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Abstract. This study addresses the possibility to carry out global gridded mean annual temperature

reconstructions using a worldwide network of proxy records and a method based on the search of

analogs (AM-CFR). Several variants of the method are evaluated, and their performance is analysed.

As test bed for the reconstruction, the PAGES2K proxy database (version 1.9.0) is employed as pre-

dictor, the HadCRUT4 dataset is the set of observations used as predictand and target, and a set of5

simulations from the PMIP3 are used as pool to draw analogs and carry out Pseudo Proxy Exper-

iments (PPE). The performance of the variants of the analog method is evaluated through a series

of PPEs in growing complexity, from a perfect scenario to a realistic one where the pseudo-proxy

records are contaminated with noise and missing values mimicking the limitations of actual proxies.

From all the tests carried out, we can conclude that the analog pool provided by PMIP3 ensemble is10

large enough to reconstruct global annual temperatures during the Common Era. Further, the search

of analogs based on a metric that minimises the RMSE outperforms other evaluated metrics, includ-

ing the search of analogs in the range-reduced space expanded by the leading EOFs. We show how

the method is able to extrapolate the information of the proxy network to produce a homogeneous

gap-free climate field reconstruction with valuable information in areas barely covered by proxies.15

Finally, the method is applied to reconstruct the HadCRUT4 observed temperature based on the

calibration of the proxies. The reconstructed fields reproduce the observed decadal temperature vari-

ability. The AM-CFR is a suitable tool which is able to deliver valuable climate field reconstructions

for the Common Era.
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1 Introduction20

Climate Field Reconstruction (CFR) methods (Rutherford et al., 2005; Luterbacher et al., 2004;

Mann et al., 2008; Smerdon et al., 2011) aim at reconstructing the spatially resolved time evolution

of climate fields based on the information contained in a relatively sparse network of proxy archives,

which usually encode only local information about past surface climate. The reconstruction of the

two dimensional evolution of past near-surface temperature, in contrast to point-wise temperature25

reconstructions, can provide insights about the physical mechanisms that are responsible for past

climate variability and also about the spatial temperature response to external forcing. However,

the information about past climate variability is contained in proxy records that archive past envi-

ronmental conditions at the local scale. To achieve spatially resolved reconstructions, the different

proxy records have to be combined in proxy networks to cover wider regions, and additionally some30

type of method is required to interpolate, and sometimes also to extrapolate, this information and

reconstruct complete gridded climate fields. The most widely applied CFR methods make use of the

observed spatial co-variability of climate fields to up-scale the scattered information provided by the

proxy records to finally obtained a complete gridded reconstruction of particular climate variables.

However, this is not the only strategy possible. In this study, we test the performance of a more recent35

CFR method, the analog method, that does not necessarily estimate the spatial climate co-variability

from observations but that instead combines proxy records and climate simulations to reconstruct

the global near surface temperature field.

There are different types of statistical CFR methods. Point-by-point regression (Cook et al., 2004)

establishes a series of linear regression models between each grid-cells of a gridded observational40

data set and several proxy records located in the vicinity of that particular grid-cell. Once this local

regression model is calibrated, the local climate is reconstructed based on those few proxy records,

repeating this procedure for all grid-cells until the area of interest is covered. Other CFR meth-

ods, based on Principal Component Regression (Luterbacher et al., 2004) or Canonical Correlation

Analysis (Smerdon et al., 2011) estimate from observations the modes of spatial co-variability of45

the climate variable and uses the leading modes as predictands in a multivariate regression model,

in which all available proxy records are used as predictors. Other methods are based on the Regu-

larized Expectation Maximization algorithm (Rutherford et al., 2005; Mann et al., 2008) originally

designed to fill in gaps in panel data. This method also estimates the spatial climate co-variability

from observations, although not in the form of spatial modes as Principal Components Regression50

or Canonical Correlation.

Statistical CFR methods share common features. One of them is that they are usually based on

the assumptions of a linear link, which should be stable over time, between variations in the proxy

record and variations in the local climate. Another common assumption is that the climate spatial co-

variability was in the past the same as it is observed in the current climate. More modern methods,55

like Bayesian Hierarchical Modelling (BHM) (Tingley and Huybers, 2010; Werner et al., 2013;
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Luterbacher et al., 2016), set up a more complex Bayesian statistical model that describes the link

between the local climate and the proxy record and the spatio-temporal co-variability of the climate

fields. The parameters of this statistical model are estimated by a Bayesian strategy, resulting in a

probabilistic reconstruction of past climate conditional on the values attained by the proxy records60

in each time step in the past. These more flexible methods may describe the link between proxy

record and climate variable in more complex ways than just as a linear function and may incorporate

previous mechanistic knowledge about the nature of the proxy record. Similarly, the precise form of

the statistical model that represents the spatio-temporal co-variability of the climate field is supported

by our knowledge of the present climate, and thus is also based, although indirectly, on the observed65

climate co-variability.

The analog method was originally introduced in the 1970s for weather forecasting (Lorenz, 1969).

It is however a rather general framework that allows it to be used in different contexts, and in partic-

ular it has found application in various areas of paleoclimatology. Overpeck et al. (1985) studied the

sensitivity to the choice of different distances, and demonstrated how the method is able to produced70

good results using pollen data and biological assemblages. Guiot et al. (1989) used it to produce

climate reconstruction based on two European pollen records. More recently, the method has been

employed in combination to tree rings reconstructions as a mean to fill gaps in the predictor matrix

(Nicault et al., 2008; Guiot et al., 2010). Further, Nicault et al. (2008) used a pseudoproxy approach

similar to the one we use through this work to assess the performance of the reconstruction. In this75

work, we use the analog method to produce a CFR reconstruction following an approach similar to

Franke et al. (2010) and more recently Gómez-Navarro et al. (2014). Used in this way, the method

uses a data-based approach to represent the spatial co-variability of the climate fields. Thereby,

instead of estimating those spatial functions from observed data as traditional statistical CFR do,

or prescribing functional spatio-temporal co-variability functions as BHM methods do, the analog80

methods samples entire fields of a particular climate variable that have been generated in climate

model simulations. Those fields that most closely resemble the proxy patterns at a certain time step

in the past are selected for the spatially resolved reconstruction. The reconstructed field may be de-

fined as the most similar simulated field, an average of the most similar fields or, in more complex

settings, a function of the whole set of most similar fields. In the case of the most simple setting, in85

which only the most similar field is selected for the reconstruction, the spatial co-variability is au-

tomatically ensured, either that from observations or from a state-of-the-art climate model. In other

settings, in which the reconstructed field is constructed from several analog fields, the reconstructed

spatial co-variability will not exactly match that from observations or from a simulation, but in gen-

eral it will be reasonably close. This is one of the main advantages of the analog method, and can90

be extended to the reconstruction of other variables that are not represented by the proxy records.

Given a time step in the past, once the field most similar to the proxy pattern has been identified,
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fields of other variables that have been simultaneously observed (or simulated) can be taken as a

reconstruction that is physically consistent with the pattern provided by the proxy data.

The concept of the analog method is therefore similar to offline data assimilation techniques that95

have been applied in the paleoclimate context over the last few years (Bhend et al., 2012; Steiger

et al., 2014; Hakim et al., 2016). These methods use a statistical function (typically a Kalman fil-

ter) to update the prior estimation, taken from a simulated climate field, based on the information

from the proxy data (e.g. Hakim et al., 2016). The main difference respect to the analog method

is therefore that the latter does not update the prior information, but directly uses one sample (or a100

function of a selection of them) of the model data pool as reconstructed value. As a consequence,

the analog method does not introduce additional spatial information not originally included within

the pool of analogs. This can be seen as an advantage, since non-climatic noise of individual proxies

cannot results in spatial patterns that are inconsistent with model physics. Hence, if the information

from an individual proxy is physically inconsistent with the majority of records, this will result in105

generally larger distance functions, but does not necessarily introduce larger errors in the proximity

of the affected record. The analog method has been used with different terminologies and settings

in several research areas, ranging from the early stages of numerical weather prediction (Van den

Dool, 1994), through the estimation of future regional climate change (downscaling) (Zorita and

von Storch, 1999), to the reconstruction of past surface climate from long instrumental sea-level-110

pressure records (Schenk and Zorita, 2012).

Since the evolution of the global temperature is not known with certainty, the reconstruction per-

formance of the method is here assessed with the help of virtual experiments conducted with data

generated in realistic climate simulations. The assessment is based on pseudo-proxy experiments

(PPE) (Mann and Rutherford, 2002; Zorita et al., 2003; von Storch et al., 2004; Rutherford et al.,115

2005; Smerdon, 2012; Werner et al., 2013; Gómez-Navarro et al., 2014). Paleo-climate simulations

do not generate proxy records, such as tree-ring widths, that may be consistent with the climate

evolution simulated by a climate model, but pseudo-proxy records that mimic some of the statisti-

cal quantities observed in real proxy records can be generated from climate simulations (Smerdon,

2012). These statistical quantities may in general comprise the link between the proxy record and120

the local temperature, the statistical persistence of the proxy record, the gaps present in the proxy

record, etc., although in particular PPE only some of these statistical properties are implemented

in the pseudo-proxies to test their influence on the final reconstructions. In addition, the network

of pseudo-proxies can also be tailored to mimic the network of real proxy sites that are nowadays

used to reconstruct the climate of the past few centuries. Once a network of pseudo-proxy records125

is created within a climate simulation, any reconstruction method can be applied to this network

to pseudo-reconstruct the target variable. The pseudo-reconstructed variable is then compared with

the corresponding variable simulated by the climate model, allowing for an assessment of the per-

formance of the method in this ideal circumstances. This is likely an optimistic estimation of the
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true performance, since real proxies include sources of non-climate variability that are not straight130

forward to represent with a simple statistical model, and that are likely to cause larger reconstruction

errors.

The present work is, therefore, not aimed at presenting a climate reconstruction and studying the

implications for the history of recent climate change. Such an assessment is beyond the scope of

this manuscript and will be addressed in future studies focused on this topic. Instead, the goal of135

this contribution is to propose and evaluate, mostly with the help of a number of PPEs where the

temporal evolution is borrowed from a climate model run, the performance and major limitations of

a CFR method based on the analog method, hereafter AM-CFR. The method aims at producing a

reconstruction of the global near-surface mean annual air temperature (MAT).

2 Data140

The study does not critically rely on a particular set of proxy data nor on observations, as the focus is

on the evaluation of the performance method itself. Therefore, the study is mainly based on pseudo-

proxy experiments in which the PMIP3 simulations provide the test bed of the analog method. Still,

selecting a realistic network that mimics the location of real proxies is crucial to achieve meaningful

results that can be then translated to real practice of reconstructions. Nevertheless, the AM-CFR has145

been also tested with observations in the period 1850-2012 Section 5. This requires having both,

a network of actual proxies and their previous calibration against observations. Both datasets, as

well as the set of simulations used to draw analogs, are briefly described in the following. Further,

two different designs of the pseudo experiments are introduced, which are necessary for testing the

analog method.150

2.1 Observational dataset

The version 4.3 of the HadCRUT4 dataset (Morice et al., 2012) consists of gridded near-surface air

temperature series, calculated as anomalies relative to 1961-1990 mean. It spans the period from

1850 to the present with monthly resolution. The product blends the HadSST3 and CRUTEM4

datasets for sea and land surface temperatures, respectively, and thus provides global coverage with155

a horizontal resolution of 5◦. The method to produce this dataset generates an ensemble of 100

realisations that allows the characterisation of uncertainty. The ensemble mean is used in this study.

An important caveat of HadCRUT4 is the fact that it contains missing values stemming from the

lack of meteorological observations in certain barely populated areas. These gaps remain in the final

product, since the method applied to the observations does not include data extrapolation. To avoid160

this drawback, a slightly modified version is considered where missing values have been infilled

using a 2-stage GraphEM interpolation (Guillot et al., 2015).
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2.2 Proxy network

The PAGES 2K Consortium has compiled a global dataset of proxy temperature records. Records

were assembled by experts to represent the evolution of temperature over the last 2000 years. Quan-165

titative criteria for record length, resolution and other factors were devolved to select a large dataset

that can be culled to address a wide range of research questions (http://www.pages-igbp.org/ini/wg/2k-

network/intro). The first version of this dataset, containing 511 proxy records, was used to gen-

erate temperature reconstructions for seven continental-scale regions using various reconstruction

methods (PAGES2K Consortium, 2013). It has since been updated and expanded to include marine170

records and additional metadata (PAGES2K Consortium, 2016) . Some records in the 2013 version

were excluded because of more stringent selection criteria, which have now been applied more uni-

formly across regions. We use the version 1.9.0 of this dataset, the predecessor to the slightly revised

upcoming version 2.0.0, which will shortly be published (PAGES2K Consortium, 2016). Thus, the

version used herein represents an intermediate snapshot between versions 1 (PAGES2K Consortium,175

2013) and 2 (PAGES2K Consortium, 2016). In total, 682 records are included from 640 terrestrial

and ocean locations (Fig. 1). The records belong to 10 types of proxy archives and vary in time

resolution and record duration. The majority are tree rings (61%) with assumed annual resolution.

For further details about the database, we refer to (PAGES2K Consortium, 2016). The records with

lower time resolution are interpolated to emulate annual resolution, and seasonally-resolved proxies180

are also processed to remove the annual cycle. This dataset is hereafter referred to as PAGES-FULL.

In addition to this, two slightly different subsets of the dataset are used. The PAGES-SEL includes

only those records with native annual resolution, i.e., without interpolation in time, start before

1881, and have less than 1/3 of missing values during the calibration period 1881-1995. This subset

contains 514 records. The PAGES-SCREEN is a more restrictive subset, which was screened for a185

statistically significant correlation with regional temperatures. We use the regional plus FDR (False

discovery rate; Ventura et al., 2004) screening from (PAGES2K Consortium, 2016). This procedure

selects only those proxy records with significant (p<0.05) grid cell correlations within a search ra-

dius of 2000 km and corrects for FDR. This screening reduces the redundancy of records in areas

where they cluster, particularly western North America and the Himalayas (Fig. 1) but also removes190

records from areas where the proxy density is sparse. This subset consists of just 197 records. The

influence of using different subsets is addressed but most of the analysis in this study is based on the

PAGES-SEL subset.

2.3 Model simulations

The AM-CFR method requires a pool of plausible MAT fields to be used for the search of analogs.195

The size of this pool is crucial, as it needs to cover as many potential climate situations as possible

which might have occurred over the Common ERA. To account for this, we use an ensemble of Earth
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System Model (ESM) simulations, i.e., the simulations of the last millennium within the frame of the

PMIP3 initiative (Braconnot et al., 2012). This ensemble is part of the Coupled Model Intercompar-

ison Project fifth phase (Taylor et al., 2012, CMIP5) and is produced with different state-of-the-art200

models which are also used in the assessment of future climate change (Stocker et al., 2013). The

heterogeneity of this ensemble (different parameterizations, components included, etc.) is beneficial

for this application, since it allows the analogs to be drawn from a wide range of the spectrum of

plausible climate situations, each of them consistent within their own model physics. Although dif-

ferent in some details, all models agree in many fundamental aspects of the temperature evolution205

ove the Common Era. They are fully coupled ocean-atmosphere general circulation models run with

similar spatial resolution. Further, the length of the simulations and the forcings implemented is con-

sistent across the ensemble (Braconnot et al., 2012; Taylor et al., 2012). In total, 16 simulations are

considered from 7 ESMs, resulting in a pool size of 18327 years.

3 Methods210

3.1 Calibration of the reconstructions

The PAGES2K datasets consist of a network of raw, uncalibrated proxies. Thus, using this dataset in

the AM-CFR method requires a prior calibration of the proxy series to temperature that can be com-

pared to the modelled temperature in the search for analogs. Such calibration is a complex task, since

different proxies respond to temperature in a different fashion, and their relationship is contaminated215

by an unknown and different level of non-climatic noise. Further, different proxies span different pe-

riods, which leads to a dataset populated with an amount of missing values that varies through time.

These drawbacks require a simple method capable to handle this heterogeneity. It should produce

a network of reconstructed temperature records that preserves the largest fraction possible of the

climate-related variability. Thereby, a simple univariate linear regression model is employed to de-220

duce a statistical relationship between each proxy and the MAT. The regression is calculated against

the closest grid point in the HadCRUT4 during an overlapping period. This fit is performed for each

location independently The regression parameters estimated during the calibration period are then

used to obtain a local MAT reconstruction.

The period 1911-1995 is used for the calibration, thereby avoiding the use of the full observational225

record, and setting some observational data aside for the validation of the reconstruction. Figure

1 shows the correlation between the observations and the raw proxy series during the calibration

period. The correlation ranges between -0.56 and 0.63, with 65% of values with an absolute value

below 0.2. Although the correlation is modest, it is important to note that these proxies have been

carefully selected by experts according to their demonstrated ability to reflect temperature variations230

with respect to the choice of the calibration period (PAGES2K Consortium, 2016). Furthermore,

these correlation values are robust with respect to the choice of calibration period. Various periods
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have been tested, including the use of the whole period, and differences are hardly appreciable (not

shown).

3.2 The analog method as reconstruction technique235

The analog method was first introduced in the 1970s for weather forecasting (Lorenz, 1969). Re-

cently, it has been implemented in a variety of applications in climate research, from hurricane pre-

diction (Sievers et al., 2000; Fraedrich et al., 2003) to downscaling (Zorita and von Storch, 1999) and

upscaling Schenk and Zorita (2012) techniques. For the interest of this study, the suitability of this

technique to generate CFRs has been recently demonstrated for temperature (Franke et al., 2010) and240

precipitation (Gómez-Navarro et al., 2014) for Europe. Although the method is explained elsewhere,

we briefly outline its key ideas here, following the notation by Gómez-Navarro et al. (2014).

The algorithm requires a set of observations of the multivariate predictand T(t) available over

some time t, with concurrent observations of a multivariate predictor P(t). This predictor shall

be available also at time t0 where no observations of the predictand, the target field variable, are245

available. The basic idea of the analog method is that the value of these unknown T(t0) can be

approximated by a known value of T(t) if the predictors P(t) and P(t0) at the target time t0 and a

time t in the observation period are sufficiently similar. The set of values P(t) with the simultaneous

information of the predictand T(t) is generally denoted the pool of potential analogs. Thus, at a

given time t0, the method compares P(t0) with all the members of the pool by using a metric250

∆(ti) = dist(P(t0),P(ti)) ,∀i ∈ pool. (1)

The element in the pool with the smallest ∆(ti) is called the analog, P(t̃i). Thereby, the recon-

structed predictand is defined as the value of the predictand at the analog point in time, which min-

imises the metric T(t0) = T(t̃i).

Although the basic idea is simple, there is still flexibility for tailoring the method to fit different255

requirements. First, the similarity in (Eq. 1) can be defined in multiple ways by using different

metrics, some of which are introduced in the next sections. Additionally, the method can be set to

select not just one analog, but identify a set of analogs (e.g. Sievers et al., 2000; Fraedrich et al.,

2003). For example, the N closest analogs in the pool (in the sense of the distance given by (Eq. 1))

can be used to produce a weighted average260

T̃(t0) =
N∑

i=1

ωiT(t̃i) (2)

where T(t̃i) denotes the predictand fields of the closest analogs, weighted by ωi. Again, the weight-

ing can be performed in different ways, e.g., by the distance according to the selected metric or

simply by equal weights. Here, we consider only the cases N = 1 and N = 5, and set all weights

to 1/N , which produces a simple average of analogs. It is important to note that the use of several265
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analogs (N > 1) filters out noise, and thus the estimation uncertainty is lower, but has the counterpart

of underestimating the time variance variance.

3.3 Search for analogs in the real space

The measure of similarity described in Eq. 1 makes use of a distance between two patterns of tem-

perature that has to be evaluated over the network of proxy sites. Note that such distance shall be270

defined flexible enough to accommodate possible missing values. In this analysis we use two differ-

ent metrics: correlation and Root Mean Square Error (RMSE).

Correlation is defined as

ρ(P(ti),P(tj)) =
(P(ti)−P(ti)) · (P(tj)−P(tj))√
(P(ti)−P(ti))2(P(tj)−P(tj))2

(3)

where the line over a vector indicates that the mean value across coordinates is computed. RMSE is275

defined in this notation as

RMSE(P(ti),P(tj)) =

√
(P(ti)−P(tj))2

M
(4)

Correlation is a measure of the degree of similarity of two patterns, but does not penalise two fields

that may differ by a large constant value. This reduces the ability of the metric to detect changes in

the global temperature, as will be shown later. RMSE is a metric that penalises simultaneously the280

lack of spatial co-variability and differences in mean values. Note that this metric is equivalent,

except for a multiplicative constant, to the Euclidean distance between the two vectors P(ti) and

P(tj). Both metrics can be generalised in a natural way to account for missing values in proxy sites.

In that case, the summations implicit in the scalar product and in the averages skip those sites, and

the constant M has to be decreased accordingly.285

3.4 Search for analogs in the EOF space

As a variant, the search for analogs can be carried out in the low-dimension space expanded by

the leading EOF patterns of the temperature variability. The rationale for using this transformation

is that although a temperature field has many dimensions, i.e., as many as grid points, these grid

points are strongly interdependent, thus reducing the effective degrees of freedom of the phase space.290

Further, part of this variability may be spurious and attributable to non climate-related variability

in the proxy records, i.e., noise. By decomposing the variability of the field in its main modes,

temperature variability can be compressed into a much smaller number of independent variables,

each one uncorrelated to the others (von Storch and Zwiers, 2002). The use of EOF techniques to

reduce the dimensions for the search of analogs has been explored in previous studies (Zorita and295

von Storch, 1999; Fernández and Sáenz, 2003).

Here, the leading modes of variability are obtained from the observational dataset HadCRUT4

(where there are no missing values). Once the leading L patterns that explain the desired level of
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variance (in this study set to 90%) are identified, the field can be approximated as the linear combi-

nation300

P(t)'
L∑

i=1

αi(t)EOFi , (5)

where EOFi represent the spatial the pattern and αi(t) the corresponding time series, whose calcu-

lation is described below. Thereby, the rank reduction achieved by the change of basis emerges from

the fact that the vector P(t), originally defined through M coordinates in the canonical basis, can

be described in the EOF basis by L, with L�M . Once the predictor and predictand at each time305

step are expressed as linear combination of the observed modes of variability, the analog method can

be applied directly in this space, with the only modification that the metrics described in Eqs. 3 and

4 have to be applied using the vectors of coordinates α(ti) and α(tj), instead of the original fields

P(ti)) and P(tj)). For the EOF space we focus on a single metric, i.e., RMSE.

Despite its apparent simplicity, the calculation of the vector of coordinates αi(t) deserves some310

words of caution when working with fields that contain missing values. In the absence of missing

values, the EOFi vectors form an orthonormal basis. In this case the αi(t) vector can be easily

obtained as a matrix multiplication

αi(t) = P(t) ·EOFi
t , (6)

where each row is an EOF pattern and the super index t denotes matrix transpose. However, when315

missing values are present in the vector P(t), such gaps have to be introduced in the vectors EOFi.

Unfortunately, this modification in the vectors destroys their orthonormality, which implies that the

former equation has to be generalised. It can be shown that the general expression is

αi(t) = P(t) ·EOFt
i ·Cov(EOF)−1 , (7)

where Cov denotes the spatial covariance matrix of the EOFi vectors. In the particular case where320

they are orthonormal (e.g. when there are no missing values) the covariance matrix is the identity

matrix of size L, and Eq. (7) becomes equal to Eq. (6).

As a final remark, the coordinates αi(t) do not contain any missing values, regardless of the gaps

present in the original vector P(t) as missing values are implicitly taken into account in the matrix

multiplication used to transform the basis. Thus, all αi(t) coordinates have the length L, independent325

on the presence of missing values. This simplifies the definition of a distance. Still, the presence of

many missing values is undesirable since it increases the uncertainty of the estimation of αi(t).

3.5 Design of pseudoproxy experiments

As part of the performance evaluation of the AM-CFR method, we use PPE. These idealised ex-

periments are profusely used in literature to assess the performance of the CFR reconstructions of330

temperature (Smerdon, 2012, and references therein) or even precipitation (Gómez-Navarro et al.,
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2014). The procedure extracts data from a climate simulation at a given set of locations to build

a synthetic network of local pseudo- records. This synthetic dataset is used as input for the recon-

struction method with the aim to recreate the reconstruction procedure, and then to compare this

pseudo-reconstruction with the original simulated field.335

The design of PPEs may vary in complexity. The so-called perfect PPEs use the closest grid

point to the location of the real proxy to extract a time series of the physical variable of interest.

The synthetic reconstructions used as input therefore consist of a simple subset of the original field

of the simulation. This is clearly an oversimplification of reality, since actual local reconstructions

reproduce only a fraction of the actual climatic signal and include uncertain levels of noise and340

missing values. A more realistic approach consists of contaminating the climate model series with

a certain amount of statistical noise and gaps, so that the starting point of the CFR reconstructions

more closely mimics real proxy data.

In this study, we arbitrarily select one of the simulations from the PMIP3 ensemble as a target and

to create the pseudoproxies for the PPE (in particular we use the simulation with the GISS model345

labeled r1i1p121). We then build the pool of analogs from all other simulations but excluding this

simulation, and reconstruct the target with the AM-CFR. The network of proxies to base all PPEs

hereinafter is the PAGES-SEL network. We employ first perfect PPEs, which allows to assess an

upper limit of the performance of the method and is referred hereafter as NoNoise PPE. In a next

step, we consider a more realistic scenario where white noise is added to the series. Although other350

types of statistical noise with different properties can be considered, e.g. red noise produced by

an autoregressive process, the differences with respect to white noise reported by similar studies

are small (Gómez-Navarro et al., 2014), so we do not consider other types of noise in this study.

The amount of noise is set so that it reduces the point-wise correlation with the original series

in each proxy location to 0.5. This level of noise, that corresponds to a signal-to-noise ratio (by355

standard deviation) of 0.58, is comparable to similar studies (Storch et al., 2008; Smerdon, 2012;

Gómez-Navarro et al., 2014). In this experiment the same missing values present in the PAGES-SEL

reconstructions are introduced to mimic a more realistic pseudo-proxy network. This experiment is

referred as R0.5 PPE. In a final setup, a set of even more realistic PPEs are carried out in which each

pseudo-proxy is constructed with different amounts of noise, so that the correlations with the original360

series equal the correlation values between the real proxy records and observed temperatures, i.e. the

values shown in Fig. 1. This is referred as RProxy PPE.

4 Evaluation of the AM-CFR in PPEs

In this section, only PPEs are used to evaluate the performance of the AM-CFR to reconstruct global

annually-resolved temperature. In all cases the full PMIP3 ensemble has been considered by leaving365
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out one simulation, and the proxies location is based on the PAGES-SEL network, as described in

Section 3.5.

4.1 NoNoise PPE

Figure 2 shows the point-wise correlation maps (calculated for the full reconstructed period) be-

tween the original simulation and the pseudo-reconstructions based on perfect pseudo proxies with370

1 and 5 analogs, for a similarity measure based on RMSE, correlation and RMSE in the EOF space,

respectively. All methods tend to produce positive correlations, which is indicative of the ability of

the reconstruction method to recover the original variability based on a limited number of locations.

Still, there are large differences among the different settings. The reconstructions based on the met-

ric of correlation is less reliable than the one based on RMSE. The lack of performance likely stems375

from the less demanding criterion of (dis)similarity between two variables that correlation provides,

ignoring shifts in the average fields, and thus focusing just on the spatial co-variability. In this sense,

RMSE presents a compromise, penalising analogs that strongly differ from the target field both in

terms of spatial variability and absolute values. The RMSE similarity is more demanding, and even-

tually the identified analogs are physically closer to the target pattern. The search within the space380

spanned by the first EOFs leads to a similar point-wise correlation as in the former case, which is

somewhat expected since the metric is the same, and the phase space, although severely reduced in

terms of number of dimensions, still preserves by construction 90% of the original variance. The

inclusion of more analogs have the effect of increasing the temporal correlation. This effect, also de-

scribed by Gómez-Navarro et al. (2014), is due to the cancellation of errors in the averaging process.385

The cancellation of errors has the counterpart of averaging out also a larger part of the reconstructed

variability. Thus, there is a trade-off between temporal accuracy and variance. This is further illus-

trated by Fig. 3, where the ratio of the standard deviations in the reconstruction and the simulation

is presented. Overall, all reconstructions tend to preserve well, and even overestimate, the original

variability. This is a result of the lower variability of the simulation used as target (based on the390

GISS model) versus the model ensemble as a whole, and thus re-sampling the pool of analogs tends

to produce larger variability than the target. This overestimation of variability becomes strongly

ameliorated when 5 analogs are used, as expected according to the discussion above.

Spatially, the performance, measured by the point-wise correlation in Fig. 2 is quite homogeneous,

despite the unequal distribution of the proxies and specially despite the smaller number of proxies395

in the Southern Hemisphere. Within the North Hemisphere, the area where the reconstruction is less

accurate is clearly the North Atlantic, which stands out across all reconstructions. In this sense, the

EOF-based reconstruction seems more robust, since it does not present the slight negative correla-

tions that appear near the North Atlantic, Caribbean Sea and the Sahara. In the South, the areas south

of 40◦S show low correlations, which can be clearly associated to the lack of proxies that provide400

information to the reconstruction. Regarding variability, the spatial structure is coherent across meth-
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ods. Still, the strong underestimation of variance in all reconstructions in the western North Atlantic

is notable. This underestimation can be directly linked to strong variance in the simulations used as

target (not shown). The consistency of these deficiencies demonstrates how the AM-CFR method

is always constrained by the quality of the data used as pool for the analog search. In this case, the405

features observed in the target field are not shared across models, which leads to the inability of the

method to find suitable analogs that capture certain features.

Based on the results that emerge from Figs. 2 and 3, the rest of the analysis focusses solely on

the reconstructions carried out with the search of analogs in the real space and based on RMSE

similarity (hereafter RMSE-AM), and the one in the EOF space (hereafter EOF-AM). Similarly,410

only reconstructions using an average of 5 analogs are discussed. However, although not shown,

the analysis has been carried out with all settings combinations, and significant deviations from the

results expected from the discussion above are highlighted.

A very important aspect of this pool of analogs is that it is heterogeneous, since the analogs come

from few very different climate models. Thus, an important question to be addressed is whether there415

are models that are selected more frequently, and whether there is a strong relationship between the

year being reconstructed and the year that correspond to the closest analog. This is shown in Figure 4,

where the number of times each model has been selected is shown for each method (see panels a and

c). All models across the pool are selected at some point in the reconstruction (with the exception of

model number 5, which is the model explicitly excluded for being the target of the PPE). Still, some420

models are more frequently selected than others. Numbers 1 and 13 are overall the most frequently

chosen in both methods, and correspond to the BCC and the IPSL models, respectively. On the other

hand, models 15 and 16 are the less frequently chosen models, and correspond to two realisations

of the MPI model. It is worth noting that the other simulations with the GISS model (numbers 4 to

11) are not selected more frequently than the rest of models, despite being simulations of the same425

model as the target. This is indicative of the ability of the search algorithm to identify similarities

in the spatial patterns regardless of particular model features, and supports the robustness of the

reconstructed fields with respect to the biases present in some models. Similarly, there is no strong

one-to-one relationship between the simulated and reconstructed years, i.e. simulated modern (or

earlier) years are not necessarily selected to reconstruct recent (or earlier) years (see scatter dots in430

panels b and d). This is indicative of the sufficiently large amount of variability contained in the

pool, which thanks to the amount of internal variability provided by the various simulations, is able

to provide analogs independently of the model year. The only signal of a temporal link between the

targets and their analogs appears as a clustering of modern simulated years that are used as analogs

for years within the 20th century (see the clustering of dots in the top right corners in panels b and435

d). This is attributable to the effect of recent warming of the industrial period, i.e. warm years appear

more frequently, and they are preferably found during the last centuries of the pool of simulations.
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4.2 R0.5 PPE

This section explores the performance loss when noisy pseudo proxies are used to mimic the effect

of not climate related variability of real proxy data. As outlined above, the noise consists of additive440

white noise and the introduction of missing values that mimic the temporal distribution of missing

values present in the PAGES-SEL network. Note that, for the sake of brevity, the analysis hereafter

is limited to the RMSE-AM and EOF-AM methods for analogs search, although the other methods

have been explored and the results are consistent with the former section; i.e. the RMSE metric

outperforms correlation as measure of distance between analogs. Similarly, only the reconstruction445

obtained as an average for the 5 best analogs is discussed, since the 1- and 5-analog versions differ

in the bias-variance trade-off described in the perfect scenario context in the previous section.

The performance of the reconstructions with these more realistic PPEs is illustrated in Fig. 5.

The top row depicts the correlation between the original simulation and the reconstructions based

on realistic PPE contaminated with noise and populated with missing values. The correlation is450

generally lower than in the case of perfect pseudo-proxies, indicating the reduced performance of

the reconstruction method in this scenario. This is expected since the quality of the pseudo-proxies

has been considerably degraded in this PPE. However, the decrease in the correlation is remarkably

small, from 0.35 to 0.28 and from 0.39 to 0.24 on average and for the RMSE and EOF methods,

respectively.455

In particular, the spatial structure of the correlation maps hardly changes with respect to perfect

PPE, being the spatial correlation between the perfect and noisy cases 0.94 and 0.95 for RMSE and

EOF, respectively. The modest impact of the addition of a strong component of noise is attributable

to the use of an extensive network of proxies: the information contained in the network is to a

great extent redundant and represents the same climate signal, which implies that the degradation of460

the information at a given location can be to a great extent recovered by the reconstruction method

through the use of nearby information and by the spatial coherence of the climate field. This recovery

of degraded information gives confidence about the CFR methods in general, and in the AM-CFR

in particular, and suggests that the use of a large network of independent proxies can overcome, to a

certain extent, the problems derived from the use of noisy local reconstructions.465

The two maps in the lower row depict the ratio of standard deviation in the reconstruction and

the simulation in logarithmic scale. Both figures are hardly distinguishable (spatial correlation 0.97

and averaged bias of -0.02 ), and coherently point out how the reconstruction recovers about 80%

of the original variance independently from the particular method (the logarithm of the ratio av-

erages -0.1 and -0.8 for RMSE and EOF, respectively). The loss of variance with respect to the470

NoNoise PPE is particularly strong in the western North Atlantic. This underestimation of variance

disappears and even becomes an overestimation of variance when just 1 analog is considered (not

shown). However, this variant of the method presents lower temporal correlation (not shown), as the

correlation-variance trade-off is always present across experiments.
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4.3 RProxy PPE475

Figure 6 depicts the same results as Fig. 5 but for the more realistic PPE, which consists of reduc-

ing the correlation in a way that mimic the values observed in the calibration. The decrease in the

correlation compared to a situation with spatially homogenous noise is apparent (note the different

scale for correlation). The inclusion of more realistic values of correlation severely reduces the abil-

ity of the AM-CFR method to reconstruct the original simulation. A striking finding with respect480

to the former case is the large difference between the RMSE-AM and EOF-AM methods. Although

both methods deal with the same amount of uncertainty, the former clearly outperforms the latter re-

garding its ability to reproduce the temporal evolution in the target, despite the addition of noise and

missing values. Still, the spatial structure of correlation is very similar in the RMSE-AM variant, and

in particular the method remains able to deliver performance in regions with poor proxy coverage.485

Regarding the preservation of variance, both methods exhibit the same underestimation of variance,

which stems from the averaging over 5 analogs, and is absent in both cases when only one analog

is used to reconstruct (not shown). Thus, both methods behave similarly regarding the replication of

variance.

Based on the results of these PPEs, we conclude that the RMSE-AM method is overall the most490

reliable, since its performance is more robust across the experiments and analyses we have carried

out.

5 Reconstruction of the observational period

In this section, the ability of the reconstruction method is explored using real proxies to reconstruct

the observed temperature field in the period 1850-2012. For this, a selection of the PAGES-SEL net-495

work during the period 1850-2000 is extracted and calibrated during the 1911-1995 period against

the infilled HadCRUT4 observational dataset in the way described in the Section 3. The series ob-

tained after calibration are used as input for the RMSE-AM and EOF-AM variants of the AM-CFR,

and the output is compared to the original observations, with the aim of establishing the performance

of the reconstruction.500

Figure 7 depicts the results of the comparison between the reconstructed and observed annual

series of MAT, and is the counterpart to Figs. 5 and 6 with actual proxies instead of PPE. As before,

the results focuses on the RMSE and EOF methods, and when 5 analogs are chosen to obtain the

reconstruction. Regardless of the particular method used in the search of analogs, the correlation

maps between the reconstruction versus the target (top row) exhibit lower values than both with505

perfect PPEs and with noisy pseudo-proxies with spatially homogeneous noise (correlations of 0.5

in every location; Figs. 2 and 5, respectively). This lower temporal correlation suggests that the level

of noise employed in the first realistic PPE, inspired by its application in similar studies (Storch

et al., 2008; Smerdon, 2012; Gómez-Navarro et al., 2014), is an underestimation. Indeed, the point-
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wise correlations between the observed temperature and the proxies during the calibration period510

ranges between -0.56 and 0.63, with an average of 0.06. These low correlations impose an upper

limit to the temporal evolution that the calibrated series are able to represent. This can be seen

more clearly when comparing Figs. 6 and 7, where especially the RMSE-AM method exhibits very

similar spatial pattern and values. Recall that these figures correspond to actually very different

datasets (a PPE versus a real reconstruction of an observational dataset), although by construction of515

the PPE they have in common the spatial proxy network and the correlation between the proxy and

the corresponding local MAT series.

The reconstructions of the temperature in the observational period produce overall positive corre-

lations with the real temperatures, which match fairly well the values obtained with noisy PPE with

spatially varying noise levels, especially the RMSE-AM, and depending on the location reach values520

above 0.5. The distribution of point-wise correlation is affected by the location of the proxies, and

seems to be slightly sensitive to the method employed, especially where the point-wise correlation

is not supported by the existence of nearby proxies. Thereby, both methods produce reconstructions

that exhibit better performance over Europe, north Canada, eastern Asia or Tasmania. However,

RMSE shows locations where the reconstruction leads to remarkable performance despite the low525

number of proxies located nearby, such as Western Sahara or the Southern Indian Sea, whereas these

spots of remarkable correlation cannot be identified in the EOF reconstruction. Conversely, the use

of the RMSE similarity leads to negative correlation in South America and near Antarctica, which

are missing in the EOF reconstruction. Regarding the preservation of variance (bottom row), both

methods underestimate the variance, as expected to some extent when using an average of 5 analogs.530

In this sense, the RMSE method clearly outperforms the EOF-based method, which unlike the for-

mer strongly underestimates variance in nearly all locations. A noticeable agreement between both

methods is the consistent underestimation of variance in the Arctic. This may result from the lower

variance in the pool of analogs in this region. All models consistently exhibit lower variance in the

Arctic compared to observations (not shown), which leads to systematic variance underestimation535

and provides an example of unavoidable bottleneck of the AM-CFR.

6 The role of spatial distribution of proxy sites

The reconstruction performance may also depend on the proxy network used. Therefore, we assess

the impact of slightly different proxy networks on the reconstruction, using the PAGES-SEL, -FULL

and -SCREEN networks described above. The observational period serves as an example.540

The correlation maps between the observations in the period 1850-2000 and the different RMSE-

AM reconstructions based on these networks are shown in Fig. 8, where also the slightly different

distribution of the proxies is shown. Using the original PAGES-FULL network generally improves

the point-wise correlation of the reconstruction compared to the PAGES-SEL case (recall that this
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network contains 682 instead of 514 records). This is especially so in equatorial and sparsely covered545

areas, indicating that the addition of few records, even when they do not provide real annual resolu-

tion or when they contain significant amounts of missing values, can have noticeable positive effects

on the reconstruction. A striking result is that the PAGES-SCREEN network provides remarkable

performance, despite that it just contains 197 records. This suggests that the accumulation of redun-

dant proxies in certain areas, such as North America or China, may have a counterproductive effect550

in the reconstruction performance. This is a somewhat counter-intuitive result, since the screening

of the network produces a reduction of the available information. The combination of the latter two

results support the argument that the best possible network would ideally have a global but also a

very homogeneous coverage, making the total number of records of secondary importance.

Figure 9 shows the temporal evolution of the globally averaged MAT in the HadCRUT4 dataset555

and the RMSE-AM reconstructions with 1 and 5 analogs using each of the tree proxy networks

described previously. This figure additionally illustrates the reconstruction performance, and is com-

plementary to the correlation maps discussed so far. All time series reproduce remarkably well the

global warming captured by observations, including the short cooling period during the 60’s. The

differences between different setting of the method are minor, and does not affect this general good560

agreement, indicating that the long-term variability can be reproduced with confidence regardless of

the network used to reconstruct the climate variability.

7 Conclusions

This study presents a framework to carry out global CFRs using the analog method based on a pool

of the PMIP3 ensemble simulations (Taylor et al., 2012). Although the application of the method565

has been previously employed to carry out European reconstructions of temperature (Franke et al.,

2010) and precipitation (Gómez-Navarro et al., 2014), the validity of this method to accomplish a

global temperature field reconstruction has not been addressed so far. This is a relevant test, since

the large dimensionality of the problem poses concerns about the suitability of available simulations

to provide a large-enough pool of situations from which to draw analogs. This study is also novel570

in being one of the first analysis that benefit from the PAGES2K proxy network (PAGES2K Con-

sortium, 2016). In this sense, this work takes advantage of the most recent developments in both the

climate model and reconstruction communities (PAGES 2k-PMIP3 group, 2015), and represents an

example of the power of exercises blending both approaches to gain insight in climate variability

within the Common Era.575

A number of variations of the method are presented here, since the analog method critically de-

pends on the metric used to identify analogs (normally a distance measure between the analog and

the target). Testing different metrics shows that the RMSE, which is equivalent but to constant value

to the Euclidean distance, is more suitable than correlation since it penalises deviations in global
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averages. The search of analogs in the real space, as well as the one expanded by the leading EOFs580

that explain 90% of the total variance has been explored. Although the EOF version is in principle

better suited for the search of analogs due to the reduction of dimensionality of the problem, our re-

sults indicate that the search in the real space provides the best results with a consistent performance

across the various tests carried out. Further it has the added value of slightly lower computational

cost.585

Regardless of the metric used and the nature of the reconstruction (real reconstruction or PPE), the

method draws analogs without clear preferences for any model in particular. Indeed, when the GISS

model is used to perform PPE, the rest of the GISS simulations are not selected preferably over the

rest of the ensemble. This indicates that the method draws analogs according to climate situations,

rather than systematic biases of a particular model, and thus provides confidence in the method.590

Further, the results indicate that the inclusion of a large number of simulations from structurally

different models has beneficial effects on the quality of the final reconstruction.

The inclusion of a spatially constant amount of white noise in the more realistic pseudo-reconstructions

does not dramatically affect the CFR performance, supporting the robustness of the method and the

ability of the network of proxies to retain the variability of the global man temperature, in spite of595

local noise. Still, there is a large difference in the performance obtained with actual proxies and

that achieved in PPEs with degraded pseudo-proxies. This difference suggest that the amount of

noise might have been underestimated in previous studies based on PPEs (e.g. Storch et al., 2008;

Gómez-Navarro et al., 2014), and lower signal-to-noise ratio shall be employed in realistic PPEs.

This is confirmed by our analysis through a more realistic PPE configuration, where the level of600

noise depends on the proxy site to mimic the one derived from the calibration of real proxies.

Many statistical climate reconstruction methods tend to underestimate climate variability, espe-

cially those based on linear methods. The AM-CFR is an exception, since the variability of the

reconstruction is provided by that of the pool of analogs. Although this might be seen as an advan-

tage, it has the problem that systematic biases in the pool are transfered to the reconstruction. This605

is particularly the case with the PMIP3 ensemble, which exhibits a reduced variability in the Arc-

tic that becomes a prominent drawback in all reconstructions evaluated here. The AM-CFR can be

adjusted by varying the number of proxies used to draw an analog. If more than one analog are se-

lected and averaged to generate the analog, the correlation is increased, but it has the counterpart of

reducing variability. This bias-variance trade-off is not unexpected, as it is a common phenomenon610

that appears recurrently in all branches of statistics.

The sensitivity of the CFR to various slightly different versions of the proxy network has also been

evaluated. The skill of the reconstruction does not critically depend on the total number of records.

Instead, it is more strongly affected by their spatial distribution. In this sense, including redundant

proxies that cluster in some areas does not always have a beneficial effect, since they do not provide615
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new information, but may bias the the search of analogs towards those areas at the coast of producing

less accurate reconstructions in areas less well covered by proxies.

We conclude that the analog method is a useful tool able to yield skillful results in CFRs of past

climate. It has particular features compared to more commonly used CFR techniques, e.g. it is a

non-linear method that does not require the calibration of an underlaying statistical model. Thus,620

the method may complement more traditional approaches providing additional insight about past

climate variability, and allowing to assess the robustness and weaknesses of other methods.
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Figure 1. Point-wise correlation between the raw proxy series in the PAGES-SEL network and the MAT in the

infilled HadCRUT4 dataset during the period 1911-1995.
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Figure 2. Point-wise correlation (calculated for the whole reconstruccted period) between the original sim-

ulation and a reconstruction based on perfect pseudoproxies. The maps show the results when three different

metrics are used for the search of analogs (by rows), as well as when different numbers of analogs are combined

to draw the reconstruction (by columns). Green diamonds indicate the location of the pseudproxies employed,

based on the PAGES-SEL network.
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Figure 3. As Fig. 2, but for the logarithm of the ratio of the standard deviation of the reconstruction and the

original simulation. Red (blue) shading depicts areas where the reconstruction overestimates (underestimates)

variability.
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Figure 4. Selection of analogs used to carry out a perfect PPE. Bars in panels a and c indicate the number

of times the analog has been taken from each of the 16 models. The points in panels b and d indicate the

relationship between the reconstructed year (x-axis) and the model (colour) and simulated year (y-axis) used as

analog for the reconstruction. a and b correspond to the reconstruction based on RMSE and c and d based on

Euclidian distance in the EOF space.
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Figure 5. Similar to Figs. 2 and 3 but for realistic PPE. Top (bottom) row indicate the correlation (ratio of

standard deviations) between the original simulation used as target and the reconstructions obtained selecting

analogs from the PMIP3 pool.
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Figure 6. As Fig. 5 but for the hyper realistic PPE in which the correlations equal the values obtained during

the proxies calibration, i.e. Fig. 1.
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Figure 7. Similar to Figs. 5 and 6, but for a reconstruction of observations based on a calibration of proxies in

the period 1911-1995. The correlation is calculated for the period 1850-2010.

29

Clim. Past Discuss., doi:10.5194/cp-2016-98, 2016
Manuscript under review for journal Clim. Past
Published: 14 October 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 8. Correlation maps similar to Fig. 7 for the RMSE-AM variant of the AM-CFR method. The three

maps depict the result obtained using each of the three variants of the PAGES2K network described in Section

2.2. In all cases the green symbols indicate the location of the proxies employed to reconstruct.
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Figure 9. Time series of globally averaged MAT anomalies with respect to the period 1961-1990. The black bold

line represents the infilled HadCRUT4 dataset, whereas colours indicate 6 reconstructions based on N = 1,5 in

Eq. 2 using the RMSE-AM version with the three variants of the PAGES2K network described in Section 2.2.
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