Point by point authors response to second round of review

J. J. Goémez-Navarro on behalf of all co-authors

May 4, 2017

Generally, I find this paper greatly improved and would recommend that it be published provided
that some mainly minor revisions are performed.

We thank the reviewer for carefully reading again the manuscript and providing more useful
insight that will surely improve the final version of the manuscript.

It is good that the authors take into account the change in the proxy network back in time and this
1s now clearer in the text but I feel this point should be expanded on when describing the performance
of the reconstruction. The period in which the correlations to the true values etc are evaluated will
presumably impact the results due to the difference in coverage through time. In particular, when
comparing the correlations in the figure 8 to figures 5,6,7 are they calculated over the same time
period? If not wouldn’t the difference in proxy coverage effect the results, making any comparison
problematic?

It is true that the correlations can not be directly compared. We have added sentences (highlighted
in blue in the tracked-chages document) that emphasise this important point, initially overseen by
us.

Also in the figures, is the proxy network plotted showing maximum availability? If so I think
it would be useful to state that some of these proxies do mot cover the full period over which the
correlations are calculated and perhaps the location of the proxies which do cover the full period could
be indicated.

We have added a new map as part of Figure 1 that illustrates the availability of proxy data. Note
however it is beyond the scope of this manuscript to thoughtfully review the dataset. Therefore we
refer explicitly to the original paper (Open Access) for further information of the temporal evolution
of proxy availability.

Somewhere in the paper it should be mentioned that the reconstructions show less homogeneity
back through time than the models (e.g. co-variability between the NH and SH) see Neukom et al
and the paper by the PAGES 2k-PMIP3 group (Continental-scale temperature variability in PMIP3
simulations and PAGES 2k regional temperature reconstructions over the past millennium). This
could mean that the performance of the PPE examples, particularly in the SH, shown here may be
optimistic when compared to the performance in a real world scenario.

This is indeed an interesting observation. We have included a whole new paragraph in the
Conclusions section that acknowledges this issue.

Figure 4 — As mentioned in my previous review I really think this figure would illustrate the point
you wish to make far better if you make panels b and d a perfect square and put a x=y line through
it.  This would make it much more intuitive and clearer to interpret. In addition I think marking
where the major volcanic eruptions occurred would help. At the moment I am struggling to identify
for example whether following 1258, 1815, volcanic years in the models are preferentially selected for
analogs.

The figure has been modified according to the reviewer suggestion.



In section 7 it is not clear to me why you have used the case with uniform white noise instead of
the more realistic proxy noise setup, can you justify this? I would have thought that the most realistic
set-up would be a better choice.

The reviewer is right, so we have replaced the figure showing the most realistic case, although it
supports the same conclusions.

Abstract. Assuming AM stands for analogue method, the definition should be moved to line 8 for
clarity. “variants of the Analog Method (AM) ...” And any mention of the “analog method” elsewhere
in the text should be replaced with AM, please check the introduction especially.

This convention has been implemented across the whole manuscript.

Line 35 “to finally obtain a complete”

Line 41 “each gird-cell of”

line 70 and 72 — check brackets around references.
These changes have been implemented

Line 179 — do you mean ensemble median? This is the most commonly used HadCRUT/ prod-
uct. . .
The reviewer is right, so we have edited the text accordingly.

Line 229 — the forcings are similar but not totally consistent i.e. different volcanic and solar
forcing datasets are used. This should be mentioned and a citation to Schmidt et al 2012 added.

Line 244 — “HadCRUTY dataset”

Lines 369-373 — Could a sentence be added here expanding why using the GISS model which has
a lower vartance would result in a stricter test. This wasn’t initially clear to me.

Line 417 “has the effect”

Line 473 “the effect of non-climate related”

Various minor text edits have been implemented to address all these issues.

RProxy PPE section — I would like to see a slightly expanded discussion of the degradation of
results. To me this looks to be particularly prominent in the tropics where the proxy data has a poorer
correlation to the observations. Is this correct?

We have enlarged such discussion. However, this time we believe it is not easy demonstrate
the guess of the reviewer. It is true that the differences are stronger in the tropics, but the reason
seems to be that correlation was originally very high there, rather than because the skill is worse in
relative terms (i.e. in locations where the skill was already low, the degradation is obviously lower).
Therefore, we believe the performance degradation is more related to lose of absolute skill in areas
where it is relatively large, and not so clearly related to the nature of proxies in those locations.
Actually, in the tropics the correlations are rather high (see dark blue squares in Fig. 1). As the
argument seems not very strong, we have decided not to include it in the discussion.

Line 605 — The observations in the high Arctic are based on in-filled data and not real observations.
Therefore the comparison of variance in models and observations in this region should be caveated.
This is an interesting and fair point that we have included in the discussion of the result.

Section 6. Could the improvement in performance of the screened network also be due to removing
the prozies with poorer correlations with observations from the network?
This is actually the case. We have stressed this point in the discussion.

Line 675 — This sentence is not clear.
We believe the problem of this sentence is that it heavily relies on the context provided by the
former paragraph. We have tried to rephrase it to make it more clear.



Figure 7 — Why has the variance preservation plot log(c /o) not been shown as in figures 2,3,5,67
I think this would be useful to include.

We wanted to include a measure of RMSE to illustrate other metrics, as suggested in the first
stage of the review. Therefore we decided to remove the results for variability to keep a rather small
figure. However, it might have been a bad idea, as pointed out by the reviewer. Therefore we now
include both RMSE and standard deviation, and we briefly discuss all results together from the three
metrics shown in the figure.

Figure 11. Finding that the poles give the largest error is perhaps not that surprising given that
this is the part of the world with the most variability. Could you add plots showing the errors divided
by the models control variability in each grid cell as I think this would give a better demonstration of
the performance of the AM.

We have carried out the analysis, and Figure 11 shows now the suggested calculations.
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Abstract.

This study addresses the possibility to carry out spatially resolved global reconstructions of annual
mean temperature using a worldwide network of proxy records and a method based on the search
of analogstAM)-. Several variants of the method are evaluated, and their performance is analysed.
As a test bed for the reconstruction, the PAGES2K proxy database (version 1.9.0) is employed as
predictor, the HadCRUT4 dataset is the set of observations used as predictand and target, and a set
of simulations from the PMIP3 simulations are used as pool to draw analogs and carry out Pseudo
Proxy Experiments (PPE). The performance of the variants of the arateg-method-Analog Method
(AM) is evaluated through a series of PPEs in growing complexity, from a perfect-proxy scenario
to a realistic one where the pseudo-proxy records are contaminated with noise (white and red) and
missing values mimicking the limitations of actual proxies. Additionally, the method is tested by
reconstructing the real observed HadCRUT4 temperature based on the calibration of real proxies.
The reconstructed fields reproduce the observed decadal temperature variability. From all the tests,
we can conclude that the analog pool provided by the PMIP3 ensemble is large enough to reconstruct
global annual temperatures during the Common Era. Further, the search of analogs based on a metric
that minimises the RMSE in real space outperforms other evaluated metrics, including the search of
analogs in the range-reduced space expanded by the leading EOFs. These results show how the
AM is able to spatially extrapolate the information of a network of local proxy records to produce a
homogeneous gap-free climate field reconstruction with valuable information in areas barely covered
by proxies, and make the AM a suitable tool to produce valuable climate field reconstructions for

the Common Era.
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1 Introduction

Climate Field Reconstruction (CFR) methods (Rutherford et al.l 2005} [Luterbacher et al., 2004}
Mann et al.| [2008} [Smerdon et al., 2010) aim at reconstructing the spatially resolved time evolution
of climate fields based on the information contained in a relatively sparse network of proxy archives,
which usually encode only local information about past surface climate. The reconstruction of the
two dimensional evolution of past near-surface temperature, in contrast to point-wise temperature
reconstructions, can provide insights about the physical mechanisms that are responsible for past
climate variability and also about the spatial temperature response to external forcing. However,
the information about past climate variability is contained in proxy records that archive past envi-
ronmental conditions at the local scale. To achieve spatially resolved reconstructions, the different
proxy records have to be combined in proxy networks to cover wider regions, and additionally some
type of method is required to interpolate, and sometimes also to extrapolate, this information and
reconstruct complete gridded climate fields. The most widely applied CFR methods make use of the
observed spatial co-variability of climate fields to up-scale the scattered information provided by
the proxy records to finally ebtained-obtain a complete gridded reconstruction of particular climate
variables. However, this is not the only strategy possible. In this study, we test the performance of a
more recent CFR method, the analog-methodAM, that does not necessarily estimate the spatial cli-
mate co-variability from observations but instead combines proxy records and climate simulations
to reconstruct the global near surface temperature field.

There are different types of statistical CFR methods. Point-by-point regression (Cook et al.,[2004)
establishes a series of linear regression models between each grid-cells-grid-cell of a gridded obser-
vational data set and several proxy records located in the vicinity of that particular grid-cell. Once
this local regression model is calibrated, the local climate is reconstructed based on those few proxy
records, repeating this procedure for all grid-cells until the area of interest is covered. Other CFR
methods, based on Principal Component Regression (Luterbacher et al.l [2004) or Canonical Corre-
lation Analysis (Smerdon et al.,|2010) estimate from observations the modes of spatial co-variability
of the climate variable and uses the leading modes as predictands in a multivariate regression model,
in which all available proxy records are used as predictors. Other methods are based on the Regu-
larized Expectation Maximization algorithm (Rutherford et al., 2005; [Mann et al., [2008) originally
designed to fill in gaps in panel data. This method also estimates the spatial climate co-variability
from observations, although not in the form of spatial modes as Principal Components Regression
or Canonical Correlation.

Statistical CFR methods share common features. One of them is that they are usually based on
the assumptions of a linear link, which should be stable over time, between variations in the proxy
record and variations in the local climate. Another common assumption is that the climate spatial co-
variability was in the past the same as it is observed in the current climate. More modern methods,

like Bayesian Hierarchical Modelling (BHM) (Tingley and Huybers, [2009; Werner et al., 2013}
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Luterbacher et al.l [2016), set up a more complex Bayesian statistical model that describes the link
between the local climate and the proxy record and the spatio-temporal co-variability of the climate
fields. The parameters of this statistical model are estimated by a Bayesian strategy, resulting in a
probabilistic reconstruction of past climate conditional on the values attained by the proxy records
in each time step in the past. These more flexible methods may describe the link between proxy
record and climate variable in more complex ways than just as a linear function and may incorporate
previous mechanistic knowledge about the nature of the proxy record. Similarly, the precise form of
the statistical model that represents the spatio-temporal co-variability of the climate field is supported
by our knowledge of the present climate, and thus is also based, although indirectly, on the observed
climate co-variability.

The analog-methed-AM was originally introduced in the 1970s for weather forecasting (Lorenz,

1969). It is however a rather general framework that allows it to be used in different contexts, and in

it to produce climate reconstruction based on two European pollen records. More recently, the
method has been employed in combination to tree rings reconstructions as a mean to fill gaps in
the predictor matrix (Nicault et al., 2008} (Guiot et al., 2010). Further, Nicault et al.| (2008)) used a
pseudo-proxy approach similar to the one we use through this work to assess the performance of the
reconstruction. In this work, we use the anateg-method-AM to produce a CFR reconstruction fol-
lowing an approach similar to [Franke et al.| (2010) and more recently (Goémez-Navarro et al.| (2014)).
Used in this way, the method uses a data-based approach to represent the spatial co-variability of
the climate fields. Thereby, instead of estimating those spatial functions from observed data as tradi-
tional statistical CFR do, or prescribing functional spatio-temporal co-variability functions as BHM
methods do, the analog-methods-AM samples entire fields of a particular climate variable that have
been generated in climate model simulations. Those fields that most closely resemble the proxy
patterns at a certain time step in the past are selected for the spatially resolved reconstruction. The
reconstructed field may be defined as the most similar simulated field, an average of the most similar
fields or, in more complex settings, a function of the whole set of most similar fields. In the case
of the most simple setting, in which only the most similar field is selected for the reconstruction,
the spatial co-variability is automatically ensured, either that from observations or from a state-of-
the-art climate model. In other settings, in which the reconstructed field is constructed from several
analog fields, the reconstructed spatial co-variability will not exactly match that from observations
or from a simulation, but in general it will be reasonably close. This is one of the main advantages
of the analog-methedAM, and can be extended to the reconstruction of other variables that are not
represented by the proxy records. Given a time step in the past, once the field most similar to the

proxy pattern has been identified, fields of other variables that have been simultaneously observed
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(or simulated) can be taken as a reconstruction that is physically consistent with the pattern provided
by the proxy data.

The concept of the analog-method-AM is therefore similar to offline data assimilation techniques
that have been applied in the paleoclimate context over the last few years (Bhend et al.,[2012} Steiger
et al.,[2013} |Hakim et al.,|2016)). These methods use a statistical function (typically a Kalman filter)
to update the prior estimation, taken from a simulated climate field, based on the information from
the proxy data (e.g.[Hakim et al., 2016)). The main difference with respect to the analog-method-AM
is therefore that the latter does not update the prior information, but directly uses one sample (or a
function of a selection of them) of the model data pool as reconstructed value. As a consequence,
the analeg-methed-AM does not introduce additional spatial information not originally included
within the pool of analogs. This can be seen as an advantage, since non-climatic noise of individual
proxies cannot results in spatial patterns that are inconsistent with model physics. Hence, if the in-
formation from an individual proxy is physically inconsistent with the majority of records, this will
result in generally larger distance functions, but does not necessarily introduce larger errors in the
proximity of the affected record. The analeg-method-AM has been used with different terminologies
and settings in several research areas, ranging from the early stages of numerical weather predic-
tion (Van Den Dool| [1994)), through the estimation of future regional climate change (downscaling)
(Zorita and von Storch| [1999), to the reconstruction of past surface climate from long instrumental
sea-level-pressure records (Schenk and Zorital 2012).

The anateg-method-AM shares some similarities with the particle filter method put forward by
Goosse et al.| (2006)). The particle-filter method initially runs a set of simulations for a relatively short
period of time, after which they are compared with available local proxy-reconstructions of (usually)
annual or seasonal temperature. The simulations that do not resemble the patterns of reconstructed
temperature are discarded and those that resemble the reconstructed temperatures are continued
forward in time, or are used as a seed of a spin-off simulation ensemble by stochastically perturbing
the initial conditions. This method requires, therefore, a large number of simulations and so far
has only been implemented with climate models of reduced computing requirements. Thus, the
spatial resolutions and in general the complexity of the model-generated reconstructions are not as
sophisticated as full state-of-the art Earth system models. In the analog-methodAM, in contrast,
the analog patterns are searched through the complete simulated time, independently of whether
the dates of the identified analogues are close to the date of the proxy-reconstructed temperature
pattern. The advantage of this approach is that the size of simulation ensemble that provides the
pool of analogues does not need to be as large as in the particle-filter method. The price paid is,
however, that the external forcing of the analogs may be very different from the external forcing of
the target pattern. The underlying assumptions are that the spatial covariance of the temperature field
is not strongly dependent on the external forcing, or in other words that the shape of the temperature

anomaly patterns that are caused by the external forcing are either independent of the nature of the
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forcing or that internal variability is able to generate anomaly patterns that resemble those caused by
the external forcing. If the pool from which the analogues are drawn is large enough, this condition
might be fulfilled. This study aims at ascertaining to what extent this underlying assumption holds
so that the reconstructions generated by the analog-method-AM can be trusted.

Since the evolution of the past temperature is not known with certainty, the reconstruction per-
formance of the method is here assessed with the help of virtual experiments conducted with data
generated in realistic climate simulations. The assessment is based on pseudo-proxy experiments
(PPE) (Mann and Rutherford, 2002; Zorita et al., 2003} [von Storch et al., [2004; Rutherford et al.}
2005; [Smerdonl, [2012; |[Werner et al., 2013 (Gomez-Navarro et al., [2014). Paleo-climate simulations
do not generate proxy records, such as tree-ring widths, that may be consistent with the climate
evolution simulated by a climate model, but pseudo-proxy records that mimic some of the statisti-
cal quantities observed in real proxy records can be generated from climate simulations (Smerdon)
2012). These statistical quantities may in general comprise the link between the proxy record and
the local temperature, the statistical persistence of the proxy record, the gaps present in the proxy
record, etc., although in particular PPE only some of these statistical properties are implemented
in the pseudo-proxies to test their influence on the final reconstructions. In addition, the network
of pseudo-proxies can also be tailored to mimic the network of real proxy sites that are nowadays
used to reconstruct the climate of the past few centuries. Once a network of pseudo-proxy records
is created within a climate simulation, any reconstruction method can be applied to this network
to pseudo-reconstruct the target variable. The pseudo-reconstructed variable is then compared with
the corresponding variable simulated by the climate model, allowing for an assessment of the per-
formance of the method in this ideal circumstances. This is likely an optimistic estimation of the
true performance, since real proxies include sources of non-climate variability that are not straight
forward to represent with a simple statistical model, and that are likely to cause larger reconstruction
errors.

The present work is, therefore, not aimed at presenting a climate reconstruction and studying the
implications for the history of recent climate change. Such an assessment is beyond the scope of
this manuscript and will be addressed in future studies focused on this topic. Instead, the goal of
this contribution is to propose and evaluate, mostly with the help of a number of PPEs where the
temporal evolution is borrowed from a climate model run, the performance and major limitations of
a CFR method based on the AM. The method aims at producing a reconstruction of the mean annual

near-surface air temperature (SAT).

2 Data

The study does not critically rely on a particular set of proxy data nor on observations, as the focus is

on the evaluation of the performance method itself. Therefore, the study is mainly based on pseudo-
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the test bed of the analog-methodAM. Still, selecting a realistic network that mimics the location of
real proxies is crucial to achieve meaningful results that can be then translated to real practice of
reconstructions. Nevertheless, the AM has been also tested with observations in the period 1850-
2012 Section[5] This requires having both, a network of actual proxies and their previous calibration
against observations. Both datasets, as well as the set of simulations used to draw analogs, are briefly
described in the following. Further, two different designs of the pseudo experiments are introduced,
which are necessary for testing the analog-method AM.

2.1 Observational dataset

The version 4.3 of the HadCRUT4 dataset (Morice et al., 2012) consists of gridded near-surface air
temperature series, calculated as anomalies relative to 1961-1990 mean. It spans the period from
1850 to the present with monthly resolution. The product blends the HadSST3 and CRUTEM4
datasets for sea and land surface temperatures, respectively, and thus provides global coverage with
a horizontal resolution of 5°. The method to produce this dataset generates an ensemble of 100
realisations that allows the characterisation of uncertainty. The ensemble mean-median is used in
this study.

An important caveat of HadCRUT4 is the fact that it contains missing values stemming from the
lack of meteorological observations in certain barely populated areas. These gaps remain in the final
product, since the method applied to the observations does not include data extrapolation. To avoid
this drawback, a slightly modified version is considered where missing values have been infilled

using a 2-stage GraphEM interpolation (Guillot et al., [2015).
2.2 Proxy network

The PAGES 2K Consortium has compiled a global dataset of proxy temperature records. Records
were assembled by experts to represent the evolution of temperature over the last 2000 years. Quan-
titative criteria for record length, resolution and other factors were devolved to select a large dataset
that can be culled to address a wide range of research questions (http://www.pages-igbp.org/ini/wg/2k-
network/intro). The first version of this dataset, containing 511 proxy records, was used to gen-
erate temperature reconstructions for seven continental-scale regions using various reconstruction
methods (PAGES2K Consortiuml 2013)). It has since been updated and expanded to include marine
records and additional metadata (PAGES2K Consortimum), [2016)). Some records in the 2013 ver-
sion were excluded because of more stringent selection criteria, which have now been applied more
uniformly across regions. We use the version 1.9.0 of this dataset, the predecessor to the slightly
revised upcoming version 2.0.0, which will shortly be published (PAGES2K Consortimum), 2016).
Thus, the version used herein represents an intermediate snapshot between versions 1 (PAGES2K

Consortium), 2013)) and 2 (PAGES2K Consortimum, |2016). In total, 682 records are included from
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640 terrestrial and ocean locations (Fig. [T). The records belong to 10 types of proxy archives and

vary in time resolution and record duration—The-majerity-are-, being the majority of them tree-rings

(61%), with assumed annual resolution. Unfortunately, not all proxies span the full period, as shown

in the bottom map in Fig. [l which depicts the number of years where each proxy does not contain

missing values within the period 1-2012. For further details about the database, especially regarding
the nature and temporal evolution of data availability, we refer to (PAGES2K Consortimum), [2016).

The records with lower time resolution are interpolated to emulate annual resolution, and seasonally-
resolved proxies are also processed to remove the annual cycle. This dataset is hereafter referred to
as PAGES-FULL.

In addition to this, two slightly different subsets of the dataset are used. The PAGES-SEL includes
only those records with native annual resolution, i.e., without interpolation in time, start before
1881, and have less than 1/3 of missing values during the calibration period 1881-1995. This subset
contains 514 records. The PAGES-SCREEN is a more restrictive subset, which was screened for a
statistically significant correlation with regional temperatures. We use the regional plus FDR (False
discovery rate; Ventura et al.,[2004)) screening from (PAGES2K Consortimum, [2016)). This procedure
selects only those proxy records with significant (p<0.05) grid cell correlations within a search radius
of 2000 km and corrects for FDR. This screening reduces the redundancy of records in areas where
they cluster, particularly western North America and the Himalayas (Fig.[T]) but also removes records
from areas where the proxy density is sparse. This subset consists of just 197 records. The-Although
the influence of using different subsets is addressed but-in Section [6] most of the analysis in-this
stady-hereinafter is based on the PAGES-SEL subset.

2.3 Model simulations

The AM method requires a pool of plausible SAT fields to be used for the search of analogs.
The size of this pool is crucial, as it needs to cover as many potential climate situations as pos-
sible which might have occurred over the Common ERA. To account for this, we use an ensem-
ble of Earth System Model (ESM) simulations, i.e., the simulations of the last millennium within
the frame of the PMIP3 initiative (Braconnot et al., [2012). This ensemble is part of the Cou-
pled Model Intercomparison Project fifth phase (Taylor et al., 2012 CMIPS5) and is produced with
different state-of-the-art models which are also used in the assessment of future climate change
(Stocker et al., [2013)). The heterogeneity of this ensemble (different parameterizations, components
included, etc.) is beneficial for this application, since it allows the analogs to be drawn from a
wide range of the spectrum of plausible climate situations, each of them consistent within their
own model physics. Although different in some details, all models agree in many fundamental as-
pects of the temperature evolution ove the Common Era. They are fully coupled ocean-atmosphere
general circulation models run with similar spatial resolution. Further, the length of the simula-

tions and the forcings implemented is similar although not entirely consistent across the ensemble
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In total, 16 simulations are considered from 7 ESMs, resulting in a pool size of 18327 years.

3 Methods
3.1 Calibration of the reconstructions

The PAGES2K datasets consist of a network of raw, uncalibrated proxies. Thus, using this dataset in
the AM method requires a prior calibration of the proxy series to temperature that can be compared to
the modelled temperature in the search for analogs. Such calibration is a complex task, since different
proxies respond to temperature in a different fashion, and their relationship is contaminated by an
unknown and different level of non-climatic noise. Further, different proxies span different periods,
which leads to a dataset populated with an amount of missing values that varies through time. These
drawbacks require a simple method capable to handle this heterogeneity. It should produce a network
of reconstructed temperature records that preserves the largest fraction possible of the climate-related
variability. Thereby, a simple univariate linear regression model is employed to deduce a statistical
relationship between each proxy and the SAT. The regression is calculated against the closest grid
point in the HadCRUT4 dataset during an overlapping period. This fit is performed for each location
independently. The regression parameters estimated during the calibration period are then used to
obtain a local SAT reconstruction.

The period 1911-1995 is used for the calibration, thereby avoiding the use of the full observational
record, and setting some observational data aside for the validation of the reconstruction. Figure
shows the correlation between the observations and the raw proxy series during the calibration
period. The correlation ranges between -0.56 and 0.63, with 65% of values with an absolute value
below 0.2. Although the correlation is modest, it is important to note that these proxies have been
carefully selected by experts according to their demonstrated ability to reflect temperature variations
with respect to the choice of the calibration period (PAGES2K Consortimum, 2016)). Furthermore,
these correlation values are robust with respect to the choice of calibration period. Various periods
have been tested, including the use of the whole period, and differences are hardly appreciable (not

shown).
3.2 The analog-methed-AM as reconstruction technique

The analeg-method-AM was first introduced in the 1970s for weather forecasting (Lorenz, [1969).
Recently, it has been implemented in a variety of applications in climate research, from hurricane
prediction (Sievers et al., 2000; Fraedrich et al.l | 2003) to downscaling (Zorita and von Storchl|1999)
and upscaling Schenk and Zorita (2012) techniques. For the interest of this study, the suitability
of this technique to generate CFRs has been recently demonstrated for temperature (Franke et al.|

2010) and precipitation (Gomez-Navarro et al.,[2014) for Europe. Although the method is explained
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elsewhere, we briefly outline its key ideas here, following the notation by |Gémez-Navarro et al.
(2014).

The algorithm requires a set of observations of the multivariate predictand T(¢) available over
some time ¢, with concurrent observations of a multivariate predictor P(¢). This predictor shall
be available also at time ¢, where no observations of the predictand, the target field variable, are
available. The basic idea of the analog-methed-AM is that the value of these unknown T'(ty) can be
approximated by a known value of T'(¢) if the predictors P(t) and P(¢() at the target time ¢, and a
time ¢ in the observation period are sufficiently similar. The set of values P (¢) with the simultaneous
information of the predictand T(¢) is generally denoted the pool of potential analogs. Thus, at a

given time ¢, the method compares P (ty) with all the members of the pool by using a metric
A(t;) =dist(P(to),P(t;)) Vi€ pool. 1)

The element in the pool with the smallest A(t;) is called the analog, P(;). Thereby, the recon-
structed predictand is defined as the value of the predictand at the analog point in time, which min-
imises the metric T (¢o) = T(£;).

Although the basic idea is simple, there is still flexibility for tailoring the method to fit different
requirements. First, the similarity in (Eq. [I)) can be defined in multiple ways by using different
metrics, some of which are introduced in the next sections. Additionally, the method can be set to
select not just one analog, but identify a set of analogs (e.g. [Sievers et al., [2000; [Fraedrich et al.|
2003)). For example, the N closest analogs in the pool (in the sense of the distance given by (Eq.[I))

can be used to produce a weighted average

N
T(to) = Y w;T(t) 2)
i=1
where T(#;) denotes the predictand fields of the closest analogs, weighted by w;. Again, the weight-
ing can be performed in different ways, e.g., by the distance according to the selected metric or
simply by equal weights. Here, we consider only the cases N =1 and [N =5, and set all weights
to 1/N, which produces a simple average of analogs. It is important to note that the use of several
analogs (N > 1) filters out noise, and thus the estimation uncertainty is lower, but has the counterpart

of underestimating the time variance variance.
3.3 Search for analogs in the real space

The measure of similarity described in Eq. [T| makes use of a distance between two patterns of tem-
perature that has to be evaluated over the network of proxy sites. Note that such distance shall be
defined flexible enough to accommodate possible missing values. In this analysis we use two differ-

ent metrics: correlation and Root Mean Square Error (RMSE).
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Correlation is defined as

3

where the line over a vector indicates that the mean value across coordinates is computed. RMSE is
defined in this notation as

(P(t:) —P(t;))*

RMSE(P(t;),P(t;)) = M

“

Correlation is a measure of the degree of similarity of two patterns, but does not penalise two fields
that may differ by a large constant value. This reduces the ability of the metric to detect changes in
the global temperature, as will be shown later. RMSE is a metric that penalises simultaneously the
lack of spatial co-variability and differences in mean values. Note that this metric is equivalent,
except for a multiplicative constant, to the Euclidean distance between the two vectors P(¢;) and
P(t;). Both metrics can be generalised in a natural way to account for missing values in proxy sites.
In that case, the summations implicit in the scalar product and in the averages skip those sites, and

the constant M has to be decreased accordingly.
3.4 Search for analogs in the EOF space

As a variant, the search for analogs can be carried out in the low-dimension space expanded by
the leading EOF patterns of the temperature variability. The rationale for using this transformation
is that although a temperature field has many dimensions, i.e., as many as grid points, these grid
points are strongly interdependent, thus reducing the effective degrees of freedom of the phase space.
Further, part of this variability may be spurious and attributable to non climate-related variability
in the proxy records, i.e., noise. By decomposing the variability of the field in its main modes,
temperature variability can be compressed into a much smaller number of independent variables,
each one uncorrelated to the others (von Storch and Zwiers} 2002). The use of EOF techniques to
reduce the dimensions for the search of analogs has been explored in previous studies (Zorita and
von Storch), |1999; |[Fernandez and Saenz, 2003)).

Here, the leading modes of variability are obtained from the observational dataset HadCRUT4
(where there are no missing values). Once the leading L patterns that explain the desired level of
variance (in this study set to 90%) are identified, the field can be approximated as the linear combi-
nation

L

P(t)~> o;(t)EOF; ®

i=1
where EOF; represent the spatial the pattern and «;(¢) the corresponding time series, whose calcu-
lation is described below. Thereby, the rank reduction achieved by the change of basis emerges from

the fact that the vector P (), originally defined through M coordinates in the canonical basis, can be
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described in the EOF basis by L, with L < M. Once the predictor and predictand at each time step
are expressed as linear combination of the observed modes of variability, the analog-methed-AM can
be applied directly in this space, with the only modification that the metrics described in Egs. [3]and
have to be applied using the vectors of coordinates «(¢;) and a(¢;), instead of the original fields
P(t;)) and P(¢;)). For the EOF space we focus on a single metric, i.e., RMSE.

Despite its apparent simplicity, the calculation of the vector of coordinates «;(t) deserves some
words of caution when working with fields that contain missing values. In the absence of missing
values, the EOF; vectors form an orthonormal basis. In this case the «;(t) vector can be easily

obtained as a matrix multiplication
a;(t) =P(t) - EOF;', (6)

where each row is an EOF pattern and the super index ¢ denotes matrix transpose. However, when
missing values are present in the vector P(¢), such gaps have to be introduced in the vectors EOF;.
Unfortunately, this modification in the vectors destroys their orthonormality, which implies that the

former equation has to be generalised. It can be shown that the general expression is
a;(t) = P(t)- EOF..Cov(EOF) !, (7

where Cov denotes the spatial covariance matrix of the EOF'; vectors. In the particular case where
they are orthonormal (e.g. when there are no missing values) the covariance matrix is the identity
matrix of size L, and Eq. (7)) becomes equal to Eq. (6).

As a final remark, the coordinates «;(¢) do not contain any missing values, regardless of the gaps
present in the original vector P(¢) as missing values are implicitly taken into account in the matrix
multiplication used to transform the basis. Thus, all «;(¢) coordinates have the length L, independent
on the presence of missing values. This simplifies the definition of a distance. Still, the presence of

many missing values is undesirable since it increases the uncertainty of the estimation of «; ().
3.5 Design of pseudo-proxy experiments

As part of the performance evaluation of the AM method, we use PPE. These idealised experiments
are profusely used in literature to assess the performance of the CFR reconstructions of temperature
(Smerdon, 2012| and references therein) or even precipitation (Gémez-Navarro et al [2014). The
procedure extracts data from a climate simulation at a given set of locations to build a synthetic
network of local pseudo-records. This synthetic dataset is used as input for the reconstruction method
with the aim to recreate the reconstruction procedure, and then to compare this pseudo-reconstruction
with the original simulated field.

The design of PPEs may vary in complexity. The so-called perfect PPEs use the closest grid
point to the location of the real proxy to extract a time series of the physical variable of interest.

The synthetic reconstructions used as input therefore consist of a simple subset of the original field
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of the simulation. This is clearly an oversimplification of reality, since actual local reconstructions
reproduce only a fraction of the actual climatic signal and include uncertain levels of noise and
missing values. A more realistic approach consists of contaminating the climate model series with
a certain amount of statistical noise and gaps, so that the starting point of the CFR reconstructions
more closely mimics real proxy data.

In this study, we select one of the simulations from the PMIP3 ensemble as a target and to cre-
ate the pseudo-proxies for the PPE (in particular we use the simulation with the GISS model labeled
rlilp121). We then build the pool of analogs from all other simulations but excluding this simulation,
and reconstruct the target with the AM. Although the results are largely independent on the choice
of model, as we indeed demonstrate in Section [£.4] the rationale for this choice is that this simula-
tion is somewhat dissimilar to the other model simulations in that it exhibits lower variability than
the other models. The-exercise-to-reconstruet-This somewhat dissimilarity renders the exercise of
reconstructing the target GISS temperature using the other models as pool of analogues is-therefore
more difficult, and therefore it results in a slightly more strict test.

The network of proxies to base most of our results is the PAGES-SEL network, although other
networks are explored in Section[6] All networks of pseudo-proxies consider the real missing values
in the PAGES2K network, and thus mimic the reduction of available real proxy records back in time.
We employ first perfect PPEs (with no contamination with noise), which allows to assess an upper
limit of the performance of the method and is referred hereafter as NoNoise PPE. In a next step, we
consider a more realistic scenario where white noise is added to the series. Other types of statisti-
cal noise with different properties can be considered, e.g. red noise produced by an autoregressive
process, which allows to simulate the climate memory contained in natural proxy records. There-
fore, this study also considers additional tests with red-noise pseudo proxies, prescribing a plausible
time decorrelation of five years. The decorrelation time in actual proxies is not well known, and
clearly depends on the nature of the proxy record. Hence, the choice of five years is a pragmatic
choice that helps to illustrate the possible effects of red-noise pseudo-proxies without the aim of
being overly accurate. In both cases, with red and white noise, the amplitude is set so that it reduces
the point-wise correlation with the original series in each proxy location to 0.5. This level of noise,
that corresponds to a signal-to-noise ratio (by standard deviation) of 0.58, is comparable to similar
studies (von Storch et al., [2008; Smerdon, 2012} |(Gomez-Navarro et al.l 2014). In this experiment
the same missing values present in the PAGES-SEL reconstructions are introduced to mimic a more
realistic pseudo-proxy network. This experiment is referred as R0.5 PPE. In a final setup, a set of
even more realistic PPEs are carried out in which each pseudo-proxy is constructed with different
amounts of white noise, so that the correlations with the original series equal the correlation values
between the real proxy records and observed temperatures, i.e. the values shown in Fig. [I| This is
referred as RProxy PPE.

12



410

415

420

425

430

435

440

4 Evaluation of the AM in PPEs

In this section, only PPEs are used to evaluate the performance of the AM to reconstruct global
annually-resolved temperature. In all cases the full PMIP3 ensemble has been considered by leaving
out one simulation, and the proxies location is based on the PAGES-SEL network, as described in

Section
4.1 NoNoise PPE

Figure [2] shows the point-wise correlation maps (calculated for the full reconstructed period) be-
tween the original simulation and the pseudo-reconstructions based on perfect pseudo proxies with
1 and 5 analogs, for a similarity measure based on RMSE, correlation and RMSE in the EOF space,
respectively. All methods tend to produce positive correlations, which is indicative of the ability of
the reconstruction method to recover the original variability based on a limited number of locations.
Still, there are large differences among the different settings. The reconstructions based on the met-
ric of correlation is less reliable than the one based on RMSE. The lack of performance likely stems
from the less demanding criterion of (dis)similarity between two variables that correlation provides,
ignoring shifts in the average fields, and thus focusing just on the spatial co-variability. In this sense,
RMSE presents a compromise, penalising analogs that strongly differ from the target field both in
terms of spatial variability and absolute values. The RMSE similarity is more demanding, and even-
tually the identified analogs are physically closer to the target pattern. The search within the space
spanned by the first EOFs leads to a similar point-wise correlation as in the former case, which is
somewhat expected since the metric is the same, and the phase space, although severely reduced in
terms of number of dimensions, still preserves by construction 90% of the original variance. The
inclusion of more analogs have-has the effect of increasing the temporal correlation. This effect,
also described by |Gomez-Navarro et al.| (2014), is due to the cancellation of errors in the averag-
ing process. The cancellation of errors has the counterpart of averaging out also a larger part of the
reconstructed variability. Thus, there is a trade-off between temporal accuracy and variance. This
is further illustrated by Fig. [3] where the ratio of the standard deviations in the reconstruction and
the simulation is presented. Overall, all reconstructions tend to preserve well, and even overesti-
mate, the original variability. This is a result of the lower variability of the simulation used as target
(based on the GISS model) versus the model ensemble as a whole, and thus re-sampling the pool of
analogs tends to produce larger variability than the target. This overestimation of variability becomes
strongly ameliorated when 5 analogs are used, as expected according to the discussion above.
Spatially, the performance, measured by the point-wise correlation in Fig. [J]is quite homogeneous,
despite the unequal distribution of the proxies and especially despite the smaller number of proxies
in the Southern Hemisphere. Within the North Hemisphere, the area where the reconstruction is less

accurate is clearly the North Atlantic, which stands out across all reconstructions. In this sense, the
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EOF-based reconstruction seems more robust, since it does not present the slight negative correla-
tions that appear near the North Atlantic, Caribbean Sea and the Sahara. The areas south of 40°S
show low correlations, which can be clearly associated to the lack of proxies that provide informa-
tion to the reconstruction. Regarding variability, the spatial structure is coherent across methods.
Still, the strong underestimation of variance in all reconstructions in the western North Atlantic is
notable. This underestimation can be directly linked to strong variance in the simulations used as tar-
get (not shown). The consistency of these deficiencies demonstrates how the AM method is always
constrained by the quality of the data used as pool for the analogs search. In this case, the features
observed in the target field are not shared across models, which leads to the inability of the method
to find suitable analogs that capture certain features.

Based on the results that emerge from Figs. [2] and [3] the rest of the analysis focusses solely on
the reconstructions carried out with the search of analogs in the real space and based on RMSE
similarity (hereafter RMSE-AM), and the one in the EOF space (hereafter EOF-AM). Similarly,
only reconstructions using an average of 5 analogs are discussed. However, although not shown, the
analysis has been carried out with all combinations of settings, and significant deviations from the
results expected from the discussion above are highlighted.

A very important aspect of this pool of analogs is that it is heterogeneous, since the analogs come
from few very different climate models. Thus, an important question to be addressed is whether there
are models that are selected more frequently, and whether there is a strong relationship between the
year being reconstructed and the year that correspond to the closest analog. This is shown in Figure
[l where the number of times each model has been selected is shown for each method (see-panels
a and c). All models across the pool are selected at some point in the reconstruction (with the ex-
ception of model number 5, which is the model explicitly excluded for being the target of the PPE).
Still, some models are more frequently selected than others. Numbers 1 and 13 are overall the most
frequently chosen in both methods, and correspond to the BCC and the IPSL models, respectively.
On the other hand, models 15 and 16 are the less frequently chosen models, and correspond to two
realisations of the MPI model. It is worth noting that the other simulations with the GISS model
(numbers 4 to 11) are not selected more frequently than the rest of models, despite being simulations
of the same model as the target. This is indicative of the ability of the search algorithm to identify
similarities in the spatial patterns regardless of particular model features, and supports the robust-

ness of the reconstructed fields with respect to the biases present in some models. Black thin lines

denote the occurrence of severe volcanic activity, and are aimed at facilitating the identification of
relationships between this external forcing and year selection. It turns out however that the method
selects analogs independently from this factor. Similarly, there is no strong one-to-one relationship
between the simulated and reconstructed years, i.e. simulated modern (or earlier) years are not nec-

essarily selected to reconstruct recent (or earlier) years (see scatter dots in panels b and d). This is

indicative of the sufficiently large amount of variability contained in the pool, which thanks to the
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amount of internal variability provided by the various simulations, is able to provide analogs inde-
pendently of the model year. The only signal of a temporal link between the targets and their analogs
appears as a clustering of modern simulated years that are used as analogs for years within the 20th
century (see the clustering of dots in the top right corners in panels b and d). This is attributable to
the effect of recent warming of the industrial period, i.e. warm years appear more frequently, and

they are preferably found during the last centuries of the pool of simulations.
4.2 RO0.5PPE

This section explores the performance loss when noisy pseudo proxies are used to mimic the effect
of netelimate-non-climate related variability of real proxy data. As outlined above, the noise consists
of additive white noise and the introduction of missing values that mimic the temporal distribution
of missing values present in the PAGES-SEL network. Note that, for the sake of brevity, the anal-
ysis hereafter is limited to the RMSE-AM and EOF-AM methods for analogs search, although the
other methods have been explored and the results are consistent with the former section: i.e. the
RMSE metric outperforms correlation as measure of distance between analogs. Similarly, only the
reconstruction obtained as an average for the 5 best analogs is discussed, since the 1- and 5-analog
versions differ in the bias-variance trade-off described in the perfect scenario context in the previous
section.

The performance of the reconstructions with these more realistic PPEs is illustrated in Fig. [5]
The top row depicts the correlation between the original simulation and the reconstructions based
on realistic PPE contaminated with noise and populated with missing values. The correlation is
generally lower than in the case of perfect pseudo-proxies, indicating the reduced performance of
the reconstruction method in this scenario. This is expected since the quality of the pseudo-proxies
has been considerably degraded in this PPE. However, the decrease in the correlation is remarkably
small, from 0.35 to 0.28 and from 0.39 to 0.24 on average and for the RMSE and EOF methods,
respectively. In particular, the spatial structure of the correlation maps hardly changes with respect
to perfect PPE, being the spatial correlation between the perfect and noisy cases 0.94 and 0.95 for
RMSE and EOF, respectively. The modest impact of the addition of a strong component of noise is
attributable to the use of an extensive network of proxies: the information contained in the network
is to a great extent redundant and represents the same climate signal, which implies that the degra-
dation of the information at a given location can be to a great extent recovered by the reconstruction
method through the use of nearby information and by the spatial coherence of the climate field. This
recovery of degraded information gives confidence about the CFR methods in general, and in the
AM in particular, and suggests that the use of a large network of independent proxies can overcome,
to a certain extent, the problems derived from the use of noisy local reconstructions. The two maps
in the lower row depict the ratio of standard deviation in the reconstruction and the simulation in

logarithmic scale. Both figures are hardly distinguishable (spatial correlation 0.97 and averaged bias
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of -0.02 ), and coherently point out how the reconstruction recovers about 80% of the original vari-
ance independently from the particular method (the logarithm of the ratio averages -0.1 and -0.8 for
RMSE and EOF, respectively). The loss of variance with respect to the NoNoise PPE is particularly
strong in the western North Atlantic. This underestimation of variance disappears and even becomes
an overestimation of variance when just 1 analog is considered (not shown). However, this variant
of the method presents lower temporal correlation (not shown), as the correlation-variance trade-off
is always present across experiments.

The results obtained with the experiments where red instead of white noise is added to the original
series resemble those shown in Fig.[5] and are not shown due to the great similarity with the figures
corresponding to white noise. All metrics evaluated indicate that the performance of the reconstruc-
tion is indistinguishable when either white or red noise is considered. Therefore, the presence of
memory in proxies seems to play a secondary role in the performance of the AM, and does not de-
grade noticeably the output of the reconstruction. Note that this result agrees with previous findings
in similar studies but aimed at the reconstruction of precipitation (Gomez-Navarro et al.,[2014). The
effect of red-noise pseudo proxies has been tested in previous studies in the context of regression-
based methods and the Composite plus Scaling method (von Storch et al.||2008)), where it was found
that, in the case of regression methods, red-noise pseudo-proxies lead to a stronger underestimation
of past variability than white-noise pseudo-proxies. However, the influence on other measures of
skill that do not rely on the amplitude of variations, like correlation, has not been so far investi-
gated. It is therefore, reassuring that the AM does not lead to either an additional reduction of past

variations or to a loss of correlation skill.
4.3 RProxy PPE

Figure [6|depicts the same results as Fig.[5]but for the more realistic PPE, which consists of reducing
the correlation by adding white noise in an amount that mimic the values observed in the calibra-
tion. The decrease in the correlation compared to a situation with spatially homogeneous noise is
apparent (note the different scale for correlation). The inclusion of more realistic values of corre-

lation severely reduces the ability of the AM method to reconstruct the original simulation. The

correlation between the pseudo-reconstruction and the target is especially reduced in the tropics and
North America, locations where the skill obtained in more simple PPEs is very remarkable, and
erhaps overestimated under the light of this analysis. There are however areas where the correlation

is still well preserved, such as in Europe, central Asia and the western Pacific. A striking finding with
respect to the former case is the large difference between the RMSE-AM and EOF-AM methods.

Although both methods deal with the same amount of uncertainty, the former clearly outperforms the
latter regarding its ability to reproduce the temporal evolution in the target, despite the addition of
noise and missing values. Still, the spatial structure of correlation is very similar in the RMSE-AM

variant, and in particular the method remains able to deliver performance in regions with poor proxy
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coverage. Regarding the preservation of variance, both methods exhibit the same underestimation
of variance, which stems from the averaging over 5 analogs, and is absent in both cases when only
one analog is used to reconstruct (not shown). Thus, both methods behave similarly regarding the
replication of variance.

Based on the results of these PPEs, we conclude that the RMSE-AM method is overall the most
reliable, since its performance is more robust across the experiments and analyses we have carried

out.

4.4 Other simulations as targets

All PPE analysed so far are based on the use of a single model as target. This section explores the sen-
sitivity of the results to the use of the simulations MPI-ESM-P rlilpl or CCSM4 rlilpl as targets,
instead of the GISS rlilp121. Left column in Figure [7] is-similarto-Figs-{5l-and-shows the correla-
tion between the target SAT and the pseudo-reconstructed SAT for three models: GISS (which is the
model discussed so far), MPI-ESM-P and CCSM4, in a case where the PPE is-designed-exaetly-as

are designed with red noise as described in Section@ Middle column depicts the ratio of standard
deviation of the reconstruction and the target, whereas right column shows RMSE to illustrate other

erformance metrics than simply correlation and demonstrate how it supports the same conclusions.
We focus the discussion on the comparison between GISS and MPI-ESM-P, as the one corresponding

to CCSM4 is very similar and therefore omitted. The skill of the pseudo-reconstruction are quali-
tatively very similar, although there are some regional differences which, however, do not modify
the main picture derived from the previous sections. The correlation pattern in the MPI-ESM-P case
is very similar to that obtain in the GISS case, with high values of the correlations in the Northern
Hemisphere and lower values in the Southern Hemisphere. Both cases also display relatively lower
correlations in the central North Atlantic and Central Pacific. The correlations are low in the South-
ern Ocean, possibly due to the very sparse proxy network here. The patterns of RMSE (right column)
is also similar in both cases. The RMSE tends to be higher in the GISS case, confirming our initial
assumption that the variability of the GISS model stands slightly out of the ensemble of models,
though not dramatically. The RMSE is higher in the polar regions, where it may attain values of
the order of 2-3K, and rather uniform and lower values around 0.5 K in the rest of the globe. There
is a remarkable difference between both cases in the Western North Atlantic, where the GISS case
displays rather large values of the RMSE that are not seen in the MPI-ESM-P case, for which there

is no clear explanation at this point. Regarding the preservation of variance (see middle column in

Fig.[/), there are small regional deviations which seem model-dependent, although the main picture

that stands out in all the three cases is that the reconstruction using 5 analogs leads to a slight but
eneralised loss of variance. Therefore, the main conclusion we can draw from the analysis above

is that the choice of simulation as SAT target does not largely affect the performance of the AM in
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reconstructing global SAT, and the conclusions drawn from the analysis of the GISS model used as
target can be safely extended to other models.

5 Reconstruction of the observational period

In this section, the ability of the reconstruction method is explored using real proxies to reconstruct
the observed temperature field in the period 1850-2012. For this, a selection of the PAGES-SEL net-
work during the period 1850-2000 is extracted and calibrated during the 1911-1995 period against
the infilled HadCRUT4 observational dataset in the way described in the Section [3] The series ob-
tained after calibration are used as input for the RMSE-AM and EOF-AM variants of the AM, and
the output is compared to the original observations, with the aim of establishing the performance of
the reconstruction.

Figure [§] depicts the results of the comparison between the reconstructed and observed series of

SAT, and is the counterpart to Figs. |§| and |§| with actual proxies instead of PPE. As-Note however

that correlations in this figure are not fully comparable to the formers, as they have been calculated
over different periods (in the formers, the full 2000-year period is used). As the number of proxies

varies through time, the skill obtained is not directly comparable, but somewhat overestimated b
the availability of proxies in more recent periods. As before, the results focuses on the RMSE and

EOF methods, and when 5 analogs are chosen to obtain the reconstruction. Regardless of the par-
ticular method used in the search of analogs, the-and despite of being a favourable test due to the

larger amount of available proxies in the period considered for the calculation, the correlation maps
between the reconstruction versus the target (top row) exhibit lower values than both with perfect

PPEs and with noisy pseudo-proxies with spatially homogeneous noise (cerrelations-ef-0-5-in-every
loeation—(Figs. 2] and [} respectively). This lower temporal correlation may be due to two reasons.
One is that the level of noise employed in the first realistic PPE, inspired by its application in similar
studies (von Storch et al., |2008; Smerdon, 2012} |Gomez-Navarro et al., [2014), is an underestima-
tion. Indeed, the point-wise correlations between the observed temperature and the proxies during
the calibration period ranges between -0.56 and 0.63, with an average of 0.06, which would suggest
a higher level of noise in the real world than in the PPE. However, a second reason could originate in
a deficient simulation of the typical temperature patterns found in the real world. These low correla-
tions impose an upper limit to the temporal evolution that the calibrated series are able to represent.
This can be seen more clearly when comparing Figs. [6] and [8] where especially the RMSE-AM
method exhibits very similar spatial pattern and values —Reeati-(again, recall that the PPE is again

in disadvantage as correlations in Fig. [0] are calculated for the whole Common Era, including earl
eriods more densely populated with missing values). Note that these figures correspond to actually

very different datasets (a PPE versus a real reconstruction of an observational dataset), although by
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construction of the PPE they have in common the spatial proxy network and the correlation between
the proxy and the corresponding local SAT series during the instrumental period.

The reconstructions of the temperature in the observational period produce overall positive corre-
lations with the real temperatures, which match fairly well the values obtained with noisy PPE with
spatially varying noise levels, especially the RMSE-AM, and depending on the location reach values
above 0.5. The distribution of point-wise correlation is affected by the location of the proxies, and
seems to be slightly sensitive to the method employed, especially where the point-wise correlation
is not supported by the existence of nearby proxies. Thereby, both methods produce reconstructions
that exhibit better performance over Europe, north Canada, eastern Asia or Tasmania. However,
RMSE shows locations where the reconstruction leads to remarkable performance despite the low
number of proxies located nearby, such as Western Sahara or the Southern Indian Sea, whereas these
spots of remarkable correlation cannot be identified in the EOF reconstruction. Conversely, the use
of the RMSE similarity leads to negative correlation in South America and near Antarctica, which
are missing in the EOF reconstruction. Regarding the preservation of variance (bottom row), both
methods underestimate the variance, as expected to some extent when using an average of 5 analogs.
In this sense, the RMSE method clearly outperforms the EOF-based method, which unlike the for-
mer strongly underestimates variance in nearly all locations. A noticeable agreement between both
methods is the consistent underestimation of variance in the Arctic. This may result from the lower
variance in the pool of analogs in this region. All models consistently exhibit lower variance in the
Arctic compared to observations (not shown), which leads to systematic variance underestimation

and provides an example of unavoidable bottleneck of the AM. It is however worth noting that an

alternative or complementary explanation for the differences in variability between observations and
simulations in the Arctic regions could be in caveats in the former. This is due to the fact that as
outlined in the dataset decryption above, observations in the high Arctic are not real, but infilled
using extrapolation techniques which might introduce variance overestimation.

6 The role of spatial distribution of proxy sites

The reconstruction performance may also depend on the proxy network used. Therefore we assess
the impact of slightly different proxy networks on the reconstruction, using the PAGES-SEL, -FULL
and -SCREEN networks described above. The observational period serves as an example.

The correlation maps between the observations in the period 1850-2000 and the different RMSE-
AM reconstructions based on these networks are shown in Fig.[9] where also the slightly different
distribution of the proxies is shown. Using the original PAGES-FULL network generally improves
the point-wise correlation of the reconstruction compared to the PAGES-SEL case (recall that this
network contains 682 instead of 514 records). This is especially so in equatorial and sparsely covered

areas, indicating that the addition of few records, even when they do not provide real annual resolu-
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tion or when they contain significant amounts of missing values, can have noticeable positive effects
on the reconstruction. A striking result is that the PAGES-SCREEN network provides remarkable
performance, despite that it just contains 197 records. This suggests that the accumulation of redun-
dant proxies in certain areas, such as North America or China, may have a counterproductive effect
in the reconstruction performance. This is a somewhat counter-intuitive result, since the screening of

the network produces a reduction of the available information. However our results indicate that the

erformance is to a large extent preserved, probably because the screened network contains fewer
roxies which exhibit low correlations with the instrumental temperature. The combination of the

latter two results support the argument that the best possible network would ideally have a global but
also a very homogeneous coverage, making the total number of records of secondary importance.
Figure [I0] shows the temporal evolution of the globally averaged SAT in the HadCRUT4 dataset
and the RMSE-AM reconstructions with 1 and 5 analogs using each of the proxy networks described
previously. This figure additionally illustrates the reconstruction performance, and is complementary
to the correlation maps discussed so far. All time series reproduce remarkably well the global warm-
ing captured by observations, including the short cooling period during the 60’s. The differences
between different setting of the method are minor, and does not affect this general good agreement,
indicating that the long-term variability can be reproduced with confidence regardless of the network

used to reconstruct the climate variability.

7 On the estimation of reconstruction uncertainties

The reconstruction of past climate should include an estimation of the reconstruction uncertainty
that sets the validity of that estimation. Such uncertainty stems in general from different sources,
and often some sources of uncertainty can be better estimated than others. This is the case for the
analog-methodAM, as briefly explained in this section. It is important to note that the estimation
of reconstruction uncertainty requires hypothesising an underlying theoretical framework for the
method. For instance, an underlying assumption in all reconstructions of past climates is that the
proxy records still reflect the environmental conditions in the same way as they do in the present
climate. If this requirement is not fulfilled, the estimated uncertainty is an unrealistic estimate. As
an illustration, let us consider the well known case of a simple univariate regression model (see for

instance [von Storch and Zwiers|, [2002).

T=Tn+(P—Pp)a+e ®)

where 7" and P denote temperature and proxy, respectively; 7, and P,, denote their mean values,
o is the regression coefficient, and € is the error term. The uncertainty in the estimation of 7" given
P has two main sources. One is related to the amplitude of the unresolved variance, given by the

standard deviation of €. However, the other main source is the uncertainty in the estimation of «,
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let us denote it as d(a). As can be demonstrated within the linear regression theory, this second
contribution is approximately proportional to the product (P — P,;,)d(«). Therefore, for values of P
in the middle of the range of the predictor, the main contribution is the amplitude of €, whereas for
values of P far away from P,,, the main contribution becomes (P — P,,,)d(c).

In a similar way, in the application of the AM there are two main contributions. One would be
the amplitude of the error term, i.e. the deviations between the actual and predicted 7', assuming
that the model analogue is perfect. This contribution is analogous to the unresolved variance, i.e.
the variability of T" at a certain point that cannot be solely determined by the given temperatures
at the proxy locations. A second contribution to uncertainty is the identification of the analogue
itself. Unfortunately, the situation in the AM is more complex than in the case of simple univariate
regression. For target patterns where good analogues can be easily be found, this contribution will
be very small. In general, and since we use a large pool for the analogue search, it can be assumed
that for proxy patterns that are *around the mean’, the AM is generally able to find good analogues
within the pool. However, for proxy patterns well beyond the range of the pool, where no good
analogues can be found, the uncertainty cannot be easily quantified. The reason for this is that such an
estimation would require an analytical model, being the counterpart of the regression model outlined
above. Unfortunately such frame model, able to carry out some sort of *analog extrapolation model’,
which would allow to estimate a range of the predicted variable in ranges where no good analog of
the predictor exists, has not been developed yet. Therefore, for targets well beyond the analogue pool,
this contribution to uncertainty would be the largest, although unknown. Note that this situation is,
to some extent, similar to pollen-based reconstructions using the analogue method (Overpeck et al.|
1985)). When the pollen record shows a pattern that is not present in the current pollen distribution,
the climate reconstruction and its uncertainty are virtually impossible to estimate. In this regard, new
mathematical developments are required to settle this issue.

Under the light of the former discussion, in this manuscript we have estimated enly-the-contribution
of the“unresolved-varianee™We-dojust the uncertainty arising from one of the two contributions

discussed above, i.e. the variability of 7" at a certain point that cannot be solely determined by the
iven temperatures at the proxy locations. To do so, we do opt by computing the standard deviations

of the residuals (reconstructions minus target). For this computation, we try to mimic the situation
that researchers face in real reconstructions, where the observed temperature field over a reference
period would be known, so that the residuals (deviations between observations and reconstructions)
and its standard deviation can be computed. To simulate as closely as possible this situation, we
compute the standard deviation of the differences using the 1850-2005 period, instead of the whole
GISS rlilpl simulation.

In order to gain insight on the variability of the error attributable to the variable number of missing
values, we have computed this contribution to the uncertainty for two situations, both within the

main pseudo-reconstructions using white-noise pseudo-proxies with a uniform correlation between
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the pseudo-proxy and the local temperature of 0.5 and considering 5 analogues (this is, the PPE
setup discussed in Section4.2). The first case is the best-case scenario, i.e. we use the proxy records
of the PAGES-SEL network available in the year 1949, where no record has missing values. In the
second case, we use the proxy network representing the year 1500, i.e. selecting only the 257 proxies
with no missing values in this year, to illustrate changes in uncertainties back in time. The results
are s in-Figure-shown in left column of Fig. [TT] and show that the uncertainties are larger in the
polar regions, and are in the order of 1-2K, being smaller in the tropical regions. This is reasonable
since in the polar regions the spatial correlation of temperature tends to be larger and therefore the
temperature at the proxy locations is less capable of determining the temperature in other locations.
Further, the variability is larger in the arctic regions, which inflates the error in this region. This can
be appreciated in the right column of Fig. which shows the same error, but normalised dividing b

the standard deviation of the in the target. Quite remarkably, the number of proxies has little influence
in the intensity and distribution of errors. This is in good concordance with the results discussed in
Section [6] and once again demonstrates the secondary role of the absolute number of proxies, as a
growing number of proxies sometimes increases redundancy without providing independent source

of insight.

8 Conclusions

This study presents a framework to carry out global CFRs using the anatog-method-AM based on
a pool of the PMIP3 ensemble simulations (Taylor et al., [2012). Although the application of the
method has been previously employed to carry out European reconstructions of temperature (Franke]
et al.l [2010) and precipitation (Gémez-Navarro et al., 2014), the validity of this method to accom-
plish a global temperature field reconstruction has not been addressed so far. This is a relevant test,
since the large dimensionality of the problem poses concerns about the suitability of available sim-
ulations to provide a large-enough pool of situations from which to draw analogs. This study is also
novel in being one of the first analysis that benefit from the PAGES2K proxy network (PAGES2K
Consortimumy, |2016). In this sense, this work takes advantage of the most recent developments in
both the climate model and reconstruction communities (PAGES 2k-PMIP3 group, 2015)), and rep-
resents an example of the power of exercises blending both approaches to gain insight in climate
variability within the Common Era.

A number of variations of the method are presented here, since the analog-method-AM critically
depends on the metric used to identify analogs (normally a distance measure between the analog
and the target). Testing different metrics shows that the RMSE, which is equivalent to the Euclidean
distance, is more suitable than correlation since it penalises deviations in global averages. The search
of analogs in the real space, as well as the one expanded by the leading EOFs that explain 90% of

the total variance has been explored. Although the EOF version is in principle better suited for the

22



765

770

775

780

785

790

795

search of analogs due to the reduction of dimensionality of the problem, our results indicate that the
search in the real space provides the best results with a consistent performance across the various
tests carried out. Further it has the added value of slightly lower computational cost.

Regardless of the metric used and the nature of the reconstruction (real reconstruction or PPE), the
method draws analogs without clear preferences for any model in particular. Indeed, when the GISS
model is used to perform PPE, the rest of the GISS simulations are not selected preferably over the
rest of the ensemble. This indicates that the method draws analogs according to climate situations,
rather than systematic biases of a particular model, and thus provides confidence in the method.
Further, the results indicate that the inclusion of a large number of simulations from structurally
different models has beneficial effects on the quality of the final reconstruction. Further, the PPE
results are barely sensitive to the choice of the target, which indicates that the performance obtained
through PPE is a robust estimate of the performance of the AM.

The inclusion of a spatially constant amount of noise in the more realistic pseudo-reconstructions
does not dramatically affect the CFR performance, supporting the robustness of the method and the
ability of the network of proxies to retain the variability of the global man temperature, in spite of
local noise. In particular, there is no difference in the performance between the PPE when either
white or red noise with a decorrelation time of five years is used. This indicates that the AM is
not sensitive to the presence of memory in the local proxies. Still, there is a large difference in the
performance obtained with actual proxies and that achieved in PPEs with degraded pseudo-proxies.
This difference suggest that the amount of noise might have been underestimated in previous studies
based on PPEs (e.g. von Storch et al.| 2008}, |Gomez-Navarro et al.,[2014), and lower signal-to-noise
ratio shall be employed in realistic PPEs. This is confirmed by our analysis through a more realistic
PPE configuration, where the level of noise depends on the proxy site to mimic the one derived from
the calibration of real proxies.

Many statistical climate reconstruction methods tend to underestimate climate variability, espe-
cially those based on linear methods. The AM is an exception, since the variability of the reconstruc-
tion is provided by that of the pool of analogs. Although this might be seen as an advantage, it has the
problem that systematic biases in the pool are transferred to the reconstruction. This is particularly
the case with the PMIP3 ensemble, which exhibits a reduced variability in the Arctic that-becomes
compared to the infilled observations that might become a prominent drawback in all reconstructions
evaluated here. The AM can be adjusted by varying the number of proxies used to draw an analog. If
more than one analog are selected and averaged to generate the analog, the correlation is increased,
but it has the counterpart of reducing variability. This bias-variance trade-off is not unexpected, as it
is a common phenomenon that appears recurrently in all branches of statistics.

The sensitivity of the CFR to various slightly different versions of the proxy network has also been
evaluated. The skill of the reconstruction does not critically depend on the total number of records.

Instead, it is more strongly affected by their spatial distribution. In this sense, including redundant
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proxies that cluster in some areas does not always have a beneficial effect, since they do not provide
new information, but may bias the search of analogs towards those areas at the coast of producing
less accurate reconstructions in areas less well covered by proxies.

The AM produces climate reconstructions which are clearly not free of uncertainties and errors.
However a full treatment and characterisation of such errors is not tackled in this study, as such
as assessment would require new mathematical development which are beyond the scope of this
article. Still, we investigate a part of such uncertainty, namely the one attributable to the unresolved
variance. We characterise it by computing the standard deviation of the residuals using two different
networks of pseudo-proxies, and demonstrate how such uncertainty is bounded by 1-2 K in the polar

regions, being smaller in the tropical ones.

Einally, we would like to remark that as the performance of the AM has been evaluated in this
paper mostly through PPE, and although we have tried to mimic the limitations of actual data, we
note that our estimation of skill can be optimistic, especially in the Southern Hemisphere. This is so
due to the fact that reconstructions show less homogeneity back through time than the models are
used in this study. For instance, it has been reported that the co-variability between both hemispheres

We conclude that the analog-method-AM is a useful tool able to yield skillful results in CFRs of
past climate. It has particular features compared to more commonly used CFR techniques, e.g. it is
a non-linear method that does not require the calibration of an underlying statistical model. Thus,
the method may complement more traditional approaches providing additional insight about past

climate variability, and allowing to assess the robustness and weaknesses of other methods.
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Figure 1. Point-wise-Top: point-wise correlation between the raw proxy series in the PAGES-SEL network and
the SAT in the infilled HadCRUT4 dataset during the period 1911-1995. Each type of proxy is indicated with a

different symbol. Bottom: number of years in which each record contains valid data, i.e. lighter colours indicate

Figure 2. Point-wise correlation (calculated for the whole reconstructed period) between the original simulation

and a reconstruction based on perfect pseudo-proxies. The maps show the results when three different metrics
are used for the search of analogs (by rows), as well as when different numbers of analogs are combined to draw
the reconstruction (by columns). Green diamonds indicate the location of the pseudproxies employed, based on

the PAGES-SEL network.
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Figure 3. As Fig. [2] but for the logarithm of the ratio of the standard deviation of the reconstruction and the
original simulation. Red (blue) shading depicts areas where the reconstruction overestimates (underestimates)

variability.

Figure 4. Selection of analogs used to carry out a perfect PPE. Bars in panels a and ¢ indicate the number
of times the analog has been taken from each of the 16 models. The points in panels b and d indicate the

relationship between the reconstructed year (x-axis) and the model (colour) and simulated year (y-axis) used as

analog for the reconstruction. Black horizontal and vertical lines show the timing of major volcanic eruptions

Euclidian distance in the EOF space.

Figure 5. Similar to Figs. |2| and [3| but for realistic PPE. Top (bottom) row indicate the correlation (ratio of

standard deviations) between the original simulation used as target and the reconstructions obtained selecting

analogs from the PMIP3 pool.



Figure 6. As Fig. 5] but for the hyper realistic PPE in which the correlations equal the values obtained during
the proxies calibration, i.e. Fig.

Figure 7. Correlation (left), logarithm of the ratio of the standard deviations (middle) and RMSE (right) between

the target SAT and the pseudo-reconstructed SAT based in a PPE with additive white noise as in Section .2}
All reconstructions use the same AM setup +based #n-the-on searching analogs that minimises RMSE metrieand
then average the 5 closest analogs. The only difference across rows is the model used as target for the PPE:
GISS (top map, equivalent to Fig. MPI-ESM-P (middle) and CESM4 (bottom).

Figure 8. Similar to Figs.[5]and[f] but for a reconstruction of observations based on a calibration of proxies in

the period 1911-1995. The correlation is calculated for the period 1850-2010.
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Figure 9. Correlation maps similar to Fig. [§] for the RMSE-AM variant of the AM method. The three maps
depict the result obtained using each of the three variants of the PAGES2K network described in Section 2.2. In

all cases the green symbols indicate the location of the proxies employed to reconstruct.

Figure 10. Time series of globally averaged SAT anomalies with respect to the period 1961-1990. The black
bold line represents the infilled HadCRUT4 dataset, whereas colours indicate 6 reconstructions based on N =
1,5 in Eq.2]using the RMSE-AM version with the three variants of the PAGES2K network described in Section
2.2.

Figure 11. Eeeal-Left column: local standard deviation of the residuals (GISS rlilpl annual mean SAT mi-

nus pseudo-reconstructed SAT) over the period 1850-2005. Top: using a pseudo-proxy network with as many
missing values as the PAGES-SEL network in 1500 (257 records). Bottom: using the maximum number of
pseudo-proxy locations of the same network, which happens in 1949 (514 records). Right column: same as left
column, but normalised by the standard deviation of the target. The precise location of the pseudo-proxies is

indicated with green symbols.
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