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Response to comments on ‘A chironomid-based mean July temperature inference model 

from the south-east margin of the Tibetan Plateau, China’ 

 

Editor’s comments: 

Both reviewers raised the point of removing the 47-lake model. I suggest the authors to 

consider the use of the larger calibration set alone for the revised version. This would greatly 

simplify the discussion and avoid potential confusion. 

 

Response: We thank the editor for this comment as well and we revised our manuscript by 

removing the 47-lake model. 

 

Reviewer 1’s comments: 

 

We thank the reviewer for the helpful review and very constructive suggestions. We revised 

our manuscript by taking into account of virtually all the recommendations. In response to 

the general point – we removed the 47-lake model from this paper. The original idea by 

including a 47-lake subset was to compare the performance and the reconstruction results 

on the same site by applying a local vs. regional transfer functions. However, we agreed that 

the readability of the paper has improved after we focussed only on the large calibration set. 

We therefore made this change. This also addressed one of the general comments raised by 

Reviewer 2. 

 

Specific comments 

Line 97. It would be useful to provide references to papers which suggest that reduced local 

models may be more effective in reconstructions than large models encompassing long 

temperature gradients (e.g. Velle et al 2011 Holocene). 

Response: Comment doesn’t apply any more after we removed the 47 dataset. 

 

Line 140. It is important that the authors also quote the present day MJT (rather than MAT) 

of Tincai Lake since MJT is what they are reconstructing. 

Response: we added the value of MJT of Tiancai Lake in this sentence (Line 151). 

 

Line 198. The correct reference here is Wiederholm 1983 Ent Scand Suppl. (not Wiederholm 

1984). 

Response: we corrected this reference accordingly (Line 209 and Line 951-952). 

 

Line 205 and elsewhere. Insert ‘and abundance’ as it is the influence on chironomid 

abundance as well as distribution that is determined by these numerical methods. 

Response: we corrected this accordingly. 

 

Line 206. Table 1 includes 18 variables not 15 as stated in the text. 

Response: we corrected this accordingly. 

 

Line 233. It would be useful to plot a PCA of all 18 variables, before elimination of variables 
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following forward selection, so we can easily assess which variables co-vary and which 

variables might be influencing chironomid distribution and abundance (see Juggins, 2013). 

Response: we agreed with this comment, by also taking into account of Reviewer 2’s 

comment, we added ‘we used stepwise selection based on pseudo-F to aid the variable 

selection process’ (Line 236-237) instead. This served the same purpose as plotting a PCA of 

all variables. 

 

Line 304. These taxa may have more cosmopolitan distributions than other taxa in the 

dataset but they nevertheless must have estimated temperature optima that are used in the 

model so it would be useful if they were quoted. I would suggest adding the estimated 

temperature optima after the taxon names in Fig 2. The taxa can then be ranked in that 

figure left to right in ascending estimated temperature optima. 

Response: we modified Figure 2 by ranking the taxa along the mean July temperature 

gradient.  

 

Lines 311-320. I am concerned at the large proportion of lotic taxa in this training set which 

may have poorly estimated temperature optima. The authors do comment on this potential 

problem however. 

Response: we acknowledged this issue and we highlighted this by adding a statement in Line 

456-458. 

 

Fig 3a and Fig 3c are hard to interpret because the authors do not tell us to which species the 

code numbers refer. These code numbers either should be explained in the figure caption or 

preferably should be added after the species names in Fig 2. 

Response: We added the species code after the species names in Fig 2. 

 

Line 337 and Line 369. Table 2a, 2b and Fig 3a, 3b do not show these correlation results 

Response: Table 2a and 2b shows the correlation significance discussed in the respective 

sentences based on the t-values. We clarified that the significance of each of the correlation 

is determined based on the t-values (Line 389).  

 

Line 413, 414. What are RMSEP s1 + s2 and RMSE s1 and RMSE s2? 

Response: we deleted s1+s2 and RMSE s1 and RMSE s2 here and only presented the RMSEP 

as the standard approach. 

 

Lines 446-459. The problems in modelling modern precipitation and temperature for the 

calibration set may explain the relatively poor performance of the inference model. 

Response: we agree that this is potentially one of the reasons. We added a statement about 

this in line 496-498. 

 

Line 534. All chironomids are benthic, in fact T. gracilentus is sometimes found in temperate 

shallow eutrophic ponds. 

Response: we added this statement in line 522-524.  

 



3 
 

Line 550 and 568. Juggins (2013) argues that the CCA λ1 : λ2 ratio, when Axis 1 is constrained 

against the variable of interest, should be greater than 1.0 if the variable is to be modelled 

reliably. In your 100-lake model the ratio is only 0.47. This reflects the fact that MJT is not the 

main driver of chironomid distribution and abundance in your model. This point needs to be 

stated as one of the caveats you list from line 569. 

Response: We noted that the CCA λ1 : λ2 ratio in most of the training sets in the 

mid-latitudes and the Southern Hemisphere (e.g. Rees et al., 2008; Chang et al., 2015) is less 

than 1 this is because minimising other environmental gradients and only extracting the 

temperature gradient is difficult to achieve when we are away from the NH high latitudes. 

 

Line 586. Why is it important that the RMSEP is around 15% of the total temperature 

gradient covered by the calibration set? Comparing the new Chinese inference models with 

other chironomid-based inference models that also have relatively low r2 does not mean 

that the Chinese model has an acceptable performance. You should also compare the 

performance of the Chinese model with the chironomid-based inference models of Heiri et 

al (2011) and Barley et al (2006) that you refer to earlier. 

Response: The argument here is now significantly simplified due to the removal of the 47 

dataset. In the revised version, we only compared and discussed the RMSEP of the 

temperature gradient scalar length of our 100-lake dataset with other large datasets 

worldwide including Heiri et al (2011) (Line 656-658). 

 

Line 605. I could not immediately find the results showing the statistical correlation between 

the inferred records and the instrumental record. In fact this result is presented in the 

discussion at line 648. It should be moved to the results section. 

Response: we moved the statistic P value up in the end of the result section (Line 475-476) 

instead of the discussion. 

 

Line 608 and Fig. 6b. You do not discuss what might be driving the poor fit to temperature of 

the most recent fossil samples. This result suggests a variable other than temperature might 

be influencing the chironomids in the most recent period of your sequence. I think it would 

be informative to plot the fossil samples passively in CCA space of the calibration set to see 

which environmental variables the taxa were responding to. 

Response: We addressed this point by acknowledging that it is possible a second gradient 

other than mean July temperatures influencing the chironomid species distribution and 

abundance in most recent fossil samples of Tiancai Lake (Line 676-679).  These may be 

related to the human activities i.e. tourist attractions at the site since the recent decade. 

 

Lines 612-615. This sentence should be deleted. It describes methods. 

Response: we deleted this sentence (Line 671 – 674). 

 

Line 621. Although you adjusted the MJT from Lijiang for altitudinal lapse rate you do not 

present these results. Instead you plot deviation from the mean in order to compare your 

results. This shows a close similarity in trends but it would be of interest to see whether the 

chironomid-inferred temperature estimates were similar to the instrumental records 
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adjusted for altitude. This would be another useful test of model performance. 

Response: We added the plot of the lapse rate corrected mean July temperature curve in 

Figure 6a along with the chironomid-based transfer function reconstructed temperatures. 

 

Line 630. The 47-lake and 100-lake inferred temperature estimates are similar, especially in 

the most recent part of the record. However the gap between the estimates is greater at the 

beginning of the record than at the end. Do you have any thoughts on what might be the 

explanation for this difference? 

Response: We removed the plot for the 47-lake based results. A possibility for the gap 

between the estimates is greater at the beginning of the record is that the larger training set 

covered a few more sites between 10-12 °C and this may have elevated the curve slightly at 

relatively warmer period while the 47-lake based results are more flattened. 

 

Line 631 and Fig 6e. It is not apparent from the plot in Fig 6e that the cool and warm periods 

are amplified by the 100-lake model in comparison with the 47-lake model. 

Response: The comment doesn’t apply anymore because we removed the plot based on the 

47-lake model and focus only on the larger data set so this comment does not apply for the 

revised version. 

 

Line 632. While I agree that the trends in the instrumental record are well-reflected by the 

chironomid-inferred record it would also be useful to compare the chironomid-inferred 

estimates with the lapse rate adjusted instrumental data. 

Response: we added the plot of the lapse rate corrected mean July temperature 

reconstructed using the chironomid transfer function in Figure 6a. 

 

Lines 633-638. I could not understand the meaning of these sentences. 

Response: These sentences are now simplified due to the removal the 47-lake model related 

discussion. We now only presented and discussed the 100-lake model reconstructed results 

and compare with the instrumental record (Line 708-713).  

 

Line 648. Results should not be presented in the discussion. 

Response: we deleted these sentences (Line 702-705). 

 

Line 650. The authors’ conclusion that the 100-lake model performs better than the 47-lake 

model makes me conclude that there is no point in presenting the results of the 47-lake 

model. I think reference to the smaller model should be deleted from the paper. This would 

make the paper shorter and easier to follow. 

Response: we agreed with this comment and we modified our manuscript by removing the 

discussion on the 47-lake model. 

 

Conclusion. There is no need to present the performance statistic results again in the 

conclusion. 

Response: we removed the performance of statistics from the conclusion (Line 738-745).  
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Fig 1 caption. Insert ‘(b)’ after ‘(square box)’. Delete’(b)’ and replace with ‘(c)’ 

Response: we updated Figure 1 caption accordingly (Line 1001-1005). 

 

Fig 2a caption. Why are only a few taxa grouped by their thermal preferences? How did you 

decide that some were better temperature indicators than others? What do you mean by 

‘optical observation’? The lakes should be listed in descending order of altitude or MJT. This 

needs to be stated in the caption. I don’t understand how T. gracilentus and M. radialis can 

both be cold indicators when between them they appear to be found in complementary 

lakes. The estimated temperature optimum of each taxon should be presented after its name 

in the figure. The CCA sample score is not informative in terms of ranking the taxa when MJT 

is not the main driver of the taxon distribution and abundance. It would be more useful to 

rank them by order of temperature optimum. The code number of each taxon used in Fig 3 

should also appear next the taxon name in this figure too. 

Response: we corrected Figure 2 by taking both reviewers’ suggestions and revised the 

caption (line 1007-1014). 

 

Table 3. The caption is difficult to understand. I suggest replacing the word ‘retained’ with 

‘maintained’ as I think this would better reflects the results. 

Response: we corrected this accordingly in the revised Table 3 caption (line 1081-1087). 

 

Table 4. The results should be quoted to two-decimal places. 

Response: we corrected these accordingly in Table 4. 

 

Reviewer 2’s Comments: 

 

We thank the reviewer for the very useful and constructive review overall, we have 

considered all the suggestions in our revised version of the manuscript. The reviewer made 

two general points and in response to the first point, we agreed that we were not explicit 

about the rationale for using both the 47 and 100 lake calibration sets. We agreed that the 

paper would be simplified and more concise if we focus only on the large calibration set. We 

therefore modified our manuscript by removing the sections related to the 47-lakes 

calibration set.  

 

The second general point mentioned by the reviewer is that the correlation between the 

instrumental data and the reconstruction may be overstated because of the lack of 

independence between samples due to autocorrelation. We agree with this point of view 

however we compared the transfer function model reconstructed results with the 

instrumental record as an additional diagnostic method because these instrumental data are 

available from the closest weather station. Before this, we had already applied the ‘standard 

diagnostics’ such as goodness-of-fit, modern analogues etc., which all suggested that the 

results are reliable. These validation methods are relatively independent. The well-compared 

result with the instrumental record is reassuring that the model is capable to reconstruct the 

long-term temperature trend that is realistic. We acknowledged this point in the revised 

manuscript (Line 725-728).  
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###Minor points 

Line 183 Böhner 2004 is not in the reference list. It is probably worth clarifying that 

Böhner uses reanalysis data. 

Response: we added Bohner 1994 (instead of 2004) (Line 798-799) in the reference listed 

and clarified that Bohner used reanlaysis data (Line 195). 

 

A histogram showing the distribution of lakes along the temperature gradient should be 

given, or at least discussed, as WAPLS is sensitive to an uneven distribution of lakes. 

Response: we highlighted in the discussion about the lake distribution is even along the 

temperature gradient (Line 661). 

 

Line 217 If N (number of lakes) is less than two, Hill’s N2 is guaranteed to be less than two. 

Response: we corrected this throughout in the revised version (Line 229). 

 

Line 223. Variance inflation factors are useful for diagnosing multi-collinearity amongst the 

predictors, but is less useful for identifying which variable should be deleted. Simply deleting 

the variable with the highest VIF is a poor strategy. Stepwise selection based on pseudo-F is 

probably better. 

Response: we clarified that we used VIF as one of the methods when considering removing 

variables in the CCA and we also considered the stepwise selection based on pseudo-F while 

we were selecting the variables to be included in the CCA (Line 236-237). 

 

Line 250. A 2-component WAPLS model is selected although the improvement in model 

performance is only about 1%, less than the 5% threshold reported. A randomisation t-test is 

probably a better test than a simple threshold. 

Response: taking the reviewer’s suggestion, we ran a randomisation t-test to check if 

component 2 is outperformed much more when comparing to component 1. We found that 

there is a difference in the RMSEPs between the component 1 and component 2 and we 

re-affirm that the choice of using WA-PLS component 2 for the reconstruction would give 

more robust results. We provided this information in Line 264-266 and Table 4b respectively. 

  

Line 296. I think it would be better to show that temperature is an important predictor with 

the ordination before discussing species temperature preferences. 

Response: in the revised version, we stated that temperature is an important predictor 

before the discussion on the chironomid species and temperature relationship (Line 

312-313). 

 

Line 309. Move the section on Lake Tiancai chironomids to after transfer function 

development. 

Response: we moved this section accordingly, new lines 447-458. 

 

Line 398. It is expected that weighted-averaging with inverse deshrinking and weighted 

averaging partial least squares component-one will give similar models. Under certain 
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circumstances, they will be identical. 

Response: we pointed this out (Line 419). 

 

Line 401. Please don’t use novel abbreviations. The space they save is not worth the 

cognitive load on the reader. No need to report all the performance statistics that are in 

table 4. 

Response: we reduced the use of abbreviations where necessary. In the revised version, we 

only present the important performance statistics (i.e. only those have discussed/mentioned 

in the text) in Table 4. 

 

Line 438. Please provide a statistical comparison of the reconstruction and the instrumental 

data. Reporting that they have a "comparable trend" is not sufficient - don’t leave it to the 

discussion to give the correlation. 

Response: we moved the statistical p value up to this line instead of leaving it to the 

discussion (line 475). 

 

Line 621. The text suggests that the instrumental data are lapse-rate corrected, whereas the 

figure suggests that anomalies are compared. Obviously, the former test is much more 

powerful. 

Response: We added the plot of the lapse-rate corrected curve of the chironomid-inferred 

mean July temperatures in Fig 6e along with the plot of the temperature anomalies.  

 

Figure 2 is impossible to interpret as the reader does not know the lake numbers. Sorting the 

lakes by temperature (and including this information), would make this figure much better. 

Response: we modified Figure 2 by sorting the lakes by mean July temperatures. 

 

Table 3 is rather large and needs to be condensed by extracting just the most important parts 

(eg L1/L2 for temperature). 

Response: we condensed Table 3. This table is greatly simplified after we removed the 

results for the 47 calibration set. 

 

Table 4 needs proper headers, not simply the output from C2. 

Response: we modified the caption (line 1089-1098) and the titles for Table 4 to provide a 

clearer description of the data presented in the table. 

 

The authors should state where the data will be archived. 

Response: Our data will be available from State Key Laboratory of Lake Science and 

Environment webpage in the future. 
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 15 

Abstract: Chironomid- based calibration training sets comprised of 100 lakes from 16 

south-western China and a subset of 47 lakes from Yunnan Province werewas 17 

established. Multivariate ordination analyses were used to investigate the relationship 18 

between the distribution and abundance of chironomid species and 185 environmental 19 

variables from these lakes. Canonical correspondence analyses (CCAs) and partial 20 

CCAs showed that mean July temperature is the sole independent and significant (p < 21 

0.05) variable that explains 16% of the variance in the chironomid data from the 47 22 

Yunnan lakes. Mean July temperature remains one of the independent and significant 23 

variables explaining the second largest amount of variance after potassium ions (K+) in 24 

the 100 south-western Chinese lakes. Quantitative transfer functions were created 25 

using the chironomid assemblages for this both calibration data sets. The secondfirst 26 

component of the weighted average partial least square (WA-PLS) model based on the 27 

47 lakes training set produced a coefficient of determination (r2
bootstrapjack) of 0.683, 28 

maximum bias (bootstrapjackknifed) of 5.163.15 and root mean squared error of 29 

prediction (RMSEP) of 2.311.72 °C. The two-component WA-PLS model for the 100 30 

lakes training set produced an r2
bootstrap of 0.63, maximum bias (bootstrapped) of 5.16 31 

and RMSEP of 2.31 °C. We applied both transfer functionsthe transfer functions to a 32 

150-year chironomid record from Tiancai Lake (26°38′3.8 N, 99°43’E, 3898 m a.s.l), 33 

Yunnan, China to obtain mean July temperature inferences. The reconstructed results 34 

based on both models showed remarkable similarity to each other in terms of pattern. 35 

We validated these results by applying several reconstruction diagnostics and 36 

comparing them to a 50-year instrumental record from the nearest weather station 37 

(26°51'29.22"N, 100°14'2.34"E, 2390 m a.s.l). TheBoth transfer functions performs 38 

well in this comparison. We argue that this 100-lakee large training set is also suitable 39 

for reconstruction work despite the low explanatory power of mean July 40 

temperatureMJT because it contains a more complete range of modern temperature 41 

and environmental data for the chironomid taxa observed and is therefore more robust. 42 

 43 

Keywords: Chironomids; Temperature reconstruction; the south-east margin of the 44 

mailto:elzhang@niglas.ac.cn
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Tibetan Plateau; Transfer function; Calibration data-setQuantitative paleoclimate 45 

record 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

1 Introduction 54 

 55 

South-western (SW) China is an important region for examining changes in low and 56 

mid-latitudes atmospheric circulation in the Northern Hemisphere (NH). It lies at the 57 

intersection of the influence of the Northern HemisphereH westerlies and two tropical 58 

monsoon systems, namely the Indian Ocean South-west Monsoon (IOSM) and the 59 

East Asian Monsoon (EAM) and should be able to inform us about changes in both the 60 

latitude and longitude of the influence of these respective systems through time. 61 

Reconstructing changes in circulation requires information about several climatic 62 

parameters, including past precipitation and temperature. While there are reasonable 63 

records of precipitation from this region (e.g. Wang et al., 2001, 2008; Dykoskia et al., 64 

2005; Xiao et al., 2014), there is a paucity of information about temperature changes. 65 

In order to understand the extent and intensity of penetration of monsoonal air masses, 66 

robust summer temperature estimates are vital as this is the season that the monsoon 67 

penetrates south-westernSW China.  68 

 69 

Chironomid larvae are frequently the most abundant insects in freshwater ecosystems 70 

(Cranston, 1995) and subfossil chironomids are widely employed for 71 

palaeoenvironmental studies due to their sensitivity to environmental changes and 72 

ability of the head capsules to preserve well in lake sediments (Walker, 2001). A strong 73 

relationship between chironomid species assemblages and mean summer air 74 

temperature have been reported from many regions around the world and transfer 75 

functions were subsequently developed (e.g. Brooks and Birks, 2001; Larocque et al., 76 

2001; Heiri et al., 2003; Gajewski et al., 2005; Barley et al., 2006; Woodward and 77 

Shulmeister, 2006; Langdon et al., 2008; Rees et al., 2008; Eggermont et al., 2010; 78 

Luoto, 2009; Holmes et al., 2011; Heiri et al., 2011; Chang et al., 2015a). The 79 

application of these transfer functions has provided quantitative temperature data 80 

since the last glacial period in many regions of the world (e.g. Woodward and 81 

Shulmeister, 2007; Rees and Cwynar, 2010; Samartin et al., 2012; Chang et al., 2015b; 82 

Muschitiello et al., 2015; Brooks et al., 2016). Consequently, subfossil chironomids 83 

have been the most widely applied proxy for past summer temperature 84 

reconstructions.   85 

 86 

Merged regional chironomid training sets and combined inference models have been 87 

developed in Europe (Lotter et al., 1999; Holmes et al., 2011; Heiri et al., 2011; Luoto et 88 
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al., 2014). These large datasets and models provide much more robust reconstructions 89 

than smaller local temperature inference models (Heiri et al., 2011; Luoto et al., 2014). 90 

However, the distribution of large regional inference models is limited to Europe and 91 

northern North America (e.g. Fortin et al., 2015). There is a need to build large training 92 

sets for other parts of the world where chironomids will likely be sensitive to 93 

temperature changes. Subfossil chironomids have been successfully used as 94 

paleoenvironmental indicators in China for over a decade. These included salinity 95 

studies on the Tibetan Plateau (Zhang et al, 2007) and the development of a nutrient 96 

based inference model for eastern China and parts of Yunnan (Zhang et al., 2006, 97 

2010, 2011, 2012). A large database of relatively undisturbed lakes, in which nutrient 98 

changes are minimal while temperature gradients are suitably large, is now available 99 

from south--western China and this provides the opportunity to develop a summer 100 

temperature inference model for this broad region.  101 

    102 

In this study, a chironomid species assemblage training set and a chironomid-based 103 

mean July air temperature (MJT) inference models from 100 lakes on the south-east 104 

margin of the Tibetan Plateau areis developed. We also present a 47 lake subset of the 105 

training set to provide a local model for Yunnan Province. We compare the output of 106 

the two models and evaluate which model is more robust and more suitable for 107 

temperature reconstructions in Yunnan. Finally, wWe test and validate both modelsthe 108 

selected transfer function models by comparing a reconstruction of temperature 109 

fromapplying it to a sediment core collected from Tiancai Lake (26°38′3.8 N, 99°43′E, 110 

3898 m a.s.l) (Fig. 1) in Yunnan Province, south-westernSW China for the last 120 111 

years against a 50-year longn instrumental record from Lijiang weather station 112 

(26°51'29.22"N, 100°14'2.34"E, 2390 m a.s.l) (Fig. 1), which is the closest 113 

meteorological station with thea longest record. 114 

 115 

2 Regional setting 116 

 117 

The study area lies in the south-east margin of the Tibetan Plateau including the 118 

south-west part of Qinghai Province, the western part of Sichuan Province and the 119 

north-west part of Yunnan Province (Fig. 1). It is situated between 26 – 34° N, 99 – 104° 120 

E with elevations ranging from about 1000 m to above 5000 m a.s.l.. . The 47 lake 121 

subset is confined to the north-west part of Yunnan province (Fig. 1) and includes the 122 

area around Tiancai Lake.  123 

 124 

The study area is characterized by many north-south aligned high mountain ranges 125 

(e.g. Hengduan Mountains, Daxue Mountains, Gongga Mountains etc.) that are fault 126 

controlled and fall away rapidly into adjacent tectonic basins. The mountain ranges 127 

have been deeply dissected by major rivers including the Nujiang, Lancangjiang, 128 

Jinshajiang, Yalongjiang and Dadu rivers. Local relief in many places exceeds 3000 m 129 

a.s.l.. 130 

 131 

The climate of the study area is dominated by the westerlies in winter and by the IOSM 132 
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in Yunnan and Tibet, but some of the easternmost lakes are affected by the EAM. 133 

There is a wet season that extends from May (June) to October accounting for 85-90% 134 

of total rainfall and a dry season from November to April. Annual precipitation varies 135 

greatly according to altitude and latitude. Most of the precipitation is derived from a 136 

strong south-west summer monsoonal flow that emanates from the Bay of Bengal (Fig. 137 

1). Precipitation declines from south-east to north-west. Mean summer temperatures 138 

vary between about 6 to 22 °C from the north-west to the south-east (Institute of 139 

Geography, Chinese Academy of Sciences, 1990). Vegetation across the study area 140 

changes from warm temperate to subtropical rainforest at lower elevations in the 141 

south-west to alpine grasslands and herb meadows at high altitude.  142 

 143 

2.1 Description of model validation site 144 

 145 

Tiancai Lake (26°38′3.8 N, 99°43′E, 3898 m a.s.l) (Fig. 1) is in Yunnan Province, on the 146 

south-east margin of the Tibetan Plateau. It is a small alpine lake and has a maximum 147 

depth of 7 m, with a water surface area of ~ 2.1 ha and a drainage area of ~3 km2. 148 

Tiancai Lake is dominated in summer by the IOSM, and most likely retains a tropical 149 

airflow in winter as the climate is remarkably temperate for this altitude. The mean 150 

annual and July air temperatures areis approximately 2.5 °C and 8.4 °C respectively, 151 

and the annual precipitation is modelled as > 910 mm (Xiao et al. 2014). The lake is 152 

charged by 3 streams and directly from precipitation and drains into a lower alpine lake 153 

via a stream. The most common rock type in the catchment is a quartz poor granitoid 154 

(syenite). Terrestrial vegetation in the catchment consists mainly of conifer forest 155 

comprising Abies sp. and Picea sp. with an understory of Rhododendron spp. Above 156 

the tree-line, at about 4100 m a.s.l, Ericaceae shrubland (rhododendrons) gives way to 157 

alpine herb meadow and rock screes.   158 

 159 

3 Methodology 160 

 161 

3.1 Field and laboratory analysis 162 

 163 

Surface sediment samples were collected from 100 lakes in the south-east margin of 164 

the Tibetan Plateau via six field campaigns during the autumn of each year between 165 

2006 and 2012. The lakes in this area are mainly distributed at the top or upper slopes 166 

of the mountains and are primarily glacial in origin. Most lakes were reached by hiking 167 

or with horses and the lake investigation spanned several seasons. Small lakes 168 

(surface area c. ~1 km2) were the primary target for sampling but some larger lakes 169 

were also included. 170 

 171 

Surface sediments (0-1 cm) were collected from the deepest point in each lake after a 172 

survey of the bathymetry using a portable echo-sounder. Surface sediment samples 173 

were taken using a Kajak gravity corer (Renberg, 1991). The samples were stored in 174 

plastic bags and kept in the refrigerators at 4 °C before analysis. A 30 cm short core 175 

was extracted from the centre of Tiancai Lake at a water depth of 6.8 m using UWITEC 176 
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gravity corer in 2008. The sediment core was sub-sampled at 0.5 cm contiguous 177 

intervals and refrigerated at 4°C prior to analysis. 178 

 179 

Water samples were collected for chemical analysis from 0.5 m below the lake surface 180 

immediately before the sediment samples were obtained. Water samples for chemical 181 

analysis were stored in acid-washed polythene bottles and kept at 4 °C until analyses. 182 

Secchi depth was measured using a standard transparency disc. Conductivity, pH and 183 

dissolved oxygen (DO) were measured in the field using a HI-214 conductivity meter, 184 

Hanna EC-214 pH meter and JPB-607 portable DO meter. Chemical variables for the 185 

water samples including total phosphorus (TP), total nitrogen (TN), chlorophyll-a (chl a), 186 

K+, Na+, Mg2+, Ca2+, Cl-, SO4
2-, NO3

- were determined at the Nanjing Institute of 187 

Geography and Limnology, Chinese Academy of Sciences. The surface sediments 188 

were also analysed for percentage loss-on-ignition (% LOI) following standard 189 

methods (Dean 1974). Site-specific values for the mean July air temperature (MJT) 190 

and mean annual precipitation (MAP) were estimated using climate layers that were 191 

created using statistical downscaling of General Circulation Model (GCM) outputs and 192 

terrain parameterization methods in a regular grid network with a grid-cell spacing of 1 193 

km2 (Böhner 19942004, 2006; Böhner and Lehmkuhl, 2005) using reanalysis data. 194 

MJT is used to represent summer temperatures because July is the warmest month in 195 

south-western China. 196 

 197 

3.2 Chironomid analyses 198 

 199 

100 surface sediment samples from lakes of south-western China and 55 sub-samples 200 

from the Tiancai Lake short core were analysed for chironomids following standard 201 

methods (Brooks et al, 2007). The sediment was deflocculated in 10% potassium 202 

hydroxide (KOH) in a water bath at 75 °C for 15 minutes. The samples were then 203 

sieved at 212 µm and 90 µm and the residue was examined under a stereo-zoom 204 

microscope at x 25. Chironomid head capsules were hand-picked using fine forceps. 205 

All the head capsules found were mounted on microscope slides in a solution of 206 

Hydromatrix®. Samples produced less than 50 head capsules were not included in the 207 

subsequent analyses (Quinlan and Smol, 2001). The chironomid head capsules were 208 

identified mainly following Wiederholm (19834), Oliver and Roussel (1982), Rieradevall 209 

and Brooks (2001), Brooks et al. (2007) and a photographic guide provided in Tang 210 

(2006). 211 

 212 

3.3 Numerical analysis 213 

 214 

A range of numerical methods were used to determine the relative influence of the 215 

measured environmental parameters on the distribution and abundance of 216 

chironomids in the surface sediments within the training set. A total of eighteen fifteen 217 

environmental variables were considered in the initial statistical analyses (Table 1). 218 

These measurements were normalized using a log10 transformation prior to ordinations 219 

following a normality assessment of each data set. Chironomid species were used in 220 
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the form of square root transformed percentage data in all statistical analyses. The 221 

ordinations were performed using CANOCO version 4.5 (ter Braak and Šmilauer, 222 

2002). A detrended correspondence analysis (DCA; Hill and Gauch, 1980) with 223 

detrending by segments and nonlinear rescaling was used to explore the chironomid 224 

distribution pattern. The DCA was also used to identify the gradient length within the 225 

chironomid data and hence whether unimodal analyses were appropriate (ter Braak, 226 

1987). Canonical correspondence analysis (CCA) down-weighted for rare taxa (with a 227 

maximum abundance of less than 2% and/or occurred in fewer than two lakes, i.e. 228 

Hill’s N < 2, N2 < 2), with forward selection and Monte Carlo permutation tests (999 229 

unrestricted permutations) was then used to identify the statistically significant (p < 230 

0.05) variables influencing the chironomid distribution and abundance (ter Braak and 231 

Šmilauer, 2002). A preliminary CCA with all eighfifteen variables was used to identify 232 

redundant variables, reducing excessive co-linearity among variables (Hall and Smol, 233 

1992), i.e. the environmental variable with highest variance inflation factor (VIF) was 234 

removed after each CCA and the CCA was repeated until all VIFs were less than 20 235 

(ter Braak and Šmilauer, 2002). In addition, we used stepwise selection based on 236 

pseudo-F to aid the variable selection process. Only the remaining significant (p < 0.05) 237 

variables were included in the final CCA ordination. The relationship between the 238 

significant environmental variables and ordination axes was assessed with canonical 239 

coefficients and the associated t-values of the environmental variables with the 240 

respective axes. CCA bi-plots of sample and species scores were generated using 241 

CanoDraw (ter Braak and Šmilauer, 2002). Partial canonical correspondence analyses 242 

(pCCAs) were applied to test the direct and indirect effects of each of the significant 243 

variables in relation to the chironomid species data. These were performed for each of 244 

the significant variable with and without the remaining significant variables included as 245 

co-variables. Environmental variables that retained their significance after all pCCAs 246 

were selected for use in the analyses as they are the independent variables. 247 

 248 

Chironomid- based transfer functions were developed for mean July temperaturesMJT 249 

using C2, version 1.5. (Juggins, 2005) . Inference models were developed for the 250 

subset of 47 lakes located in Yunnan Province close to or above 4000 m a.s.l. and the 251 

full calibration data set comprised ofof 100 lakes, respectively. The models were 252 

constructed using algorithms based on weighted-averaging (WA) and 253 

weighted-averaging partial-least-squares (WA-PLS) (Birks, 1995). Jackknifing was 254 

applied for the Yunnan calibration data set of 47 lakes as this technique is more robust 255 

for data sets with fewer than 80 sites (Kim and Han, 1997). Bootstrap cross-validation 256 

technique was tested for the full calibration dataset of 100 lakes dataset as previously 257 

demonstrated that it is more suitable for large datasets (Heiri et al., 2011) comparing to 258 

the jackknife technique. Transfer function models were evaluated based on the 259 

performance of the coefficient of determination (r2
boot), average bias of predictions, 260 

maximum bias of predictions and root mean square error of prediction (RMSEPboot). 261 

The number of components included in the final model was selected based on 262 

reducing the RMSEP by at least 5% (Birks, 1998). In addition, instead of using 5% as a 263 

simple threshold we also performed a t-test to further check if the additional component 264 
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of the WA-PLS model is outperformed. 265 

 266 

The transfer function models based on the 100 full calibration data set and the subset of 267 

47 lakes were then applied to the fossil chironomid data from Tiancai Lake, respectively. 268 

Mean July temperaturesJTs (MJT) were reconstructed from the site and three types of 269 

reconstruction diagnostics suggested in Birks (1995) were applied to assess the 270 

reliability of the results. These include goodness-of-fit, modern analogue technique 271 

(MAT) and the percentage (%) analysis of modern rare taxa in the fossil samples. For 272 

the goodness-of-fit analysis, the squared residual length (SqRL) was calculated by 273 

passively fitting fossil samples to the CCA ordination axis of the modern training set data 274 

constrained to MJT in CANOCO version 4.5 (ter Braak and Smilauer, 2002). Fossil 275 

samples with a SqRL to axis 1 higher than the extreme 10 and 5% of all residual 276 

distances in the modern calibration dataset were considered to have a ‘poor’ and ‘very 277 

poor’ fit with MJT respectively. The chi-square distance to the closest modern 278 

assemblage data for each fossil sample was calculated in C2 (Juggins, 2005) using the 279 

MAT. Fossil samples with a chi-square distance to the closest modern sample larger 280 

than the 5th percentile of all chi-square distances in the modern assemblage data were 281 

identified as samples with ‘no good’ analogue. The percentage of rare taxa in the fossil 282 

samples was also calculated in C2 (Juggins, 2005), where a rare taxon has a Hill's N2 < 283 

2 in the modern data set (Hill, 1973). Fossil samples that contain > 10% of these rare 284 

taxa were likely to be poorly estimated (Brooks and Birks, 2001). Finally, the 285 

chironomid-based transfer functions inferred MJT patterns were compared to the 286 

instrumental recorded data from Lijiang weather station between the years of 1951 and 287 

2014.  288 

 289 

3.4. Chronology for Tiancai Lake core 290 

 291 

The top 28 cm of the sediment core recovered from Tiancai Lake were used for 210Pb 292 

dating. Sediment samples were dated using 210Pb and 137Cs by non-destructive 293 

gamma spectrometry (Appleby and Oldfield, 1992). Samples were counted on an 294 

Ortec HPGe GWL series well-type coaxial low background intrinsic germanium 295 

detector to determine the activities of 210Pb, 226Ra and 137Cs. A total of 58 samples at an 296 

interval of every 0.5 cm were prepared and analysed at the Nanjing Institute of 297 

Geography and Limnology, Chinese Academy of Sciences. Sediment chronologies 298 

were calculated using a composite model (Appleby, 2001). 137Cs was used to identify 299 

the 1963 nuclear weapons peak, which was then used as part of a constant rate of 300 

supply (CRS) model to calculate a 210Pb chronology for the core.  301 

 302 

4 Results 303 

 304 

4.1 Distribution of chironomid taxa along the temperature gradient 305 

 306 

A total of 53 non-rare taxa (N > 2 and N2 > 2) (Brooks and Birks, 2001) chironomid taxa 307 

were identified from the 47 Yunnan lakes and a total of 895 non-rare taxa (Hill’s N2 > 2) 308 



15 
 

(Brooks and Birks, 2001) were identified from 100 south-western Chinese lakes (Fig. 309 

2a). Only these non-rare taxa were included in the final transfer function models. Mean 310 

July temperature is an important variable driving the distribution and abundance of the 311 

chironomid taxa in this dataset (Fig. 2a). developed based on the Yunnan subset and 312 

full calibration data set respectively. Common cold stenotherms, here defined as taxa 313 

with a preference for < 12°C MJT include Heterotrissocladius marcidus-type, 314 

Tanytarsus gracilentus-type, Paracladius, Micropsectra insignilobus-type, Micropsectra 315 

radialis-type, Tanytarsus lugens-type, Thienemanniella clavicornis-type, Micropsectra 316 

Type A, Pseudodiamesa, Micropsectra atrofasciata-type and Corynoneura lobata-type 317 

(Fig. 2a). Taxa characterizing warmer temperatures (> 12°C) include Polypedilum 318 

nubeculosum-type, Eukiefferiella gracei-devonica-type, Microtendipes pedellus-type 319 

and Tanytarsus lactescens-type and Chironomus plumosus-type (Fig. 2a). Many of the 320 

remaining taxa reflect more cosmopolitan distributions, these include Procladius, 321 

Chironomus anthracinus-type, Chironomus plumosus-type, Corynoneura 322 

scutellata-type, Tanytarsus pallidicornis-type, Tanytarsus mendax-type and 323 

Paratanytarsus austriacus-type (Fig. 2a).  324 

 325 

4.2 Chironomid taxa in Tiancai Lake 326 

 327 

A total of 55 sub-samples were analysed for chironomid taxa throughout the top 28 cm 328 

of the core recovered from Tiancai Lake. There were 41 non-rare (N > 2, N2 > 2) taxa 329 

present (Fig. 2b). The general assemblages of these 55 sub-samples include 330 

Heterotrissocladius marcidus-type, Tvetenia tamafalva-type, Micropsectra 331 

insignilobus-type, Corynoneura lobata-type, Paramerina divisa-type, Micropsectra 332 

radialis-type, Paratanytarsus austriacus-type, Thienemanniella clavicornis-type, 333 

Eukiefferiella claripennis-type, Rheocricotopus effusus-type, Macropelopia, 334 

Pseudodiamesa and Procladius (Fig. 2b). All the taxa identified from this record were 335 

well represented, and most of them were recognized as cold stenotherms, in the 336 

modern calibration training sets (Fig. 2a).      337 

 338 

4.23 Ordination analyses and model development 339 

 340 

Detrended canonical analyses (DCAs) performed on the 47 lakes from Yunnan 341 

showed the gradient length of axis 1 was 3.328, indicating a direct unimodal method 342 

was appropriate to model the chironomid species response (Birks 1998). CCAs were 343 

then performed on the 47 Yunnan lakes, 53 non-rare taxa and 15 environmental 344 

variables. The initial CCA showed total dissolved solids (TDS) had the highest VIF and 345 

was removed from further analyses. Among the remaining 14 variables, eight 346 

explained a significant (p < 0.05) proportion of variance in the chironomid species data 347 

(Table 2a, Fig. 3a, b). These were MJT (16%), conductivity (10.7%), K+ (10.7%), Ca2+ 348 

(9.9%), TP (5.7%), Cl- (5.5%), depth (4.4%) and LOI (3.7%). A total of 30.2% variance 349 

was explained by the first four CCA axes using the eight significant variables with the 350 

first CCA axis explaining nearly half of the total variance. Among these variables, MJT, 351 

K+, depth and Ca2+ showed a significant correlation (p < 0.01) with CCA axis 1 and Cl-, 352 
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MJT, LOI, Ca2+ showed a significant correlation (p < 0.01) with CCA axis 2 (Table 2a, 353 

Fig. 3a, b). MJT explained the largest amount of variance (16%) in the chironomid 354 

species data and showed the strongest correlation with CCA axis 1 (Table 2a). The 355 

pCCAs results indicated that within the eight significant variables, only MJT retained its 356 

significance (p < 0.01) after partialling out using pCCAs (Table 3a). 357 

 358 

A bi-plot of the CCA species scores indicating the percent of variance explained by the 359 

CCA axes in each chironomid taxon with respect to the environmental variables (Fig. 360 

3a). Microtendipes pedellus-type, Einfeldia natchitocheae-type, Paratanytarsus 361 

penicillatus-type, Tanytarsus medax-type, Chironomus anthracinus-type, Cladopelma 362 

edwardsi-type, Dicrotendipes nervosus-type, Ablabesmyia, Tanytarsus 363 

pallidicornis-type, Procladius, Chironomus plumosus-type, Cricotopus sylvestris-type, 364 

Polypedilum nubeculosum-type, Tanytarsus lactenscens-type displayed a substantial 365 

amount of variance with the first two CCA axes and were positively correlated with CCA 366 

axis 1. These taxa were associated with warm temperatures. Heterotrissocladius 367 

marcidus-type, Tanytarsus lugens-type, Parametriocnemus, Eukiefferiella gracei-type, 368 

Paramerina divisa-type and Micropsectra type A, showed a negative correlation with 369 

CCA axis 1 and these taxa were inferred as cold temperature indicators. A bi-plot of the 370 

CCA sample scores revealed that a large number of sites are closely distributed 371 

around depth and LOI, respectively, despite of the low explanatory power of these two 372 

variables in the 47 lakes training set (Fig. 3b).  373 

 374 

The detrended canonical analyses (DCAs) performed on the full calibration training set 375 

of 100 lakes and 895 non-rare chironomid taxa had an axis 1 gradient length of 3.033 376 

indicating a CCA approach was appropriate for modelling the chironomid taxa 377 

response (Birks, 1998). The same 15eighteen environmental variables were tested as 378 

in the initial CCA and the results showed that TDS had the highest VIF. It was then 379 

removed from the following CCAs. Seven of the remaining 14 variables had significant 380 

(p < 0.05) explanatory power with respect to the chironomid species data. These were 381 

K+ (4.8%), MJT (4.4%), conductivity (4.4%), Cl- (3.4%), LOI (3.1%), Na+ (2.7%) and 382 

depth (2%) (Table 2b). A total of 14.6% of variance was explained by the four CCA 383 

axes with the seven7 significant variables included and the first two axes explained 10% 384 

of the total variance. Of these variables, conductivity and K+ were significantly 385 

correlated (p < 0.01) with CCA axis 1 and cond, depth, Cl-, MJT showed a significant 386 

correlation (p < 0.01) with CCA axis 2 (Table 2b, Fig. 3a, b, based on the t-values). 387 

Potassium ions (K+) explained the largest variance in the chironomid species data and 388 

showed the strongest correlation with CCA axis 1. MJT and conductivity explained 389 

equally the second largest amount of variance (4.4%) where MJT was significantly 390 

correlated with CCA axis 2 and conductivity was significantly correlated with both axis 391 

1 and 2 (Table 2b). The pCCAs (Table 3b) demonstrated that within the 7 significant 392 

variables K+, MJT, Cl-, LOI and depth remainedtained their significance (p < 0.01) when 393 

the other variables were included as co-variables. Potassium ions (K+) is the 394 

independent variable dominates the first CCA axis. MJT and Cl- are the independent 395 

variables dominating the second CCA axis but MJT has an overall higher explanatory 396 
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power (Table 2b).  397 

 398 

A bi-plot of the CCA species scores indicated that taxa such as Heterotrissocladius 399 

marcidus-type and Tanytarsus lugens-type had a significant amount of variance 400 

explained by the first two CCA axes and were negatively correlated with CCA axis 1. 401 

Taxa including Polypedilum nubeculosum-type, Chironomus plumosus-type were 402 

positively correlated with CCA axis 1 with a significant amount of variance explained by 403 

the CCA axis 1 and 2. A bi-plot of the CCA sample scores showed that a major 404 

proportion of sites distributed concentrating around depth (Fig. 3b) whereas depth only 405 

explains 2% of the total variance in the chironomid 100 lakes calibration dataset.  406 

 407 

The transfer functions were developed for mean July temperature (MJT) based on the 408 

subset with 47 Yunnan lakes and the full 100 lakes calibration datasets, respectively. 409 

We acknowledge that MJT is not the sole independent variable on CCA axis 2 in the 410 

100 lake dataset but transfer functions based on this large regional dataset are created 411 

and applied to reconstruct MJT because it is a more useful parameter compared to K+ 412 

and Cl- for the purpose of comparing the performance with the more localized Yunnan 413 

transfer function models. Both weighted averaging (WA) and weighted averaging 414 

partial least squares (WA-PLS) models were tested for MJT in the respective modern 415 

calibration sets. Summary statistics of inference models based on these two different 416 

numerical methods are listed in Table 4a. As expected, tThe bootstrapped WA with 417 

inverse deshrinking (WAinv) and WA-PLS models generated similar statistical results 418 

for the both calibration training sets. For the subset of 47 Yunnan lakes, the WAinv 419 

model produced a strong jackknifed coefficient of determination (r2
jack) of 0.83, average 420 

bias (AveBiasjack) of 0.113, maximum bias (MaxBiasjack) of 2.83 and root mean 421 

squared error of prediction (RMSEP) of 1.67 °C (Table 4a). The first component of 422 

WA-PLS model was selected and it produced the same r2
jack of 0.83, AveBiasjack of 423 

0.109, a slightly higher MaxBiasjack of 3.15 and RMSEP of 1.72 °C (Table 4a). Fig. 4a 424 

and 4b show the chironomid-inferred versus observed MJT and the distribution of 425 

prediction residuals for the transfer function models based on the subset of 47 lakes 426 

from Yunnan. 427 

 428 

For the full calibration set of 100 south-western Chinese lakes, bootstrap 429 

cross-validation techniques was applied for both the WAinv and WA-PLS models 430 

(Table 4). Similar to the Yunnan subset, the WAinv and WA-PLS model produced 431 

comparable statistical results. The WAinv model produced an r2
boot of 0.61, 432 

AveBiasboot of 0.06, MaxBiasboot of 5.30 and RMSEP (s1 + s2) of 2.30 °C (RMSEs1 433 

= 0.69 °C and RMSEs2 = 2.19 °C) (Table 4a). We selected the second component of 434 

WA-PLS bootstrap model as it is the most more robust according to the t-test results 435 

(Table 4b).  and reduced the RMSEP by more than 5%. It produced an r2
boot of 0.63, 436 

AveBiasboot of 0.101, a lower MaxBiasboot of 5.16 and RMSEP (s1 + s2) of 2.31 °C 437 

(RMSEs1 = 0.89 °C and RMSEs2 = 2.14 °C). Figures. 4c and 4d show the 438 

chironomid-inferred versus observed MJT and the distribution of prediction residuals 439 

for the above transfer function models respectively based on the full calibration training 440 
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set of 100 lakes. 441 

 442 

4.34 Reconstructions from Tiancai Lake 443 

 444 

A total of 55 sub-samples were analysed for chironomid taxa throughout the top 28 cm 445 

of the core recovered from Tiancai Lake. There were 41 non-rare (Hill’s N2 > 2) taxa 446 

present (Fig. 2b). The general assemblages of these 55 sub-samples include 447 

Heterotrissocladius marcidus-type, Tvetenia tamafalva-type, Micropsectra 448 

insignilobus-type, Corynoneura lobata-type, Paramerina divisa-type, Micropsectra 449 

radialis-type, Paratanytarsus austriacus-type, Thienemanniella clavicornis-type, 450 

Eukiefferiella claripennis-type, Rheocricotopus effusus-type, Macropelopia, 451 

Pseudodiamesa and Procladius (Fig. 2b). All the taxa identified from this record were 452 

well represented, and most of them were recognized as cold stenotherms, in the 453 

modern calibration training sets (Fig. 2a). We acknowledge that some of the lotic taxa 454 

may result in poor temperature estimates when applying the transfer function therefore, 455 

reconstruction diagnostics were necessary.     456 

 457 

The 210Pb dating results demonstrated that the top 28 cm of the short core recovered  458 

from Tiancai Lake represent the last c. ~150 years (Fig 5). We applied all fourboth new 459 

transfer function models (WA-47 lakes, WA and -100 lakes, WAPLS-47 lakes, WA-PLS 460 

based on-100 lakes) to reconstruct the MJT changes between 1860 AD and 2008 (Fig. 461 

6a). The WA and WA-PLS models constructed based on the subset of Yunnan lakes 462 

and the full calibration dataset 100 lakes showed identical trends in the MJT 463 

reconstructions over the last c. ~150 years (Fig. 6a). There were small deviations in 464 

terms of absolute values but the variations in the reconstructed MJT among the 465 

fourbetween the two models were within 0.1-0.5 °C for each sample (Fig. 6a). 466 

Goodness-of-fit analysis on the reconstruction results based on the 100 lake dataset 467 

showed that out of the 55 fossil samples, eight samples from the years between 2000 468 

and 2007 AD have ‘poor’ and ‘very poor’ fit to MJT (Fig. 6b). The modern analogue 469 

analysis showed that only four fossil samples have ‘no good’ analogues in the 100 lake 470 

dataset (Fig. 6c). All 55 fossil samples contain less than 10% of the taxa that were rare 471 

in the modern 100 lake training set (Fig. 6d). Finally, the reconstructed results also 472 

showed a comparable MJT trend and a statistical significant correlation (p < 0.05, r = 473 

0.45, n = 31) with the instrumental measured data between 1951 and 2007 AD from 474 

Lijiang weather station (Fig. 6e). 475 

 476 

5 Discussion 477 

 478 

5.1 Reliability of the environmental and chironomid data 479 

 480 

Obtaining reliable estimates of the modern climate data has been challenging in 481 

south-western China. There are very few meteorological stations and climate 482 

monitoring in the high mountains of our study area is virtually non-existent. Climate 483 

parameters including mean July temperaturesMJT and mean annual precipitation used 484 
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in this study are interpolated from climate surfaces derived from a mathematical 485 

climate surface model based on the limited meteorological data and a digital terrain 486 

model (DTM) applied to the whole of the wider Tibetan region (4000 x 3000 km) 487 

(Böhner, 2006). We acknowledge that there are limitations in these data due to the 488 

sparse distribution of observations from meteorological stations. Modelling 489 

precipitation in topographically complex parts of this region such as the Yunnan is 490 

problematic due to the orographic interception (or non-interception) of monsoonal air 491 

masses upwind of the sites, but the scale of the DTM means that mean temperature 492 

data should be reasonably robust, except in the most topographically complex areas. 493 

Further meteorological observations are required to refine this and other studies.. We 494 

suspect that this is potentially an issue resulting the relatively low transfer function 495 

model coefficient (r2
boot).  496 

 497 

We examined the chironomid taxa that appeared as temperature indicators in the in 498 

the 47 and calibration 100 lake datasets respectively. A number of taxa, namely 499 

PseudodDiamesa, Parametriocnemus Pseudosmittia and Tvetenia 500 

tamafalvaCorynoneura lobata-type emerge as cold stenotherms. in the 47 lake dataset 501 

but not in the 100 lake dataset. Diamesa, Parametriocnemus and Tvetenia 502 

tamafalva-type displayed a more cosmopolitan distribution in the larger training set. 503 

We fFurther examination ofed these taxa and we identifiedshow that Diamesa, 504 

Parametriocnemus and Tvetenia tamafalva-typethese three taxa are all likely lotic 505 

(Cranston, 2010). These taxa would possiblylikely have washed in to the lakes from 506 

streams and therefore it is not appropriate to make temperature inferences based on 507 

them.  While they appeared as cold stenotherms in the 47 lakes dataset, it is mainly 508 

because this training set had lakes with limited in flows except in the alpine lakes. This 509 

created the impression of these taxa being cold stenotherms whereas the inclusion of 510 

additional lowland lakes that had stream inflows in the larger data set allowed the 511 

identification of this misrepresentation. In summary, the 100 lake training set has 512 

allowed better identification of environmental tolerance of chironomid taxa in the 513 

south-western China data sets.  514 

 515 

We also observed that another cold stenotherm Tanytarsus gracilentus-type is closely 516 

related to lake depth, while both Tvetenia tamafalva-type and Micropsectra show 517 

closer correlation with LOI and Cl- in the CCA biplot (Fig. 3a). The observations match 518 

with the ecological recognition and interpretation of these taxa in literature where 519 

Tanytarsus gracilentus-type was identified as a benthic species in the arctic and is 520 

sometimes found in temperate shallow eutrophic ponds (Einarsson et al., 2004; Ives et 521 

al., 2008); Tvetenia tamafalva-type was often found in streams and this is likely related 522 

to the organic content (LOI) of the substrates as they are detritus feeders (Brennan 523 

and McLachlan, 1979); while Micropsectra was found in thermal springs and pools 524 

(Hayford et al., 1995; Batzer and Boix, 2016) and this is reflected in this dataset with 525 

having a close relationship with Cl-. It presents in lakes such as Lake 526 

Tengchongqinghai, Qicai Lake and Lake Haizibian that have high levels of Cl- ions. 527 

These sites are located in geothermal spring region of Sichuan and Yunnan Provinces.  528 



20 
 

 529 

Well-known warm stenotherms that are distributed along the MJT gradient of the CCA 530 

species bi-plot (Fig. 3a) include Dicrotendipes, Microchironomus, Polypedilum and 531 

Microtendipes. Many studies (e.g. Walker et al. 1991; Larocque et al. 2001; Rosenberg 532 

et al., 2004; Brodersen and Quinlan, 2006; Woodward and Shulmeister, 2006) show 533 

that these taxa are warm temperature indicators worldwide. We therefore argue that 534 

this large calibration training set contains a relatively complete range of temperatures 535 

and environments expected to have been experienced by lakes and their chironomid 536 

fauna in the past (Brooks and Birks, 2001). This will be particularly useful when 537 

applying the models to reconstruct changes in the late Pleistocene and Holocene when 538 

climates were different (Heiri et al., 2011).  539 

5.2 Comparison of environmental gradients between the 47 and 100 lakes datasets 540 

 541 

The training set, comprising 47 lakes in Yunnan covers MJTs between 5.6 °C and 542 

18.8 °C and yields a MJT gradient of 13.2 °C. The ordination analyses (CCAs and 543 

pCCAs) of this dataset showed that MJT is the only independent variable on CCA axis 544 

1 and explained the largest amount of the total variance (16%) in the chironomid data. 545 

Based on these statistical results, the 47 Yunnan lake training set initially appeared 546 

more appropriate for developing a MJT chironomid-based transfer function (Juggins, 547 

2013).  548 

 549 

Thise 100- lake training set covers a longer temperature gradient ranging from 4.2 °C 550 

to 20.8 °C (MJT gradient of 16.6 °C). Based on the CCAs, we observed that the MJT 551 

signal in this larger training set is partially masked by a salinity gradient. This is 552 

represented by potassium ions (K+) and conductivity (Fig. 3ac, bd). CCA axis 1 is 553 

dominated by K+ and this may be related to weak weathering. This is because (1) the 554 

first CCA axis is driven by lakes that have low precipitation but intermediate level of 555 

evaporation, examples of these sites include Lake Xiniuhaijiuzhai, Lake Muchenghai 556 

and Lake Kashacuo, from the north margin of Sichuan Province. These lakes indicate 557 

cool, dry and low windiness conditions that lead to a weak weathering environment. 558 

We highlight that this area is different from the high Tibetan Plateau where aridity and 559 

salinity dominates. (2) In chemical weathering sequences, K+ is an early stage 560 

weathering product (Meunier and Velde, 2013) and K+ is often associated with primary 561 

minerals, such as feldspars and micas in the bedrock (Hinkley, 1996). Salinity is 562 

responding to both temperature and aridity but further pCCAs (Table 3) indicate that 563 

both K+ and MJT are independent variables in this training set.  564 

    565 

The second CCA axis is co-dominated by MJT and Cl- with very similar gradient 566 

lengths. Lakes distributed along the warmer end of the MJT gradient include Lake 567 

Longtan, Lake Lutu, Lake Luoguopingdahaizi and Lake Jianhu. Most of these sites are 568 

lower to intermediate altitude sites in the dataset (below 2700 m a.s.l) because 569 

elevation is correlated with temperature. Sodium ions (Na+) largely follow the same 570 

axis as MJT as evaporation is related in part to temperature. In summary, MJT and Cl- 571 

are both independent variables that drive the second CCA axis and Cl-, and Na+ 572 
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partially reflect evaporation effects because, on average, lakes in warmer climates 573 

evaporate more than those in colder ones. In addition, Cl- concentration may also 574 

relate to the characteristics of the bedrock geology of the region. We highlight that 575 

there are very few lakes on the Cl- gradient and these lakes are from the border of 576 

Sichuan and Yunnan Provinces, where geothermal springs are widespread. We argue 577 

that developing a MJT transfer function is appropriate for this largehe 100 lake training 578 

set because MJT is independent of other variables (e.g. Rees et al., 2008; Chang et al., 579 

2015a). Although Cl- is also independent and co-dominates CCA axis 2, the overall 580 

explanatory power is lower (Table 2b) and also the lambda ratio (λ1/λ2) is smallerless 581 

than MJT (Table 3b). We retained all 100 lakes from the region without removing sites 582 

to artificially enhance the MJT gradient in the ordination analyses and model 583 

development because this large 100 lake dataset is an a more accurate reflection of 584 

the natural environment of south-westernSW China. 585 

 586 

We re-highlight that some chironomid taxa appeared as stenotherms in the 47 lake 587 

dataset only because the dataset does not cover the full environmental range. For 588 

example, the CCA bi-plot for the 47 lake training set indicating that Tanytarsus 589 

gracilentus-type, Tvetenia tamafalva-type and Micropsectra follow the MJT gradient 590 

closely (Fig 3a). In the 100 lake training set, we observed that Tanytarsus 591 

gracilentus-type is more closely related to lake depth, while both Tvetenia 592 

tamafalva-type and Micropsectra show closer correlation with LOI and Cl- instead of 593 

MJT. The latter observations match with the ecological recognition and interpretation of 594 

these taxa in literature where Tanytarsus gracilentus-type was identified as a benthic 595 

species in the arctic (Einarsson et al., 2004; Ives et al., 2008); Tvetenia tamafalva-type 596 

was often found in streams and this is likely related to the organic content (LOI) of the 597 

substrates as they are detritus feeders (Brennan and McLachlan, 1979); while 598 

Micropsectra was found in thermal springs and pools (Hayford et al., 1995; Batzer and 599 

Boix, 2016) and this is reflected in this dataset with having a close relationship with Cl-. 600 

It presents in lakes such as Lake Tengchongqinghai, Qicai Lake and Lake Haizibian 601 

that have high levels of Cl- ions. These sites are located in geothermal spring region of 602 

Sichuan and Yunnan Provinces.  603 

 604 

Well-known warm stenotherms that are distributed along the MJT gradient of the CCA 605 

species bi-plot (Fig. 3c) for the 100 dataset include Dicrotendipes, Microchironomus, 606 

Polypedilum and Microtendipes. Many studies (e.g. Walker et al. 1991; Larocque et al. 607 

2001; Rosenberg et al., 2004; Brodersen and Quinlan, 2006; Woodward and 608 

Shulmeister, 2006) show that these taxa are warm temperature indicators worldwide. 609 

We therefore further argue that while MJT explained a higher total variance in the 610 

chironomid data in the 47 Yunnan lake training set, the 100 lake training set has a clear 611 

advantage in that it contains a more complete range of temperatures and 612 

environments expected to have been experienced by lakes and their chironomid fauna 613 

in the past (Brooks and Birks, 2001). This will be particularly useful when applying the 614 

models to reconstruct changes in the late Pleistocene and Holocene when climates 615 

were different (Heiri et al., 2011).  616 
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 617 

5.3 Comparisons of the transfer function statistics 618 

 619 

We compared the statistical results of the transfer functions generated from the 47 and 620 

100 lakes training sets. We selected the WA-PLS based transfer function models over 621 

the WAinv based approach for both training sets because the addition of PLS 622 

components can reduce the prediction error in datasets with moderate to large noise 623 

(ter Braak and Juggins, 1993). The 47 lake dataset WA-PLS model yields a strong r2
jack 624 

(0.83) and a comparably lower RMSEPjack (1.7 °C, represents 12.8% of scalar length of 625 

the MJT gradient). The performance of the model is highly comparable to models of a 626 

similar kind worldwide such as from eastern North America with 136 lakes (r2 = 0.82, 627 

Barley et al., 2006) and Finland with 77 lakes (r2 = 0.78, Luoto, 2009) where the 628 

RMSEPs represent 11.7% and 12.5% of their respective temperature gradient length. 629 

However, there are apparent caveats in the distribution of the model predicted MJTs 630 

and error residuals along the temperature gradient (Fig.4a-d). These include: (1) there 631 

is a gap in sites between the MJTs of 12 and 15 °C; (2) there is a wide scatter of error 632 

residuals for sites located in an intermediate temperature range (between 10 and 12 °C) 633 

and at the warmer end (> 18 °C). These indicate there are limitations for the model to 634 

accurately reconstruct temperatures in warmer conditions (e.g. the Holocene) and 635 

during relatively minor cooling events (e.g. the Little Ice Age). The 47 lakes training set 636 

covers a MJT gradient of 13.2 °C and this should be capable of detecting glacial to 637 

interglacial changes. The problem in the smaller data set is that some taxa are likely to 638 

have their climate tolerances and optima significantly underestimated (Heiri et al., 639 

2011). For example, Diamesa, is present up to a MJT of 10 °C in the 47 lake dataset, 640 

whereas in the 100 lake dataset, it is present in samples with a MJT of 17 °C. The 641 

consequence of this is that Diamesa appears as a cold stenotherm in the 47 lakes 642 

dataset but it is actually cosmopolitan. This finding is in line with Heiri et al. (2011) and 643 

Brooks and Birks (2001), who demonstrated from Europe that broader datasets give a 644 

more accurate view of the chironomid distribution data.  645 

 646 

The 100 lakes training set extends thehas a MJT gradient by 3.4 °C toof 16.6 °C and 647 

the RMSEP represents 13.8% of the scalar length of the MJT gradient. This is still 648 

comparable with most chironomid-based transfer function models including transfer 649 

function modelsthose developed from Northern Sweden with 100 lakes (r2 = 0.65, 650 

Larocque et al., 2001),  and western Ireland with 50 lakes (r2 = 0.60, Potito et al., 2014) 651 

and Finland with 77 lakes (r2 = 0.78, Luoto, 2009), representing 14.7%,  and 15% and 652 

12.5% of the scalaer length of the temperature gradient respectively but less robust 653 

than the combined 274-lakes transfer function developed from Europe (r2 = 0.84, 654 

RMSEP representing 10.4% of the scalar length of the MJT gradient) (Heiri et al., 2011). 655 

Despite of the relatively lower model coefficient (rboot = 0.63), we observe that by 656 

increasing thehaving a large number of lakes in the calibration set, the distribution of 657 

the sites along the MJT gradient is relatively evened out (Fig. 4d). The distribution of 658 

the error residuals generates a smoothsmoother curve (Fig. 4d) than the 47 lakes 659 

training set. The model leads to overestimation of low and underestimation of high 660 
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temperature values which is typical of the WA models (ter Braak and Juggins, 1993). 661 

We acknowledge that the lower model coefficient (rboot) may also relate to the lowered 662 

explanatory power of MJT in the chironomid species data and increased large number 663 

of independent and significant variables in the 100 lake training set when a wider range 664 

of lakes were included. However, increasing the length of thethe extensive temperature 665 

gradient length allowed the incorporation of full potential abundance and distributional 666 

ranges for each of the chironomid taxa. 667 

 668 

5.24 Tiancai Lake reconstructions 669 

 670 

The 47 lakes training set displays an apparently stronger statistical correlation to the 671 

temperature record. We argue that the increased robustness of applying the transfer 672 

function model based on the larger dataset outweigh the modest reduction in statistical 673 

performance. All three types of diagnostic techniques applied (Fig 6 b-d) suggest that a 674 

reliable MJT reconstruction was provided by the two-component WA-PLS model based 675 

on thise 100- lake dataset overall. We highlight that the eight samples from the years 676 

between 2000 and 2007 AD have ‘poor’ and ‘very poor’ fit to MJT may suggest that it is 677 

possible a second gradient other than MJT influencing the chironomid species 678 

distribution and abundance in the most recent fossil samples of Tiancai Lake. We also 679 

predict that the model based on the larger dataset may amplify both cool and warm 680 

events because it covers a more complete environmental range, allowing taxon 681 

responses to be fully observed. In order to test this and also to test whether either 682 

reconstruction matches reality, we applied both of the WAPLS models to the Tiancai 683 

Lake chironomid data, for the period between 1860 AD and the present.  684 

 685 

We plot the trends of MJT reconstruction results from both the WAPLS models against 686 

the ~50-year long instrumental record from Lijiang station (Fig. 6e). In the comparison 687 

for the MJT reconstruction results with the instrumental record from Lijiang weather 688 

station (Fig. 6a), wWe do not expect the absolute MJT values to be identical because 689 

Lijiang is located ~55 km east-northeast (ENE) and ~1600 m lower in altitude than 690 

Tiancai Lake. We applied a typical environmental lapse rate of temperature (change 691 

with altitude) for Alpine regions, which is 0.58 °C per 100 metres (Rolland, 2003) to 692 

estimate the equivalent MJT values from Lijiang station. If the chironomid- based 693 

transfer functions are able to provide reliable estimates for MJTs, we expect the 694 

records demonstrate a similar trend with the instrumental data (Fig. 6e). 695 

  696 

The reconstruction results are well matched with the expected outcomes: (1) It is 697 

reassuring that as the transfer function models based on 100 lakes dataset for a 698 

broaderthe broad area of south-westernSW China reconstructs mean July 699 

temperatures (MJTs) with a similar pattern to the 47 Yunnan lakes dataset in terms of 700 

the trend; (2) as expected, the WAPLS model based on the 100 dataset amplifies both 701 

cool and warm periods; (3) both chironomid based reconstructions broadly match the 702 

trend recorded by the instrument. By applying the environmental lapse rate, we 703 

observe a temperature depression from Lijiang to Tiancai Lake of about 9.3 °C (giving 704 
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an inferred MJT at Tiancai Lake of 8.1 8.4°C in the year of 2004). This magnitude of 705 

change is consistent with the chironomid-based reconstructions from Tiancai Lake (at 706 

an average of 7.8 °C for the samples representing the years of 2004-2005), where the 707 

difference in mean is 0.30.67 °C (equivalent to a MJT of 7.7 °C ) when compared to the 708 

results derived from the 100 lake based WAPLS model and 0.86 °C (equivalent MJT of 709 

7.5 °C ) for the 47 lake model. The implication is that the 100 lake based modeltransfer 710 

function model ismay be able to reconstruct the MJTs that closely better reflects the 711 

actual climate record, though the difference between the models is small. We observe 712 

there are minor out of phase patterns (Fig. 6e) and this may reflect the uncertainties of 713 

applying the 210Pb chronology to very recent lake sediments (Binford, 1990). 714 

Furthermore, we note that sediment samples reflect more than one season and 715 

consequently the total range of the temperature reconstructions from the chironomid 716 

samples is likely to be slightly less than the meteorological data because of the 717 

smearing out of extreme years. While we expect overall trends between Lijiang and 718 

Tiancai Lake to be similar, the sites are not closely co-located and some natural 719 

variability between the sites is expected. Nevertheless, aA significant correlation (p < 720 

0.05, r = 0.45, n = 31) was still obtained between the instrumental data and the 100 721 

lake WA-PLS model inferred MJT data for the last ~ 50 years. We highlight that in 722 

addition to the record validation produced by the reconstruction diagnostic techniques, 723 

the well-compared trend with the instrumental record is reassuring that the model is 724 

capable to provide realistic pattern of the long-term mean July temperature changes. In 725 

summary, the chironomide WAPLS model- based transfer function developed usingon 726 

the 100  lakes calibrationchironomid training set has produced generated reliable 727 

summer quantitative temperature records and can realistically also be applied to 728 

reconstructing past climate in south-western SW China.  729 

 730 

6 Conclusions 731 

 732 

Two cChironomid- based summer temperature transfer functions using 100 lakes from 733 

south-western China have been constructed and applied to Yunnan region in the 734 

south-eastern margin of the Tibetan PlateauSW China. These include transfer 735 

functions based on a 47 lakes training set confined to Yunnan and a 100 lakes training 736 

set from a broader region of south-western China. The first component of WA-PLS 737 

model based on the 47 lakes training set produced an r2
jack of 0.83, AveBiasjack of 0.11, 738 

a MaxBiasjack of 3.15 and RMSEP of 1.72 °C. The second component of WA-PLS 739 

bootstrap model for the 100 lakes training set is the most robust for those data and 740 

produced an r2
boot of 0.63, AveBiasboot of 0.10, a MaxBiasboot of 5.16 and RMSEP (s1 741 

+ s2) of 2.31 °C (whereas RMSEs1 = 0.88 °C and RMSEs2 = 2.14 °C). Both the 742 

ordination and transfer function statistics show that the 47 lakes training set has a 743 

stronger correlation with MJT, but in practice, we demonstrated that the reconstruction 744 

results based on the chironomid-based 100 lakes training set are alsotransfer function 745 

is reliable. The larger dataset may potentially provide a better representation of the 746 

environmental preferences of the chironomid taxa. Thise 100 lakeslarge regional 747 

training set allowed insight into the regional chironomid distribution and species 748 
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abundance despite having many more independent environmental gradients. The test 749 

of the two transfer function models against the modern data suggest that the 750 

two-component WA-PLS models provided near identical reconstructions that match the 751 

trend of the local instrumental record for the last 50 years. As also demonstrated from 752 

pan-European chironomid based transfer functions (e.g. Brooks and Birks, 2001; Heiri 753 

et al., 2011), thise broadly based 100 SW Chinese lakes is likely more robust and is 754 

equally appropriate for use reconstructing long-term summer temperature changes of 755 

south-westernSW China. 756 
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FIGURE LEGENDS 994 

 995 

Fig. 1 Map of south-west China (a) showing the location of 100 lakes included in full 996 

the calibration training set (square box). (b) Lakes from Yunnan Province are shown in 997 

the square box and (c) the location of Tiancai Lake is marked with yellow triangle. The 998 

subset of 47 lakes from Yunnan province is shown in the square box (b). The triangle 999 

(  ) indicates the location of Tiancai Lake in (c). 1000 

 1001 

Fig 2a. Chironomid species stratigraphypercent diagram of the 985 non-rare taxa with N 1002 

and N2 > 2. Mean July temperature is on the y-axis and taxon abundance is in 1003 

percentageLake number from 1 to 100 is on the y-axis. The taxon code is 1004 

correspondent to the code used in Figure 3a. Warm and cold stenotherms were 1005 

identified and grouped based on optical observation and the canonical correspondence 1006 

analysis (CCA) species scoresBeta coefficient (from low to high) calculated based on 1007 

the bootstrap weighted average partial least square (WA-PLS) model for each species 1008 

in C2 software (Juggins, 2005). 1009 

 1010 
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Fig 2b. Forty-one (41) non-rare chironomid species present in the short core (28 cm) 1011 

from Tiancai Lake where the calibrated 210Pb based age is on the y-axis and taxon 1012 

abundance is in percentage. 1013 

 1014 

Fig 3 CCA bip-lots of sample and species scores constrained to environmental variables 1015 

that individually explain a significant (p < 0.05) proportion of the chironomid species 1016 

data. (a) species and (b) sample scores constrained to eight seven significant 1017 

environmental variables in the 47 Yunnan lakes training set. (c) species and (d) sample 1018 

scores constrained to seven significant variables in the 100 lakes of southwestern China. 1019 

The species codes are correspondent to the taxa names shown in Fig. 2a.  1020 

 1021 

Fig 4 Performance of the weighted average models with inverse deshrinking (WAinv) 1022 

and partial least square (WA-PLS) models using the 47 lakes and 100 lakes calibration 1023 

data sets: (a) WAinv jackknifed bootstrap model with 47 lakes (b) the second 1024 

component of the WA-PLS bootstrapjackknifed model with 47 lakes (c) WAinv 1025 

bootstrapped model with 100 lakes and (d) WA-PLS bootstrapped model with 100 lakes. 1026 

Diagrams on the left show the predicted versus observed mean July temperature (MJT) 1027 

and diagrams on the right display residuals of the predicted versus observed mean July 1028 

temperature. Note that both all the models have a tendency to over-predict 1029 

temperatures from the cold end of the gradient and underestimate temperatures at the 1030 

warm end. This is typical for the WA based models. 1031 

 1032 

Fig 5 The age and depth model for 210Pb dating results of the short core (2830 cm) from 1033 

Tiancai Lake. The concentration of 137Cs (circle), excess 210Pb (triangle) and the 1034 

calibrated age (AD years) (square) were plotted against core sample depth, 1035 

respectively. 1036 

 1037 

Fig 6 (a) Chironomid-based mean July temperature (MJT) reconstruction results from 1038 

Tiancai Lake based on two4 transfer function models: solid blackred line is the 1039 

reconstruction based on the weighted average partial least square (WA-PLS) 1040 

bootstrapped model with two2 components using 100 lakes calibration set, dashedsolid 1041 

black line is the reconstruction based on the WAPLS jackknifed model with 1 1042 

component using 47 lakes in Yunnan, dashed black line is based on the weighted 1043 

average with inverse deshrinking (WAinv) jackknifed bootstrap model using 47 lakes in 1044 

Yunnan and dashed red line is based on WAinv jackknifed model using 100 lakes in 1045 

southwestern China. Red solid line is the instrumental data from Lijiang weather station, 1046 

corrected applying the lapse rate and solid grey line is the three-sample moving 1047 

average of the dataset. Reconstruction of diagnostic statistics for the 100 lake dataset 1048 

where (b) displays the goodness-of-fit statistics of the fossil samples with mean July 1049 

temperature (MJT). Dashed lines are used to identify samples with ‘poor fit’ (> 95th 1050 

percentile) and ‘very poor fit’ (> 90th percentile) with temperature (c) Nearest modern 1051 

analogues for the fossil samples in the calibration data set, where dashed line is used to 1052 

show fossil samples with ‘no good’ (5%) modern analogues. (d) Percentage of 1053 

chironomid taxa in fossil samples that are rare in the modern calibration data set (Hill’s 1054 
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N < 2 and N2 < 2). (e) Comparison between the chironomid-based transfer function 1055 

reconstructed trends (represented by MJT anomalies) with the instrumental data from 1056 

Lijiang weather station (in red solid line, with three-sample moving average). Black solid 1057 

line represents the reconstruction based on the WA-PLS bootstrapped model with two2 1058 

components using 100 lakes calibration set and grey dashed line represents the 1059 

reconstruction based on the WAPLS bootstrapped model with 1 component using 47 1060 

lakes calibration set from Yunnan in this diagram. 1061 

 1062 

 1063 

 1064 

 1065 

 1066 

 1067 

TABLE LEGENDS 1068 

 1069 

Table 1. List of all the 18 environmental and climate variables measured from 100 1070 

south-western Chinese lakes, with mean, minimum and maximum values cited for the 1071 

47 lakes calibration set from Yunnan and the full 100 lakes, respectively. 1072 

 1073 

Table 2. CCA summary of the seven eight significant variables (p < 0.05) including 1074 

canonical co-efficients and t-values of the environmental variables with the ordination 1075 

axes including (a) 47 lakes and 53 non-rare species and (b) 100 lakes and 895 non-rare 1076 

species 1077 

 1078 

Table 3. Partial Canonical Correspondence Analysis (pCCA) result with environmental 1079 

variables that showed a significant correlation (p < 0.05) in CCAs with chironomid 1080 

species data included , where (a) is based on the 47 lakes training set, where mean July 1081 

temperature (MJT) (bold) is the only variable retained its significance level (p < 0.01) 1082 

after each pCCAs and (b) is based on the 100 lakes calibration training set. in which 1083 

dDepth, K+, Cl-, LOI and MJT (bold) maintainedretained their significance (p < 0.01) 1084 

after each step of the pCCAs. 1085 

 1086 

Table 4. (a) Results of the transfer function output development where (a) shows the 1087 

performance of the weighted average model with inverse and classical deshrinking 1088 

(WAinv, WAcla), weighted average partial least squares (WA-PLS) models for 1089 

reconstructing mean July temperature using (a) 47 lakes from Yunnan and 53 non-rare 1090 

chironomid species and (b) for using 100 lakes from south-western China and 895 1091 

non-rare chironomid species. The bold indicates the models that are tested for 1092 

reconstructing the mean July temperatures from Tiancai Lake. (b) The t-Test 1093 

(Two-Sample assuming unequal variances) performed on the RMSEP output values of 1094 

the WA-PLS component 1 and component 2 shows that the result is significant at p < 1095 

0.05. This suggests there is a difference between the RMSEP of the two models. We 1096 

therefore selected the second component of the WA-PLS because it produced a lower 1097 

RMSEP value. 1098 
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Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Unit Symbol Mean  Min Max 

Altitude m alt 3785 1769 4608 

Mean July precipitation mm MJP 392 104 1055 

Mean annual precipitation mm MAP 1820 505 5228 

Mean July temperature °C MJT 9.1 4.2 19.8 

Secchi depth m SD 3.5 0.2 12.5 

Conductivity µm cm-1 Cond 55.8 5 336 

Total dissolved solids mg L-1 TDS 18.4 1.9 79.7 

pH - pH 8.5 7.23 10 

Depth m Depth 10.7 0.25 52 

Total Nitrogen mg L-1 TN 0.3 0.01 3.4 

Total Phosphorus mg L-1 TP 0.05 0 1.6 

Sodium mg L-1 Na+ 2.7 0.22 37.2 

Potassium  mg L-1 K+ 0.5 0 4.5 

Magnesium mg L-1 Mg2+ 2.2 0 20 

Calcium mg L-1 Ca2+ 7.3 0.8 34.6 

Chlorine mg L-1 Cl- 1.7 0 9 

Sulfate mg L-1 SO42- 3.9 0.1 31.6 

Loss-on-ignition % LOI 24.3 1.92 77.1 
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Table 2 

 

  Axis 1        Axis 2  Axis 3  Axis 4  

Eigenvalues  0.24        0.17  0.10  0.08  

Cum % var. spp. 5.90        10.0  12.5  14.6  

Cum% var. spp. - env. relation 33.5        57.0  71.2  82.7  

       

Variable Total variance 

explained 

Regression/canonical           t-values of regression     

coefficeints                     coefficients             

                                        

Axis 1              Axis 2                           

  

Axis 1 

     

Axis 2 

  cond  

 

4.4%  0.44 

         

-0.27 

 

 3.99      -2.65 

  depth  

 

2.0% -0.15 

         

-0.21 

 

-1.90      -2.82 

  Na+ 

 

2.7%  0.10 

          

0.02 

 

 0.91       -0.17 

  K+  

 

4.8%  0.49 

         

-0.07 

 

 4.67      -0.65 

  Cl- 

 

3.4% -0.21 

          

0.65 

 

-2.18       6.94 

  MJT      

 

4.4%  0.14 

          

0.62 

 

 1.49       6.90 

  LOI       

 

3.1% -0.09 

          

0.04 

 

-1.02       0.48 
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Table 3 

 

Variable Covariable % var. 

axis 1 

% var. 

axis 2 

p-value λ1 λ2 λ1/λ2 

cond none 4.40 7.90 0.001 0.179 0.317 0.560 

 depth 4.60 7.90 0.001 0.181 0.315 0.570 

 Na+ 4.10 7.70 0.001 0.159 0.305 0.520 

 K+ 1.80 8.20 0.004 0.069 0.316 0.220 

 Cl- 4.60 7.50 0.001 0.179 0.293 0.610 

 MJT 3.60 8.10 0.001 0.140 0.313 0.450 

 LOI 3.60 7.90 0.001 0.140 0.310 0.450 

 ALL 1.70 7.60 0.016 0.057 0.259 0.220 

        

depth none 2.00 9.80 0.001 0.082 0.397 0.210 

 cond 2.20 8.10 0.002 0.083 0.315 0.260 

 Na+ 2.10 9.90 0.001 0.083 0.387 0.210 

 K+ 2.20 8.30 0.001 0.083 0.321 0.260 

 Cl- 2.00 10.0 0.002 0.079 0.390 0.200 

 MJT 2.00 9.60 0.001 0.077 0.371 0.210 

 LOI 2.10 9.50 0.001 0.082 0.372 0.220 

 ALL 2.20 7.60 0.001 0.074 0.259 0.290 

        

Na+ none 2.70 9.60 0.001 0.111 0.388 0.290 

 Cond 2.40 7.80 0.001 0.091 0.305 0.300 

 depth 2.80 9.80 0.001 0.112 0.387 0.290 

 K+ 2.30 7.70 0.001 0.089 0.296 0.300 

 Cl- 2.70 8.90 0.001 0.106 0.347 0.310 

 MJT 1.90 9.60 0.008 0.072 0.371 0.190 

 LOI 2.40 9.60 0.001 0.093 0.375 0.250 

 ALL 1.70 7.70 0.011 0.058 0.259 0.220 

        

K+ none 4.80 7.90 0.001 0.192 0.322 0.600 

 cond 2.10 8.20 0.002 0.082 0.316 0.260 

 Na+ 4.30 7.60 0.001 0.171 0.296 0.580 

 Cl- 5.00 7.40 0.001 0.195 0.290 0.670 

 LOI 4.10 8.20 0.001 0.160 0.320 0.500 

 Depth 4.90 8.10 0.001 0.193 0.321 0.600 

 MJT 3.30 8.20 0.001 0.129 0.314 0.410 

 ALL 2.00 7.70 0.003 0.069 0.259 0.270 

        

Cl- none 3.40 9.70 0.001 0.137 0.393 0.350 

 cond 3.50 7.60 0.001 0.137 0.293 0.470 
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 K+ 3.60 7.60 0.001 0.140 0.290 0.480 

 MJT 3.20 8.60 0.001 0.125 0.332 0.380 

 LOI 3.50 9.40 0.001 0.137 0.366 0.370 

 Depth 3.40 9.90 0.001 0.134 0.390 0.340 

 Na+ 3.40 8.80 0.001 0.132 0.347 0.380 

 ALL 2.80 7.60 0.001 0.098 0.259 0.380 

        

LOI none 3.10 9.30 0.001 0.124 0.377 0.330 

 Na+ 2.70 9.60 0.001 0.107 0.375 0.290 

 cond 2.20 8.00 0.001 0.086 0.310 0.280 

 K+ 2.40 8.30 0.001 0.092 0.320 0.290 

 MJT 3.00 9.30 0.001 0.116 0.361 0.320 

 Cl- 3.20 9.40 0.001 0.124 0.366 0.340 

 Depth 3.10 9.40 0.001 0.124 0.372 0.330 

 ALL 2.20 7.60 0.001 0.074 0.259 0.290 

        

MJT none 4.40 9.10 0.001 0.176 0.371 0.470 

 Na+ 3.50 9.40 0.001 0.137 0.371 0.370 

 cond 3.50 8.10 0.001 0.137 0.313 0.440 

 K+ 2.90 8.20 0.001 0.113 0.314 0.360 

 LOI 4.30 9.20 0.001 0.168 0.361 0.470 

 Cl- 4.20 8.50 0.001 0.164 0.332 0.490 

 Depth 4.30 9.40 0.001 0.171 0.371 0.460 

 ALL 2.70 7.50 0.001 0.091 0.259 0.350 
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Table 4 

a. 

# Model 

type 

Bootstra

p R2 

Bootstrap 

Average 

Bias 

Bootstra

p 

Maximu

m Bias 

RMSE_s1 RMSE_s2 RMSEP 

1 WA_Inv 0.61 0.06 5.30 0.69 2.19 2.30 

2 WA_Cla 0.61 0.07 4.78 0.86 2.20 2.36 

 

Component 1 WA-PLS 0.60 0.02 5.28 0.71 2.22 2.33 

Component 2 WA-PLS 0.63 0.10 5.16 0.89 2.14 2.31 

Component 3 WA-PLS 0.60 0.07 5.08 1.03 2.19 2.41 

 

b. 

t-Test: Two-Sample Assuming 

Unequal Variances RMSEP of WA-PLS_C1 RMSEP of WA-PLS_C2 

Mean 0.0645 -0.0524 

Variance 2.8822 1.5186 

Observations 100 100 

Hypothesized Mean Difference 0   

df 181   

t Stat 0.5570   

P(T<=t) one-tail 0.2891   

t Critical one-tail 2.3471   

P(T<=t) two-tail 0.5782   

t Critical two-tail 2.6033   

The P-Value is 0.01 < 0.05 Reject null hypothesis  

The RMSEPs of WA-PLS C2 and WA-PLS C1 are different 

 


