
Point by point authors response to second round of review

J. J. Gómez-Navarro on behalf of all co-authors

May 4, 2017

Generally, I find this paper greatly improved and would recommend that it be published provided
that some mainly minor revisions are performed.

We thank the reviewer for carefully reading again the manuscript and providing more useful
insight that will surely improve the final version of the manuscript.

It is good that the authors take into account the change in the proxy network back in time and this
is now clearer in the text but I feel this point should be expanded on when describing the performance
of the reconstruction. The period in which the correlations to the true values etc are evaluated will
presumably impact the results due to the difference in coverage through time. In particular, when
comparing the correlations in the figure 8 to figures 5,6,7 are they calculated over the same time
period? If not wouldn’t the difference in proxy coverage effect the results, making any comparison
problematic?

It is true that the correlations can not be directly compared. We have added sentences (highlighted
in blue in the tracked-chages document) that emphasise this important point, initially overseen by
us.

Also in the figures, is the proxy network plotted showing maximum availability? If so I think
it would be useful to state that some of these proxies do not cover the full period over which the
correlations are calculated and perhaps the location of the proxies which do cover the full period could
be indicated.

We have added a new map as part of Figure 1 that illustrates the availability of proxy data. Note
however it is beyond the scope of this manuscript to thoughtfully review the dataset. Therefore we
refer explicitly to the original paper (Open Access) for further information of the temporal evolution
of proxy availability.

Somewhere in the paper it should be mentioned that the reconstructions show less homogeneity
back through time than the models (e.g. co-variability between the NH and SH) see Neukom et al
and the paper by the PAGES 2k-PMIP3 group (Continental-scale temperature variability in PMIP3
simulations and PAGES 2k regional temperature reconstructions over the past millennium). This
could mean that the performance of the PPE examples, particularly in the SH, shown here may be
optimistic when compared to the performance in a real world scenario.

This is indeed an interesting observation. We have included a whole new paragraph in the
Conclusions section that acknowledges this issue.

Figure 4 – As mentioned in my previous review I really think this figure would illustrate the point
you wish to make far better if you make panels b and d a perfect square and put a x=y line through
it. This would make it much more intuitive and clearer to interpret. In addition I think marking
where the major volcanic eruptions occurred would help. At the moment I am struggling to identify
for example whether following 1258, 1815, volcanic years in the models are preferentially selected for
analogs.

The figure has been modified according to the reviewer suggestion.
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In section 7 it is not clear to me why you have used the case with uniform white noise instead of
the more realistic proxy noise setup, can you justify this? I would have thought that the most realistic
set-up would be a better choice.

The reviewer is right, so we have replaced the figure showing the most realistic case, although it
supports the same conclusions.

Abstract. Assuming AM stands for analogue method, the definition should be moved to line 8 for
clarity. “variants of the Analog Method (AM) . . . ” And any mention of the “analog method” elsewhere
in the text should be replaced with AM, please check the introduction especially.

This convention has been implemented across the whole manuscript.

Line 35 “to finally obtain a complete”
Line 41 “each gird-cell of”
line 70 and 72 – check brackets around references.
These changes have been implemented

Line 179 – do you mean ensemble median? This is the most commonly used HadCRUT4 prod-
uct. . .

The reviewer is right, so we have edited the text accordingly.

Line 229 – the forcings are similar but not totally consistent i.e. different volcanic and solar
forcing datasets are used. This should be mentioned and a citation to Schmidt et al 2012 added.

Line 244 – “HadCRUT4 dataset”
Lines 369-373 – Could a sentence be added here expanding why using the GISS model which has

a lower variance would result in a stricter test. This wasn’t initially clear to me.
Line 417 “has the effect”
Line 473 “the effect of non-climate related”
Various minor text edits have been implemented to address all these issues.

RProxy PPE section – I would like to see a slightly expanded discussion of the degradation of
results. To me this looks to be particularly prominent in the tropics where the proxy data has a poorer
correlation to the observations. Is this correct?

We have enlarged such discussion. However, this time we believe it is not easy demonstrate
the guess of the reviewer. It is true that the differences are stronger in the tropics, but the reason
seems to be that correlation was originally very high there, rather than because the skill is worse in
relative terms (i.e. in locations where the skill was already low, the degradation is obviously lower).
Therefore, we believe the performance degradation is more related to lose of absolute skill in areas
where it is relatively large, and not so clearly related to the nature of proxies in those locations.
Actually, in the tropics the correlations are rather high (see dark blue squares in Fig. 1). As the
argument seems not very strong, we have decided not to include it in the discussion.

Line 605 – The observations in the high Arctic are based on in-filled data and not real observations.
Therefore the comparison of variance in models and observations in this region should be caveated.

This is an interesting and fair point that we have included in the discussion of the result.

Section 6. Could the improvement in performance of the screened network also be due to removing
the proxies with poorer correlations with observations from the network?

This is actually the case. We have stressed this point in the discussion.

Line 675 – This sentence is not clear.
We believe the problem of this sentence is that it heavily relies on the context provided by the

former paragraph. We have tried to rephrase it to make it more clear.
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Figure 7 – Why has the variance preservation plot log(σ/σ) not been shown as in figures 2,3,5,6?
I think this would be useful to include.

We wanted to include a measure of RMSE to illustrate other metrics, as suggested in the first
stage of the review. Therefore we decided to remove the results for variability to keep a rather small
figure. However, it might have been a bad idea, as pointed out by the reviewer. Therefore we now
include both RMSE and standard deviation, and we briefly discuss all results together from the three
metrics shown in the figure.

Figure 11. Finding that the poles give the largest error is perhaps not that surprising given that
this is the part of the world with the most variability. Could you add plots showing the errors divided
by the models control variability in each grid cell as I think this would give a better demonstration of
the performance of the AM.

We have carried out the analysis, and Figure 11 shows now the suggested calculations.
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Abstract.

This study addresses the possibility to carry out spatially resolved global reconstructions of annual

mean temperature using a worldwide network of proxy records and a method based on the search

of analogs(AM) . Several variants of the method are evaluated, and their performance is analysed.

As a test bed for the reconstruction, the PAGES2K proxy database (version 1.9.0) is employed as5

predictor, the HadCRUT4 dataset is the set of observations used as predictand and target, and a set

of simulations from the PMIP3 simulations are used as pool to draw analogs and carry out Pseudo

Proxy Experiments (PPE). The performance of the variants of the analog method
::::::
Analog

:::::::
Method

:::::
(AM) is evaluated through a series of PPEs in growing complexity, from a perfect-proxy scenario

to a realistic one where the pseudo-proxy records are contaminated with noise (white and red) and10

missing values mimicking the limitations of actual proxies. Additionally, the method is tested by

reconstructing the real observed HadCRUT4 temperature based on the calibration of real proxies.

The reconstructed fields reproduce the observed decadal temperature variability. From all the tests,

we can conclude that the analog pool provided by the PMIP3 ensemble is large enough to reconstruct

global annual temperatures during the Common Era. Further, the search of analogs based on a metric15

that minimises the RMSE in real space outperforms other evaluated metrics, including the search of

analogs in the range-reduced space expanded by the leading EOFs. These results show how the

AM is able to spatially extrapolate the information of a network of local proxy records to produce a

homogeneous gap-free climate field reconstruction with valuable information in areas barely covered

by proxies, and make the AM a suitable tool to produce valuable climate field reconstructions for20

the Common Era.
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1 Introduction

Climate Field Reconstruction (CFR) methods (Rutherford et al., 2005; Luterbacher et al., 2004;

Mann et al., 2008; Smerdon et al., 2010) aim at reconstructing the spatially resolved time evolution

of climate fields based on the information contained in a relatively sparse network of proxy archives,25

which usually encode only local information about past surface climate. The reconstruction of the

two dimensional evolution of past near-surface temperature, in contrast to point-wise temperature

reconstructions, can provide insights about the physical mechanisms that are responsible for past

climate variability and also about the spatial temperature response to external forcing. However,

the information about past climate variability is contained in proxy records that archive past envi-30

ronmental conditions at the local scale. To achieve spatially resolved reconstructions, the different

proxy records have to be combined in proxy networks to cover wider regions, and additionally some

type of method is required to interpolate, and sometimes also to extrapolate, this information and

reconstruct complete gridded climate fields. The most widely applied CFR methods make use of the

observed spatial co-variability of climate fields to up-scale the scattered information provided by35

the proxy records to finally obtained
:::::
obtain a complete gridded reconstruction of particular climate

variables. However, this is not the only strategy possible. In this study, we test the performance of a

more recent CFR method, the analog method
::::
AM, that does not necessarily estimate the spatial cli-

mate co-variability from observations but instead combines proxy records and climate simulations

to reconstruct the global near surface temperature field.40

There are different types of statistical CFR methods. Point-by-point regression (Cook et al., 2004)

establishes a series of linear regression models between each grid-cells
:::::::
grid-cell

:
of a gridded obser-

vational data set and several proxy records located in the vicinity of that particular grid-cell. Once

this local regression model is calibrated, the local climate is reconstructed based on those few proxy

records, repeating this procedure for all grid-cells until the area of interest is covered. Other CFR45

methods, based on Principal Component Regression (Luterbacher et al., 2004) or Canonical Corre-

lation Analysis (Smerdon et al., 2010) estimate from observations the modes of spatial co-variability

of the climate variable and uses the leading modes as predictands in a multivariate regression model,

in which all available proxy records are used as predictors. Other methods are based on the Regu-

larized Expectation Maximization algorithm (Rutherford et al., 2005; Mann et al., 2008) originally50

designed to fill in gaps in panel data. This method also estimates the spatial climate co-variability

from observations, although not in the form of spatial modes as Principal Components Regression

or Canonical Correlation.

Statistical CFR methods share common features. One of them is that they are usually based on

the assumptions of a linear link, which should be stable over time, between variations in the proxy55

record and variations in the local climate. Another common assumption is that the climate spatial co-

variability was in the past the same as it is observed in the current climate. More modern methods,

like Bayesian Hierarchical Modelling (BHM) (Tingley and Huybers, 2009; Werner et al., 2013;
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Luterbacher et al., 2016), set up a more complex Bayesian statistical model that describes the link

between the local climate and the proxy record and the spatio-temporal co-variability of the climate60

fields. The parameters of this statistical model are estimated by a Bayesian strategy, resulting in a

probabilistic reconstruction of past climate conditional on the values attained by the proxy records

in each time step in the past. These more flexible methods may describe the link between proxy

record and climate variable in more complex ways than just as a linear function and may incorporate

previous mechanistic knowledge about the nature of the proxy record. Similarly, the precise form of65

the statistical model that represents the spatio-temporal co-variability of the climate field is supported

by our knowledge of the present climate, and thus is also based, although indirectly, on the observed

climate co-variability.

The analog method
:::
AM

:
was originally introduced in the 1970s for weather forecasting (Lorenz,

1969). It is however a rather general framework that allows it to be used in different contexts, and in70

particular it has found application in various areas of paleoclimatology. (Overpeck et al., 1985)
:::::::::::::::::::
Overpeck et al. (1985) studied

the sensitivity to the choice of different distances, and demonstrated how the method is able to pro-

duced good results using pollen data and biological assemblages. (Guiot et al., 1989)
::::::::::::::::
Guiot et al. (1989) used

it to produce climate reconstruction based on two European pollen records. More recently, the

method has been employed in combination to tree rings reconstructions as a mean to fill gaps in75

the predictor matrix (Nicault et al., 2008; Guiot et al., 2010). Further, Nicault et al. (2008) used a

pseudo-proxy approach similar to the one we use through this work to assess the performance of the

reconstruction. In this work, we use the analog method
:::
AM to produce a CFR reconstruction fol-

lowing an approach similar to Franke et al. (2010) and more recently Gómez-Navarro et al. (2014).

Used in this way, the method uses a data-based approach to represent the spatial co-variability of80

the climate fields. Thereby, instead of estimating those spatial functions from observed data as tradi-

tional statistical CFR do, or prescribing functional spatio-temporal co-variability functions as BHM

methods do, the analog methods
:::
AM samples entire fields of a particular climate variable that have

been generated in climate model simulations. Those fields that most closely resemble the proxy

patterns at a certain time step in the past are selected for the spatially resolved reconstruction. The85

reconstructed field may be defined as the most similar simulated field, an average of the most similar

fields or, in more complex settings, a function of the whole set of most similar fields. In the case

of the most simple setting, in which only the most similar field is selected for the reconstruction,

the spatial co-variability is automatically ensured, either that from observations or from a state-of-

the-art climate model. In other settings, in which the reconstructed field is constructed from several90

analog fields, the reconstructed spatial co-variability will not exactly match that from observations

or from a simulation, but in general it will be reasonably close. This is one of the main advantages

of the analog method
:::
AM, and can be extended to the reconstruction of other variables that are not

represented by the proxy records. Given a time step in the past, once the field most similar to the

proxy pattern has been identified, fields of other variables that have been simultaneously observed95
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(or simulated) can be taken as a reconstruction that is physically consistent with the pattern provided

by the proxy data.

The concept of the analog method
:::
AM

:
is therefore similar to offline data assimilation techniques

that have been applied in the paleoclimate context over the last few years (Bhend et al., 2012; Steiger

et al., 2013; Hakim et al., 2016). These methods use a statistical function (typically a Kalman filter)100

to update the prior estimation, taken from a simulated climate field, based on the information from

the proxy data (e.g. Hakim et al., 2016). The main difference with respect to the analog method
::::
AM

is therefore that the latter does not update the prior information, but directly uses one sample (or a

function of a selection of them) of the model data pool as reconstructed value. As a consequence,

the analog method
:::
AM

:
does not introduce additional spatial information not originally included105

within the pool of analogs. This can be seen as an advantage, since non-climatic noise of individual

proxies cannot results in spatial patterns that are inconsistent with model physics. Hence, if the in-

formation from an individual proxy is physically inconsistent with the majority of records, this will

result in generally larger distance functions, but does not necessarily introduce larger errors in the

proximity of the affected record. The analog method
:::
AM

:
has been used with different terminologies110

and settings in several research areas, ranging from the early stages of numerical weather predic-

tion (Van Den Dool, 1994), through the estimation of future regional climate change (downscaling)

(Zorita and von Storch, 1999), to the reconstruction of past surface climate from long instrumental

sea-level-pressure records (Schenk and Zorita, 2012).

The analog method
::::
AM shares some similarities with the particle filter method put forward by115

Goosse et al. (2006). The particle-filter method initially runs a set of simulations for a relatively short

period of time, after which they are compared with available local proxy-reconstructions of (usually)

annual or seasonal temperature. The simulations that do not resemble the patterns of reconstructed

temperature are discarded and those that resemble the reconstructed temperatures are continued

forward in time, or are used as a seed of a spin-off simulation ensemble by stochastically perturbing120

the initial conditions. This method requires, therefore, a large number of simulations and so far

has only been implemented with climate models of reduced computing requirements. Thus, the

spatial resolutions and in general the complexity of the model-generated reconstructions are not as

sophisticated as full state-of-the art Earth system models. In the analog method
:::
AM, in contrast,

the analog patterns are searched through the complete simulated time, independently of whether125

the dates of the identified analogues are close to the date of the proxy-reconstructed temperature

pattern. The advantage of this approach is that the size of simulation ensemble that provides the

pool of analogues does not need to be as large as in the particle-filter method. The price paid is,

however, that the external forcing of the analogs may be very different from the external forcing of

the target pattern. The underlying assumptions are that the spatial covariance of the temperature field130

is not strongly dependent on the external forcing, or in other words that the shape of the temperature

anomaly patterns that are caused by the external forcing are either independent of the nature of the
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forcing or that internal variability is able to generate anomaly patterns that resemble those caused by

the external forcing. If the pool from which the analogues are drawn is large enough, this condition

might be fulfilled. This study aims at ascertaining to what extent this underlying assumption holds135

so that the reconstructions generated by the analog method
::::
AM can be trusted.

Since the evolution of the past temperature is not known with certainty, the reconstruction per-

formance of the method is here assessed with the help of virtual experiments conducted with data

generated in realistic climate simulations. The assessment is based on pseudo-proxy experiments

(PPE) (Mann and Rutherford, 2002; Zorita et al., 2003; von Storch et al., 2004; Rutherford et al.,140

2005; Smerdon, 2012; Werner et al., 2013; Gómez-Navarro et al., 2014). Paleo-climate simulations

do not generate proxy records, such as tree-ring widths, that may be consistent with the climate

evolution simulated by a climate model, but pseudo-proxy records that mimic some of the statisti-

cal quantities observed in real proxy records can be generated from climate simulations (Smerdon,

2012). These statistical quantities may in general comprise the link between the proxy record and145

the local temperature, the statistical persistence of the proxy record, the gaps present in the proxy

record, etc., although in particular PPE only some of these statistical properties are implemented

in the pseudo-proxies to test their influence on the final reconstructions. In addition, the network

of pseudo-proxies can also be tailored to mimic the network of real proxy sites that are nowadays

used to reconstruct the climate of the past few centuries. Once a network of pseudo-proxy records150

is created within a climate simulation, any reconstruction method can be applied to this network

to pseudo-reconstruct the target variable. The pseudo-reconstructed variable is then compared with

the corresponding variable simulated by the climate model, allowing for an assessment of the per-

formance of the method in this ideal circumstances. This is likely an optimistic estimation of the

true performance, since real proxies include sources of non-climate variability that are not straight155

forward to represent with a simple statistical model, and that are likely to cause larger reconstruction

errors.

The present work is, therefore, not aimed at presenting a climate reconstruction and studying the

implications for the history of recent climate change. Such an assessment is beyond the scope of

this manuscript and will be addressed in future studies focused on this topic. Instead, the goal of160

this contribution is to propose and evaluate, mostly with the help of a number of PPEs where the

temporal evolution is borrowed from a climate model run, the performance and major limitations of

a CFR method based on the AM. The method aims at producing a reconstruction of the mean annual

near-surface air temperature (SAT).

2 Data165

The study does not critically rely on a particular set of proxy data nor on observations, as the focus is

on the evaluation of the performance method itself. Therefore, the study is mainly based on pseudo-

5



proxy experiments in which the PMIP3 simulations
:::::::::::::::::::::::::::::::::::
(Braconnot et al., 2012; Taylor et al., 2012) provide

the test bed of the analog method
:::
AM. Still, selecting a realistic network that mimics the location of

real proxies is crucial to achieve meaningful results that can be then translated to real practice of170

reconstructions. Nevertheless, the AM has been also tested with observations in the period 1850-

2012 Section 5. This requires having both, a network of actual proxies and their previous calibration

against observations. Both datasets, as well as the set of simulations used to draw analogs, are briefly

described in the following. Further, two different designs of the pseudo experiments are introduced,

which are necessary for testing the analog method
:::
AM.175

2.1 Observational dataset

The version 4.3 of the HadCRUT4 dataset (Morice et al., 2012) consists of gridded near-surface air

temperature series, calculated as anomalies relative to 1961-1990 mean. It spans the period from

1850 to the present with monthly resolution. The product blends the HadSST3 and CRUTEM4

datasets for sea and land surface temperatures, respectively, and thus provides global coverage with180

a horizontal resolution of 5◦. The method to produce this dataset generates an ensemble of 100

realisations that allows the characterisation of uncertainty. The ensemble mean
::::::
median

:
is used in

this study.

An important caveat of HadCRUT4 is the fact that it contains missing values stemming from the

lack of meteorological observations in certain barely populated areas. These gaps remain in the final185

product, since the method applied to the observations does not include data extrapolation. To avoid

this drawback, a slightly modified version is considered where missing values have been infilled

using a 2-stage GraphEM interpolation (Guillot et al., 2015).

2.2 Proxy network

The PAGES 2K Consortium has compiled a global dataset of proxy temperature records. Records190

were assembled by experts to represent the evolution of temperature over the last 2000 years. Quan-

titative criteria for record length, resolution and other factors were devolved to select a large dataset

that can be culled to address a wide range of research questions (http://www.pages-igbp.org/ini/wg/2k-

network/intro). The first version of this dataset, containing 511 proxy records, was used to gen-

erate temperature reconstructions for seven continental-scale regions using various reconstruction195

methods (PAGES2K Consortium, 2013). It has since been updated and expanded to include marine

records and additional metadata (PAGES2K Consortimum, 2016). Some records in the 2013 ver-

sion were excluded because of more stringent selection criteria, which have now been applied more

uniformly across regions. We use the version 1.9.0 of this dataset, the predecessor to the slightly

revised upcoming version 2.0.0, which will shortly be published (PAGES2K Consortimum, 2016).200

Thus, the version used herein represents an intermediate snapshot between versions 1 (PAGES2K

Consortium, 2013) and 2 (PAGES2K Consortimum, 2016). In total, 682 records are included from
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640 terrestrial and ocean locations (Fig. 1). The records belong to 10 types of proxy archives and

vary in time resolution and record duration. The majority are
:
,
:::::
being

:::
the

:::::::
majority

::
of

:::::
them tree-rings

(61%),
:
with assumed annual resolution.

::::::::::::
Unfortunately,

:::
not

::
all

:::::::
proxies

::::
span

:::
the

:::
full

::::::
period,

::
as

::::::
shown205

::
in

:::
the

::::::
bottom

::::
map

::
in

::::
Fig.

::
1,

:::::
which

::::::
depicts

:::
the

:::::::
number

::
of

:::::
years

:::::
where

:::::
each

:::::
proxy

::::
does

:::
not

:::::::
contain

::::::
missing

::::::
values

:::::
within

:::
the

::::::
period

:::::::
1-2012. For further details about the database,

::::::::
especially

::::::::
regarding

::
the

::::::
nature

:::
and

::::::::
temporal

::::::::
evolution

::
of

::::
data

::::::::::
availability, we refer to (PAGES2K Consortimum, 2016).

The records with lower time resolution are interpolated to emulate annual resolution, and seasonally-

resolved proxies are also processed to remove the annual cycle. This dataset is hereafter referred to210

as PAGES-FULL.

In addition to this, two slightly different subsets of the dataset are used. The PAGES-SEL includes

only those records with native annual resolution, i.e., without interpolation in time, start before

1881, and have less than 1/3 of missing values during the calibration period 1881-1995. This subset

contains 514 records. The PAGES-SCREEN is a more restrictive subset, which was screened for a215

statistically significant correlation with regional temperatures. We use the regional plus FDR (False

discovery rate; Ventura et al., 2004) screening from (PAGES2K Consortimum, 2016). This procedure

selects only those proxy records with significant (p<0.05) grid cell correlations within a search radius

of 2000 km and corrects for FDR. This screening reduces the redundancy of records in areas where

they cluster, particularly western North America and the Himalayas (Fig. 1) but also removes records220

from areas where the proxy density is sparse. This subset consists of just 197 records. The
::::::::
Although

::
the

:
influence of using different subsets is addressed but

::
in

:::::::
Section

::
6, most of the analysis in this

study
::::::::
hereinafter

:
is based on the PAGES-SEL subset.

2.3 Model simulations

The AM method requires a pool of plausible SAT fields to be used for the search of analogs.225

The size of this pool is crucial, as it needs to cover as many potential climate situations as pos-

sible which might have occurred over the Common ERA. To account for this, we use an ensem-

ble of Earth System Model (ESM) simulations, i.e., the simulations of the last millennium within

the frame of the PMIP3 initiative (Braconnot et al., 2012). This ensemble is part of the Cou-

pled Model Intercomparison Project fifth phase (Taylor et al., 2012, CMIP5) and is produced with230

different state-of-the-art models which are also used in the assessment of future climate change

(Stocker et al., 2013). The heterogeneity of this ensemble (different parameterizations, components

included, etc.) is beneficial for this application, since it allows the analogs to be drawn from a

wide range of the spectrum of plausible climate situations, each of them consistent within their

own model physics. Although different in some details, all models agree in many fundamental as-235

pects of the temperature evolution ove the Common Era. They are fully coupled ocean-atmosphere

general circulation models run with similar spatial resolution. Further, the length of the simula-

tions and the forcings implemented is
::::::
similar

:::::::
although

::::
not

::::::
entirely

:
consistent across the ensemble
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(Braconnot et al., 2012; Taylor et al., 2012)
:::::::::::::::::::::::::::::::::::::::::::::::::::
(Braconnot et al., 2012; Schmidt et al., 2012; Taylor et al., 2012).

In total, 16 simulations are considered from 7 ESMs, resulting in a pool size of 18327 years.240

3 Methods

3.1 Calibration of the reconstructions

The PAGES2K datasets consist of a network of raw, uncalibrated proxies. Thus, using this dataset in

the AM method requires a prior calibration of the proxy series to temperature that can be compared to

the modelled temperature in the search for analogs. Such calibration is a complex task, since different245

proxies respond to temperature in a different fashion, and their relationship is contaminated by an

unknown and different level of non-climatic noise. Further, different proxies span different periods,

which leads to a dataset populated with an amount of missing values that varies through time. These

drawbacks require a simple method capable to handle this heterogeneity. It should produce a network

of reconstructed temperature records that preserves the largest fraction possible of the climate-related250

variability. Thereby, a simple univariate linear regression model is employed to deduce a statistical

relationship between each proxy and the SAT. The regression is calculated against the closest grid

point in the HadCRUT4
:::::
dataset

:
during an overlapping period. This fit is performed for each location

independently. The regression parameters estimated during the calibration period are then used to

obtain a local SAT reconstruction.255

The period 1911-1995 is used for the calibration, thereby avoiding the use of the full observational

record, and setting some observational data aside for the validation of the reconstruction. Figure

1 shows the correlation between the observations and the raw proxy series during the calibration

period. The correlation ranges between -0.56 and 0.63, with 65% of values with an absolute value

below 0.2. Although the correlation is modest, it is important to note that these proxies have been260

carefully selected by experts according to their demonstrated ability to reflect temperature variations

with respect to the choice of the calibration period (PAGES2K Consortimum, 2016). Furthermore,

these correlation values are robust with respect to the choice of calibration period. Various periods

have been tested, including the use of the whole period, and differences are hardly appreciable (not

shown).265

3.2 The analog method
::::
AM as reconstruction technique

The analog method
::::
AM was first introduced in the 1970s for weather forecasting (Lorenz, 1969).

Recently, it has been implemented in a variety of applications in climate research, from hurricane

prediction (Sievers et al., 2000; Fraedrich et al., 2003) to downscaling (Zorita and von Storch, 1999)

and upscaling Schenk and Zorita (2012) techniques. For the interest of this study, the suitability270

of this technique to generate CFRs has been recently demonstrated for temperature (Franke et al.,

2010) and precipitation (Gómez-Navarro et al., 2014) for Europe. Although the method is explained
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elsewhere, we briefly outline its key ideas here, following the notation by Gómez-Navarro et al.

(2014).

The algorithm requires a set of observations of the multivariate predictand T(t) available over275

some time t, with concurrent observations of a multivariate predictor P(t). This predictor shall

be available also at time t0 where no observations of the predictand, the target field variable, are

available. The basic idea of the analog method
:::
AM is that the value of these unknown T(t0) can be

approximated by a known value of T(t) if the predictors P(t) and P(t0) at the target time t0 and a

time t in the observation period are sufficiently similar. The set of values P(t) with the simultaneous280

information of the predictand T(t) is generally denoted the pool of potential analogs. Thus, at a

given time t0, the method compares P(t0) with all the members of the pool by using a metric

∆(ti) = dist(P(t0),P(ti)) ,∀i ∈ pool. (1)

The element in the pool with the smallest ∆(ti) is called the analog, P(t̃i). Thereby, the recon-

structed predictand is defined as the value of the predictand at the analog point in time, which min-285

imises the metric T(t0) = T(t̃i).

Although the basic idea is simple, there is still flexibility for tailoring the method to fit different

requirements. First, the similarity in (Eq. 1) can be defined in multiple ways by using different

metrics, some of which are introduced in the next sections. Additionally, the method can be set to

select not just one analog, but identify a set of analogs (e.g. Sievers et al., 2000; Fraedrich et al.,290

2003). For example, the N closest analogs in the pool (in the sense of the distance given by (Eq. 1))

can be used to produce a weighted average

T̃(t0) =

N∑
i=1

ωiT(t̃i) (2)

where T(t̃i) denotes the predictand fields of the closest analogs, weighted by ωi. Again, the weight-

ing can be performed in different ways, e.g., by the distance according to the selected metric or295

simply by equal weights. Here, we consider only the cases N = 1 and N = 5, and set all weights

to 1/N , which produces a simple average of analogs. It is important to note that the use of several

analogs (N > 1) filters out noise, and thus the estimation uncertainty is lower, but has the counterpart

of underestimating the time variance variance.

3.3 Search for analogs in the real space300

The measure of similarity described in Eq. 1 makes use of a distance between two patterns of tem-

perature that has to be evaluated over the network of proxy sites. Note that such distance shall be

defined flexible enough to accommodate possible missing values. In this analysis we use two differ-

ent metrics: correlation and Root Mean Square Error (RMSE).
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Correlation is defined as305

ρ(P(ti),P(tj)) =
(P(ti)−P(ti)) · (P(tj)−P(tj))√
(P(ti)−P(ti))2(P(tj)−P(tj))2

(3)

where the line over a vector indicates that the mean value across coordinates is computed. RMSE is

defined in this notation as

RMSE(P(ti),P(tj)) =

√
(P(ti)−P(tj))2

M
(4)

Correlation is a measure of the degree of similarity of two patterns, but does not penalise two fields310

that may differ by a large constant value. This reduces the ability of the metric to detect changes in

the global temperature, as will be shown later. RMSE is a metric that penalises simultaneously the

lack of spatial co-variability and differences in mean values. Note that this metric is equivalent,

except for a multiplicative constant, to the Euclidean distance between the two vectors P(ti) and

P(tj). Both metrics can be generalised in a natural way to account for missing values in proxy sites.315

In that case, the summations implicit in the scalar product and in the averages skip those sites, and

the constant M has to be decreased accordingly.

3.4 Search for analogs in the EOF space

As a variant, the search for analogs can be carried out in the low-dimension space expanded by

the leading EOF patterns of the temperature variability. The rationale for using this transformation320

is that although a temperature field has many dimensions, i.e., as many as grid points, these grid

points are strongly interdependent, thus reducing the effective degrees of freedom of the phase space.

Further, part of this variability may be spurious and attributable to non climate-related variability

in the proxy records, i.e., noise. By decomposing the variability of the field in its main modes,

temperature variability can be compressed into a much smaller number of independent variables,325

each one uncorrelated to the others (von Storch and Zwiers, 2002). The use of EOF techniques to

reduce the dimensions for the search of analogs has been explored in previous studies (Zorita and

von Storch, 1999; Fernández and Sáenz, 2003).

Here, the leading modes of variability are obtained from the observational dataset HadCRUT4

(where there are no missing values). Once the leading L patterns that explain the desired level of330

variance (in this study set to 90%) are identified, the field can be approximated as the linear combi-

nation

P(t)'
L∑

i=1

αi(t)EOFi , (5)

where EOFi represent the spatial the pattern and αi(t) the corresponding time series, whose calcu-

lation is described below. Thereby, the rank reduction achieved by the change of basis emerges from335

the fact that the vector P(t), originally defined through M coordinates in the canonical basis, can be
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described in the EOF basis by L, with L�M . Once the predictor and predictand at each time step

are expressed as linear combination of the observed modes of variability, the analog method
:::
AM

:
can

be applied directly in this space, with the only modification that the metrics described in Eqs. 3 and

4 have to be applied using the vectors of coordinates α(ti) and α(tj), instead of the original fields340

P(ti)) and P(tj)). For the EOF space we focus on a single metric, i.e., RMSE.

Despite its apparent simplicity, the calculation of the vector of coordinates αi(t) deserves some

words of caution when working with fields that contain missing values. In the absence of missing

values, the EOFi vectors form an orthonormal basis. In this case the αi(t) vector can be easily

obtained as a matrix multiplication345

αi(t) = P(t) ·EOFi
t , (6)

where each row is an EOF pattern and the super index t denotes matrix transpose. However, when

missing values are present in the vector P(t), such gaps have to be introduced in the vectors EOFi.

Unfortunately, this modification in the vectors destroys their orthonormality, which implies that the

former equation has to be generalised. It can be shown that the general expression is350

αi(t) = P(t) ·EOFt
i ·Cov(EOF)−1 , (7)

where Cov denotes the spatial covariance matrix of the EOFi vectors. In the particular case where

they are orthonormal (e.g. when there are no missing values) the covariance matrix is the identity

matrix of size L, and Eq. (7) becomes equal to Eq. (6).

As a final remark, the coordinates αi(t) do not contain any missing values, regardless of the gaps355

present in the original vector P(t) as missing values are implicitly taken into account in the matrix

multiplication used to transform the basis. Thus, all αi(t) coordinates have the length L, independent

on the presence of missing values. This simplifies the definition of a distance. Still, the presence of

many missing values is undesirable since it increases the uncertainty of the estimation of αi(t).

3.5 Design of pseudo-proxy experiments360

As part of the performance evaluation of the AM method, we use PPE. These idealised experiments

are profusely used in literature to assess the performance of the CFR reconstructions of temperature

(Smerdon, 2012, and references therein) or even precipitation (Gómez-Navarro et al., 2014). The

procedure extracts data from a climate simulation at a given set of locations to build a synthetic

network of local pseudo-records. This synthetic dataset is used as input for the reconstruction method365

with the aim to recreate the reconstruction procedure, and then to compare this pseudo-reconstruction

with the original simulated field.

The design of PPEs may vary in complexity. The so-called perfect PPEs use the closest grid

point to the location of the real proxy to extract a time series of the physical variable of interest.

The synthetic reconstructions used as input therefore consist of a simple subset of the original field370

11



of the simulation. This is clearly an oversimplification of reality, since actual local reconstructions

reproduce only a fraction of the actual climatic signal and include uncertain levels of noise and

missing values. A more realistic approach consists of contaminating the climate model series with

a certain amount of statistical noise and gaps, so that the starting point of the CFR reconstructions

more closely mimics real proxy data.375

In this study, we select one of the simulations from the PMIP3 ensemble as a target and to cre-

ate the pseudo-proxies for the PPE (in particular we use the simulation with the GISS model labeled

r1i1p121). We then build the pool of analogs from all other simulations but excluding this simulation,

and reconstruct the target with the AM. Although the results are largely independent on the choice

of model, as we indeed demonstrate in Section 4.4, the rationale for this choice is that this simula-380

tion is somewhat dissimilar to the other model simulations in that it exhibits lower variability than

the other models. The exercise to reconstruct
:::
This

:::::::::
somewhat

:::::::::::
dissimilarity

::::::
renders

:::
the

:::::::
exercise

:::
of

:::::::::::
reconstructing

:
the target GISS temperature using the other models as pool of analogues is therefore

::::
more

:::::::
difficult,

::::
and

:::::::
therefore

::
it
::::::
results

::
in

:
a
:
slightly more strict

:::
test.

The network of proxies to base most of our results is the PAGES-SEL network, although other385

networks are explored in Section 6. All networks of pseudo-proxies consider the real missing values

in the PAGES2K network, and thus mimic the reduction of available real proxy records back in time.

We employ first perfect PPEs (with no contamination with noise), which allows to assess an upper

limit of the performance of the method and is referred hereafter as NoNoise PPE. In a next step, we

consider a more realistic scenario where white noise is added to the series. Other types of statisti-390

cal noise with different properties can be considered, e.g. red noise produced by an autoregressive

process, which allows to simulate the climate memory contained in natural proxy records. There-

fore, this study also considers additional tests with red-noise pseudo proxies, prescribing a plausible

time decorrelation of five years. The decorrelation time in actual proxies is not well known, and

clearly depends on the nature of the proxy record. Hence, the choice of five years is a pragmatic395

choice that helps to illustrate the possible effects of red-noise pseudo-proxies without the aim of

being overly accurate. In both cases, with red and white noise, the amplitude is set so that it reduces

the point-wise correlation with the original series in each proxy location to 0.5. This level of noise,

that corresponds to a signal-to-noise ratio (by standard deviation) of 0.58, is comparable to similar

studies (von Storch et al., 2008; Smerdon, 2012; Gómez-Navarro et al., 2014). In this experiment400

the same missing values present in the PAGES-SEL reconstructions are introduced to mimic a more

realistic pseudo-proxy network. This experiment is referred as R0.5 PPE. In a final setup, a set of

even more realistic PPEs are carried out in which each pseudo-proxy is constructed with different

amounts of white noise, so that the correlations with the original series equal the correlation values

between the real proxy records and observed temperatures, i.e. the values shown in Fig. 1. This is405

referred as RProxy PPE.
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4 Evaluation of the AM in PPEs

In this section, only PPEs are used to evaluate the performance of the AM to reconstruct global

annually-resolved temperature. In all cases the full PMIP3 ensemble has been considered by leaving

out one simulation, and the proxies location is based on the PAGES-SEL network, as described in410

Section 3.5.

4.1 NoNoise PPE

Figure 2 shows the point-wise correlation maps (calculated for the full reconstructed period) be-

tween the original simulation and the pseudo-reconstructions based on perfect pseudo proxies with

1 and 5 analogs, for a similarity measure based on RMSE, correlation and RMSE in the EOF space,415

respectively. All methods tend to produce positive correlations, which is indicative of the ability of

the reconstruction method to recover the original variability based on a limited number of locations.

Still, there are large differences among the different settings. The reconstructions based on the met-

ric of correlation is less reliable than the one based on RMSE. The lack of performance likely stems

from the less demanding criterion of (dis)similarity between two variables that correlation provides,420

ignoring shifts in the average fields, and thus focusing just on the spatial co-variability. In this sense,

RMSE presents a compromise, penalising analogs that strongly differ from the target field both in

terms of spatial variability and absolute values. The RMSE similarity is more demanding, and even-

tually the identified analogs are physically closer to the target pattern. The search within the space

spanned by the first EOFs leads to a similar point-wise correlation as in the former case, which is425

somewhat expected since the metric is the same, and the phase space, although severely reduced in

terms of number of dimensions, still preserves by construction 90% of the original variance. The

inclusion of more analogs have
:::
has

:
the effect of increasing the temporal correlation. This effect,

also described by Gómez-Navarro et al. (2014), is due to the cancellation of errors in the averag-

ing process. The cancellation of errors has the counterpart of averaging out also a larger part of the430

reconstructed variability. Thus, there is a trade-off between temporal accuracy and variance. This

is further illustrated by Fig. 3, where the ratio of the standard deviations in the reconstruction and

the simulation is presented. Overall, all reconstructions tend to preserve well, and even overesti-

mate, the original variability. This is a result of the lower variability of the simulation used as target

(based on the GISS model) versus the model ensemble as a whole, and thus re-sampling the pool of435

analogs tends to produce larger variability than the target. This overestimation of variability becomes

strongly ameliorated when 5 analogs are used, as expected according to the discussion above.

Spatially, the performance, measured by the point-wise correlation in Fig. 2 is quite homogeneous,

despite the unequal distribution of the proxies and especially despite the smaller number of proxies

in the Southern Hemisphere. Within the North Hemisphere, the area where the reconstruction is less440

accurate is clearly the North Atlantic, which stands out across all reconstructions. In this sense, the
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EOF-based reconstruction seems more robust, since it does not present the slight negative correla-

tions that appear near the North Atlantic, Caribbean Sea and the Sahara. The areas south of 40◦S

show low correlations, which can be clearly associated to the lack of proxies that provide informa-

tion to the reconstruction. Regarding variability, the spatial structure is coherent across methods.445

Still, the strong underestimation of variance in all reconstructions in the western North Atlantic is

notable. This underestimation can be directly linked to strong variance in the simulations used as tar-

get (not shown). The consistency of these deficiencies demonstrates how the AM method is always

constrained by the quality of the data used as pool for the analogs search. In this case, the features

observed in the target field are not shared across models, which leads to the inability of the method450

to find suitable analogs that capture certain features.

Based on the results that emerge from Figs. 2 and 3, the rest of the analysis focusses solely on

the reconstructions carried out with the search of analogs in the real space and based on RMSE

similarity (hereafter RMSE-AM), and the one in the EOF space (hereafter EOF-AM). Similarly,

only reconstructions using an average of 5 analogs are discussed. However, although not shown, the455

analysis has been carried out with all combinations of settings, and significant deviations from the

results expected from the discussion above are highlighted.

A very important aspect of this pool of analogs is that it is heterogeneous, since the analogs come

from few very different climate models. Thus, an important question to be addressed is whether there

are models that are selected more frequently, and whether there is a strong relationship between the460

year being reconstructed and the year that correspond to the closest analog. This is shown in Figure

4, where the number of times each model has been selected is shown for each method (see panels

a and c). All models across the pool are selected at some point in the reconstruction (with the ex-

ception of model number 5, which is the model explicitly excluded for being the target of the PPE).

Still, some models are more frequently selected than others. Numbers 1 and 13 are overall the most465

frequently chosen in both methods, and correspond to the BCC and the IPSL models, respectively.

On the other hand, models 15 and 16 are the less frequently chosen models, and correspond to two

realisations of the MPI model. It is worth noting that the other simulations with the GISS model

(numbers 4 to 11) are not selected more frequently than the rest of models, despite being simulations

of the same model as the target. This is indicative of the ability of the search algorithm to identify470

similarities in the spatial patterns regardless of particular model features, and supports the robust-

ness of the reconstructed fields with respect to the biases present in some models.
:::::
Black

:::
thin

:::::
lines

:::::
denote

:::
the

::::::::::
occurrence

::
of

::::::
severe

:::::::
volcanic

:::::::
activity,

:::
and

:::
are

::::::
aimed

::
at

:::::::::
facilitating

:::
the

:::::::::::
identification

:::
of

::::::::::
relationships

:::::::
between

::::
this

:::::::
external

::::::
forcing

::::
and

::::
year

::::::::
selection.

::
It

::::
turns

:::
out

::::::::
however

:::
that

:::
the

:::::::
method

:::::
selects

:::::::
analogs

::::::::::::
independently

::::
from

::::
this

:::::
factor.

:
Similarly, there is no strong one-to-one relationship475

between the simulated and reconstructed years, i.e. simulated modern (or earlier) years are not nec-

essarily selected to reconstruct recent (or earlier) years (see scatter dots in panels b and d). This is

indicative of the sufficiently large amount of variability contained in the pool, which thanks to the
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amount of internal variability provided by the various simulations, is able to provide analogs inde-

pendently of the model year. The only signal of a temporal link between the targets and their analogs480

appears as a clustering of modern simulated years that are used as analogs for years within the 20th

century (see the clustering of dots in the top right corners in panels b and d). This is attributable to

the effect of recent warming of the industrial period, i.e. warm years appear more frequently, and

they are preferably found during the last centuries of the pool of simulations.

4.2 R0.5 PPE485

This section explores the performance loss when noisy pseudo proxies are used to mimic the effect

of not climate
::::::::::
non-climate related variability of real proxy data. As outlined above, the noise consists

of additive white noise and the introduction of missing values that mimic the temporal distribution

of missing values present in the PAGES-SEL network. Note that, for the sake of brevity, the anal-

ysis hereafter is limited to the RMSE-AM and EOF-AM methods for analogs search, although the490

other methods have been explored and the results are consistent with the former section: i.e. the

RMSE metric outperforms correlation as measure of distance between analogs. Similarly, only the

reconstruction obtained as an average for the 5 best analogs is discussed, since the 1- and 5-analog

versions differ in the bias-variance trade-off described in the perfect scenario context in the previous

section.495

The performance of the reconstructions with these more realistic PPEs is illustrated in Fig. 5.

The top row depicts the correlation between the original simulation and the reconstructions based

on realistic PPE contaminated with noise and populated with missing values. The correlation is

generally lower than in the case of perfect pseudo-proxies, indicating the reduced performance of

the reconstruction method in this scenario. This is expected since the quality of the pseudo-proxies500

has been considerably degraded in this PPE. However, the decrease in the correlation is remarkably

small, from 0.35 to 0.28 and from 0.39 to 0.24 on average and for the RMSE and EOF methods,

respectively. In particular, the spatial structure of the correlation maps hardly changes with respect

to perfect PPE, being the spatial correlation between the perfect and noisy cases 0.94 and 0.95 for

RMSE and EOF, respectively. The modest impact of the addition of a strong component of noise is505

attributable to the use of an extensive network of proxies: the information contained in the network

is to a great extent redundant and represents the same climate signal, which implies that the degra-

dation of the information at a given location can be to a great extent recovered by the reconstruction

method through the use of nearby information and by the spatial coherence of the climate field. This

recovery of degraded information gives confidence about the CFR methods in general, and in the510

AM in particular, and suggests that the use of a large network of independent proxies can overcome,

to a certain extent, the problems derived from the use of noisy local reconstructions. The two maps

in the lower row depict the ratio of standard deviation in the reconstruction and the simulation in

logarithmic scale. Both figures are hardly distinguishable (spatial correlation 0.97 and averaged bias
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of -0.02 ), and coherently point out how the reconstruction recovers about 80% of the original vari-515

ance independently from the particular method (the logarithm of the ratio averages -0.1 and -0.8 for

RMSE and EOF, respectively). The loss of variance with respect to the NoNoise PPE is particularly

strong in the western North Atlantic. This underestimation of variance disappears and even becomes

an overestimation of variance when just 1 analog is considered (not shown). However, this variant

of the method presents lower temporal correlation (not shown), as the correlation-variance trade-off520

is always present across experiments.

The results obtained with the experiments where red
::::::
instead

::
of

:::::
white noise is added to the original

series resemble those shown in Fig. 5, and are not shown due to the great similarity with the figures

corresponding to white noise. All metrics evaluated indicate that the performance of the reconstruc-

tion is indistinguishable when either white or red noise is considered. Therefore, the presence of525

memory in proxies seems to play a secondary role in the performance of the AM, and does not de-

grade noticeably the output of the reconstruction. Note that this result agrees with previous findings

in similar studies but aimed at the reconstruction of precipitation (Gómez-Navarro et al., 2014). The

effect of red-noise pseudo proxies has been tested in previous studies in the context of regression-

based methods and the Composite plus Scaling method (von Storch et al., 2008), where it was found530

that, in the case of regression methods, red-noise pseudo-proxies lead to a stronger underestimation

of past variability than white-noise pseudo-proxies. However, the influence on other measures of

skill that do not rely on the amplitude of variations, like correlation, has not been so far investi-

gated. It is therefore, reassuring that the AM does not lead to either an additional reduction of past

variations or to a loss of correlation skill.535

4.3 RProxy PPE

Figure 6 depicts the same results as Fig. 5 but for the more realistic PPE, which consists of reducing

the correlation by adding white noise in an amount that mimic the values observed in the calibra-

tion. The decrease in the correlation compared to a situation with spatially homogeneous noise is

apparent (note the different scale for correlation). The inclusion of more realistic values of corre-540

lation severely reduces the ability of the AM method to reconstruct the original simulation.
:::
The

:::::::::
correlation

:::::::
between

:::
the

::::::::::::::::::
pseudo-reconstruction

:::
and

:::
the

:::::
target

::
is

:::::::::
especially

::::::
reduced

::
in
:::
the

::::::
tropics

::::
and

:::::
North

::::::::
America,

::::::::
locations

:::::
where

::::
the

::::
skill

:::::::
obtained

:::
in

::::
more

:::::::
simple

::::
PPEs

:::
is

::::
very

::::::::::
remarkable,

::::
and

::::::
perhaps

::::::::::::
overestimated

:::::
under

:::
the

::::
light

::
of

:::
this

::::::::
analysis.

:::::
There

:::
are

:::::::
however

::::
areas

::::::
where

:::
the

:::::::::
correlation

:
is
::::
still

::::
well

::::::::
preserved,

::::
such

::
as

::
in
:::::::
Europe,

::::::
central

::::
Asia

:::
and

:::
the

:::::::
western

::::::
Pacific.

:
A striking finding with545

respect to the former case is the large difference between the RMSE-AM and EOF-AM methods.

Although both methods deal with the same amount of uncertainty, the former clearly outperforms the

latter regarding its ability to reproduce the temporal evolution in the target, despite the addition of

noise and missing values. Still, the spatial structure of correlation is very similar in the RMSE-AM

variant, and in particular the method remains able to deliver performance in regions with poor proxy550
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coverage. Regarding the preservation of variance, both methods exhibit the same underestimation

of variance, which stems from the averaging over 5 analogs, and is absent in both cases when only

one analog is used to reconstruct (not shown). Thus, both methods behave similarly regarding the

replication of variance.

Based on the results of these PPEs, we conclude that the RMSE-AM method is overall the most555

reliable, since its performance is more robust across the experiments and analyses we have carried

out.

Other simulations as targets

4.4
:::::
Other

::::::::::
simulations

::
as

:::::::
targets

All PPE analysed so far are based on the use of a single model as target. This section explores the sen-560

sitivity of the results to the use of the simulations MPI-ESM-P r1i1p1 or CCSM4 r1i1p1 as targets,

instead of the GISS r1i1p121. Left column in Figure 7 is similar to Figs. 5, and shows the correla-

tion between the target SAT and the pseudo-reconstructed SAT for three models: GISS (which is the

model discussed so far), MPI-ESM-P and CCSM4, in a case where the PPE is designed exactly as

::
are

::::::::
designed

::::
with

:::
red

:::::
noise

::
as

::::::::
described

:
in Section 4.2.

:::::
Middle

:::::::
column

::::::
depicts

:::
the

::::
ratio

::
of

::::::::
standard565

:::::::
deviation

:::
of

:::
the

:::::::::::
reconstruction

::::
and

:::
the

:::::
target,

:::::::
whereas

:::::
right

::::::
column

::::::
shows

::::::
RMSE

::
to

:::::::
illustrate

:::::
other

::::::::::
performance

::::::
metrics

::::
than

::::::
simply

:::::::::
correlation

::::
and

::::::::::
demonstrate

::::
how

::
it

:::::::
supports

:::
the

::::
same

:::::::::::
conclusions.

We focus the discussion on the comparison between GISS and MPI-ESM-P, as the one corresponding

to CCSM4 is very similar and therefore omitted. The skill of the pseudo-reconstruction are quali-

tatively very similar, although there are some regional differences which, however, do not modify570

the main picture derived from the previous sections. The correlation pattern in the MPI-ESM-P case

is very similar to that obtain in the GISS case, with high values of the correlations in the Northern

Hemisphere and lower values in the Southern Hemisphere. Both cases also display relatively lower

correlations in the central North Atlantic and Central Pacific. The correlations are low in the South-

ern Ocean, possibly due to the very sparse proxy network here. The patterns of RMSE (right column)575

is also similar in both cases. The RMSE tends to be higher in the GISS case, confirming our initial

assumption that the variability of the GISS model stands slightly out of the ensemble of models,

though not dramatically. The RMSE is higher in the polar regions, where it may attain values of

the order of 2-3K, and rather uniform and lower values around 0.5 K in the rest of the globe. There

is a remarkable difference between both cases in the Western North Atlantic, where the GISS case580

displays rather large values of the RMSE that are not seen in the MPI-ESM-P case, for which there

is no clear explanation at this point.
::::::::
Regarding

:::
the

::::::::::
preservation

:::
of

:::::::
variance

::::
(see

::::::
middle

:::::::
column

::
in

:::
Fig.

:::
7),

::::
there

:::
are

:::::
small

:::::::
regional

:::::::::
deviations

:::::
which

:::::
seem

:::::::::::::::
model-dependent,

:::::::
although

:::
the

:::::
main

::::::
picture

:::
that

::::::
stands

:::
out

::
in

:::
all

:::
the

::::
three

:::::
cases

::
is

::::
that

:::
the

::::::::::::
reconstruction

:::::
using

:
5
:::::::
analogs

:::::
leads

::
to

:
a
::::::

slight
:::
but

:::::::::
generalised

::::
loss

::
of

::::::::
variance.

:
Therefore, the main conclusion we can draw from the analysis above585

is that the choice of simulation as SAT target does not largely affect the performance of the AM in
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reconstructing global SAT
:
,
:::
and

:::
the

::::::::::
conclusions

:::::
drawn

:::::
from

:::
the

:::::::
analysis

::
of

:::
the

:::::
GISS

:::::
model

::::
used

:::
as

:::::
target

:::
can

::
be

:::::
safely

::::::::
extended

::
to

:::::
other

::::::
models.

5 Reconstruction of the observational period

In this section, the ability of the reconstruction method is explored using real proxies to reconstruct590

the observed temperature field in the period 1850-2012. For this, a selection of the PAGES-SEL net-

work during the period 1850-2000 is extracted and calibrated during the 1911-1995 period against

the infilled HadCRUT4 observational dataset in the way described in the Section 3. The series ob-

tained after calibration are used as input for the RMSE-AM and EOF-AM variants of the AM, and

the output is compared to the original observations, with the aim of establishing the performance of595

the reconstruction.

Figure 8 depicts the results of the comparison between the reconstructed and observed series of

SAT, and is the counterpart to Figs. 5 and 6 with actual proxies instead of PPE. As
::::
Note

::::::::
however

:::
that

::::::::::
correlations

::
in

::::
this

:::::
figure

:::
are

:::
not

::::
fully

::::::::::
comparable

::
to

:::
the

:::::::
formers,

:::
as

:::
they

:::::
have

::::
been

:::::::::
calculated

:::
over

::::::::
different

::::::
periods

:::
(in

:::
the

:::::::
formers,

:::
the

::::
full

::::::::
2000-year

::::::
period

::
is

:::::
used).

:::
As

:::
the

:::::::
number

::
of

:::::::
proxies600

:::::
varies

:::::::
through

::::
time,

:::
the

::::
skill

::::::::
obtained

::
is

:::
not

:::::::
directly

::::::::::
comparable,

::::
but

::::::::
somewhat

::::::::::::
overestimated

:::
by

::
the

::::::::::
availability

::
of

:::::::
proxies

::
in

:::::
more

:::::
recent

:::::::
periods.

:::
As before, the results focuses on the RMSE and

EOF methods, and when 5 analogs are chosen to obtain the reconstruction. Regardless of the par-

ticular method used in the search of analogs, the
:::
and

::::::
despite

:::
of

:::::
being

:
a
:::::::::

favourable
::::

test
:::
due

:::
to

:::
the

:::::
larger

::::::
amount

::
of

::::::::
available

::::::
proxies

::
in
:::
the

::::::
period

:::::::::
considered

:::
for

:::
the

::::::::::
calculation,

:::
the correlation maps605

between the reconstruction versus the target (top row) exhibit lower values than both with perfect

PPEs and with noisy pseudo-proxies with spatially homogeneous noise (correlations of 0.5 in every

location (Figs. 2 and 5, respectively). This lower temporal correlation may be due to two reasons.

One is that the level of noise employed in the first realistic PPE, inspired by its application in similar

studies (von Storch et al., 2008; Smerdon, 2012; Gómez-Navarro et al., 2014), is an underestima-610

tion. Indeed, the point-wise correlations between the observed temperature and the proxies during

the calibration period ranges between -0.56 and 0.63, with an average of 0.06, which would suggest

a higher level of noise in the real world than in the PPE. However, a second reason could originate in

a deficient simulation of the typical temperature patterns found in the real world. These low correla-

tions impose an upper limit to the temporal evolution that the calibrated series are able to represent.615

This can be seen more clearly when comparing Figs. 6 and 8, where especially the RMSE-AM

method exhibits very similar spatial pattern and values . Recall
:::::
(again,

:::::
recall

::::
that

:::
the

::::
PPE

::
is

:::::
again

::
in

:::::::::::
disadvantage

::
as

::::::::::
correlations

::
in

::::
Fig.

:
6
:::
are

:::::::::
calculated

:::
for

:::
the

:::::
whole

::::::::
Common

::::
Era,

::::::::
including

:::::
early

::::::
periods

::::
more

:::::::
densely

::::::::
populated

:::::
with

::::::
missing

:::::::
values).

::::
Note

:
that these figures correspond to actually

very different datasets (a PPE versus a real reconstruction of an observational dataset), although by620
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construction of the PPE they have in common the spatial proxy network and the correlation between

the proxy and the corresponding local SAT series
:::::
during

:::
the

:::::::::::
instrumental

:::::
period.

The reconstructions of the temperature in the observational period produce overall positive corre-

lations with the real temperatures, which match fairly well the values obtained with noisy PPE with

spatially varying noise levels, especially the RMSE-AM, and depending on the location reach values625

above 0.5. The distribution of point-wise correlation is affected by the location of the proxies, and

seems to be slightly sensitive to the method employed, especially where the point-wise correlation

is not supported by the existence of nearby proxies. Thereby, both methods produce reconstructions

that exhibit better performance over Europe, north Canada, eastern Asia or Tasmania. However,

RMSE shows locations where the reconstruction leads to remarkable performance despite the low630

number of proxies located nearby, such as Western Sahara or the Southern Indian Sea, whereas these

spots of remarkable correlation cannot be identified in the EOF reconstruction. Conversely, the use

of the RMSE similarity leads to negative correlation in South America and near Antarctica, which

are missing in the EOF reconstruction. Regarding the preservation of variance (bottom row), both

methods underestimate the variance, as expected to some extent when using an average of 5 analogs.635

In this sense, the RMSE method clearly outperforms the EOF-based method, which unlike the for-

mer strongly underestimates variance in nearly all locations. A noticeable agreement between both

methods is the consistent underestimation of variance in the Arctic. This may result from the lower

variance in the pool of analogs in this region. All models consistently exhibit lower variance in the

Arctic compared to observations (not shown), which leads to systematic variance underestimation640

and provides an example of unavoidable bottleneck of the AM.
:
It
::
is
::::::::
however

:::::
worth

::::::
noting

:::
that

:::
an

::::::::
alternative

::
or
:::::::::::::
complementary

::::::::::
explanation

:::
for

:::
the

:::::::::
differences

::
in

:::::::::
variability

:::::::
between

::::::::::
observations

::::
and

:::::::::
simulations

::
in
::::

the
:::::
Arctic

:::::::
regions

:::::
could

::
be

:::
in

::::::
caveats

::
in

:::
the

:::::::
former.

::::
This

::
is
::::
due

::
to

:::
the

::::
fact

:::
that

:::
as

:::::::
outlined

::
in

:::
the

::::::
dataset

:::::::::
decryption

::::::
above,

:::::::::::
observations

::
in
::::

the
::::
high

:::::
Arctic

::::
are

:::
not

::::
real,

:::
but

:::::::
infilled

::::
using

:::::::::::
extrapolation

:::::::::
techniques

::::::
which

:::::
might

::::::::
introduce

:::::::
variance

:::::::::::::
overestimation.

:
645

6 The role of spatial distribution of proxy sites

The reconstruction performance may also depend on the proxy network used. Therefore we assess

the impact of slightly different proxy networks on the reconstruction, using the PAGES-SEL, -FULL

and -SCREEN networks described above. The observational period serves as an example.

The correlation maps between the observations in the period 1850-2000 and the different RMSE-650

AM reconstructions based on these networks are shown in Fig. 9, where also the slightly different

distribution of the proxies is shown. Using the original PAGES-FULL network generally improves

the point-wise correlation of the reconstruction compared to the PAGES-SEL case (recall that this

network contains 682 instead of 514 records). This is especially so in equatorial and sparsely covered

areas, indicating that the addition of few records, even when they do not provide real annual resolu-655
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tion or when they contain significant amounts of missing values, can have noticeable positive effects

on the reconstruction. A striking result is that the PAGES-SCREEN network provides remarkable

performance, despite that it just contains 197 records. This suggests that the accumulation of redun-

dant proxies in certain areas, such as North America or China, may have a counterproductive effect

in the reconstruction performance. This is a somewhat counter-intuitive result, since the screening of660

the network produces a reduction of the available information.
::::::::
However

:::
our

:::::
results

:::::::
indicate

::::
that

:::
the

::::::::::
performance

::
is

::
to

::
a
::::
large

::::::
extent

:::::::::
preserved,

:::::::
probably

:::::::
because

:::
the

::::::::
screened

:::::::
network

::::::::
contains

:::::
fewer

::::::
proxies

:::::
which

:::::::
exhibit

:::
low

::::::::::
correlations

::::
with

::::
the

::::::::::
instrumental

:::::::::::
temperature.

:
The combination of the

latter two results support the argument that the best possible network would ideally have a global but

also a very homogeneous coverage, making the total number of records of secondary importance.665

Figure 10 shows the temporal evolution of the globally averaged SAT in the HadCRUT4 dataset

and the RMSE-AM reconstructions with 1 and 5 analogs using each of the proxy networks described

previously. This figure additionally illustrates the reconstruction performance, and is complementary

to the correlation maps discussed so far. All time series reproduce remarkably well the global warm-

ing captured by observations, including the short cooling period during the 60’s. The differences670

between different setting of the method are minor, and does not affect this general good agreement,

indicating that the long-term variability can be reproduced with confidence regardless of the network

used to reconstruct the climate variability.

7 On the estimation of reconstruction uncertainties

The reconstruction of past climate should include an estimation of the reconstruction uncertainty675

that sets the validity of that estimation. Such uncertainty stems in general from different sources,

and often some sources of uncertainty can be better estimated than others. This is the case for the

analog method
:::
AM, as briefly explained in this section. It is important to note that the estimation

of reconstruction uncertainty requires hypothesising an underlying theoretical framework for the

method. For instance, an underlying assumption in all reconstructions of past climates is that the680

proxy records still reflect the environmental conditions in the same way as they do in the present

climate. If this requirement is not fulfilled, the estimated uncertainty is an unrealistic estimate. As

an illustration, let us consider the well known case of a simple univariate regression model (see for

instance von Storch and Zwiers, 2002).

T = Tm + (P −Pm)α+ ε (8)685

where T and P denote temperature and proxy, respectively; Tm and Pm denote their mean values,

α is the regression coefficient, and ε is the error term. The uncertainty in the estimation of T given

P has two main sources. One is related to the amplitude of the unresolved variance, given by the

standard deviation of ε. However, the other main source is the uncertainty in the estimation of α,
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let us denote it as δ(α). As can be demonstrated within the linear regression theory, this second690

contribution is approximately proportional to the product (P −Pm)δ(α). Therefore, for values of P

in the middle of the range of the predictor, the main contribution is the amplitude of ε, whereas for

values of P far away from Pm, the main contribution becomes (P −Pm)δ(α).

In a similar way, in the application of the AM there are two main contributions. One would be

the amplitude of the error term, i.e. the deviations between the actual and predicted T , assuming695

that the model analogue is perfect. This contribution is analogous to the unresolved variance, i.e.

the variability of T at a certain point that cannot be solely determined by the given temperatures

at the proxy locations. A second contribution to uncertainty is the identification of the analogue

itself. Unfortunately, the situation in the AM is more complex than in the case of simple univariate

regression. For target patterns where good analogues can be easily be found, this contribution will700

be very small. In general, and since we use a large pool for the analogue search, it can be assumed

that for proxy patterns that are ’around the mean’, the AM is generally able to find good analogues

within the pool. However, for proxy patterns well beyond the range of the pool, where no good

analogues can be found, the uncertainty cannot be easily quantified. The reason for this is that such an

estimation would require an analytical model, being the counterpart of the regression model outlined705

above. Unfortunately such frame model, able to carry out some sort of ’analog extrapolation model’,

which would allow to estimate a range of the predicted variable in ranges where no good analog of

the predictor exists, has not been developed yet. Therefore, for targets well beyond the analogue pool,

this contribution to uncertainty would be the largest, although unknown. Note that this situation is,

to some extent, similar to pollen-based reconstructions using the analogue method (Overpeck et al.,710

1985). When the pollen record shows a pattern that is not present in the current pollen distribution,

the climate reconstruction and its uncertainty are virtually impossible to estimate. In this regard, new

mathematical developments are required to settle this issue.

Under the light of the former discussion, in this manuscript we have estimated only the contribution

of the ’unresolved variance’.We do
:::
just

:::
the

::::::::::
uncertainty

::::::
arising

:::::
from

:::
one

:::
of

:::
the

:::
two

::::::::::::
contributions715

::::::::
discussed

:::::
above,

::::
i.e.

:::
the

::::::::
variability

:::
of

::
T

::
at

:
a
::::::
certain

:::::
point

::::
that

::::::
cannot

::
be

:::::
solely

::::::::::
determined

:::
by

:::
the

::::
given

:::::::::::
temperatures

::
at

:::
the

:::::
proxy

::::::::
locations.

:::
To

::
do

:::
so,

:::
we

::
do

:
opt by computing the standard deviations

of the residuals (reconstructions minus target). For this computation, we try to mimic the situation

that researchers face in real reconstructions, where the observed temperature field over a reference

period would be known, so that the residuals (deviations between observations and reconstructions)720

and its standard deviation can be computed. To simulate as closely as possible this situation, we

compute the standard deviation of the differences using the 1850-2005 period, instead of the whole

GISS r1i1p1 simulation.

In order to gain insight on the variability of the error attributable to the variable number of missing

values, we have computed this contribution to the uncertainty for two situations, both within the725

main pseudo-reconstructions using white-noise pseudo-proxies with a uniform correlation between
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the pseudo-proxy and the local temperature of 0.5 and considering 5 analogues (this is, the PPE

setup discussed in Section 4.2). The first case is the best-case scenario, i.e. we use the proxy records

of the PAGES-SEL network available in the year 1949, where no record has missing values. In the

second case, we use the proxy network representing the year 1500, i.e. selecting only the 257 proxies730

with no missing values in this year, to illustrate changes in uncertainties back in time. The results

are show in Figure
::::::
shown

::
in

:::
left

::::::
column

:::
of

:::
Fig.

:
11, and show that the uncertainties are larger in the

polar regions, and are in the order of 1-2K, being smaller in the tropical regions. This is reasonable

since in the polar regions the spatial correlation of temperature tends to be larger and therefore the

temperature at the proxy locations is less capable of determining the temperature in other locations.735

::::::
Further,

:::
the

:::::::::
variability

::
is

:::::
larger

::
in

:::
the

:::::
arctic

:::::::
regions,

:::::
which

::::::
inflates

:::
the

:::::
error

::
in

:::
this

::::::
region.

::::
This

::::
can

::
be

::::::::::
appreciated

:
in
:::
the

::::
right

:::::::
column

::
of

:::
Fig.

:::
11,

::::::
which

:::::
shows

:::
the

::::
same

:::::
error,

:::
but

:::::::::
normalised

:::::::
dividing

:::
by

::
the

::::::::
standard

:::::::
deviation

::
of

:::
the

::
in

:::
the

:::::
target.

:
Quite remarkably, the number of proxies has little influence

in the intensity and distribution of errors. This is in good concordance with the results discussed in

Section 6, and once again demonstrates the secondary role of the absolute number of proxies, as a740

growing number of proxies sometimes increases redundancy without providing independent source

of insight.

8 Conclusions

This study presents a framework to carry out global CFRs using the analog method
:::
AM based on

a pool of the PMIP3 ensemble simulations (Taylor et al., 2012). Although the application of the745

method has been previously employed to carry out European reconstructions of temperature (Franke

et al., 2010) and precipitation (Gómez-Navarro et al., 2014), the validity of this method to accom-

plish a global temperature field reconstruction has not been addressed so far. This is a relevant test,

since the large dimensionality of the problem poses concerns about the suitability of available sim-

ulations to provide a large-enough pool of situations from which to draw analogs. This study is also750

novel in being one of the first analysis that benefit from the PAGES2K proxy network (PAGES2K

Consortimum, 2016). In this sense, this work takes advantage of the most recent developments in

both the climate model and reconstruction communities (PAGES 2k-PMIP3 group, 2015), and rep-

resents an example of the power of exercises blending both approaches to gain insight in climate

variability within the Common Era.755

A number of variations of the method are presented here, since the analog method
:::
AM

:
critically

depends on the metric used to identify analogs (normally a distance measure between the analog

and the target). Testing different metrics shows that the RMSE, which is equivalent to the Euclidean

distance, is more suitable than correlation since it penalises deviations in global averages. The search

of analogs in the real space, as well as the one expanded by the leading EOFs that explain 90% of760

the total variance has been explored. Although the EOF version is in principle better suited for the
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search of analogs due to the reduction of dimensionality of the problem, our results indicate that the

search in the real space provides the best results with a consistent performance across the various

tests carried out. Further it has the added value of slightly lower computational cost.

Regardless of the metric used and the nature of the reconstruction (real reconstruction or PPE), the765

method draws analogs without clear preferences for any model in particular. Indeed, when the GISS

model is used to perform PPE, the rest of the GISS simulations are not selected preferably over the

rest of the ensemble. This indicates that the method draws analogs according to climate situations,

rather than systematic biases of a particular model, and thus provides confidence in the method.

Further, the results indicate that the inclusion of a large number of simulations from structurally770

different models has beneficial effects on the quality of the final reconstruction. Further, the PPE

results are barely sensitive to the choice of the target, which indicates that the performance obtained

through PPE is a robust estimate of the performance of the AM.

The inclusion of a spatially constant amount of noise in the more realistic pseudo-reconstructions

does not dramatically affect the CFR performance, supporting the robustness of the method and the775

ability of the network of proxies to retain the variability of the global man temperature, in spite of

local noise. In particular, there is no difference in the performance between the PPE when either

white or red noise with a decorrelation time of five years is used. This indicates that the AM is

not sensitive to the presence of memory in the local proxies. Still, there is a large difference in the

performance obtained with actual proxies and that achieved in PPEs with degraded pseudo-proxies.780

This difference suggest that the amount of noise might have been underestimated in previous studies

based on PPEs (e.g. von Storch et al., 2008; Gómez-Navarro et al., 2014), and lower signal-to-noise

ratio shall be employed in realistic PPEs. This is confirmed by our analysis through a more realistic

PPE configuration, where the level of noise depends on the proxy site to mimic the one derived from

the calibration of real proxies.785

Many statistical climate reconstruction methods tend to underestimate climate variability, espe-

cially those based on linear methods. The AM is an exception, since the variability of the reconstruc-

tion is provided by that of the pool of analogs. Although this might be seen as an advantage, it has the

problem that systematic biases in the pool are transferred to the reconstruction. This is particularly

the case with the PMIP3 ensemble, which exhibits a reduced variability in the Arctic that becomes790

::::::::
compared

::
to

:::
the

::::::
infilled

::::::::::
observations

::::
that

:::::
might

::::::
become

:
a prominent drawback in all reconstructions

evaluated here. The AM can be adjusted by varying the number of proxies used to draw an analog. If

more than one analog are selected and averaged to generate the analog, the correlation is increased,

but it has the counterpart of reducing variability. This bias-variance trade-off is not unexpected, as it

is a common phenomenon that appears recurrently in all branches of statistics.795

The sensitivity of the CFR to various slightly different versions of the proxy network has also been

evaluated. The skill of the reconstruction does not critically depend on the total number of records.

Instead, it is more strongly affected by their spatial distribution. In this sense, including redundant
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proxies that cluster in some areas does not always have a beneficial effect, since they do not provide

new information, but may bias the search of analogs towards those areas at the coast of producing800

less accurate reconstructions in areas less well covered by proxies.

The AM produces climate reconstructions which are clearly not free of uncertainties and errors.

However a full treatment and characterisation of such errors is not tackled in this study, as such

as assessment would require new mathematical development which are beyond the scope of this

article. Still, we investigate a part of such uncertainty, namely the one attributable to the unresolved805

variance. We characterise it by computing the standard deviation of the residuals using two different

networks of pseudo-proxies, and demonstrate how such uncertainty is bounded by 1-2 K in the polar

regions, being smaller in the tropical ones.

::::::
Finally,

:::
we

::::::
would

:::
like

:::
to

::::::
remark

:::
that

:::
as

:::
the

:::::::::::
performance

::
of

:::
the

::::
AM

:::
has

:::::
been

::::::::
evaluated

::
in

::::
this

::::
paper

::::::
mostly

:::::::
through

:::::
PPE,

:::
and

::::::::
although

:::
we

::::
have

:::::
tried

::
to

:::::
mimic

:::
the

::::::::::
limitations

::
of

:::::
actual

:::::
data,

:::
we810

:::
note

::::
that

:::
our

:::::::::
estimation

::
of

::::
skill

:::
can

:::
be

:::::::::
optimistic,

::::::::
especially

::
in

:::
the

::::::::
Southern

:::::::::::
Hemisphere.

::::
This

:
is
:::
so

:::
due

::
to

:::
the

::::
fact

:::
that

:::::::::::::
reconstructions

:::::
show

::::
less

:::::::::::
homogeneity

::::
back

:::::::
through

::::
time

::::
than

:::
the

:::::::
models

:::
are

::::
used

::
in

:::
this

:::::
study.

:::
For

::::::::
instance,

:
it
:::
has

:::::
been

:::::::
reported

:::
that

:::
the

:::::::::::
co-variability

:::::::
between

::::
both

:::::::::::
hemispheres

:
is
:::::
larger

::
in

::::::
models

::::
than

::
in

::::::
current

:::::::::::::
reconstructions

::::::::::::::::::::::::::::::::::::::::::::
(Neukom et al., 2014; PAGES 2k-PMIP3 group, 2015).

815

We conclude that the analog method
:::
AM

:
is a useful tool able to yield skillful results in CFRs of

past climate. It has particular features compared to more commonly used CFR techniques, e.g. it is

a non-linear method that does not require the calibration of an underlying statistical model. Thus,

the method may complement more traditional approaches providing additional insight about past

climate variability, and allowing to assess the robustness and weaknesses of other methods.820
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Figure 1. Point-wise
::::
Top:

::::::::
point-wise correlation between the raw proxy series in the PAGES-SEL network and

the SAT in the infilled HadCRUT4 dataset during the period 1911-1995. Each type of proxy is indicated with a

different symbol.
::::::
Bottom:

::::::
number

:
of
:::::
years

:
in
:::::
which

::::
each

:::::
record

::::::
contains

::::
valid

::::
data,

:::
i.e.

:::::
lighter

::::::
colours

::::::
indicate

:::::
shorter

::::::
records.

Figure 2. Point-wise correlation (calculated for the whole reconstructed period) between the original simulation

and a reconstruction based on perfect pseudo-proxies. The maps show the results when three different metrics

are used for the search of analogs (by rows), as well as when different numbers of analogs are combined to draw

the reconstruction (by columns). Green diamonds indicate the location of the pseudproxies employed, based on

the PAGES-SEL network.
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Figure 3. As Fig. 2, but for the logarithm of the ratio of the standard deviation of the reconstruction and the

original simulation. Red (blue) shading depicts areas where the reconstruction overestimates (underestimates)

variability.

Figure 4. Selection of analogs used to carry out a perfect PPE. Bars in panels a and c indicate the number

of times the analog has been taken from each of the 16 models. The points in panels b and d indicate the

relationship between the reconstructed year (x-axis) and the model (colour) and simulated year (y-axis) used as

analog for the reconstruction.
::::
Black

::::::::
horizontal

:::
and

::::::
vertical

::::
lines

::::
show

:::
the

:::::
timing

::
of

:::::
major

::::::
volcanic

::::::::
eruptions

:::::::
according

::
to

:::::::::::::
Sigl et al. (2015).

:
a and b correspond to the reconstruction based on RMSE and c and d based on

Euclidian distance in the EOF space.

Figure 5. Similar to Figs. 2 and 3 but for realistic PPE. Top (bottom) row indicate the correlation (ratio of

standard deviations) between the original simulation used as target and the reconstructions obtained selecting

analogs from the PMIP3 pool.
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Figure 6. As Fig. 5 but for the hyper realistic PPE in which the correlations equal the values obtained during

the proxies calibration, i.e. Fig. 1.

Figure 7. Correlation (left)
:
,
:::::::
logarithm

::
of

::
the

::::
ratio

::
of

::
the

:::::::
standard

::::::::
deviations

::::::
(middle)

:
and RMSE (right) between

the target SAT and the pseudo-reconstructed SAT based in a PPE with additive white noise as in Section 4.2.

All reconstructions use the same AM setup , based in the
::
on

:::::::
searching

::::::
analogs

:::
that

::::::::
minimises RMSE metric

:::
and

:::
then

::::::
average

:::
the

::
5

:::::
closest

::::::
analogs. The only difference across rows is the model used as target for the PPE:

GISS (top map, equivalent to Fig. 5) MPI-ESM-P (middle) and CESM4 (bottom).

Figure 8. Similar to Figs. 5 and 6, but for a reconstruction of observations based on a calibration of proxies in

the period 1911-1995. The correlation is calculated for the period 1850-2010.
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Figure 9. Correlation maps similar to Fig. 8 for the RMSE-AM variant of the AM method. The three maps

depict the result obtained using each of the three variants of the PAGES2K network described in Section 2.2. In

all cases the green symbols indicate the location of the proxies employed to reconstruct.

Figure 10. Time series of globally averaged SAT anomalies with respect to the period 1961-1990. The black

bold line represents the infilled HadCRUT4 dataset, whereas colours indicate 6 reconstructions based on N =

1,5 in Eq. 2 using the RMSE-AM version with the three variants of the PAGES2K network described in Section

2.2.

Figure 11. Local
:::
Left

:::::::
column:

::::
local standard deviation of the residuals (GISS r1i1p1 annual mean SAT mi-

nus pseudo-reconstructed SAT) over the period 1850-2005. Top: using a pseudo-proxy network with as many

missing values as the PAGES-SEL network in 1500 (257 records). Bottom: using the maximum number of

pseudo-proxy locations of the same network, which happens in 1949 (514 records).
::::
Right

:::::::
column:

::::
same

::
as

:::
left

::::::
column,

:::
but

::::::::
normalised

:::
by

::
the

:::::::
standard

:::::::
deviation

::
of
:::
the

:::::
target. The precise location of the pseudo-proxies is

indicated with green symbols.
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