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Abstract 21 

 22 

A high resolution petromagnetic and sedimentary grain size analyses demonstrate that pedogenic 23 

alterations in the Holocene loess sequences from the region of the Guanzhong Basin and the Mu 24 

Us Desert, adjacent to of the Chinese Loess Plateau, were affected by the climatic variations in 25 

temperature and precipitation, but not by the climatic variations of wind intensity. Three warm-26 

humid intervals (~8.4–3.7 ka, ~2.4–1.2 ka, and ~0.81–0.48 ka), associated with the soil 27 

formation and relatively high values of petromagnetic parameters, occurred during the Holocene. 28 

A significant paleosol development from ~8.4 to 3.7 ka, along with the higher values of proxy 29 

parameters, indicates a generally strong warm-humid phase in the mid-Holocene which can be 30 

attributed as the Holocene optimum in the studied regions. The study demonstrates that the 31 

Holocene climate in China is sensitive to the large warming and cooling events and insensitive to 32 

millennial scale climate changes. A complete Holocene climate record is constructed, and that 33 

correlates well with the other regional climate records along the south-to-north of eastern 34 

Chinese loess plateau, suggesting that similar climatic pattern of changes occurred in the eastern 35 

monsoonal China during the Holocene. Results are supported by the other evidence of climate 36 

record in different regions of the world, implying the Holocene climatic optimum took place at 37 

the same time interval all over the northern hemisphere, and thus, our results correspond to 38 

global climate records as well.  39 

 40 

Keywords: climate change; Chinese loess-paleosol sequence; environmental changes; Holocene; 41 

magnetic susceptibility; petromagnetism; soil 42 
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1. Introduction 44 

 45 

Many paleoclimate studies have underlined the climate fluctuations in the Holocene interval in 46 

many places (Steig, 1999, Bianchi and McCave, 1999; Wurster and Patterson, 2001; Baker et al., 47 

2001; McDermott et al., 2001 and others). Studies have explored six such fluctuations across the 48 

globe with an indication of polar cooling, tropical aridity, and significant atmospheric deviations 49 

(Mayewski et al., 2004). Although the development of the current human civilization has been 50 

nurtured by the Holocene climate, there is quite a limited knowledge on climate variability 51 

during this period. However, this limitation can be addressed through the approach of 52 

comprehensive paleoclimate data collecting from different locations of the globe, particularly 53 

from the climate sensitive ones. The arid and semi-arid China provides a highly sensitive and 54 

profound area for large-scale climatic variations (Thompson et al., 1989; Feng et al., 1993; 55 

D’Arrigo et al., 2000; Jacoby et al., 2000). 56 

 57 

Scientists and researchers have been investigating the Holocene paleoclimates and 58 

paleoenvironments of the Chinese arid zone for quite a long time (Zhu et al., 1982; Liu, 1985; 59 

An et al., 2000; Xiao et al., 2004; Feng et al., 2006; Zhou et al., 2010 and others). For this, 60 

various records and archives including pollen and loess stratigraphy, variations in level of sea 61 

and lake, lacustrine sediments and ice cores with steady isotopes have been being studied and 62 

correlated to reconstruct the climatic variation in the Holocene. Particularly, pollen data, fossil 63 

fauna, paleosol, lake level, glacial remains, and archaeological data in China considered the mid 64 

Holocene (ca. 9.4–3.1 ka) to be the Holocene optimum (Shi et al., 1992; Li, 1996). In Inner 65 

Mongolia, strong monsoon fluctuations have been recorded as glacial advance and cessation of 66 
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paleosol development (Zhou et al., 1991). Based on the analyses of various records of 67 

paleoclimatic imprints or proxies, He et al. (2004) suggested that the Holocene optimum 68 

occurred at ca. 6.5–5.5 ka in the eastern China. For each area in China, the Holocene climate had 69 

three distinct phases, and the middle Holocene optimum (8–5 ka) occurred in arid to semi-arid 70 

areas (Feng et al., 2006). Studying independent proxies including contemporary pollen data, 71 

Herzschuh (2006) explored that the event of the Holocene optimum with high precipitation 72 

happened in a different time period in the Indian monsoon and the East Asian monsoon region; it 73 

is the early Holocene and the mid-Holocene respectively for these regions. In the northwest 74 

China, multi-proxy analyses indicate that a dry climate with high variation occurred from 7.8 to 75 

1 ka (Zhao et al., 2010). As there has been a discourse among the Quaternary scientists on the 76 

climatic variations in China in different intervals of the Holocene, it requires more clarification 77 

and better understanding of this climate change through the detailed records from various 78 

sources. 79 

  80 

Selecting proper proxies and developing reliable chronologies is the key problem in 81 

reconstructing the variations in climate and environment during the Holocene. In arid and semi-82 

arid regions, loess-paleosol sequences react to climatic variations, indicating that these areas are 83 

suitable for investigating the evolutions of paleoclimate and paleoenvironment (Rutter, 1992; 84 

Ding et al., 1993; Maher, 2011). These sequences can be instrumental to reconstruct climatic 85 

history of neighboring regions of the Loess Plateau through the last glacial cycle (e.g., 86 

Vandenberghe et al., 1997; Sun et al., 1999; Lu et al., 1999, 2000). It is clear that more complex 87 

Holocene loess-paleosol sequences exist, and these are attributable to fluctuations in the 88 

monsoonal climate (Zhou and An, 1994; Huang et al., 2000). The loess-paleosol records with 89 
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reliable chronology are critical to understand the overall pattern of climate variations in the 90 

monsoonal China during the Holocene.  91 

 92 

The analysis of petromagnetic properties of loess-paleosol deposits is instrumental for the 93 

interpretation of paleoclimatic conditions during the time of their accumulation. In this study, 94 

these properties, along with sedimentary grain size, are analyzed to investigate the Holocene 95 

climatic variations focusing on the loess-paleosols profiles from the region of the Guanzhong 96 

Basin and the Mu Us Desert lain in the East Asian monsoonal zone. The Guanzhong Basin is 97 

located at the southern edge of the Loess Plateau whereas the Mu Us Desert is situated at the 98 

northern part of the Plateau. Here, efforts have been made to reconstruct a regional climate and 99 

environmental changes in the Holocene recorded in the Chinese Loess; to explore the influence 100 

of temperature, precipitation, and wind strength on regional climate changes; to understand the 101 

responses of regional Holocene climate along the south-to-north eastern Chinese Loess Plateau; 102 

and to investigate whether the world and China exhibit common climate dynamics or climate 103 

change differs from region to region in the Holocene. 104 

 105 

2. The Study Area 106 

 107 

In this study, five aeolian sections located in two different areas, the Yaozhou in the Guanzhong 108 

Basin and the Jinjie in the Mu Us Desert, were sampled. The Yaozhou (34°53′N, 108°58′E) is 109 

situated at the Guanzhong Basin, about 60-70 km east of Xi’an city (YZ in Figure 1). At middle 110 

zone of the Yellow River valley, the Guanzhong Basin is located while having the Loess Plateau 111 

to the north and the Qinling Mountains to the south (Figure 1). The land surface in the 112 
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Guanzhong Basin has been quite settled because of less erosion, and eventually, it has made the 113 

aeolian dust deposits and soil surface well-preserved during the entire Holocene period (Huang 114 

et al., 2000). In the Guanzhong Basin, numerous Holocene loess-paleosol have been studied to 115 

examine changes in vegetation at the Yaoxian (Li et al., 2003), variations in climate at the 116 

Yaoxian (Zhao et al., 2007), and cultural effect at the Qingquicun (Huang et al., 2000). 117 

Analyzing the stratigraphy and the proxy data, such sequences can provide critical information 118 

regarding the fluctuations in climate, and also, they can explore major events occurred since 11 119 

ka BP to date (Shi et al., 1992).  The present mean annual temperature shows to be 13°C while 120 

mean rainfall is around 554 mm, and these are associated with a semi-humid climate that 121 

displays a significant seasonal variations in temperature and precipitation which becomes intense 122 

in summer. Three sections were investigated from this area: one at an outcrop (YZ1), the second 123 

one at 100 m further south (YZ2), and the third one at 300 m west (YZ3) from the first one. YZ2 124 

is at the same pit of YZ1, whereas YZ3 is at a different pit. The sequence of 5 m YZ1, 3.3 m 125 

YZ2 and 4 m YZ3 are composed of three paleosol units of Holocene age (S0S1, S0S2 and S0S3), 126 

interbedded with two layers of loess. The stratigraphic unit was identified through the 127 

examination of colour, texture and structure of the sediment. However, the buried soils in these 128 

sections cannot be identified very well visually, and thus, the soil layers can be confirmed 129 

through the magnetic measurements. 130 

 131 

The Jinjie (38°44′N, 110°91′E) is located at the southeastern margin of the Mu Us Desert (JJ in 132 

Figure 1). The Mu Us Desert, being situated at the northern-central China and having sand 133 

dunes, belongs to the peripheral region of the East Asian monsoon. Currently, almost two-thirds 134 

of this desert are covered by these sand dunes (Sun, 2000). The ecosystem, in the semi-arid Mu 135 
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Us Desert, exhibits high sensitivity towards climate change since external climatic forces can 136 

easily affect the vegetation, soil, and aeolian sand (Sun et al., 2006). The local mean annual 137 

temperature, currently, varies from 6.0° to 9.0°C, and it is 200-400 mm in case of the mean 138 

rainfall. 70% of the rainfall concentrates from July to September, with a warm and humid 139 

summer as well as autumn. In winter, it is cold and dry with the prevailing cold winds being 140 

northwesterly. Two sections from this area, JJ1 and JJ3 (along the road and about 1 km southeast 141 

from JJ1), were studied.  The 7m deep JJ1 and 8m deep JJ3 aeolian sequences contain three 142 

distinctive dark brown sandy loam soil layers (S0S1, S0S2 and S0S3) separated by sand beds. The 143 

stratigraphic subdivision was made by the field observation of colour, texture, and structure of 144 

the sediment. For JJ3 section, there are mixture of sand and soils in between two soil layers. All 145 

of these sections are situated above the Malan loess (L1).  146 

 147 

The Yaozhou and the Jinjie loess paleosol sequences are both dated using optically stimulated 148 

luminescence (OSL) dating technique (Zhao et al., 2007; Ma et al., 2011). In the Yaozhou, the 149 

boundary between the lowest paleosol (S0S3) and the Malan Loess was OSL dated 8.44 ± 0.59 ka 150 

(Zhao et al., 2007). At the Jinjie, the lowest paleosol  (S0S3) was bracketed by two OSL dates– 151 

7.07 ± 0.42 ka at the bottom and 3.91 ± 0.18 ka at the top (Ma et al., 2011).  Ages of each soil 152 

section are assigned based on the OSL dating of Zhao et al. (2007) for the Yaozhou area and Ma 153 

et al. (2011) for the Jinjie area. 154 

  155 
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3. Methods 156 

3.1 Sampling  157 

 158 

A total of 573 non-oriented bulk samples were collected from the 5 sections (YZ1: 100, YZ2: 80, 159 

YZ3: 85, JJ1: 150 and JJ3: 158 samples) for petromagnetic and sedimentary grain size analyses. 160 

Samples were taken continuously at 5 cm intervals (2.5 cm intervals only for the thin soils) from 161 

all sections. Sampling was started from the top that contains present day soil i.e. the cultivated 162 

layer.  163 

 164 

3.2 Thermomagnetic and hysteresis data 165 

 166 

Temperature dependent magnetic susceptibility (MS) was measured on several samples from 167 

each section to investigate the magnetic mineralogy. The measurement was performed using a 168 

Bartington susceptibility meter in the Laboratory of Paleomagnetism and Petromagnetism of the 169 

Physics Department at the University of Alberta. The sample was heated up to 700°C and then 170 

allowed to cool back to room temperature in air. During heating and cooling, magnetic 171 

susceptibility measurement of the sample was taken at every 2°C. The magnetic grain size of the 172 

samples was investigated by hysteresis measurements at room temperature with a maximum field 173 

of ±1T using a VFTB in the Environmental Magnetism Laboratory, Geophysics Institute in 174 

Beijing, China. Saturation magnetization (Ms), remanent saturation magnetization (Mrs), 175 

coercive force (Hc), and the coercivity of remanence (Hcr) values were evaluated from the 176 

hysteresis loops. 177 

 178 
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3.3 Petromagnetic parameters  179 

A number of petromagnetic parameters such as low and high frequency magnetic susceptibility, 180 

anhysteric remanent magnetization (ARM), saturation isothermal remanent magnetization 181 

(SIRM), and back field isothermal remanent magnetization (bIRM) were measured to identify 182 

variations in the concentration, grain size and mineralogy of magnetic material in the samples. 183 

These were conducted in the paleomagnetism and petromagnetism laboratory of the University 184 

of Alberta. These parameters (low field mass specific magnetic susceptibility χ𝑙𝑓 and SIRM) and 185 

the ratios derived from them (frequency dependence of magnetic susceptibility FD and 186 

normalized to the steady field anhysteric remanent magnetization (χ𝐴𝑅𝑀)) were used to interpret 187 

the paleoclimatic conditions during deposition of the studied loess-paleosol sections.  188 

 189 

In the laboratory, 8 cm3 plastic non-magnetic boxes were used to host the sediments for 190 

petromagnetic measurements. The low-frequency (0.43 kHz) and high-frequency (4.3 kHz) 191 

magnetic susceptibility of each sample were measured using a Bartington Instruments MS2B 192 

dual frequency meter. To reduce the level of considerably high noise from the Bartington 193 

instrument, special precaution was taken during measurements. Each sample was measured three 194 

times in different positions, and the average MS magnetic susceptibility value was calculated for 195 

both low and high frequency measurements. All the values were checked before getting the 196 

average, and found consistent without high errors. Air measurements were taken in between two 197 

samples’ measurement each time to monitor and eliminate the instrumental drift. The FD value 198 

was calculated for each sample using its averaged low and high frequency MS magnetic 199 

susceptibility values. ARM was acquired in the samples subjecting to a peak AF field of 100 mT 200 

and a steady DC field of 0.1 mT by a 2G cryogenic magnetometer demagnetizer. This ARM was 201 
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normalized to the steady field to yield χ𝐴𝑅𝑀. SIRM was acquired in the samples by subjecting 202 

them to a field of 0.6 T through a 2G IRM stand-along electromagnet.  bIRM was induced to the 203 

samples by using a reversed field of 0.3 T and the acquired remanences were measured on the 204 

cryogenic magnetometer. Parameters (χ𝐴𝑅𝑀 χ𝑙𝑓⁄   and χ𝐴𝑅𝑀 𝑆𝐼𝑅𝑀⁄ ) were also evaluated for each 205 

sample. 206 

 207 

3.4 Sedimentary grain size  208 

 209 

Sedimentary grain size analysis was performed in order to determine relative wind strengths 210 

during loess deposition of the studied sections. Sedimentary grain size was measured on a 211 

Mastersizer 2000 laser particle analyzer at the Northwest University in Xian, China. The grain 212 

size samples were subjected to standard chemical pretreatment. To eliminate the organic 213 

material, samples of 0.3–0.4 g were fully dissolved in 10 ml of 10% boiling hydrogen peroxide 214 

(H2O2) solution in a 200 ml beaker. The carbonates were also removed by boiling with 10 ml of 215 

10% hydrochloric acid (HCl). Distilled water was added during the chemical treatment to avoid 216 

drying of the solution. After standing overnight, the clear water was decanted from the sample. 217 

Through a combination of an addition of 10 ml of 10% sodium hexametaphosphate [(NaPO3)6] 218 

solution and an oscillation for around 10 minutes ultrasonically, dispersion was created for the 219 

components. 220 

  221 
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4. Results  222 

4.1 Thermomagnetic and hysteresis  223 

 224 

Typical examples of temperature dependent magnetic susceptibility curves and hysteresis loops 225 

are presented in Figure 2. The MS magnetic susceptibility shows decrease in the signal and 226 

reaches minimum value at approximately 590°C, indicating the presence of magnetite (Figure 2). 227 

The MS magnetic susceptibility values start to increase above 590°C suggesting that hematite is 228 

produced by the oxidation of magnetite, as expected in such experiments while conducting in air. 229 

The shape of the hysteresis loops indicates samples contain pseudo-single domain (PSD) 230 

particles (Figure 2). The remanence ratio (Mrs/Ms) versus coercivity ratio (Hcr/Hc) is shown on 231 

a Day plot (Dunlop, 2002) in Figure 3. The Day plot represents that magnetic grain size of 232 

samples mainly clusters within the pseudo-single domain (PSD) region (Figure 3). 233 

 234 

4.2 Petromagnetic parameters 235 

 236 

The measured parameters of five sections (YZ1, YZ2, YZ3, JJ1, and JJ3) have been plotted 237 

against depth of the sections in Figure 4-8. Magnetic susceptibility has been widely used as a 238 

proxy indicator to investigate Quaternary climate change by loess-paleosol sequences on the 239 

Chinese Loess Plateau (Heller and Liu 1984; Balsam et al., 2004). The MS magnetic 240 

susceptibility record demonstrates intensity variations of the pedogenesis, caused by 241 

precipitation changes related to summer monsoon climatic fluctuations (An et al., 1991; An and 242 

Xiao, 1990). χ𝑙𝑓 measures the magnetic response caused by magnetic remanences as well as non-243 

remanent components present in the samples (Robinson, 1986; Thompson and Oldfield, 1986; 244 
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Evans and Heller, 2003). χ𝑙𝑓 values (average 0.13×10-6 m3kg-1) for the Jinjie area (JJ1 and JJ3 245 

sections) are relatively lower  than that (average 1.05×10-6 m3kg-1) of the Yaozhou area (YZ1, 246 

YZ2 and YZ3 sections), suggesting that the latter area has higher concentration of magnetic 247 

particles. The loess and paleosol layers are all clearly identifiable in the χ𝑙𝑓  profiles from all 248 

sections (Figure 4-8). In this study, the susceptibility curves (χ𝑙𝑓) of all the sections show that the 249 

soils have higher susceptibility compared to the loess/sand beds (Figure 4-8), indicating warm-250 

wet climate conditions during the formation of these accretionary soils. On the other hand, lower 251 

χ𝑙𝑓 values in the loess/sand layers exhibit a cool-dry climate and intensified aeolian dust 252 

deposition as well as weak pedogenic processes during loess deposition. The upper layer of the 253 

soils (S0S1), formed thinner in a shorter period, shows weak χ𝑙𝑓 values almost as same as the 254 

values of adjacent aeolian loess/sands, whereas the lower layers of soils represent stronger 255 

signals for the sections YZ2, YZ3, JJ1, and JJ3 (Figure 5-8). For YZ1 section, S0S1 shows high 256 

peak with disturbance, probably due to the close proximity of S0S1 to the modern soil or the 257 

cultivated layer (Figure 4). 258 

 259 

The FD parameter appears to be higher in soil horizons compared to the loess as it is related to 260 

the distribution of ferromagnetic minerals, commonly superparamagnetic magnetite produced 261 

during soil formation (Thompson and Oldfield, 1986; Evans and Heller, 2003). All soil horizons 262 

exhibit higher FD values (ranging around 8-10%) compared to their respective parent loess 263 

horizons, and these are in agreement with the χ𝑙𝑓 values (Figure 4-7). These higher FD values of 264 

studied soil horizons confirm the continuous production of superparamagnetic particles during 265 

the pedogenesis in warmer interval. However, for the JJ3 section, the FD parameter does not 266 
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show variations to corresponding sands and soils (Figure 8), probably due to the sandiness of the 267 

soils for this section.  268 

 269 

χ𝐴𝑅𝑀 and SIRM indicate variations in magnetic mineral concentration, and values get higher with 270 

increasing concentration of minerals having a high magnetization such as magnetite (Thompson 271 

and Oldfield, 1986; Yu and Oldfield, 1989; King and Channell, 1991; Evans and Heller, 2003). 272 

Figure 4-8 indicate that the paleosol horizons have higher χ𝐴𝑅𝑀 and SIRM values compared to 273 

the loess/sand horizons. The higher χ𝐴𝑅𝑀 and SIRM values represent higher concentration of 274 

magnetic particles within the soil layers, and indicate warmer-wetter conditions and active 275 

pedogenic processes during the time of soil formation. Whereas lower values, found in the 276 

loess/sand layers, indicate cooler-drier conditions and weak pedogenic intensity during the 277 

periods of intensified dust deposition. For all the sections, χ𝐴𝑅𝑀 and SIRM curves indicate the 278 

presence of χ𝑙𝑓 and FD peaks, corresponding to the soil horizons (Figure 4-8). 279 

 280 

4.3 Sedimentary grain size  281 

 282 

The grain size variations of loess deposits have commonly been used to monitor past wind 283 

intensity changes (Pye and Zhou, 1989; Rea, 1994). Stronger winds are associated with more 284 

dust storms, coarser particle size and larger dust input to the Loess Plateau (Ding et al., 1994). 285 

The average median grain size values are larger for the Jinjie area ( ~ 220 μm) than the Yaozhou 286 

area ( ~ 13.9 μm), representing that the grain size records of the Holocene loess deposits 287 

decrease from north to south over the Chinese Loess Plateau. The grain size of the last glacial 288 

loess deposits also displays an overall southward decrease (Yang and Ding, 2004) as the loess 289 



14 
 

was created primarily in the sandy Gobi deserts in northwestern China and was carried away by 290 

the near-surface northwesterly wind (Liu 1985; An et al., 1991). However, recent studies 291 

suggested that Yellow River brought significant amounts of sediment which is the main source 292 

of aeolian supply to the Chinese Loess Plateau (Nie et al., 2015; Licht et al., 2016). The median 293 

grain size of the studied sections does not demonstrate well the general characteristic of the 294 

smaller values for the soil horizons (Figure 9-13), indicating that the wind intensity did not vary 295 

much for these areas during the Holocene. Moreover, the median grain size of the loess and soil 296 

horizons of the Yaozhou area (YZ1, YZ2 and YZ3 sections) shows a little variability (Figure 9-297 

11) compared to the loess and soil layers of the Jinjie area (JJ1 and JJ3 sections) (Figure 12-13), 298 

suggesting that the wind intensity fluctuation was higher in the north loess plateau (Jinjie area) in 299 

contrast with the south loess plateau (Yaozhou area).  300 

 301 

The ratios χ𝐴𝑅𝑀 χ𝑙𝑓⁄    and χ𝐴𝑅𝑀 𝑆𝐼𝑅𝑀⁄  indicate variations in magnetic grain size and the values 302 

decrease with increasing magnetic grain size (Thompson and Oldfield, 1986; King et al., 1982; 303 

Maher, 1988; Evans and Heller, 2003). For all the sections, magnetic grain size (χ𝐴𝑅𝑀 χ𝑙𝑓⁄  and 304 

χ𝐴𝑅𝑀 𝑆𝐼𝑅𝑀⁄ )  varies in the same manner as the sedimentary grain size does (Figure 9-13). Both 305 

the ratios reflect a little variability for loess and soil horizons indicating smaller relative changes 306 

in magnetic grain sizes. 307 

 308 

5. Discussion 309 

5.1 Variations in the Holocene climate 310 

 311 
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Three soil layers (S0S1, S0S2 and S0S3) are identified for all the sections not only in the field but 312 

also in the laboratory by higher magnetic concentration parameters (χ𝑙𝑓, χ𝐴𝑅𝑀, SIRM) and FD 313 

parameter. Therefore, χ𝑙𝑓, FD, χ𝐴𝑅𝑀 and SIRM are higher for soil and lower for loess/sand 314 

horizons, indicating warmer and colder assemblage respectively. The sedimentary and magnetic 315 

grain size variations do not correspond to the soil intervals entirely.  Furthermore, the magnetic 316 

concentration parameters and FD parameter show a larger variation for the loess and soil layers 317 

compared to the sedimentary and magnetic grain sizes for these layers. It demonstrates that 318 

humidity fluctuation, which is related to the vegetation and soil formation, was stronger than the 319 

wind intensity variation for the studied sections during the Holocene. 320 

 321 

Petromagnetic analysis of five loess sections in the Yaozhou and the Jinjie areas shows clear 322 

changes in regional climate, and provides paleoenvironmental information over the Holocene. 323 

Changes of parameters with soil formation in five studied sections, at the Yaozhou (Jinjie), 324 

suggests three distinct warm-humid time periods during the Holocene: the oldest warmer interval 325 

was between 8.4–3.7 ka (7.0–3.9 ka), the middle one occurred between 2.4–1.2 ka (2.9–1.7 ka), 326 

and the youngest started at 0.81 ka (1.1 ka) (Figure 4-8).  Furthermore, based on the data, two 327 

cold-dry intervals associated with loess deposition can be considered at the Yaozhou (Jinjie): 328 

3.7–2.4 ka (3.9–2.9 ka) and 1.2–0.81 ka (1.7–1.1 ka). However, at these areas, the onset and 329 

termination of warming-cooling intervals during the Holocene were almost similar with a slight 330 

difference. A subsequent warm-humid phase took place between ~8.4 ka and ~3.7 ka, indicated 331 

by the development of strong soil (S0S3) in all five sections. Combined with high values of all 332 

petromagnetic parameters in the studied regions (Figure 4-8), this period is attributed to the 333 

Holocene optimum, a warm period (generally warmer than today) in the middle of the Holocene. 334 
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Soil S0S3 formation terminated around ~3.7 ka, suggesting a cold-arid period. This resulted in an 335 

active period for the loess/sand during ~3.7–2.4 ka. The soil S0S2 developed between ~2.4 and 336 

~1.2 ka, and at that time, the values of the petromagnetic parameters indicate a warm-humid 337 

period in this region (Figure 4-8). The climate became colder and drier between ~1.2 and ~0.81 338 

ka as the sand/loess was deposited, illustrated by low values of petromagnetic parameters. Soil 339 

S0S1 formed in the interval of ~0.81–0.48 ka (Figure 4-8), suggesting a warm-humid period.  340 

 341 

5.2 Comparison of regional paleoclimatic records 342 

 343 

Changes in climate in the studied sections can be compared with the other reported paleoclimatic 344 

records from the neighboring monsoonal region of semi-arid China. In this study, we used tree 345 

pollen records from peatlands or lakes, located along the south-to-north regional transect on the 346 

eastern Loess Plateau, to make comparison with our results. In order to compare, low frequency 347 

magnetic susceptibility (χ𝑙𝑓) of YZ3 section from the Yaozhou and JJ3 section from the Jinjie 348 

have been selected as reference curve since these identify soil intervals better than the others. 349 

The sites from south to north include the Hongyuan peatland (Zhou et al., 2010), the Yaozhou 350 

(YZ3), the Jinjie (JJ3), the Daihai Lake (Xiao et al., 2004), and the Hulun Lake (Wen et al., 351 

2010) (Figure 1 and 14). Summer temperature and precipitation are two dominant climatic 352 

factors controlling soil formation as well as pollen assemblages (Shen et al., 2006). Thus, high 353 

magnetic parameters and high tree pollen should reflect warm-wet climates. Three warmer 354 

intervals of the studied region visually correlate well with the higher pollen data (Figure 14). 355 

 356 
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Pollen records from the Hongyuan peatland (Zhou et al., 2010), the Daihai Lake (Xiao et al., 357 

2004), and the Hulun Lake (Wen et al., 2010) show peak tree pollen abundance in the mid-358 

Holocene between ~8.4 and ~3.7 ka (Figure 14), suggesting a warmer-wetter climate. There is an 359 

agreement in the mid-Holocene maximum or climate optimum as documented at our studied 360 

sections and other sites (Figure 14). In the Lake Daihai which is situated at the northeast from the 361 

Mu Us Desert, high and stable lake level also occurred at ~8–3 ka (Sun et al., 2009). An ancient 362 

wetland existed continuously from ~7.8 to 4 ka at valleys, southeast of the Lanzhou, which is 363 

located further west from the Yaozhou (An et al., 2005). A humid mid-Holocene corresponds 364 

well with a more recent reconstruction of monsoonal precipitation through various imprints from 365 

the Chinese Loess Plateau (Lu et al., 2013). Zhao and Yu (2012) studied most of the sites of the 366 

temporary zone, located between forest and temperate steppe vegetation in the northeastern 367 

China, and confirmed the presence of the wettest climate occurred between ~8 and ~4 ka. The 368 

high level of the Lake Huangqihai during 8–4 ka (Shen, 2013), situated in the monsoonal region, 369 

indicates a strong East Asian summer monsoon happened in the mid-Holocene. In the Horqin 370 

dunefield, the greater density of vegetation coverage occurred between ~8 and ~3.2 ka, 371 

suggesting a warm and humid climate (Mu et al., 2016). Even though the termination of the 372 

warm-humid Holocene optimum slightly vary in different sections, this is possibly due to the age 373 

model imperfections and assumptions of the close to constant sedimentation rate, the 374 

inconsistencies of various of different dating methods or irregularity of the Holocene optimum 375 

(e.g., An et al., 2000; He et al., 2004).  376 

 377 

From ~3.7 to ~2.4 ka, the decreasing susceptibility of the studied sections suggests a drying and 378 

cooling climate trend that correlates with the tree pollen data (Figure 14). The pollen sequence 379 
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collected from the Taishizhuang peat site, located at the southeastern edge of the Mongolian 380 

Plateau, confirms a significant climatic variation taken place at around ~3.4 ka, and during that 381 

time, the tree component almost disappeared entirely (Jin and Liu, 2002; Tarasov et al., 2006). 382 

Both in the south-central and the southeastern Inner Mongolia region, a major cultural shift 383 

occurred at ~3.5 ka (Liu and Feng 2012). After ~3.7 ka, aeolian sand transportation took place 384 

more frequently and the East Asian summer monsoon strength decayed significantly, as 385 

perceived from the higher probability density values (Wang et al., 2014). A drying and cooling 386 

climatic shift  also found in two cave speleothem sequences in the southern China from the 387 

Linhua Cave at ~3.3–3.0 ka (Cosford et al., 2008), and from the Heshang Cave at ~3.6–3.1 ka 388 

(Hu et al., 2008). 389 

 390 

For the interval of ~2.4–1.2 ka, the magnetic climate data of this study coincides well with the 391 

tree pollen data of the Hongyuan peatland (Zhou et al., 2010), the Daihai Lake (Xiao et al., 392 

2004), and the Hulun Lake (Wen et al., 2010) (Figure 14). This period can be confirmed by the 393 

moist grassland at the Guanzhong Basin (Li et al., 2003). Furthermore, in Figure 14, the 394 

correlation analysis of magnetic susceptibility and tree pollen data shows good agreement for the 395 

cold-dry interval of ~1.2–0.81 ka.  Although the warmer interval of ~0.81–0.48 ka, recorded by 396 

the magnetic proxies in this study, does not correlate well with the tree pollen data of the 397 

Hongyuan peatland (Zhou et al., 2010) and the Hulun Lake (Wen et al., 2010), however, it shows 398 

a good agreement with the tree pollen data of the Daihai Lake (Xiao et al., 2004) (Figure 14). 399 

Our results are in broad agreement with pollen records, and demonstrate that same climatic 400 

variation occurred along the south-to-north eastern Chinese Loess Plateau during the Holocene. 401 

 402 
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5.3 Comparison of global paleoclimatic records 403 

 404 

Our results of Holocene climate changes in China can be compared with the global records. We 405 

compare our low frequency magnetic susceptibility (χ𝑙𝑓) records of YZ3 and JJ3 sections with 406 

the Lake Baikal δ18O values from diatom silica (Mackay et al., 2011), FD records of the 407 

Burdukovo loess section in Siberia (Kravchinsky et al., 2013), temperature variations in the 408 

northern hemisphere (McMichael, 2012), and Drift Ice Indices Stack from the North Atlantic 409 

(Bond et al., 2001) (Figure 15). Temperature variations in the northern hemisphere during the 410 

Holocene have been reconstructed through the average of various published data (McMichael, 411 

2012). The studied major episodes correspond visually to the other global records (Figure 15).   412 

 413 

For ~8.4–3.7 ka, our data show high susceptibility and indicate warm-humid period for the 414 

whole interval. Whereas, δ18O values of the Lake Baikal (Mackay et al., 2011), FD values of the 415 

Burdukovo loess section (Kravchinsky et al., 2013), temperature variations in the northern 416 

hemisphere (McMichael, 2012), and Drift Ice Indices Stack from the North Atlantic (Bond et al., 417 

2001) show two peaks during that interval (Figure 15). The higher latitude section Burdukovo 418 

resolves short-term climate variations. The Lake Baikal record sampling resolution is quite low, 419 

but it also registers the cooling interval between ~5 and 6 ka very well. There exists no clear 420 

indication of such cooling interval in the studied Chinese loess sections. It may be due to the 421 

reason that the high latitudes are more sensitive to the millennial scale changes in the orbital 422 

parameters than the southern latitudes as demonstrated by the analysis in Loutre et al. (1992). 423 

Although a couple of studies indicate millennial scale Holocene climate variations in northwest 424 

China (Yu et al., 2006; Zhao et al., 2010; Yu et al., 2012), we find that the Holocene climate is 425 
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insensitive to these variations in our studied regions. Usoskin et al. (2007) suggested the 426 

probability of the effect of the orbital parameters of the Earth’s climate being insignificant in 427 

clarifying the direct influence of solar variability on climate change. Beer et al. (2006) examined 428 

the probable feedback mechanisms for the amplification of the solar heating effect. Nevertheless, 429 

the whole interval of ~8.4–3.7 ka in China can be considered warm and humid period. The 430 

period between ~7 and 4.2 ka BP was demonstrated as high summer temperature in the mid and 431 

high latitude areas of the northern hemisphere (Klimenko et al., 1996; Alverson et al., 2003). 432 

Furthermore, an extensive paleosol, developed on the eastern belt of the Badain Jaran Desert, 433 

indicates a climate optimum in the mid Holocene (Yang et al., 2011). This humid episode 434 

between ~8.4 ka and ~3.7 ka is also found in the North Africa (Guo et al., 2000). Therefore, the 435 

interval of ~8.4–3.7 ka can be considered a globally registered Holocene optimum period.  436 

 437 

A cool and dry climate from ~3.7 to ~ 2.4 ka caused the lowest χ𝑙𝑓 and well-preserved loess/sand 438 

in the studied area, also indicated by other global data (Figure 15). A cold and arid period from 439 

~3.5 to ~2.5 ka in the northern hemisphere was determined by Mayewski et al. (2004), and this 440 

interval is almost the same arid period as found in this study. In the northern hemisphere, the 441 

3.5–2.5 ka shows rapid climate change intervals including the North Atlantic ice-rafting events 442 

(Bond et al., 1997), and strengthened westerlies over the North Atlantic and Siberia (Meeker and 443 

Mayewski, 2002). The interval, at 3.5–2.5 ka, also presents a strong aridity in the regions like the 444 

East Africa, the Amazon Basin, Ecuador, and the Caribbean/Bermuda region (Haug et al., 2001).  445 

Wanner et al. (2011) reviewed that the global cooling event between ~3.3 and ~2.5 ka coincided 446 

with a considerably low solar activity forcing. 447 

 448 
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In Figure 15, warmer interval of ~2.4–1.2 ka and colder interval of ~1.2–0.81 ka in the studied 449 

area correlate well with the δ18O values of the Lake Baikal (Mackay et al., 2011), FD values of 450 

the Burdukovo loess section (Kravchinsky et al., 2013), temperature variations in the northern 451 

hemisphere (McMichael, 2012), and Drift Ice Indices Stack from the North Atlantic (Bond et al., 452 

2001). This event (~1.2 to 1.0 ka) corresponds to the maxima in the δ14C and 10Be records, 453 

indicating a weakening in solar output at this interval (Mayewski et al., 2004). At low latitudes, 454 

~1.2–1.0 ka usually shows dry conditions in the tropical Africa and the monsoonal Pakistan 455 

(Gasse, 2000; 2001). During ~1.2 to 1.0 ka, atmospheric CO2 surged moderately and caused 456 

variations in solar output resulting in drought in the Yucatan (Hodell et al., 1991, 2001). The 457 

other warmer interval of ~0.81–0.48 ka also corresponds to FD parameter in the Burdukovo 458 

(Kravchinsky et al., 2013), temperature variations in the northern hemisphere (McMichael, 459 

2012), and Drift Ice Indices Stack from the North Atlantic (Bond et al., 2001). However, the 460 

resolution of the δ18O data from the Holocene sediments of the Lake Baikal is not very high 461 

(Mackay et al., 2011), and does not allow to evaluate this interval in the Lake Baikal. 462 

 463 

Our results demonstrate that changes in petromagnetic parameters of the loess-paleosol 464 

sequences in the studied area correlate closely with variations in climate documented separately, 465 

as explored by other proxies. Such correspondence demonstrates the global connections among 466 

the continental climate in Asia and the central Eurasia, temperature variations in the northern 467 

hemisphere, and the oceanic climate of the North Atlantic. Furthermore, the Holocene optimum 468 

period (~8.4 to 3.7 ka) in the studied regions, indicating a stronger warm-wet phase, appears to 469 

be a globally registered warming period. 470 

 471 
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6. Conclusions 472 

 473 

(1) Petromagnetic and grain size analyses provide evidence for pedogenic alteration in the 474 

Holocene loess sequences of the Chinese Loess Plateau, affected by the climatic variation in 475 

temperature and precipitation but not by the climatic variation of wind intensity. 476 

(2) Results indicate that subsequent warm-humid phase occurred in the studied regions during 477 

~8.4–3.7 ka, ~2.4–1.2 ka, and ~0.81–0.48 ka, evidenced by the development of paleosols as 478 

well as high values of petromagnetic parameters in all sections.  479 

(3) The Holocene climatic optimum period, in the studied regions, occurred between ~8.4 and 480 

~3.7 ka. This climate shows sensitivity to the large warming and cooling events while being 481 

insensitive to millennial scale climate changes. 482 

(4) The Holocene climate record of the studied regions is consistent with the reported climate 483 

records from the tree pollen analysis along the south-to-north eastern Chinese Loess Plateau 484 

at that time, suggesting that that same climatic variation occurred in the eastern monsoonal 485 

China. 486 

(5) Our results correspond to the record of climate changes on regional and/or global scales, 487 

implying that similar climatic pattern of changes occurred in different regions of the world 488 

during the Holocene and the Holocene climatic optimum took place at the same time interval 489 

all over the northern hemisphere. 490 
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Figure captions 813 

 814 

Figure 1. Top: satellite image map showing the location of the studied areas (red star) and the 815 

other sites discussed in the text: 1– Hongyuan peatland; 2– Yaozhou; 3– Jinjie; 4– Daihai Lake; 816 

5– Hulun Lake; 6– Lake Baikal; 7– Burdukovo. Bottom: geographic location of the Yaozhou 817 

(YZ) and Jinjie (JJ) studied areas in the Chinese Loess Plateau.  818 

 819 

Figure 2. Top: examples of temperature dependent magnetic susceptibility for the samples from 820 

YZ3 section (loess; sample 205 and soil; sample 150). Arrows represent heating (red line) and 821 

cooling (blue line) directions. Bottom: representative hysteresis loops of the samples from YZ3 822 

section (loess; sample 50 and soil; sample 250). 823 

 824 

Figure 3. Day plot of the hysteresis parameters (based on Dunlop, 2002) for YZ3 (triangles), JJ1 825 

(diamonds), and JJ3 (circles) sections. SD– single domain; PSD– pseudo-single domain; and 826 

MD– multidomain. 827 

 828 

Figure 4. Stratigraphy and magnetic concentration parameters of the YZ1 section. χ𝑙𝑓– low 829 

frequency magnetic susceptibility (10−6 m3 kg−1); FD (%) – frequency dependence parameter; 830 

χ𝐴𝑅𝑀– anhysteric remanent magnetization (10−6 m3 kg−1); and SIRM– saturation isothermal 831 

remanent magnetization (10−6 Am2 kg−1). Horizontal grey bars denote soil horizons, interpreted 832 

as relatively warm-wet intervals.  833 

 834 
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Figure 5. Stratigraphy and magnetic concentration parameters of the YZ2 section. Same 835 

abbreviations as in Figure 4. 836 

 837 

Figure 6. Stratigraphy and magnetic concentration parameters of the YZ3 section. Same 838 

abbreviations as in Figure 4. 839 

 840 

Figure 7. Stratigraphy and magnetic concentration parameters of the JJ1 section. Same 841 

abbreviations as in Figure 4. 842 

 843 

Figure 8. Stratigraphy and magnetic concentration parameters of the JJ3 section. Same 844 

abbreviations as in Figure 4. 845 

 846 

Figure 9. Stratigraphy and analytic data for the YZ1 section. χ𝑙𝑓– low frequency magnetic 847 

susceptibility (10−6 m3 kg−1); MD– median sedimentary grain size (μm); χ𝐴𝑅𝑀 χ𝑙𝑓⁄ – magnetic 848 

grain size parameter (unitless); and χ𝐴𝑅𝑀 𝑆𝐼𝑅𝑀⁄ – magnetic grain size parameter (10−4 mA−1). 849 

Horizontal grey bars denote soil horizons, interpreted as relatively warm-wet intervals.  850 

 851 

Figure 10. Stratigraphy and analytic data for the YZ2 section. Same abbreviations as in Figure 9. 852 

 853 

Figure 11. Stratigraphy and analytic data for the YZ3 section. Same abbreviations as in Figure 9. 854 

 855 

Figure 12. Stratigraphy and analytic data for the JJ1 section. Same abbreviations as in Figure 9. 856 

 857 
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Figure 13. Stratigraphy and analytic data for the JJ3 section. Same abbreviations as in Figure 9. 858 

 859 

Figure 14.  Comparison of Holocene paleoclimate records in China (from south to north): total 860 

tree pollen percentage at Hongyuan peatland (Zhou et al., 2010); χ𝑙𝑓– low frequency magnetic 861 

susceptibility (10−6 m3 kg−1) for YZ3 section (this study); χ𝑙𝑓 (10−6 m3 kg−1) for JJ3 section (this 862 

study); total tree pollen percentage at Daihai Lake (Xiao et al., 2004); and total tree pollen 863 

percentage at Hulun Lake (Wen et al., 2010). Locations of these areas are shown in Figure 1. 864 

Grey horizontal bars represent the warm-wet climatic intervals based on the record of this study. 865 

 866 

Figure 15. Regional and global correlations (from south to north): χ𝑙𝑓– low frequency magnetic 867 

susceptibility (10−6 m3 kg−1) for YZ3 section (this study); χ𝑙𝑓 (10−6 m3 kg−1) for JJ3 section (this 868 

study); Lake Baikal δO18 profile linked to mass-balancing isotope measurements in per mil 869 

deviations from VSMOW (Vienna Standard Mean Ocean Water) (Mackay et al., 2011); 870 

frequency dependence (FD) parameter from loess section of Burdukovo in Siberia (Kravchinsky 871 

et al., 2013); temperature variations (°C) in the northern hemisphere (relative to mean 872 

temperature during 1960–1980) averaged from multiple published sources (McMichael, 2012); 873 

and Drift Ice Indices Stack from North Atlantic (Bond et al., 2001). See Figure 1 for the 874 

locations. Grey horizontal bars indicate the warm-wet climatic intervals based on the record of 875 

this study. 876 

 877 

 878 


