1 Response to Reviewers' comments on Manuscript 'Simulation of the Greenland Ice

2 sheet over two glacial cycles: Investigating a sub-ice shelf melt parameterisation and

3 relative sea level forcing in an ice sheet-ice shelf model.

4

5 We thank the two reviewers for their constructive and helpful comments regarding the

- 6 manuscript. As both reviewers highlighted that the manuscript was too lengthy and contained
- 7 too much information which was not necessary for the reader. Following these comments, we
- 8 have drastically revised and reduced the manuscript, removing all the supplementary
- 9 material, Methods 1-3 and the discussion of the ESL forcing and sheet-only simulations. We
- 10 hope this results in a clearer and easier to read manuscript.
- 11

The comments from each reviewer are shown in italics, with our responses given in bold and any revised text highlighted in red. Comments relating to style and formatting are listed at the end of each section and have all been corrected.

1516 **Reviewer 1:**

17

18 General Comments:

19

20 1) On the climate forcing: I understand that the focus of this study is on testing the sub-ice

21 shelf melt parameterizations and the effect of sea level forcing on ice sheet evolution.

22 However, the climate forcing the ice sheet model simulation over the last two glacial cycles is

23 *important, and will likely largely affect the simulated spatial and temporal extent.*

24 The SAT forcing is taken from Helsen et al. (2013), but this forcing is not discussed.

25 Is this forcing really representative for the entire model domain?

26

We agree with the reviewer's comment that using a SAT forcing record, which is 27 developed using ice core records from Antarctica and Greenland, is of course not 28 representative of the spatial variability in climate across the Greenland Ice sheet during 29 these two glacial-interglacial cycles. However, this is a limitation of all standalone ice 30 sheet models. As an intermediate step, we have previously investigated using a 31 schematic GCM forcing coupled to a regional climate model coupled to an ice sheet 32 model (Helsen et al., 2013), but this is not feasible for ensemble runs of two glacial-33 interglacial cycles. However, to clarify this limitation within the paper and provide 34 further background information on the SAT forcing development, we have added the 35 following information into Sect. 3.1, lines 201-207. 36 37 Lines 201-207: Secondly, each simulation was ran for 240 kyr using a spatially uniform SAT 38 forcing taken from Helsen et al., 2013 (Fig. 2a) combined with a SSM parametrisation 39

forcing taken from Helsen et al., 2013 (Fig. 2a) combined with a SSM parametrisation
(Sect.3.2) and sea level forcing (derived from a GIA model, Sect.3.3), to simulate the GrIS
over the two glacial-interglacial cycles. As there is no GrIS SAT record that extends beyond
128 kyr BP, this SAT forcing record was produced by combining the Vostok ice core (Petit et
al., 1999) with the GRIP ice core record (Johnsen et al., 2001) using the glacial-index method
(Greve, 2005). We note that using a SAT forcing record derived from ice cores will not
account for any spatial variability in the SAT during these two glacial-interglacial cycle.

46

47 *How is the SMB calculated from the SAT forcing? The timing and extent of the simulated*

48 *Greenland ice sheet will depend on the SMB evolution.*

49

50 We agree that the discussion of the SMB forcing was lacking enough detail in the

51 previous version of the manuscript. We have added the following information to

52 Sect.3.1 to clarify this.

Lines 208-214: The SMB-gradient method (Helsen et al., 2012) was applied at each time step
to calculate a new SMB field resulting from this SAT forcing. In this approach, first this
uniform temperature forcing (Fig. 2a) is converted into a spatially variable climate-driven
surface elevation change using an atmosphere lapse rate of -7.4 K km⁻¹. Second, the SMB
gradient fields are calculated based on a linear regression between this new surface elevation
field and the mean SMB in an area with a radius of 150km. With this approach, the spatially
uniform temperature forcing (Fig. 2a) can be translated in the spatially varying SMB field

and ensures that the local mass balance height feedback is captured.

62 63

(2) Related to this: Page 12, lines 425-457 discusses spatial variability of the simulations and
links this to the SAT. However, my understanding of the SAT forcing is that it only varies over
time, not spatially, which would mean that this discussion over-interprets the results.

67

68 The reviewer is correct that the adopted SAT forcing does not consider any spatial

69 variability, and following the earlier suggestions we have added a sentence to clarify this

70 (lines 201-207). However, with the SMB-gradient method (as we mention in response to

71 comment 1) a spatially uniform temperature perturbation can be converted into a

spatially variable SMB forcing as it captures the changes in surface elevation resulting
 from the spatial variation from the ice sheet model. This implies that the important

mass balance height feedback is captured. Therefore, we feel that we do not over interpret the results.

76

(3) PD ice sheet: Yes, indeed a common feature of SIA models is the overestimation of ice on
the margin of the ice sheet (p. 6, lines 199-200). However, studies using these models focus
mostly only on grounded ice, while this study investigates the ice shelves. How will the
overestimation of marginal ice effect your ice shelves (thickness, dynamics, ...)?

82 We have removed the sentence referring to this feature of SIA models.

83

81

84 (4) Why focus on 2 glacial cycles? Many of the inputs/forcings are only available for the last

85 glacial cycle, as are the data observations to compare the model results to.

86 What is the added value of including the earlier glacial cycle, apart from model spin-up?

87

88 We do not believe that the only interest in running two glacial cycles is for model spin-80 up purpose. The provided spin-

up purpose. The previous glacial cycle (225-118 kyr BP) is a glacial-interglacial period
 which is interesting in its own right. The main reasons for simulating the two glacial

90 which is interesting in its own right. The main reasons for simulating the two glacia 91 cycles within this study are (1) to examine the contribution of the GrIS to the last

interglacial highstand, a question which is yet to be resolved, (2) the influence of the

PGM - LIG glacial history on the LGM-PD glacial history, (3) Identify any variations in

- 94 these two glacial histories.
- 95 For example, in Section 5, we have highlighted the influence of the PGM-LIG on the

96 LGM-PD glacial history:

97

Solution Signature Signatu

99 influences the behaviour of the NW margin via the impact on the PGM to LIG glacial history.

100 Fig. 7c-d compares the difference in the simulated water depth between two simulations

101 $(AvA_s + A_vSSM1 \text{ and } AvA_s + A_vSSM1_redSSM2)$ where the SSM2 is reduced by 25 m/yr (from

- 102 100 m/yr to 75 m/yr). It could be assumed given the reduction in SSM at deeper water depth,
 103 that the retreat would be later. However, the onset of retreat is 2 kyr earlier (8.9 kyr BP c.f
- that the retreat would be later. However, the onset of retreat is 2 kyr earlier (8.9 kyr BP c
 6.9 kyr BP). This is due to the influence of the PGM to LIG glacial history (first glacial-
- interglacial cycle) on the dynamics of the LGM to PD retreat. In the $AvA_s + A_vSSM1 \ redSSM2$
- simulation, during the first advance of the ice sheet, the lower SSM at water depths > 400m
- 107 results in a thicker ice sheet across the Nares Strait and eastern Ellesmere Island. This
- 108 increases the bedrock subsidence and the water depth (Fig.7c) resulting in a higher SSM
- 109 surrounding the retreated ice margin during the subsequent glacial-interglacial cycle (after the
- 110 LIG minimum). This higher SSM restricts the maximum spatial extent that the grounded ice
- 111 margin reaches during the subsequent LGM -PD cycle (compare Fig.7d to Fig 7a and 7b).
- 112 Therefore, with a smaller ice extent, surrounded by a region of higher SSM, this induces an 113 earlier onset of retreat.
- 113
- 115 **(5)** *The set-up of the sea level/water depth forcing is not clear to me.*
- 116 In the ESL method global mean sea level change is used as forcing, but local changes in the
- solid earth field are also included. Correct? Especially the comparison of the total water
- 118 depth from the different methods (page 8, lines 290-298) is very confusing. Please clarify this
- section. Note that it is also confusing to call the first method "ESL", as the text also uses
- 120 "ESL" as unit for global mean sea level change.
- 121

We have removed the discussion of the ESL forcing only method throughout the
manuscript, following the suggestions from both reviewers. We feel that this now makes
Sect. 3.3 and references to the method clearer to follow throughout the manuscript.
Additionally, we have revised the text in Sect.3.3 to simplify and clarify the explanation
of the method and equations.

127

In the RSL method, local and non-local geoid and solid earth changes are included, but they
seem to not be consistent, and are calculated from different (not necessarily compatible)
models.

- 131
- The reviewer is correct that the local isostatic response is calculated within IMAU-ICE
 using a more simplistic model that used within the GIA model. Within the ice model
 IMAU-ICE, the isostatic response is based on a simple 1D elastic lithosphere overlying a
- relaxed asthenosphere with a decay time of 3kyr (ELRA). The ELRA method has been
- 136 shown in Le Meur and Huybrechts, Annals of Glaciology, 23, 1996, Greve and Blatter,
- 137 2005 to produce, to a first-order a similar deformation field as produced from a 'self-
- 138 gravitating visco-elastic' GIA model when adopting average earth model parameters,
- such as used in this study. Additional the approach of combining an isostatic response
- 140 from an ELRA method within a GIA model is not new and has been adopted in
- previous studies Whitehouse, et al., 2012, QSR and Lecavalier et al., 2014 for example,
 with the former identifying close agreement between the output from the two
- approaches. This justification is addressed in the revised manuscript.
- 144
- (7) In my opinion, the use of supplements in a CP publication should not be necessary. It is
 difficult as reviewer to find your way through the different texts, tables and figures. This will
- 147 *therefore be very confusing for the reader.*
- 148 (8) Related to this: the present manuscript contains too much information. What is the main
- 149 message of the manuscript? And what information is needed to verify and understand that
- 150 message? For example, I think that methods 1-3 of the SSM parameterization are not

essential, and could be omitted. Similarly, is it really necessary to include the ESL forcing 151 method? Maybe better to only focus on explaining the RSL method and present those results 152 *more clearly* 153 154 We agree with both reviewers that the manuscript contained too much additional 155 information in the supplementary. This has now been removed. Additionally, the 156 manuscript has undergone a drastic rewrite, removing the section on Methods 1-3 and 157 ESL forcing. We hope this makes the manuscript easier to read. 158 159 160 161 (9) Page 6, lines 196-200: This tuning of the PD ice sheet should be explained in a separate section, or included in Sect. 4. 162 163 164 We do not feel, given the focus and (as already commented) extensive length of the manuscript that additional information about the tuning of the present-day ice sheet 165 will add to the scientific arguments of the paper. The aim of the study was not to 166 replicate an ideal present-day ice sheet. When comparing the results of the ensemble of 167 simulations to the observational data no simulation was rejected based on its present-168 day extent. We have however moved the previous Fig. S9, which illustrates the misfit of 169 the simulated present-day ice sheet into the main manuscript into the now revised 170 Fig.4e. 171 172 (10) Abstract, lines 14-16; and Conclusions, line 512: Make clear that only the solid 173 174 Earth influence of the LIS and IIS on GrIS was explored. How changes in atmospheric circulation due to the vicinity of these large ice sheets affect the GrIS is not discussed. 175 176 177 We have added additional text into the conclusion and introduction to make it more 178 explicit within the manuscript that the impact on the LIS on the atmosphere was not considered. 179 180 Abstract. 181 Lines 19-22: In this paper, we investigated the evolution of the GrIS over the two most recent 182 glacial-interglacial cycles (240 kyr BP to present day), using the ice sheet-ice shelf model, 183 IMAU-ICE and investigated the solid earth influence of the LIS and IIS via an offline relative 184 sea level (RSL) forcing generated by a GIA model. 185 186 Conclusion. 187 Lines 415-417: We note that we do not investigate the influence of these two ice sheets (LIS 188 and IIS) on the atmospheric circulation; there was no climate model used within our study. 189 190 191 Technical comments: 192 1. Order of references: this seems random, please change to chronological or alphabetical, 193 194 and be consistent. 2. References in the text need to be formatted to: ... Name et al. (year) ... 195 3. Use spaces between Table of Fig. and number (i.e. Table 1 instead of 196 Table1). 197 We have reviewed the formatting of the references, Figs and Table labels within text. 198 4. Please check all apostrophes (e.g. forcings instead of forcing's for plural) 199 Corrected. 200

202

5. "sheet-only" should be "ice sheet only", similarly "shelves" should be "ice 201 shelves"

- We have removed all discussion of sheet only simulations and ice shelves 203
- 6. "on Table" should be "in Table" corrected. 204
- 205 **Reviewer 2:** 206
- 207
- General comments: 208

 $v_b = A_s \frac{\tau_b^p}{\tau_q^q}$

209

(1) The description of the IMAU-ICE model lacks information. How are the ice streams 210 211 treated? Since the sliding factor As plays an important role in the analysis, I suggest to describe the sliding law in detail. Also, how is the surface mass balance calculated? 212

213 214

218

We agree that description of these factors within IMAU-ICE was limited. We have 215 added the following information regarding the sliding law and SMB method to clarify 216 this. 217

219 Lines 177-185: At regions within the ice sheet where the basal temperature reaches pressure melting point, the ice sheet is allowed to slide using a Weertman-type sliding law, which 220 relates the sliding velocity (v_b), to the basal shear stress (τ_b^p) such that 221

222 223

Where A_s is defined as the sliding coefficient which can be taken as inversely proportional 224 to the bed roughness, z is the reduced normal load and p and q are spatially uniform constants 225 over the ice sheet domain. As the roughness at the base of ice sheet is a relatively unknown 226 quantity, a range of sliding coefficients were investigated, between 0.04×10^{-10} and 1.8×10^{-10} 227 $m^{8}N^{-3}yr^{-1}$. 228

(1)

229 230

Lines 208-214: The SMB-gradient method (Helsen et al., 2012) was applied at each time step 231 to calculate a new SMB field resulting from this SAT forcing. In this approach, first this 232 uniform temperature forcing (Fig. 2a) is converted into a spatially variable climate-driven 233 surface elevation change using an atmosphere lapse rate of -7.4 K km⁻¹. Second, the SMB 234 gradient fields are calculated based on a linear regression between this new surface elevation 235 236 field and the mean SMB in an area with a radius of 150km. With this approach, the spatially uniform temperature forcing (Fig. 2a) can be translated in the spatially varying SMB field 237

and ensures that the local mass balance height feedback is captured. 238

239

(2) Sea level forcing and WD forcing: The comparison between the ΔWD from Eq. (5) and 240 the ΔWD from Eq (4) is not clear to me. 241

- Is the ΔWD from Eq. (4) calculated from the eustatic sea level (ESL) forcing? But if this is 242
- the case, the ΔG , although spatially uniform, accounts for global changes in the 243
- geoid, while ΔR from the ELRA model would account only for local GrIS bedrock 244
- deformations. So the comparison between ΔWD from Eq. (5) and the ΔWD from Eq (4) would 245
- miss not only the ΔGL but also ΔRNL term. 246
- 247

248 We agree that the previous discussion of the ESL forcing and RSL forcing was

complicated to follow. However, the calculation of Δ WD does not involve the ESL 249

250 forcing as the reviewer suggested. We believe with the removal of all references to the

- **ESL forcing the discussion of equation (5) and (6) is more transparent in Section 3.3.**
- 252

(3) In SSM Methods 3 and 4 the melting rate at the sea level is set 0 m/yr, differently from the
previously discussed parameterisations. Is there any particular motivation to set no melting
at the sea level here?

257 We are not sure where the reviewer has read this, but the melting rate at 0 m is the

- same in all methods. However, given the removal of the discussion of Method 1-3, we
- 259 feel this confusion has been resolved.
- 260 261

262 (4) As Reviewer#1, I don't see the necessity of publishing the supplementary information for 263 this work. The main results of SSM Methods 1-3 (Section S1) have already been commented 264 in the main manuscript. Since that part shows a sensitivity analysis relative to

264 in the main manuscript. Since that part shows a sensitivity analysis relative to

265 parameterisations already discussed in previous studies and diverts from the main message

266 of the work, I suggest you not to discuss that analysis in detail.

267

We agree with both reviewers that the manuscript contained too much additional
 information in the supplementary. This has now been removed. Additionally, the
 manuscript has undergone a drastic rewrite, removing the section on Methods 1-3 and
 ESL forcing. We hope this makes the manuscript easier to read.

272

273 (5) The design of the experiment should be more linear. The analysis implies many

274 parameters to play with (ice-sheet only, with ice shelves, ESL forcing, RSL forcing, As, and

all the tunable parameters related to the SSM parameterisations). However, to me not all of

them are worth to be discussed. Choose the most interesting and do the discussion following

the main message and conclusions of the work. For example, the analysis done with the ESL

- forcing seems not to be really necessary. I suggest to delete that part.
- 279

As we have stated above, the previous version of the manuscript was lengthy and
 contained too much information which was not necessary to provide to the reader. We
 hope with the removal of the SOM and discussion of the ESL-forcing and sheet-only
 simulations this results in clearer, more focused manuscript.

284

285

(6) In the Abstract you say that the sea level drop simulated at the LGM (-2,59 m) is
"considerably more than most previous studies". However, this is not true if you consider the
results suggested by recent works (such as Lecavalier et al., 2014, Simpson et al., 2009), in
which the LGM sea-level reduction is higher than that presented here. Since these studies are
considered to present a more realistic GrIS glacial extent (Vasskog et al., 2015*), I suggest
to modify the sentence.

292

293 This sentence has now been removed.

- 294
- 295 7) Pag. 5 lines 173-175: most of the cited works are based on the ice sheet-only version of the

ANICE model, while only the work from de Boer et al., 2014 refers to an ice sheet-ice shelf model, such as the one you use in the study. Please, correct the sentence.

- 298
- 299 We have altered the references to reflect the reviewers comment.

300	
301	(8) Pag. 5, lines 80-81: The grounding line treatment is not very clear to me. It should be
302	described in further depth including references to previous works.
303	added a clarification statement that not grounding line migration
304	
305	We have added a sentence in Sect 3.1 to make this clearer.
306	
307	Lines 171-173: The model does not accurately solve for grounding line dynamics, rather the
308	grounding line is defined as the transition between ice sheet (grounded) and ice shelf
309	(floating) noints using the flotation criterion
310	(nouning) points using the nounter enterion.
311	(9) Differ the acronym of the Eustatic Sea Level (ESL) from that of the Equivalent Sea Level
312	(ESL).
313	
314	As we have now removed the discussion on the Eustatic sea level (ESL) forcing, this
315	comment has been resolved.
316	
317	
318	Technical comments:
319	- Pag 1. line 18 (and many times across the manuscript): "parametersiation" should be
320	"parameterisation" changed.
321	- Pag 1. line 32: "sub surface melt (SSM)" should be "sub-ice shelf melting" as in Pag. 3
322	line 76. The
323	first expression can be referred to melting below grounded ice. changed.
324	<i>f</i>
325	- Pag 2. line 58: "Lecavalier 2015" should be "Lecavalier 2014"
326	
327	- Pag 3. line 80: The citation "Colleoni et al., 2014" can't be found in the References
328	- Pag 3. line 106: The citation "Funder et al., 2011" can't be found in the References
329	
330	- Pag 5. line 174: "Graversen et al. 2011" should be "Graversen et al., 2010"
331	All references have been checked.
332	
333	- Pag 5, line 178: "ice sheet points" should be "ice shelf points" corrected.
334	
335	- Pag 6. line 209: "including sub ice shelf" should be "including sub ice shelf melting"
336	corrected
337	
338	- Pag 7 line 250: "as represent" should be "as represented " corrected
339	6 1 1
340	- Pag 9, line 320: "in thicker" should be "is thicker" corrected
341	- Pag 9, line 334: "a lower As" should be "an increasing As", right? changed to a higher
342	As.
343	
344	- Pag 10, line 363: "the choice sliding coefficient" should be "the chosen sliding coefficient"
345	paragraph removed.
346	
347	- Pag 12, line 420: "Lecavalier 2004" should be "Lecavalier 2014"
348	
349	- Pag 27, Table 1: "Dyke et al., 2004" should be "Dyke et al., 2014"

- 352 - Suppl. Info, pag 1, line 19: "mm/yr" should be "m/yr"