcareous 361 

nodules, other evidence for palaeosol formation was found, such as wormhole 362 

remains (Fig. 7C and 7D), root traces (Fig. 7E) and obvious rhizoliths (Fig. 7F). 363 

Moreover, many mud-cracks are observed in the Datang Profile (Figs. 7G and 7H). 364 
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Mud-cracks mainly form under alternating dry–wet environments, which have 365 

traditionally been regarded as an indicator of arid or seasonally arid environments. 366 

Environmental magnetic results (Figs. 3 and 4) show that haematite is the dominant 367 

magnetic minerals in the red strata. Haematite is an iron oxide that mainly forms and 368 

is preserved in oxidising environments, and will be dissolved or transformed under 369 

excessively wet and reducing conditions. The widely distributed haematite and 370 

palaeosols in the Datang Profile suggest that the sediments were exposed in a 371 

relatively arid and oxidising environment. 372 

 373 

Fig. 7 Evidence of palaeosols in the Datang Profile: calcareous nodule layers 374 

generated during pedogenic processes (A and B), wormhole remains filled with 375 

calcite (C) and grey mudstone (D), root traces (E) and obvious rhizolith (F), as well as 376 

mud-cracks (G and F). 377 
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The climate during the Cretaceous represented one of the “greenhouse states” of 378 

Earth history; the maximum CO2 concentration was nearly 10 times higher and the 379 

temperature 3–10℃ higher than those prior to the Industrial Revolution (Huber et al., 380 

2002; Wilson et al., 2002; Retallack, 2009). Although the CO2 concentration 381 

decreased in the Late Cretaceous, it was still higher than today (Wang et al., 2014, 382 

and the references therein). The Nanxiong Basin was belonged to a hot and arid belt 383 

according to the palaeoclimate classification of Chumakov et al. (2004). Clumped 384 

isotope analysis of pedogenic carbonates has shown that the palaeotemperature could 385 

reach up to 27.3–38.2℃, with an average value of 34℃ (Zhang, 2016), which 386 

suggests that the temperature during the Late Cretaceous to Early Palaeocene was 387 

much higher than that of the present in this area. In addition, the CaCO3 contents are 388 

10–20% (wt, Yang et al., 2007) in the red strata, and there are many pedogenic 389 

carbonate layers in the sandy mudstone and muddy sandstone, which suggest that the 390 

leaching process was weak and that rainfall was moderate (Retallack, 1999, 2005; 391 

Yan et al., 2007). TOC concentration is very low (0.027–0.258 wt%, Yan et al., 2007), 392 

which is likely related to the sparse vegetation coverage or oxidising conditions 393 

unfavourable for TOC preservation. Therefore, all geochemical parameters indicate 394 

that the overall climate during the Late Cretaceous to Early Palaeocene in the 395 

Nanxiong Basin was tropical (semi-) arid. 396 

Therefore, the depositional processes of red strata in the Nanxiong Basin under 397 

(semi-) arid climate conditions can be inferred as follows. Weathered materials were 398 

transported from the surrounding area by runoff caused by rainfall and were then 399 

deposited in the basin. During the interval with greater rainfall, temporary rivers or 400 

lakes appeared in the basin and provided a habitat for the low-level aquatic organisms 401 

such as ostracods and charophytes, and left abundant fossils of these organisms in the 402 
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strata. However, the rivers or lakes could not persist for long in a hot, (semi-) arid 403 

climate; after the weathered materials were deposited in the basin, these temporary 404 

rivers and lakes disappeared because of strong evaporation, and the sediments were 405 

then exposed to an oxidising environment. Haematite was thus generated, and the 406 

organic matter rapidly decomposed, which led to very low TOC values (Yan et al., 407 

2007). Pedogenic processes then developed, and moderately to fully mature soils with 408 

diagnostic characters such as Bk horizons, wormholes and root traces formed in sandy 409 

mudstone and muddy sandstone layers. No typical palaeosols were found in the 410 

coarse sandstone or conglomerate layers in the Zhenshui Formation because of the 411 

lack of essential conditions for soil formation, but many root traces were preserved 412 

(Figs. 7E and 7F), which can be called “weakly developed soils”.  413 

4.3 Comparison between  and 
18

O, and the corresponding mechanism 414 

At present, most high-resolution records of palaeoclimate changes during the 415 

Late Cretaceous to Early Palaeogene were derived from marine sediments, with few 416 

from continental sediments, which has limited comparison between marine records 417 

and continental records and even the study of the dynamic mechanism of 418 

palaeoclimate evolution (Wang et al., 2013b). The 
18

O values of benthic foraminifera 419 

in marine sediments faithfully recorded global palaeotemperature changes over the 420 

past 200 Ma (Zachos et al., 2001; Friedrich et al., 2012; Bodin et al., 2015), which has 421 

provided a high-resolution reference for the study of continental records (Fig. 8A). As 422 

shown in Fig. 8, there is a significant negative correlation between  and 
18

O for the 423 

Pacific and South Atlantic (Friedrich et al., 2012) from 72 Ma to 62.8 Ma: high (low) 424 

values correlate with low (high) 
18

O values, which suggest that values likely 425 

recorded the global palaeoclimate evolution. 426 
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 427 

Fig. 8 Correlations between 
18

O from Pacific and North Atlantic records (A) and 428 

from the Datang Profile (B) from 72 Ma to 62.8 Ma; higher 
18

O values correlate 429 

with lower values 430 

The parameter has been widely applied in Chinese Quaternary loess–palaeosol 431 

and Tertiary red clay sequences as an efficient palaeoclimatic indicator, and correlates 432 

well with the 
18

O values of marine records (Liu, 1985; Nie et al., 2008). Multiple 433 

glacial–interglacial cycles occurred during the Quaternary, and the climate during 434 

interglacial periods was warmer and more humid than that of glacial periods, which 435 

led to the formation of palaeosols. Palaeosols are magnetically enhanced because of 436 

in-situ pedogenic formation of magnetite and maghemite under elevated temperature 437 

and rainfall conditions, which lead to higher values in palaeosol layers than in loess 438 

layers in the Chinese Loess Plateau (CLP, Zhou et al., 1990; Liu et al., 1992; Maher et 439 

al., 1994; Chen et al., 2005; Hao & Guo, 2005). The climate was warmer and more 440 
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humid during the Tertiary than in Quaternary interglacial periods, according to red 441 

clay records (Ding et al., 1999, 2001), but most values of red clays were lower than 442 

those of Quaternary palaeosols and even lower than those of loess layers (Nie et al., 443 

2008), which indicates that the pedogenic hypothesis cannot be simply applied in red 444 

clay layers. The dominant magnetic minerals in loess are original magnetite and 445 

haematite, with minor amounts of pedogenic maghemite. In contrast, in palaeosol 446 

layers, the dominant magnetic minerals are pedogenic maghemite and magnetite, with 447 

minor amounts of magnetite, and in red clay layers, the dominant magnetic minerals 448 

are pedogenic haematite with minor pedogenic maghemite (Xie, 2008). As mentioned 449 

above, the climate when the red clay layers formed was warmer and more humid, and 450 

pedogenesis was stronger; consequently, a large amount of ultrafine strongly 451 

magnetic minerals such as maghemite and magnetite formed (Nie et al., 2007, 2014, 452 

2016). Previous studies have shown that low-temperature oxidation (LTO) of 453 

magnetite is a common process during weathering (VanVelzen & Dekkers, 1999) that 454 

gradually alters magnetite into maghemite (magnemitisation). Moreover, chemical 455 

weathering can transform maghemite into haematite (Sidhu, 1988; Torrent et al., 2006; 456 

Zhang et al., 2012; Fang et al., 2015; Hu et al., 2015). The magnetic minerals in red 457 

clays underwent stronger oxidation than Quaternary loess–palaeosol sequences (Nie 458 

et al., 2016), which likely caused most soft magnetic minerals (magnetite and 459 

maghemite) to transform into hard magnetic mineral-haematite under LTO and 460 

chemical weathering processes, and led to a significant decrease of values in red 461 

clay. Nonetheless,  values of red clay can still be used as an efficient palaeoclimatic 462 

indicator (Nie et al., 2008; Zhao et al., 2016). 463 

Generally, palaeosols, even without burial or original gleisation in deep time, 464 

have systematically lower , such as observed for Precambrian and Palaeozoic 465 
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palaeosols (Retallack et al., 2003). Two possible explanations for this finding have 466 

been proposed: 1) recrystallisation and metamorphism of magnetite and maghemite 467 

(Retallack, 1991), and 2) lower biological productivity of such deeply buried and 468 

ancient soils (Schwartzmann and Volk, 1991). However, these two possibilities 469 

require further testing of palaeosols with a wider range of geological ages and degrees 470 

of burial alteration (Retallack et al., 2003). Despite the low values of in many of 471 

these deep time palaeosols, many studies have concluded that the magnetic minerals 472 

preserved in these soils are pedogenic (Rankey and Farr, 1997; Cogoini et al., 2001; 473 

Tramp et al., 2004). Therefore, we propose another possibility to explain the low  in 474 

the Nanxiong red strata. The global climate during the Late Cretaceous to Early 475 

Palaeocene was much warmer than that of the Neogene and Quaternary (Friedrich et 476 

al., 2012; Bodin et al., 2015). The Chemical Index of Alteration (CIA) values of red 477 

strata in the Nanxiong Basin (70–80, Yan et al., 2007) are higher than those of 478 

Quaternary loess–palaeosol and Tertiary red clay (61–71, Chen et al., 2001; Xiong et 479 

al., 2010), which suggests that the red strata underwent stronger chemical weathering. 480 

The climate during the Late Cretaceous to Early Palaeocene in the Nanxiong Basin 481 

was hot and (semi-) arid, with a certain amount of rainfall, as represented by the 482 

presence of temporary rivers and shallow lakes (or low-lying land) and palaeosols 483 

with calcareous nodules (Retallack, 1999, 2005), which favoured the LTO of 484 

magnetite and the transformation of maghemite to haematite through chemical 485 

weathering, caused haematite to be the main magnetic mineral in the red strata (Figs. 486 

2 and 3) and significantly decreased . This process is summarised in Fig. 9. The 487 

global climate was unstable from 72 Ma to 62.8 Ma, as represented by multiple cycles 488 

of cold/warm changes (Fig. 8A). Higher  values occurred in warmer periods (lower 489 


18

O values), which is similar to the correlation between the  values of Chinese 490 
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loess–palaeosol/red clay successions and 
18

O (Liu, 1985; Nie et al., 2008). There 491 

may be two reasons for the changes in : 1) changes of sediment provenance, and 2) 492 

palaeoclimatic evolution. REE distribution patterns show that the sediment 493 

provenance remained similar in the Datang Profile (Fig. 4), and even across the whole 494 

basin (Yan et al., 2007), which indicates that palaeoclimatic evolution was the main 495 

reason for changes in . There are significantly positive correlations between , SIRM, 496 

and HIRM (Fig. 4), which suggest that was controlled by the concentration of 497 

haematite (Figs. 3 and 4), whereas haematite was generated through LTO and 498 

chemical weathering during pedogenesis. Thus, the relationship between  and 499 

haematite content can be explained by the “pedogenic-plus hypothesis”: more 500 

haematite formed during warmer and wetter periods with stronger pedogenesis, and 501 

caused a higher  and opposite conditions yielded lower  values. The similarity of 502 

the  and 
18

O curves suggests that the climate changes in the Nanxiong Basin during 503 

72–62.8 Ma were similar to global trends; therefore, can still be used as an efficient 504 

indicator for palaeoclimate changes in this basin. 505 

 506 
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 507 

Fig. 9 Cartoon illustrating the dominant magnetic minerals and changes from 508 

Quaternary loess–palaeosol (CLP)→Neogene red clay (CLP)→Upper Cretaceous–509 

Lower Palaeogene red strata in Nanxiong Basin along with the increased temperature 510 

and LTO/chemical weathering (the size of the symbols means the contribution to 511 

but not the real size of magnetic particles). 512 

Hasegawa et al., (2012) found that the subtropical high-pressure belt was located 513 

between ca. 31°N and 37°N during the Late Cretaceous based on spatio-temporal 514 

changes in the latitudinal distribution of deserts in the Asian interior, thus the 515 

Nanxiong Basin (~20°N, Scotese, 2014 ) was out of the area covered by subtropical 516 

high-pressure belt. Besides, computer simulation results revealed that the prevailing 517 

wind directions showed a remarkable seasonal variation over East Asia at 66Ma, 518 

which indicates a monsoon feature over East Asia at that time (Chen et al., 2013), and 519 

even more remarkable compared to the present day, this was supported by the 520 

geological evidences (Jiang et al., 2008), rainfall also showed a seasonal variation 521 

between dry and wet seasons corresponding to the monsoon (Chen et al., 2013). In 522 

addition, the root traces in Zhenshui Formation consisting of elongate gray mottles 523 

with red or purple hypocoatings (Fig. 7E) indicate a relatively well-drained soil 524 

condition (Krous et al., 2006), which is favourite for the formation and preservation of 525 

haematite. Therefore, the monsoon system already existed and the rainfall also 526 

showed seasonal variation across the Cretaceous–Palaeogene boundary, but the 527 

climate was more hotter and drier than present, so a great deal of haematite generated 528 

during pedogenic processes under well-drained condition, and thus recorded the 529 

global climate evolutions. 530 
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4.4 Palaeoclimatic evolution of the Nanxiong Basin during 72–62.8 Ma 531 

Based on changes of the relative content of clay, the ratio of feldspar to quartz 532 

(F/Q) and the 
18

O of pedogenic carbonates, Wang et al. (2012, 2015) divided the 533 

palaeoclimatic changes recorded in the Datang Profile into three stages: an arid to 534 

semi-arid climate from the Zhutian Formation to the bottom of the Pingling part of the 535 

Shanghu Formation, a semi-arid to hot and humid climate from the bottom of the 536 

Pingling part to the bottom of the Xiahui part of the Shanghu Formation, and the 537 

semi-arid climate of the Xiahui part. Their age model follows the palaeomagnetic 538 

framework of Zhao et al. (1991, Fig. 6A). In contrast, Yan et al. (2007) suggested that 539 

a long period of extremely dry climate occurred in the Late Cretaceous, and that the 540 

climate then became relatively wet in the Early Palaeocene, based on CaCO3 and 541 

TOC contents as well as the ratios of Rb/Ti and Cs/Ti. Furthermore, quantitative 542 

palaeotemperature data have been successfully determined; for example, clumped 543 

isotope analysis of pedogenic carbonates revealed that the palaeotemperature reached 544 

up to 27.3–38.2℃ with an average value of 34℃ (Zhang, 2016). Although a 545 

considerable amount of work has been conducted on these palaeoclimatic changes, the 546 

reconstructed results cannot be compared efficiently with global records. One reason 547 

may be the low resolution of quantitative palaeotemperature data due to the 548 

limitations of sampling (e.g. pedogenic carbonates), and another may be that the 549 

geochronological framework is incorrect (section 4.1). As shown in previous studies, 550 

the 
18

O of pedogenic carbonates was found to be an efficient palaeotemperature 551 

indicator in terrestrial sediments; greater 
18

O values indicate higher 552 

palaeotemperatures (Han et al., 1997; Chamberlain et al., 2012; Gao et al., 2015). In 553 

addition, the haematite in the Nanxiong Basin is partially Al-substituted (Fig. 3); 554 

indoor examination revealed that there was a negative correlation between TN and the 555 
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Al content of Al-substituted haematite (Jiang et al., 2012), and greater Al content in 556 

haematite likely indicates stronger pedogenesis. Therefore, we combined these results 557 

with the curve, 
18

O of pedogenic carbonates (Fig. 10B, Clyde et al., 2010; Wang, 558 

2012), and TN of the pilot samples (Fig. 10C) to reconstruct the climatic evolution of 559 

the Nanxiong Basin during 72 to 62.8 Ma. 560 

 561 

Fig. 10 Combined proxies for palaeoclimatic changes in the Nanxiong Basin from 72 562 

to 62.8 Ma, A) curve, B) 
18

O of pedogenic carbonates (Clyde et al., 2010; Wang, 563 

2012), and C) TN of Al-substituted haematite of pilot samples 564 

Although the palaeoclimate from 72 to 62.8 Ma in the Nanxiong Basin was 565 

overall hot and (semi-) arid, it can be divided into three stages, as shown in Fig. 10. 566 
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For stage I (from 72 to 71.5 Ma, Zhutian Formation), and 
18

O values of pedogenic 567 

carbonates are relatively high, and TN is relatively low and varies from 630 to 660℃ 568 

with a mean value of 640℃, whereas the 
18

O values of marine sediments are 569 

relatively low (Fig. 8); the sediments are mainly composed of muddy siltstone and 570 

silty mudstone (shallow lake facies), which indicate a relatively hot and wet climate 571 

with stronger pedogenic processes and clear fluctuations, such as the rapid drying and 572 

cooling event at ~71.7 Ma, represented by low values. In stage II (from 71.5 to 66 573 

Ma, Zhenshui Formation),  decreases sharply at 71.5 Ma and then fluctuates steadily, 574 


18

O values of pedogenic carbonates show a similar trend to TN is relatively high 575 

and varies from 640 to 680℃ with a mean value of 660℃, 
18

O of marine sediments 576 

first increases and then fluctuates at a high level, and the sediments are mainly 577 

composed of coarse sandstone and conglomerate (fluvial delta facies), which indicate 578 

a relatively cool and arid climate with weak pedogenesis; these findings are supported 579 

by sparse pollen data that show the appearance of the Pinaceae and disappearances of 580 

tropical plants in the upper Zhenshui Formation, which indicate a cold climate (Erben 581 

et al., 1995). In Stage III (from 66 to 62.8 Ma, Shanghu Formation):  increases 582 

sharply from 66 to ~64.7 Ma, then decreases sharply at 64.7 Ma, and maintains 583 

relative low values from 64.7 to ~63.4 Ma, and then returns high values from 63.4 to 584 

62.8 Ma; 
18

O values of pedogenic carbonates increase rapidly from 66 to ~64.7 Ma 585 

and then maintain high values from 64.7 to ~62.8 Ma; TN of pilot samples and 
18

O of 586 

marine sediments show opposite trends from the sediments from 66–62.8 Ma are 587 

mainly composed of muddy siltstone and silty mudstone (shallow lake facies). In 588 

addition, sparse pollen analyses have shown that the climate was temperate–589 

subtropical at the bottom of the Pingling part (~66 to ~65 Ma) (Li, 1989), whereas it 590 
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was cool and arid in the Xiahui part (Zhang et al., 1981); therefore, the climate 591 

changes in this stage can be divided into three sub-stages: in sub-stage i (66–64.7 Ma), 592 

the climate quickly became relatively hot and wet from relatively cool and arid 593 

conditions; in sub-stage ii (64.7–63.4 Ma), the climate was relatively drying and 594 

cooling event represented by low values; in sub-stage iii (63.4–62.8 Ma), the 595 

climate became relatively hot and wet again. Although the constructed climate 596 

evolution revealed by magnetic parameters is still qualitative, it shows more details 597 

than other proxies or the marine record, such as the several sub-fluctuations during 598 

each stage, which probably indicates that the climate changes from 72 to 62.8 Ma 599 

were probablyly instable with more fluctuations, and this needs our further work to 600 

provide quantitative and higher resolution results in the future. 601 

5 Conclusions 602 

1. Some defects have been identified in the previous palaeomagnetic 603 

chronological frameworks because of the lack of reliable control ages for 604 

identification of palaeomagnetic chrons. Combined with the most recently published 605 

isotopic ages of volcanic ash and biostratigraphic dating, a new chronological 606 

framework has been proposed; the results show that the age of the Datang Profile is 607 

between 72 to 62.8 Ma. 608 

2. Many aquatic fossils, such as ostracods and charophytes, were found in the red 609 

strata, and the sediments were interpreted as fluvial or lacustrine facies; however, 610 

haematite is the dominant magnetic mineral throughout the profile, and furthermore, 611 

palaeosol layers, pedogenic carbonates, wormhole remains, root traces, clear 612 

rhizoliths and mud-cracks were found, which indicate that those rivers or lakes, if 613 

present, appeared only temporarily in these hot and (semi-) arid environments, such 614 
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that the sediments were exposed to (semi-) arid and oxidising condition for long 615 

periods of time and experienced different degrees of pedogenesis. 616 

3. The variations of were controlled by the concentration of haematite, which 617 

was generated through LTO and chemical weathering during pedogenesis in hot and 618 

(semi-) arid environment. Moreover, the stronger the pedogenic processes, the more 619 

haematite was generated, and the higher the values. 620 

4. The curve of the Datang Profile is similar to the 
18

O curves of 621 

corresponding marine sediments, which suggests that climate changes in the 622 

Nanxiong Basin during 72–62.8 Ma were similar to global trends, and can be divided 623 

into three stages: 1) a relatively hot and wet climate from 72 to 71.5 Ma with a rapid 624 

drying and cooling event at ~71.7 Ma; 2) a relatively cool and arid climate with 625 

secondary fluctuations from 71.5 to 66 Ma; and 3) a relatively hot and wet climate 626 

again from 66 to 62.8 Ma, which can be divided into 3 sub-stages: i) the climate 627 

quickly became hot and wet from 66 to 64.7 Ma, ii) a notable drying and cooling 628 

event at 64.7–63.4 Ma, and iii) a relatively hot and wet climate from 63.4 to 62.8 Ma. 629 
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