
Final answer to the Comments

Acevedo et al.,

March 24, 2017

Dear Prof. Goosse and Dear reviewer #2,

Thank you so much for your constructive comments. In a new version of the
manuscript we tried to remove unnecessary technical details and describe our
motivations and findings in a clear format. We provided a track changes version
of the manuscript at the end of this answer (Red is deleted and blue is added).
We reply to all your comments here:

1 Answer to Reviewer 2

We wish to thank you so much for your constructive review. It would be our
pleasure to do all the modifications and make the improvements you have sug-
gested, in the next version of the manuscript. We answer your comments (italic)
point by point (Bold):

The authors have done a fine job addressing my comments and I feel the
manuscript may be suitable for publication after addressing several large remain-
ing issues with the text. I’m suggesting further revisions for additional problems
with language and brevity. I would like to thank the authors for a much clearer
and better-written manuscript and for addressing our concern about the time-
varying soil moisture through further work, and for making a large effort to
revise and add to the text for clarity and flow. However, the manuscript is still
lacking transitions and sufficient detail, and is still too brief and in many places
very confusing to follow. It is still a bit jarring to read and I think the abstract in
particular could be more motivating and clear regarding the new science this work
has added. The sectioning is over-done, and there are multiple places where you
have a single sentence constituting an entire paragraph without any transition
between them, an issue I highlighted in my first revision. For the new sections
added, I couldn’t take the time once again to heavily edit for language; please
do go back over the additional sections to ensure that your sentence structure
and word choices are sound. Guide the reader slowly through what you did and
motivate it clearly. Some of the word choices and arguments are still awkward
and hard to understand. A few that I caught are listed below. Please make ap-
propriate edits throughout. Especially in the results and Discussion, I was really
lost.
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We agree. In the current version, the Discussion, abstract and
introduction have been heavily edited. Now we open our main scien-
tific questions in introduction and close them in Discussion. Regard-
ing the introduction we give more citations on the previous studies
around the forward modeling and its different applications as well as
similar DA studies recently published. Regarding the discussion we
merged the subsections together and formed a homogeneous story of
our main results.

Page 1
8 rephrase “Our knowledge of the climate system...governing the evolution of
the oceans and atmosphere.”
9 “state of the flow” is too vague. Be specific!
12 delete comma after (forecast),
12 delete “Furthermore,” and start sentence with The
21 ‘adjoint model’ – unclear on what you mean here Could you add some more
transitional sentences to guide the reader through the subsections in Section 2?
Be careful about extra-short paragraphs that only have one sentence.... Combine
where appropriate.

We merged many subsections and edited the whole section 2. We
start with the Data Assimilation basics, KF, EnKF and time-averaged
EnKF. Then we introduced the forward model representations along
with the concept of Fuzzy Logic. Finally we presented our simulation
design.

Page 5
12 as ‘a’ consequence, not ‘the’ , add ‘any one observation may present ....with
distant ones’
2.1.1 line 23: what is the ‘sensor’ – I don’t think you have defined this yet...
Once again, the line numbering in this text just changes from 5-30 throughout
which made it very difficult to give line-by-line comments.
23-25 the wording of this sentence is a bit confusing. You’re trying to say that
rain gauges and anemometers take hourly-scale measurements but paleoclimate
data contain a time-averaged signal. It reads as if you’re saying they’re all the
same. Revise for clarity.

Given that the “instantaneous” and “time-averaged” variables are
frequently used by the climate community, we removed the sentence
describing these two terms in the new version.

Page 6:
3 revise “comprising of a dynamical model” .... ‘all which interact with each
other’2.2.1 You need to define the V-S Lite acronym on first use and spell it out
in this title. You do that later in the text at the moment and it’s out of place.
It needs to be here. 24 what is PLF ? Redefine, the reader has forgotten.

We have moved the text describing VSL into the introduction
where we introduce TRW forward model as well as PLF.

Page 7
8: grown = growth
15: change definition of FL acronym to main text, not just in the title.
17: delete ‘applied’
18: change to “FL has been applied in ecological ...
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22: correspond = corresponds (add s)

Done.

Page 8, make line 8 into two sentences. Equation 15. Then, ....
2.4 Page 9
Change to “Experimental Design”
You define VSL here but it should be on the previous page.
16 change model to ‘modeling’

Done.
Page 10: 10: boundaries THE model requires...

18 why is there a bullet here?
Page 11:
5 ‘lowest level of the state vector’ – this is too much jargon. Do you just mean
surface temperature?
12: what is meant by ‘shifting of recorded variable?’ unclear—revise
Delete Section 2.4.2 and move all of that paragraph to 3 Results.
19: change wording “We focus our analysis on temperature due to the larger
error reduction in this field as compared to other variables....”
23: delete parentheses around near surface temperature and add “of near-surface
temperatures” Page 12 typo line 26 “acenso”
Page 13 at the very top here you introduce a PRESCRIBED experiment for the
first time. There must be some problem with your LateX file here—You meant
to have two bullets above, one with SLAB and one with PRESCRIBED, but one
got lost....correct above.

Yes there were some problems with the latexdiff. Now it is cor-
rected. The bullets are for the two ocean configurations.

Page 14
Do not put a new paragraph between lines 10 and 11.... You’re still discussing
the same figure. You’ve got LaTeX error instances of “DIFdelbegin” and end
throughout the text...
17 comma splice. This is also a good example of a long and convoluted sentence
that appears throughout that is hard to follow and understand.
20-25 this is a bit of a weak statement regarding optimal network design. We al-
ready know that trees at higher latitudes are going to be more sensitive to changes
in temperature, so saying that we should measure trees in Alaska instead of South
Africa isn’t very helpful. We’re actually desperate for more terrestrial records
from the Southern Hemisphere....I know what you’re trying to say here, but you
need to make a better argument.
23 contains comma splices

We edited the text. We added your comment as an extra sentence
about the terrestrial records from the Southern Hemisphere.

25 change to “This study, where a DA method....” 32 I think you mean to
say “constraint on the forecast motivates us to perform our DA experiments in
an offline regime”
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These sentences are already appearing in the discussion with a
new format.

Page 15
10 delete comma after Prod
25-30 you say that a previous study supports Online .... But then you say “there-
fore we apply offline” – this doesn’t follow or make sense. Review previous work
and then compare it to what you did and say how it’s different. Also, “performs
a more realistic temporal varialbity” makes no sense—rephrase: ‘simulates more
realistic ..’ and also, temporal variability of what?

Given that our DA attempt appeared to be in an “off-line regime”,
in the next step we have conducted an “off-line DA”. There is a differ-
ence between “off-line regime” and “off-line DA method” which we
made clearer in the new manuscript. The first one indicates that the
forecast state of the DA has no skill (a DA with reinitialization after
analysis) but the second is done using the forecast from free ensemble
in an off-line strategy with no reinitialization. We have changed the
sentence to “They concluded that in the off-line method temporal
consistency of the model is lost.”

Ever since the results section started I have felt lost trying to follow the
writing. I also feel the sections are hyper-sectioned....out to four subsections is
unnecessary. Just have two paragraphs and introduce them for 3.2.2.1, 3.2.2.2.
Page 17?? 3 what is an elbow? Use mathematical language. Inflection point?
What is Free run and why is it capitalized?
Your sections just jumped from 3.2.3 to 3.2.1. Re-label as ‘Time-Varying Soil
Moisture” 12 I don’t know what the ‘new set’ is—you have to be specific. New
set is the “time-varying soil moisture fields.” Spell it out.
13 I think when you say ‘time evolution....’ Do you mean the time series of
global mean temperature? As in, the skill over time vs. the spatial skill? You
need to clearly differentiate between these two metrics throughout the text. They
are calculated differently and have different implications.
19 “improvement in the error reduction” – don’t you just mean “error reduction”
? 28 rephrase “this methodology can be applied to techniques in Optimal Sensor
Placement...” 29 effectiveness, not effectivity (that is not a word)
Page 18
Line 2, “has yet to be investigated”
5: you’re talking about structural biases and how they carry forward using PSMs
with GCMs in a DA framework. This is discussed at length in Dee et al.,
2016, and you might reference that here. 10: ‘indiscriminant’17-20 single, long,
confusing sentence, single paragraph.

As described, the subsubsections are removed and the Result sec-
tion is modified.

21-35 this section reads as a regurgitation of previous work that is not cohe-
sively linked to what you did and with the writing. I cannot follow this text at
all. “enter an offline regime” – don’t you just mean “use an offline regime?” I
don’t understand the argument that you can’t get observational constraints for
internal variability with annual resolution records. Please clarify this argument
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dramatically.

We agree that the previous version did not describe clearly the
concept of “off-line regime” and “off-line DA”. Now in the Results
and Discussion section of the new version we described these two
very different concepts more clearly. If the forecast state of the DA
shows no skill but the analysis, then we are in the “off-line regime”,
although we are doing an “on-line DA”. An “off-line DA” means that
we do not reinitialize the model when the observation is available.
We use the free ensemble forecast (the ensemble run without assim-
ilation) for that time to produce the analysis state. Generally, we do
“on-line DA” to have skill in forecast which is dynamically consis-
tence not the analysis. However, we showed that in our experiment
using SPEEDY we have no skill in forecast. We hope that the new
version of the manuscript can clarify these two concepts.

4.2 on page 21... you do not effectively review your new results or your new
work here at all.... What is meant by pollutions? “in the face of” is too collo-
quial. In this discussion, and the outlook, you need to provide us with a concise
summary of what you did, your new findings and how it compares to previous
work, outline caveats, and then give suggestions for future work and the impor-
tance of yours. At present, it is too disjoint and I think the over-sectioning is a
culprit. We don’t need multiple sections here. Just “Discussion.”

We agree and we have modified the manuscript according to your
comment.

2 Answer to Editor

Dear Authors, Thanks for submitting the revised version of your manuscript.
Both reviewers agreed that this revised version is significantly improved compared
to the initial one but one reviewer considers that major changes are required,
in particular because the text is still hard to follow. I agree with this evaluation
and additional revisions following reviewers’ suggestions are thus required, in
particular in order to improve the clarity of the text, before a potential publica-
tion in Climate of the Past. Best regards, Hugues Goosse

Dear Prof. Goosse,
thank you very much for consideration of the manuscript. We have
edited the text according to the suggestions of the reviewer and we
hope that the new version of our manuscript is easier to follow and
ready for publication in Climate of the Past.

Best regards,
on behalf of all the co-authors,
Bijan Fallah
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Abstract. We
::::::::::
Paleoclimate

:
Data Assimilation (DA)

:
is

::
a

::::::::
promising

:::::::::
technique

::
to

:::::::::::::
systematically

:::::::
combine

:::
the

:::::::::::
information

::::
from

:::
the

::::::
climate

::::::
model

::::::::::
simulations

:::
and

::::
the

:::::
proxy

:::::::
records.

::::
Here

:::
we

:
investigate the assimilation of Tree-Ring-Width (TRW)

chronologies into an atmospheric global climate model using Ensemble Kalman Filter (EnKF) techniques and a process-based

tree-growth forward model as observation operator. Our results, within a perfect-model experiment setting, indicate that the

:::::::
“on-line DA

:
”
::::::::
approach

:::
did

:::
not

::::::::::
outperform

:::
the

::::::::
“off-line”

::::
one,

::::::
despite

::
its

:::::::::::
considerable

:::::::::
additional

:::::::::::::
implementation

::::::::::
complexity.5

::
On

::::
the

::::
other

:::::
hand,

::
it
::::
was

:::::::
observed

::::
that

:::
the

:
nonlinear response of tree-growth to surface temperature and soil moisture does

deteriorate the operation of the time-averaged EnKF methodology. Moreover,
::
for

::::
the

:::
first

:::::
time

:::
we

:::::
show

:::
that

:
this skill loss

appears significantly sensitive to the structure of growth rate function, used to represent the Principle of Limiting Factor (PLF)s

within the forward model. On the other hand, it was observed
::::::::::
Additionally,

:::
our

:::::::::::
experiments

::::::
showed

:
that the error reduction

achieved by assimilating a particular pseudo-TRW chronology
:::::::::::
chronologies is modulated by the strength of the yearly internal10

variability of the modelat the chronology site. This result might help the dendrochronology community to optimize their

sampling efforts. In our experiments, the “online” (with cycling) paleao approach did not outperform the “offline” (no-cycling)

one, despite its considerable additional implementation complexity.

1 Introduction

The low-frequency temporal variability of the climate system can not be estimated from the available time span of instrumental15

climate records. Accordingly, paleoclimate reconstruction must necessarily rely on the usage of the paleoclimate proxy records.

Nonetheless, these
::::
These

:
natural archives exhibit several problematic features, e.g., low time-resolution, sparse and irregular

spatial distribution, complex nonlinear response to climate and high noise levels. Therefore the proper extraction of the climate

signal therein contained can often remain opaque (Evans et al., 2013).

At present, many different paleoclimate modeling ideas have been proposed, e.g., data-driven statistical techniques, climate20

model hindcasts, and Bayesian probabilistic methods (see Crucifix (2012) as a
:::::
recent

:
review). Among this plethora of ap-

proaches, DA methodologies are today particularly appealing as they allow to systematically combine the information of paleo-

climate records with the dynamical consistence of climate simulations (Oke et al., 2002; Evensen, 2003; Hughes et al., 2010; Brönnimann, 2011; Bhend et al., 2012; Hakim et al., 2013; Steiger et al., 2014; Matsikaris et al., 2015; Hakim et al., 2016; Dee et al., 2016).
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Heretofore
::::::::::::::::::::::::::::::::
(Brönnimann, 2011; Hakim et al., 2016).

:::
So

::
far, several very diverse paleo-DA schemes have been investigatedproviding

very encouraging results (see (Hughes and Ammann, 2009; Widmann et al., 2010) ,
::::::::
including

:::
(i)

::::::
pattern

::::::
nudging

:::::::::::::::::::::
(von Storch et al., 2000),

::::::
forcing

:::::::
singular

::::::
vectors

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Barkmeijer et al., 2003; van der Schrier and Barkmeijer, 2005),

:::::::
4D-Var

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Paul and Schäfer-Neth, 2005; Kurahashi-Nakamura et al., 2014),

::::::
particle

:::::
filters

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Annan and Hargreaves, 2012; Dubinkina et al., 2011; Dubinkina and Goosse, 2013; Mathiot et al., 2013; Matsikaris et al., 2015) and

EnKF
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Huntley and Hakim, 2010; Bhend et al., 2012; Pendergrass et al., 2012; Steiger et al., 2014) (see

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hughes and Ammann, 2009; Widmann et al., 2010; Hakim et al., 2013) as5

reference): Pattern Nudging (von Storch et al., 2000) and Forcing Singular Vectors (Barkmeijer et al., 2003; van der Schrier and Barkmeijer, 2005) techniques

were designed to curb the atmospheric circulation towards a target pattern by means of an artificial term added to the model

dynamics. 4D-Var methodology has been used to assimilate pseudo-proxies into an ocean model (Paul and Schäfer-Neth, 2005; Kurahashi-Nakamura et al., 2014).

was adapted to time-averaged observations (Dirren and Hakim, 2005) and tested for a hierarchy of atmospheric models (Huntley and Hakim, 2010; Bhend et al., 2012; Pendergrass et al., 2012; Steiger et al., 2014).

Finally, the use of a particle filter has been tested with an Earth system model of intermediate complexity (Annan and Hargreaves, 2012; Dubinkina et al., 2011; Dubinkina and Goosse, 2013; Mathiot et al., 2013).10

::
An

:::::::::
important

::::::::
difference

:::::::
between

::::::
paleo-DA

:::
and

:::::::::
traditional

::::::::::::
meteorological

:
DA,

::
is

:::
that

:::
the

:::::::::::
assimilation

:::::
period

:::::
might

:::
be

::::
very

::::
long

::::::::
compared

::
to

:::
the

::::
time

::::::
scales

::
of

:::
the

:::::::::
dynamical

::::::
model.

::::::
Under

:::::
these

:::::::::
conditions,

:::
the

:::::::::::
randomizing

:::::
action

:::
of

::::::
chaotic

::::::
model

::::::::
dynamics

:::::::
becomes

::::::::
dominant

::::
and

:::::::::::
consequently

:::
the

:::::::
forecast

::::::
appears

::::::::::
completely

::::::::::
decorrelated

:::::
from

:::
the

:::::::
previous

:::::::
analysis

:::::
state.

::::
This

:::::::::::
phenomenon,

:::::::
currently

:::::::
referred

::
to

::
as

:::::::
“off-line

::::::::
regime”,

:::
has

::::
been

:::::::
observed

::
in

::::::
several

::::::
paleo-DA

:::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Huntley and Hakim, 2010; Bhend et al., 2012; Pendergrass et al., 2012; Matsikaris et al., 2015).15

::::::::::
Furthermore,

:::::
some

::::::
recent

::::::
studies

::::
have

:::::::
assumed

::::
from

:::
the

:::::::::
beginning

:::
the

::::::
off-line

::::::::
condition

::::
and

:::::::
removed

:::
the

::::::::::::
reinitialization

::::
step

::::
after

::::::::::
assimilation,

::::::
giving

::::
raise

::
to

::::::::
“off-line DA

::::::::::
techniques”

::::::::::::::::::::::::::::::::::::::::::::::
(Steiger et al., 2014; Dee et al., 2016; Hakim et al., 2016).

A typical assumption in most of the paleo-DA studies so far conducted is that the climate-proxy relation is linear. Nonethe-

less, currently it is widely recognized that climate proxies are the result of complex recording processes, which can have physi-

cal, chemical and biological nature. Furthermore, several research groups have already developed and validated forward models20

for several proxy types (Evans et al., 2013; Dee et al., 2015). Hence, in order to increase
:::
The

:::::::::::::::::
dendrochronologists

:::::::
usually

:::::::::
investigate

:::
the

:::::::
climate

::::::
impact

:::
on

:::::::
tree-ring

:::::::
growth

:::
by

:::::::::::::::::
empirical–statistical

:::::::
methods

:::::::::::::::::::
(Vaganov et al., 2006).

::::::
More

:::::::
realistic

::::::::::::
methodologies

::::
have

:::::
been

:::::::
recently

::::::::
sculpted

:::
by

:::
the

:::::::::::
paleoclimate

::::::::::
community

::
to

::::::::::
investigate

:::
the

::::::::::::
climate-proxy

:::::::
relation

::::
that

:::::::
consider

:::
the

::::::
distinct

::::::::
processes

:::::::
whereby

:::
the

::::::
climate

:::::
signal

::
is
::::::::
recorded

:
in
::::::
proxy

:::::::
archives.

:::::
Proxy

:::::::
forward

::::::::
modeling

:::::::::::::::::::::::::::::::::::::::
(Hughes et al., 2010; Evans et al., 2013) appears

::
to

::
be

:::
one

::
of
:::
the

:::::
most

::::::::
promising

:::::::::::::
methodologies

::
in

:::
this

::::
area.

:::
In

:
a
:::::
proxy

:::::::
forward

::::::
model

::
the

:::::::
climate

::::::
forcing

::
is

::::
used

::
as

:::::
input

::::
data25

::
for

:::::::::
producing

:::
the

:::::::
artificial

:::::
proxy

::::::
records

:::::
which

:::
can

:::
be

::::::
directly

::::::::
compared

::::
with

:::
the

:::::
actual

:::::
ones.

::::
One

:::::::::
application

::
of

:::::
proxy

:::::::
forward

::::::
models

::
is

::
to

::::::
predict

:::
the

::::::::
evolution

::
of

:::::
proxy

:::::::
archives

:::::::::::::::::::
(Vaganov et al., 2006).

::::
They

::::
can

:::
also

:::
be

::::::
applied

::
as

:::::::
climate

::::::::::::
reconstruction

::::::::
strategies

::
by

:::::
using

:::
the

:::::::::::
probabilistic

::::::::
inversion

:::::::
methods

:::
like

::::::::
Bayesian

::::::::::
hierarchical

:::::::::
modeling

::::::::::::::::::::
(Tolwinski-Ward, 2012),

:::::::
Markov

:::::
Chain

:::::
Monte

:::::
Carlo

::::::::
(MCMC)

::::::::::::::::::::::
(Boucher et al., 2014) and DA

:::::::::::::::::
(Hughes et al., 2010).

:

::::::
Several

:::::
recent

:::::::
studies

::::
have

::::::::::
investigated

:::
the

:::::::::::
applicability

::
of

::::::::::::
process-based

:::::::
forward

::::::
models

::::
into

::
a

:::::
paleo-DA

:::::
setting,

:::
in the30

realism of DA-based climate reconstructions , it is relevant and pertinent to connect the climate state space to the proxy space by

way of forward models (Acevedo et al., 2015; Dee et al., 2016). Dee et al. (2016) applied
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hughes et al., 2010; Acevedo et al., 2015; Dee et al., 2016; Hakim et al., 2016).

::::::::::::::::::
Acevedo et al. (2015) [

::::::
AC15,

:::::::
hereafter]

::::::
utilized

:::
the

::::::::::::
process-based TRW

::::::
forward

:::::
model

:
Vaganov-Shashkin-Lite (VSL)

:::::::::::::::::::::::::::
(Tolwinski-Ward et al., 2011) and

::
an

:::::
online

:
EnKF

::::::
scheme,

::
to
:::::::::
assimilate TRW

::::::
records

:::
into

::
a

::::::
chaotic

::::::
2-scale

:::::::::
dynamical

::::::
system

::
as

:
a
:::
toy

::::::
model.

::::
They

:::::
found

::::
that

:::
the

::::::::::::
non-linearities

::
of

:::
the

::::::
forward

::::::
model

::::
may

:::::::::
deteriorate

:::
the

::::::::::
performance

::
of

:::
the

:
EnKF

:
.
:::::::::::
Furthermore,

::::
they

:::::::
observed

::::
that

:::
this

::::
loss

::
of35
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:::
skill

::::
may

:::
be

::::::::::
ameliorated

:::
by

:::::
means

:::
of

:
a
:
Fuzzy Logic (FL)

:::::
-based

::::::::
extension

:::
of VSL

:::::
model.

::::::::::::::::::::::::::::
Matsikaris et al. (2015) compared

::
an

::::::
off-line

::::
and

::
an

:::::::
on-line

:::::::::::::
ensemble-based

:
DA

:::::::::
(“degenerat

:::::::
particle

::::::
filter”)

:::
and

:::::::
showed

::::
that

:::
the

::::
both

:::::::
methods

::::::::::
outperform

:::
the

:::::
model

:::::::
without

:
DA

:
.
:::::
They

:::::::::
concluded

::::
that

::
in

:::
the

:::::::
off-line

:::::::
method

:::::::
temporal

::::::::::
consistency

:::
of

:::
the

::::::
model

::
is

::::
lost.

:::::::::
However,

::::
they

:::::::::
encouraged

::
to
::::

use
:
a
::::

full
:::::::
particle

::::
filter

:::::::
strategy

::::::
instead

:::
of

:
a
::::::::::
degenerate

::::
one.

:::
On

:::
the

:::::
other

:::::
hand,

::::::::::::::::::
Dee et al. (2016) used

:
three

different nonlinear proxy system forward models in a framework and investigated the utility of paleoclimate observations for5

constraining climate simulations
::::::
forward

:::::::
models

::::::::
(including

:
VSL)

::::
and

::
an

:::::::
off-line EnKF

::::::
scheme

::
to

::::::::
assimilate

:
TRW

:
,
::::
coral

::::
and

::
ice

::::
core

:::::::
records

:::
into

::::
two

:::::::
different

:::::::::::::
isotope-enabled

:
Atmospheric General Circulation Model (AGCM). They demonstrated that

the linear-univariate models for tree ring width may not capture the GCMAGCM’s climate, especially for regions where the

tree’s growth is dominated by moisture. The tree ring forward model used in our study is a modified version of the model

used in Dee et al. (2016). Acevedo et al. (2015) AC15, hereafterevaluated the applicability of the process-based forward model10

(Tolwinski-Ward et al., 2011) as observation operator within a simplified setting. Using a chaotic 2-scale dynamical system as a

toy model, AC15 generated pseudo-observations and assimilated them via the time-averaged -algorithm (Dirren and Hakim, 2005).

This paper follows closely the rationale of AC15, but within a more realistic scenario, where an AGCM is used as dynamical

system and the observational network resembles the currently available TRW chronologies.15

In addition to the classical approaches used in paleoclimate studies, a so-called “off-line” -based climate reconstructions

is presented by (Steiger et al., 2014; Dee et al., 2016; Hakim et al., 2016). In an off-line approach the climate model is not

re-initialized at the observation time steps (no initialization cycle or “no-cycling”).

The main objectives
:::
The

:::::::
purpose of this study are to shed light on the following four fundamental questions :

1) Can paleo-improve the skill of the model for the forecast (prior) state?20

2) Can
:
is
::::
then

::
to

:::::::::
contribute

::
to

:::
the

::::::
present

:::::::::
knowledge

::
of

:
paleo-DA improve the skill of the model for the analysis (posterior)

state?

3) Can an on-line (“with cycling”) outperform an “off-line” (“nocycling”) one (see Sec.4 for the definition of “
:::::::::
techniques

::
by

:::::::::
addressing

:::
the

::::::::
following

::::
two

::::::::
questions:

:::
(i)

::::
Does

:::
the

:
off-line ”)?

4) How does the nonlinear response of tree-growth to surface temperature and soil moisture affect
:::::
regime

::::::::
naturally

::::::
appear25

::
for

:::
the

::::::::::
assimilation

:::
of TRW

::::::
records

:::
into

::
a AGCM

:
?
:::
and

:::
(ii)

::
is

:::
the Fuzzy Logic (FL)

:::::
-based

::::::::
extension

::
of

:
VSL

:::::
model

:::
still

::::::
useful

::
to

:::::::
improve the performance of the time-averaged EnKF -method

::::
when

:
a
:::::::
climate

:::::
model

::
is

::::
used?

The third question is one of the most important challenges in the paleo-field, given that the computational expenses of an

on-line scheme with a realistic coupled GCM is far beyond the affordable limits of today’s computers. On the other hand,

state-of-the-art climate models have little or no predictive skill on the long timescale of proxy records (Hakim et al., 2016).30

In
::::
This

:::::
study

::
is

::::::::
structured

::
as

:::::::
follows:

::
in
:

section 2 we describe the DA technique, the TRW forward model and the climate

model as well as the experimental setting used. Our numerical results are shown in section 3, followed by a discussion in

section 4.
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2 Materials and Methods

2.1 Data Assimilation Basics

2.1.1 Rationale

The knowledge about the climate is drawn from
:::
The

::::
term DA

::::::::
designates

::
in

:::
this

:::::
paper

:::
the

:::::::
process

::
of

:::::::::
estimating

:::
the

::::
state

::
of

::
a

::::::
system

::::
using

:
observations and the physical laws governing the evolution of the climate system . Numerical models apply the5

latter to estimate the state of the flow. is a process which applies both available information sources to estimate the state of the

climate (Talagrand, 1997).

::::::
system

::
as

::::::::::
represented

::
in

::
a
::::::::
numerical

::::::
model

::::::::::::::::
(Talagrand, 1997). In a typical sequential DA scheme, a climate

:::::::::
dynamical

model is integrated in time steps over which observations are available. The predicted stateat an observed instant (forecast), is

used as “background” for the scheme. Furthermore, the forecast
::::
until

::::::::::
observations

:::::::
become

::::::::
available.

::::::::::
Afterwards,

:::
the

::::::::
predicted10

::::
state,

::::
also

::::::
known

::
as

:::::::
forecast, is “updated” or “corrected” by observations to form

::::
using

:::
the

:::::::::::
observational

::::::::::
information

::
in

:::::
order

::
to

:::::
obtain

:
a
::::::::
corrected

:::::
state,

::::
also

:::::
known

:::
as the analysis. The model is then

::::::
Finally,

:::
the

::::::
model

:
is
:
reinitialized from the analysis state

and propagates in time to reach the next observed instant. The analysis step is determined by availability of observations, their

timescales and computational resources.
:::::::::
propagated

::
in

::::
time

::::
until

:::
the

::::
next

::::::::::
assimilation

::::
time,

::::::::::
completing

::
the

::::::::
so-called

:::::::::
“analysis”

:::::
cycle. DA methods have evolved from very empirical approaches, such as Newtonian relaxation, to probabilistic ones that15

estimate the state
::::::
attempt

::
to

::::::::
estimate

:::
the

:
Probability Density Function (PDF)

:
of
::::

the
:::::
model

:::::
state

:
conditional to the obser-

vations (see Kalnay (2003) and Lahoz et al. (2010) for review
:::::::::::::::::::::::::::::::::::::::::::::::::::
Kalnay (2003); Lahoz et al. (2010); Reich and Cotter (2015) as

:::::::
reference

::::::::
materials).

Among all the

::::::
Among

:::
the

::::::::
currently available DA techniques, EnKF (Burgers et al., 1998)

:::::::
occupies

::
an

::::::::::
outstanding

:::::::
position

::::
due

::
to

::::::
several20

::::::
reasons.

::
It
:

offers an appealing trade-off between accuracy , relatively user-friendly implementation and computational ex-

penses.
::
It works robustly for very sparse observation networks and moderate number of ensemble members (Whitaker et al.,

2009). Its
:::::::::::
Furthermore, EnKF

::
’s implementation does not require adjoint model (calculations are outside the modelcode)

:::
any

::::::::::
modification

::
of

:::
the

:::::::
model’s

::::
code

:
and uncertainty estimates can be directly obtained from the ensemble spread (Hamill, 2006).

The main disadvantage of EnKF, within a paleoclimate setting, is its inability to handle strongly non-Gaussian PDFs, which25

can result
::::
easily

:::::
arise from the nonlinearities of climate models and observation operators. Nonetheless, it is very difficult

to remove this limitation, given that strictly
:::::::
Recently,

:::::
there

::::
have

:::::
been

::::::
several

::::::::::::
developments

::
in

::::
the

::::
field

::
of

:::::::::
non-linear

:
DA

::
for

:::::::::::::::
high-dimensional

:::::::
systems

:::::::::::::::::::::::
(Van Leeuwen et al., 2015),

::::::::
however

::
at

:::
the

:::::::
present

::::
fully

:
non-Gaussian DA techniques have

historically been
::
are

::::
still prohibitively expensive to run for high-dimensional systems

::::::
general

:::::::::
circulation

:::::::
climate

::::::
models.

2.1.1 Kalman Filter30
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Given that the model’s state is x(t) ∈ Rn,
:::::
Within

:
the Kalman Filter (KF) (Kalman, 1960)assumes that ,

:
the PDF of forecast

state is
::::
p(x)

::
is

:::::::
assumed

::
to

::
be

:
given by a Gaussian function of

:::
with

:
mean xf and covariance Pf ∈ Rn×n:

:::
Pf :

p(x)∝ exp(−1

2
(x−xf )T (Pf )−1(x−xf )). (1)

The observations y(tj) ∈ Rk
::::
y(tj) are also assumed to have Gaussian errors and therefore the conditional probability of the

observation vector y given the state x is:5

p(y | x)∝ exp(−1

2
(y− Ĥxf )TR−1(y− Ĥxf )), (2)

where Ĥ and R ∈ Rk×k are
:
is the observation operator and

::
R

::
is the observation covariance matrix, respectively. Following the

Bayes theorem, the conditional probability of the state given the observations, i.e., the analysis PDF, is:

p(x | y)∝ exp(−1

2
(x−xf )T (Pf )−1(x−xf )− 1

2
(y− Ĥxf )TR−1(y− Ĥxf )). (3)

Assuming the
::::::
Finally,

::::::::
assuming

::::
that

:
Ĥ is a linear function, equation 3 has

:::::::
p(x | y)

::
is

:
also a Gaussian (Eq.1 and Eq.2 are10

Gaussian). Therefore, its
:::::::
function

:::::
whose

:
mean and covariance can be calculated by the so called

::::::::
so-called Kalman update

equations (Lorenc, 1986):

xa = xf +K(y− Ĥxf ), (4)

Pa = (I−KĤ)Pf ; (5)

where the Kalman gain matrix K is given by:15

K=Pf Ĥ†(ĤPf Ĥ†+R)−1. (6)

2.1.2 Ensemble Kalman Filter (EnKF)

In a realistic model setting, the calculation
:::
For

:::::::
realistic

::::::::::
geophysical

:::::::
models,

:::
the

::::::::::::
dimensionality

::
of

:::
the

::::::
model

::::
state

:::
can

:::
be

::::
very

::::
high

:::
and

::::
then

:::
the

:::::::::
calculation

:::
and

::::::
storage

:
of the covariance matrices are numerically very expensive. Evensen (1994) have used

:::
can

::
be

:::::::::::
prohibitively

:::::::::
expensive.

::
A

:::::::
solution

::
to

:::
this

:::::::
problem

::
is
::::::::
provided

::
by

:::
the

:
EnKF

::::::::::::::
(Evensen, 1994),

:::::
which

::::
uses

:
an ensemble20

of model states (X(t) = (x1, . . . ,xm)) to approximate the KF equations. Following this approachthe best state estimate and its

uncertainty are presented by the ensemble mean and ensemble spread. The ensemble spread is given by the standard deviation

of the ensemble around its mean. Thus, an cycle consists of an ensemble forecast step which provides the empirical
:
,
:::
the mean

and covariance for approximation of the equations:

::
of

:::
the

::::::
forecast

::::
take

:::
the

::::::::
following

:::::
form:

:
25

〈Xf 〉=
1

m

m∑
i=1

xfi , Pf =
1

m− 1
Xf
′(Xf

′)T . (7)

5



Here Xf
′ ∈ Rn×m denotes the forecast ensemble deviation matrix:

Xf
′ =Xf −〈Xf 〉eT . (8)

where e= (1, . . . ,1) ∈ Rm. The
::
An

:
analysis ensemble whose covariance satisfies equation 5 can be generated in different

ways. Two main kinds of s are ,
::::::
which

:::
can

:::
be

::::::::
classified

:::
into

::::
two

:::::
main

:::::::
families:

:
stochastic and deterministic filters (Hamill,

2006). In the stochastic approach an observational ensemble Y is generated by adding a set of realization
:::::::::
realizations

:
of the5

observational noise to the observation vector y. The analysis ensemble is
:::
then

:
created by the following updating equation:

Xa =Xf +K
(
Y− ĤXf

)
. (9)

In the deterministic updating scheme
::::::::
approach, instead of creating an ensemble of observations, the analysis mean (Xa) and

deviations Xa
′ are calculated by using different update formula (Tippett et al., 2003)

:::
and

:::::::::
deviations

:::
are

::::::::
calculated

:::::
using

::::::
update

:::::::
formulae

::::::
which

::
do

:::
not

:::::::
involve

::::::
random

::::::::
numbers

:::
(see

:::::::::::::::::::
Tippett et al. (2003) as

::::::::
reference).10

Due
:
A
::::::::

practical
:::::::
problem

:::
of

:
EnKF

:::::::
schemes,

::
is
::::

that
::::
due

:
to the limited ensemble size, the forecast uncertainty is usually

underestimatedin
:
.
::::
This

:::::
leads

::
to

::
an

::::::::
excessive

:::::::::
confidence

:::
on

:::
the

:::::::
forecast and after several assimilation cycles the observations

may completely be
:
be

::::::::::
completely ignored. This situation is

:::::::
normally

:::::::
avoided

:::
by

:::::
means

::
of

:::
an

::
ad

:::
hoc

::::::::
procedure known as “filter

divergence”and can treated by multiplying the ensemble spread
::::::::
covariance

:::::::::
inflation”,

:::::
where

:::
the

:::::::
forecast

:::::::::
covariance

::::::
matrix

::
is

::::::::
multiplied

:
by a constant greater than one(covariance inflation).15

:
. For the experiments presented in this paper, we employed ensembles of 24 members (limited by the number of CPUs) and

constant multiplicative inflation of 1% after the ensemble update. As the consequence of
::::::
Another

:::::::::
undesired

::::::::::
consequence

:::
of

::
the

:
limited ensemble size, any observation may present

:
is
::::
that

:::
the

::::::::
ensemble

::::
state

::
at
::::
any

::::::::
gridpoint

:::
will

:::::::
present

::::::::::::
non-negligible

spurious correlations with the distant ones and the filter performance may be affected. Therefore,
::::::::::
observations

:::::::
located

::
far

:::::
apart

::
in

:::::
space.

::::
This

::::::::
difficulty

:::
is

:::::
solved

:::::
using

:::::::
another

:::
ad

:::
hoc

::::::::
procedure

::::::
known

:::
as

::::::::::
“covariance

:::::::::::
localization”.

:::::
Here

:::
we

::::::
utilize

:::
the20

:::::::
so-called

::::::::::::
R-localization

::::::::::::::::
(Hunt et al., 2007),

:::::
where

:
the elements of the observation error covariance matrix are multiplied by a

function that increases exponentially with distanceand an infinite error is assigned to the distant observations (R-localization

(Hunt et al., 2007)). This is achieved using the following formula:

Rloc =R ∗ exp
(
(rh/2λh)

2 +(rv/2λv)
2
)

(10)

where rh and rv stand for the horizontal and vertical distances, respectively. Their corresponding scaling parameters were set25

to the values λh = 500 Km and λv = 0.4lnp.

2.1.3 Time-Averaged Ensemble Kalman Filter (EnKF)

Usually the time scale of the measured system is sufficiently longer than the response time of the sensor and the measurements

can be assumed to be instantaneous . However, this assumption can not be applied for precipitation gauges, wind meters
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and proxy records. Proxies have averaged recording time spans ranging from months to decades. Time-averaged observations

contain information of a segment of the model state trajectory instead of an instant of the model evolution.

The EnKF
::::::::
algorithm

:::
was

:::::::
initially

::::::::
designed

::
to

:::::::
estimate

:::
the

:::::::::::
instantaneous

::::
state

:::
of

:
a
:::::
model

:::::
given

::::::::::::
instantaneous

:::::::::::
observations.

::
As

::
a
:::::::::::
consequence,

:
EnKF

:::::
cannot

:::
be

:::::::
directly

::::::
applied

::
to

:::::::::::
paleoclimate

::::
data

:::::
given

::::
that

:::
the

:::::::::::
observational

::::::::::
information

:::::::
present

::
in

:::::
proxy

::::::
records

::
is

::::::::
typically

:::
the

::::::
average

:::
of

:
a
:::::::
function

::
of
:::

the
:::::

state
::::
over

::::
long

::::
time

:::::::
periods.

::
A

:::::::
solution

::
to

::::
this

::::::
conflict

::
is

::::::::
provided5

::
by

:::
the

:
time-averaged ensemble background fields are updated by the and the instantaneous deviations from the mean remain

unchangedEnsemble Kalman Filter (EnKF)
:::::::::::::::::::::
(Dirren and Hakim, 2005),

::::::
where

:::
the

:::::::::::
instantaneous

:::::::
forecast

::
is
:::::::::::
decomposed

::::
into

::
its

::::::::::::
time-averaged

::::
part

:::
and

:::
the

:::::::::
anomalies

::::::
around

:::
it.

::::::::::
Afterwards,

:::
the

:::::::
original

:
EnKF

:::::
update

:::::::
formula

::
is
:::::

used
::
to

:::::::::
assimilate

:::
the

:::::::::::
time-averaged

:::::::::::
observations

::::
into

:::
the

::::::::::::
time-averaged

:::::::
forecast,

:::::::::
obtaining

:::
the

::::::::::::
time-averaged

:::::::
analysis.

:::::::
Finally,

:::
the

::::::::::::
instantaneous

::::::
analysis

::
is
:::::

form
:::
by

::::::
adding

:::
the

::::::::
unaltered

::::::::::::
time-averaged

:::::::
forecast

:::::::::
anomalies

::
to
::::

the
::::::::::::
time-averaged

:::::::
analysis. This approach is10

based on the fact
:::::::::
assumption

:
that the observations can only contain time-averaged information (Dirren and Hakim, 2005).

2.1.4 Observational System Simulation Experiments

Given a prediction system comprising a dynamical model and a scheme, forecast and analysis errors arise from many different

sources, e.g. model imperfections, inadequacy of the strategy and insufficiency of observational information, which interact

with each other in practice. In order to disentangle the effects of these error sources, a scheme is typically tested under simplified15

conditions by means of numerical experiments, currently known as , whose realism level is gradually increased.

An consists of (i) a single model trajectory xNATURE, typically referred to as “true” run or “nature” run, that is used as prediction

target, (ii) pseudo-observations created by applying the observation operator to xNATURE and adding simulated observational

noise, and (iii) an observationally constrained run XDA, obtained by performing a sequence of analysis cycles where the

pseudo-observations are assimilated (see Fig. 1).20

The nature run is normally generated by running the dynamical model starting from a random sample of the model climatology.

Notice that thanks to the availability of the truth model evolution for an , the forecast and analysis skill of the observationally

constrained run can be directly assessed, using for example the of the ensemble mean:

RMSE(〈XDA〉) =
(
(xNATURE−〈XDA〉)2

) 1
2

,

where and 〈 〉 denote the time and ensemble mean operators, respectively.25

An additional run frequently performed for involving ensemble methods, is a free ensemble run XFREE, where no observations

are assimilated and then the ensemble just freely evolve under the action of the model dynamics. XFREE is intended to provide

a benchmark of performance, against which it is possible to asses the the added value of
::::::
crucial

:::::
aspect

::
of

::::::::::::
time-averaged

:
DA

:
is
:

the scheme
::::::
off-line

:::::::
regime,

::::::
which

:::::::
manifest

:::::
itself

::
as
::

a
::::::::
complete

::::
lack

:::
of

:::::::::
estimation

::::
skill

:::
for

:::
the

:::::::
forecast

:::::::::
quantities.

:::::
This

:::::::
behavior

::::
was

:::
first

::::::::
observed

:::
for

:::
the

:::::::::::
time-averaged

:
Ensemble Kalman Filter (EnKF)

::::::
applied

::
to
::
a
::::::::::::::
quasi-geostrophic

:::::::::::
atmospheric30

::
jet

::::::
model

:::::::::::::::::::::::::::::::::::::::::::
(Huntley and Hakim, 2010; Pendergrass et al., 2012).

::::::::::
Afterwards,

::::::
several

:::::::
studies

::::
have

::::
used

:::
the

:::::::::
simplified

:::::::
off-line

:::::::::::
time-averaged

:
Ensemble Kalman Filter (EnKF)

:::::::
approach

::::
with

::::::
global

::::::
climate

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bhend et al., 2012; Steiger et al., 2014; Dee et al., 2016) assuming

::
the

::::::::
presence

::
of

:::
the

::::::
off-line

:::::::
regime.

::::::::
However,

::
to

:::
our

::::::::::
knowledge,

:::::
there

:::
had

:::
not

::::
been

:::::::::
numerical

:::::::
evidence

::
of

:::
the

:::::
onset

::
of

:::::::
off-line

7



::::::::
conditions

:::
for

::
a
::::
full

::::::::::::
time-averaged

:
Ensemble Kalman Filter (EnKF)

::::::::
algorithm

:::::::
applied

::
to

::
a
:
AGCM

:
.
:::
As

:::::::::
mentioned

:::
in

:::
the

::::::::::
introduction,

::::::
filling

:::
this

:::::::::
knowledge

::::
gap

:
is
::::
one

:::
the

::::::::
objectives

::
of

::::
this

:::::
paper.

2.2 TRW Forward Modeling
:::::
Model

2.2.1 Model

The
::::
The Vaganov-Shashkin-Lite (VSL) model for TRW chronologies offers an intermediate complexity approach between5

ecophysiological and completely data-driven models (Tolwinski-Ward et al., 2011; Tolwinski-Ward, 2012), where the climate-

driven component of tree-ring growth is parametrized by way of a simple representation of the (Fritts, 1976). This biological

concept Principle of Limiting Factor (PLF)
:::::::::::
(Fritts, 1976).

::::
The

:::::::::
biological

::::::
concept

:::
of PLF states that the pace at which a plant

develops is controlled by the single basic growth resource, typically either energy or water, that is in shortest supply. Within

VSL the limiting factors considered are near-surface air temperature (T ) and soil moisture (M ). These variables influence tree10

growth by means of “growth response” functions gT and gM using a piece-wise linear “standard ramp” function (Tolwinski-

Ward et al., 2014):

Ψ(u) =


0 if 0> u

u if 0< u6 1

1 if u > 1,

VSL’s growth responses at a particular time is expressed as:

gT = Ψ

(
T −TL

TU −TL

)
(11)15

and

gM = Ψ

(
M −ML

MU −ML

)
. (12)

Where TL and ML denote minimum thresholds for temperature and moisture below which there is no grown
::::::
growth, and

TU and MU are upper thresholds above which tree growth is optimal. Afterwards, the growth rate GMIN is determined by the

smallest growth response, i.e.,20

GMIN =min{gT ,gM}, (13)

The yearly TRW values W are obtained as following:

Wn =

tn∫
tn−τ

GMIN (t)I(t) dt. (14)

Where I is the relative local insolation.

8



2.2.1 VSL from the
:::::
Fuzzy

::::::
Logic Viewpoint

The term Fuzzy Logic (FL) was coined by Zadeh (1975) and refers to a mathematical theory which has been very successful

at modeling complex systems involving imprecise data and vague knowledge of the underlying mechanisms. Since its intro-

duction, FL has greatly influenced many applied disciplines, most notably control theory (Nguyen et al., 2002). Within the

environmental sciences, FL has also found numerous applications, including
::::
been

::::::
applied

::
in
:
ecological and hydrological mod-5

eling (Marchini, 2011; Salski, 2006; Se, 2009). Regarding climate proxy forward modeling, AC15 recently showed that VSL

model can be completely embedded into the framework of FL. Within this reinterpretation, the growth response function gT

(gM ) correspond
::::::::::
corresponds

:
to the membership function to the set ST (SM ) of optimal temperature (moisture) conditions

for tree growth. Temperature (moisture) values lying below TL (ML) present null values for gT (gM ) and accordingly do not

belong to ST (SM ). On the other hand, temperature (moisture) values lying above TU (MU ) lead to gT (gM ) values equal10

to 1, meaning they belong completely to ST (SM ). All the other temperature (moisture) conditions present growth responses

between 0 and 1 and consequently they are considered to belong partially to ST (SM ). This idea of partial membership is the

basis of fuzzy logic and the sets defined this way are called fuzzy sets. Furthermore, the intersection of the fuzzy sets ST and

SM is again a fuzzy set ST∧M , whose membership function can be calculated by evaluating the minimum between GT and

GM :15

gT∧M =min{gT ,gM} (15)

Equation 15 is completely equivalent to the equation 14and then
:
.
::::
Then

:
VSL’s growth rate function can be interpreted as

the membership function for the fuzzy intersection set ST∧M . In FL theory, the minimum function (Eq. 15) is one of the most

popular representations of the intersection operation, however it is not the only, existing actually a whole family of appropriate

functions referred to as t-norms (see Nguyen et al. (2002)). In AC15 a number of t-norms was tested as replacement for20

VSL’s growth rate function within a highly simplified paleo-DA setting. In particular it was found that the product t-norm

gT∧M = gT · gM might improve significantly the performance of the time-averaged EnKF technique. Accordingly, beside the

minimum t-norm we consider also in this paper the product growth response VSL with Product t-norm (VSL-Prod):

GPROD = gT · gM . (16)

2.3 Atmospheric General Circulation Model
::::::::::::
Experimental

::::::
Design25

::::::::
Following

:::
the

:::::::
rationale

:::::
used

::
in

::
the

:::::::::::
experiments

::
of

:::::
AC15,

::
a

::
set

::
of

:::::::
“perfect

:::::::
model” Observation System Simulation Experiments

(OSSE)
:
s
::::
(see

:::
fig.

::
1)

::::
was

:::::::::
conducted

:::::
using

::::::::
SPEEDY

:::::
model

::::::::::::::::
(Molteni, 2003) as

:::::::::
dynamical

::::::
system

::::
and VSL

::::::
forward

:::::
model

:::
as

:::::::::
observation

::::::::
operator.

:::
The

::::::::::::
time-averaged

::::
state

::
of

:::
the

:::::::::
atmosphere

::
is
::::::::
estimated

:::
via

:::
the EnKF

::::::::
approach

::
of

:::::::::::::::::::::
Dirren and Hakim (2005).

::
In

:::
the

::::::::
following,

:::
we

:::::::
describe

::
in
:::::
detail

::::
each

:::
of

:::
the

::::::::::
components

::
of

:::
our

:::::::::::
experimental

::::::
setting.

:
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2.3.1
:::::::::::
Atmospheric

:::::::
General

:::::::::::
Circulation

::::::
Model

The Simplified Parametrizations, primitivE-Equation Dynamics (SPEEDY) model (Molteni, 2003) is an intermediate complex-

ity AGCM comprising a spectral dynamical core and a set of simplified physical parametrizations, based on the same principles

as state-of-the-art AGCM but tailored to work with just a few vertical levels.

SPEEDY’s dynamical core solves the hydrostatic primitive equations by means of the spectral transform developed by5

Bourke (1974), which uses absolute temperature, logarithm of the surface pressure, specific humidity, divergence and vorticity

as basic prognostic variables. The time stepping is performed via a leapfrog scheme with an standard Robert–Asselin filter

(Robert, 1966). The sub-grid scale processes parametrized in speedy are convection, large-scale condensation, clouds, short-

and long-wave radiation, surface fluxes, and vertical diffusion.

In this paper we employ version 32 of SPEEDY, with seven vertical levels (L7) and standard Gaussian grid of 96 by10

48 points in the horizontal (T30). The top and bottom layers represent the stratosphere and the planetary boundary layer

, respectively
::::::::
Regarding

::::
the

::::::
ocean,

::::::::
SPEEDY

:::::
offers

::::
two

::::::::
possible

::::::::::::
configurations:

:::
(i)

:::::::::::::
PRESCRIBED

::::
where

::::
the

:::
sea

:::::::
surface

::::::::::
temperature

:
is
:::::::

directly
:::::::
imposed

:::
as

::::::
forcing

:::
and

::::
(ii)

:::::
SLAB

:::::
where

:::
the

::::::
model

::
is

::::::
coupled

:::
to

:
a
::::
slab

:::::
ocean

::::::
model

::::::
(“q-flux

::::::::
adjusted

:::::
mixed

::::
layer

:::::::
model”)

::::::
forced

::
by

::::::::::::
climatological

::::::
ocean

::::::::
dynamics. Despite of its low resolution and the relative low complexity of

its parametrizations
::::::::::::::
parameterizations, SPEEDY still captures many observed global climate features in a realistic way, while15

its computational cost is at least one order of magnitude lower than the one of sophisticated state-of-the-art AGCM’s at the

same horizontal resolution (Molteni, 2003). The latter makes SPEEDY specially suitable for studies involving long ensemble

runs, like the ones necessary for this study.

2.4 Experimental Setting

Following the rationale used in the experiments of AC15, pseudo-observations are generated using Vaganov-Shashkin-Lite ()20

(Tolwinski-Ward et al., 2011, 2013) as observation operator. Afterward, the time-averaged state of the atmosphere is estimated

via approach Dirren and Hakim (2005). The impact of the representation of the on the filter performance is studied using the

assimilation of time averaged linear observations as a reference.

2.3.1 Filter Implementation

The SPEEDY model is
:::
was

:
embedded by Miyoshi (2005) into the ensemble framework using the (Hunt et al., 2007), the so25

called SPEEDY-Local Ensemble Transform Kalman Filter (LETKF) framework. The parallel FORTRAN 90 implementation

of the
:
,
:::::
which

::::::
offers

:
a
:::::::
parallel

:::::::::::::
implementation

::
of

:
LETKF

::::::::::::::::
(Hunt et al., 2007).

::::::
Among

:::
the

::::::::
different

::::::
flavors

::
of

:
EnKF

:
,
:
LETKF

is
:::::::::
particularly

:
promising for high resolution model

::::::
models

:
given that the calculation of the analysis for a particular grid

point requires only the information of the neighboring grid points. Therefore, LETKF offers outstanding scalability properties.

SPEEDY-LETKF is an open-source software which have already been widely used for several DA studies (Li et al., 2009;30

Miyoshi, 2010; Lien et al., 2013; Ruiz et al., 2013; Amezcua et al., 2014). Here, SPEEDY-LETKF was extended for
::
to

:::::
allow

the assimilation of time averaged linear observations and pseudo-TRW observations. This was done by

10



2.3.1
::::::
Perfect

::::::
Model

:::::::::::
Experiments

:::::
Given

:
a
::::::::::

dynamical
::::::
climate

::::::
model

::::
and

:
a
:

DA
::::::
scheme,

:::::::
forecast

::::
and

:::::::
analysis

::::::
errors

::::
arise

:::::
from

:::::
many

::::::::
different

:::::::
sources,

::::
e.g.

:::::
model

::::::::::::
imperfections,

::::::::::
inadequacy

::
of

:::
the

:
DA

:::::::
strategy

:::
and

:::::::::::
insufficiency

:::
of

:::::::::::
observational

:::::::::::
information,

::
all

::::::
which

:::::::
interact

::::
with

::::
each

:::::
other

::
in

::::::::
practice.

::
In

:::::
order

:::
to

::::::::::
disentangle

:::
the

::::::
effects

:::
of

::::
these

:::::
error

::::::::
sources,

:
a
:

DA
::::::
scheme

::
is

::::::::
typically

:::::
tested

::::::
under

::::::::
simplified

:::::::::
conditions

::
by

::::::
means

::
of

::::::
perfect

:::::::::
numerical

:::::::::::
experiments,

:::::::
currently

::::::
known

::
as
:
OSSE,

::::::
whose

::::::
realism

:::::
level

::
is

::::::::
gradually5

::::::::
increased.

:::
An

:
OSSE

::::::
consists

:::
of (i) modification of the model time cycling

:
a
:::::
single

::::::
model

::::::::
trajectory

::::::
xNATURE,

::::::::
typically

:::::::
referred

::
to

::
as

::::::
“true”

:::
run

::
or

::::::::
“nature”

::::
run,

::::
that

::
is

::::
used

:::
as

::::::::
prediction

::::::
target, (ii) addition of the time-averaged updating approach of

Dirren and Hakim (2005)
::::::::::::::::
pseudo-observations

:::::::
created

::
by

::::::::
applying

:::
the

::::::::::
observation

::::::::
operator

::
to

::::::
xNATURE

:::
and

::::::
adding

:::::::::
simulated

:::::::::::
observational

:::::
noise,

:
and (iii) development of

::
an

:::::::::::::
observationally

::::::::::
constrained

:::
run

::::
XDA,

::::::::
obtained

::
by

::::::::::
performing

::
a

:::::::
sequence

:::
of

::::::
analysis

::::::
cycles

:::::
where

:::
the

:::::::::::::::::
pseudo-observations

:::
are

:::::::::
assimilated

::::
(see

:::
Fig.

:::
1).

::::
The

:::::
nature

:::
run

::
is

::::::::
normally

::::::::
generated

::
by

:::::::
running

:::
the10

::::::::
dynamical

::::::
model

::::::
starting

:::::
from

:
a
:::::::
random

::::::
sample

::
of

:::
the

:::::
model

:::::::::::
climatology.

:::::
Notice

::::
that

:::::
thanks

::
to
:
the -like observation operator.

Additionally, in order to avoid catastrophic filter divergence (ref. sec. 2.1.2), observations with large divergence from their

corresponding predicted values were neglected. Moreover, in order to avoid the crash of the model after assimilation steps,

the following quality control criterium is applied: The observations whose corresponding innovation vector norm (absolute15

mismatch regarding the forecast observation) is bigger that 10 times its error standard deviation are discarded
::::::::
availability

:::
of

::
the

:::::
truth

:::::
model

:::::::::
evolution

:::
for

::
an

:
OSSE,

:::
the

:::::::
forecast

::::
and

:::::::
analysis

::::
skill

::
of

:::
the

:::::::::::::
observationally

::::::::::
constrained

:::
run

:::
can

:::
be

:::::::
directly

:::::::
assessed,

:::::
using

:::
for

:::::::
example

:::
the

:
Root Mean Square Error (RMSE)

::
of

:::
the

::::::::
ensemble

:::::
mean:

:

RMSE(〈XDA〉) =
(
(xNATURE−〈XDA〉)2

) 1
2

,
::::::::::::::::::::::::::::::::

(17)

:::::
where

::::::
and

:::
〈 〉

:::::
denote

:::
the

::::
time

::::
and

:::::::
ensemble

:::::
mean

:::::::::
operators,

::::::::::
respectively.

:::
An

::::::::
additional

:::
run

:::::::::
frequently

:::::::::
performed

::
for

:
OSSE20

::::::::
involving

::::::::
ensemble DA

:::::::
methods,

::
is

:
a
::::
free

::::::::
ensemble

:::
run

::::::
XFREE,

:::::
where

:::
no

::::::::::
observations

:::
are

::::::::::
assimilated

::::
and

::::
then

:::
the

::::::::
ensemble

:::
just

:::::
freely

::::::
evolve

:::::
under

:::
the

::::::
action

::
of

:::
the

:::::
model

:::::::::
dynamics.

:::::
XFREE

::
is

:::::::
intended

::
to
:::::::

provide
::
a

:::::::::
benchmark

::
of

:::::::::::
performance,

:::::::
against

:::::
which

:
it
::

is
:::::::
possible

::
to
:::::
asses

:::
the

:::
the

:::::
added

:::::
value

::
of

:::
the

:
DA

::::::
scheme.

2.3.2 Simulations’ Characteristics

The modified version of SPEEDY-LETKF is utilized
::::
used to carry out a set of standard “perfect model” OSSEs (Fig. 1). First25

the
:
a
::::::
simple representation of the PLF

:
(VSL controlled only by Temperature (VSL-T)

:
) is utilized for two sets of experiments

under different ocean conditions:

• PRESCRIBED experiment is forced by the boundary conditions included in the version 41 of the code, which com-

prises the sea surface temperature (SST) anomalies from 1854 to 2010 with respect to the period 1979 to 2008 derived from

NOAA_ERSST_V3 dataset (Smith et al., 2008; Xue et al., 2003), as well as climatological maps derived from input data of the30

European Centre for Medium-Range Weather Forecasts (ECMWF)’s reanalysis (Gibson et al., 1997). At the surface boundaries

::
the

:
model requires the climatological maps of sea surface temperature, sea ice fraction, surface temperature at the top of the
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soil, moisture in the top soil layer and the root-zone layer, snow depth, bare-surface albedo, fraction of land-surface vegetation.

At the top of the atmosphere, the model calculates the flux of incoming solar radiation from astronomical formulae (Molteni,

2003). The solar radiation absorption by ozone in the stratosphere follows empirical functions with seasonal variability. The

latitudinal variability of the optical depth depends on the daily averaged zenith angle (Molteni, 2003). The climatological fields

are derived for the period 1981-1990 to have a better balance for warm and cold El Niño-Southern Oscillation (ENSO) events5

(Molteni, 2003). This procedure follows the AMIP-type experiments (Herceg Bulić and Kucharski, 2012).

• SLAB experiment is coupled with a slab ocean model (“q-flux adjusted mixed layer model”) forced by climatological ocean

dynamics and no initialization is used. The model starts from a spun up state.

Two
:::
We

:::::::
consider

::::
two representations of the PLFare considered: the “minimum” (GMIN ) and the “product” (GPROD) t-

norms. Initially, a one-year long spin-up run is performed for all experiments, starting from January 1st, 1860. The final state10

of this model trajectory is subsequently used as initial condition for a 150 year long nature (“true”) run. The ensemble runs

with and without DA are identically initialized from a set of states gathered daily from the last two months of the spin-up run

(lagged 2 day initialization). Notice that the nature (“true”) run and the different ensemble runs (priors
:::::::
forecasts) are generated

with the same time varying forcing fields.

2.3.2 Observation Generation15

Pseudo-TRW observations are produced following VSL’s formulation, plus a final white noise addition step, where random

draws from a Gaussian distribution are imposed on the time averaged observations. The measurements’ error is assumed not to

be
::
In

:
a
:::::::
perfect

:::::
model

::::::::::
experiment

:
it
::
is

::::::
usually

::::::::
assumed

:::
that

:::
the

:::::::::::::
measurements’

:::::
errors

:::
are

:::
not

:
correlated in time (no memory) ,

therefore the white noise is used in this study
:::
and

:::
the

::::::
“white

:::::
noise”

::
is
:::::
added

:::
to

:::
the

::::::::::
observations

:
(McShane and Wyner, 2011;

Dee et al., 2016). Surface temperature data was extracted from the lowest level of the state vector
:::::
model, while soil moisture20

was taken from the surface boundary conditions. Notice that temperature is a prognostic variable of the model, whereas soil

moisture is a prescribed variable with yearly periodicity. It is worthwhile to mention that although soil moisture is not a

prognostic variable of SPEEDY, it does affect prognostic variables, such us humidity, through the parametrizations.

Regarding the geographical distribution of observations, we
:::
We place a station at every grid box where at least one actual

TRW chronology from the database of Breitenmoser et al. (2014) is present. This strategy yields an a
:::::::

realistic
:
observational25

network comprising 257 stations (see figure 2). Concerning the configuration of the observation operator, for our experiment

involving SPEEDY we focus on the effect of the first VSL’s nonlinearity, i.e., the shifting of recorded variable
::::::
(growth

::
is

::::::
limited

::
by

:::::
either

::::::::::
temperature

::
or

::::::::
moisture). Consequently, we configure VSL so that no thresholding takes place. This is done by setting

the upper and lower response thresholds to the maximum and minimum values during the nature (true) run, respectively, so

that the response functions reduce to linear rescaling operators (ref. AC15).30

2.3.3 Diagnostic Statistics

3
::::::
Results
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Our results are presented in three sections
:::::
Given

:::
the

::::::
annual

::::::::
resolution

::
of
:

TRW
:::::::::::
chronologies,

:::
we

:::::
study

:::
the

::::
filter

:::::::::::
performance

::
for

::::::
yearly

:::::::
averaged

::::::
values

::
of

::::
near

::::::
surface

::::::::::::
temperatures.

:::
We

::::
focus

::::
our

::::::
analysis

:::
on

::::::::::
temperature

:::
due

::
to

:::
the

:::::
larger

:::::
error

::::::::
reduction

::
in

:::
this

::::
field

:::
as

::::::::
compared

:::
to

::::
other

::::::::
variables

::
(
::
eg,

:::::::
humidity,

:::::::
u-wind,

:::::::
v-wind)

:::::
when

:
DA

::
is

:::::::
applied.

:::
The

::::::::
behavior

::
of
:::::::::

ensemble

:::
runs

::
is
:::::::::

monitored
:::
by

::::::
means

::
of

:
RMSE

::
for

:::
the

::::
near

:::::::
surface

::::::::::
temperature.

::::
The

::::::
results

:::
are

::::::
shown

::
as: 1) time-series of globally

averaged temperature RMSE, 2) histograms of these time-series and 3) maps of time-averaged (150 years) temperature RMSEs.5

We show the analysis of the temperature variable due to its larger error reduction compared to other variables (eg, humidity,

u-wind, v-wind) when
:::::
begin

::::
with

:::
the

::::::::::
investigation

:::
of

:::
the

::::::::::
performance

::
of

:::
the

::::::
online

:::
and

::::::
offline DA is applied.

4 Results

Given the annual resolution of chronologies, we study the filter performance for yearly averaged values (near surface temperatures).

We monitor the behavior of ensemble runs by means of for the near surface temperature. SPEEDY presents spatially heterogeneous10

internal variability (Molteni, 2003). Due to this feature, for a particular time averaging length, there will typically be regions

with very low internal variability (eg., equatorial regions for temperature) for which shows very low values
::::::::::
simulations.

:::::
Then

::
the

:::::::::::
performance

::
of DA

:::
skill

::
is

:::::
tested

:::
for

:::
two

:::::::
different

::::::
growth

::::::::
functions.

::::::::::
Afterwards,

:::
we

:::::::
examine

:::
the

::::::::::
performance

:::
of

::
the

:::::::
off-line

DA
:::
for

:::::::
different

:::::::::::
observational

::::::
errors.

:::::::
Finally,

:::
the

:::::
effect

::
of

:::::
using

:::
the

:::::::::::
time-varying

::::
soil

:::::::
moisture

:::::
fields

:::
on

:::
the

::::::::::
performance

:::
of

DA
::::::::
approach

:
is
::::::
tested.15

3.1 Free Ensemble Run
::::::
Spread

::::
and

::::::
Error

An AGCM is an example of non-autonomous system and accordingly the evolution of its state is determined by both the

atmospheric dynamics and the external forcing. The influences of these two distinct factors can be disentangled to some extent

by considering atmospheric variability to be a superposition of an internal component, caused by the intrinsic dynamics, and

an external one, resulting from the variations of the boundary conditions (Deza et al., 2014). Under this assumption, internal20

and external variability can be separated by way of a free ensemble run, using the ensemble mean as an estimate of the forced

component. The magnitude of the internal variability can then be estimated from the ensemble spread. Note that using an

ensemble DA method is only beneficial in the presence of internal variability, given that the forced variability can be well

described by an unconstrained ensemble run (free ensemble run).

3.1.1 Free Ensemble Spread and Error25

The time averaging operator acts as a low pass filter that reduces the amplitude of fluctuations with time scales shorter than

the averaging period. Subsequently, geographical areas dominated by fast processes, compared to averaging period, tend to

present constant mean values, or equivalently no internal time averaged variability. The climatology and the formulation of

the SPEEDY model is fully described in Molteni (2003). Therefore, we focus only on the results of the approach, without

considering the systematic errors of the model. In the case of TRW chronologies, the characteristic one-year averaging period30

is long for atmospheric phenomena, and as consequence several areas show very low yearly internal variability for certain vari-
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ables. A clear example of this is temperature around the equator (see figure 3a) where the temperature variability is dominated

by the daily cycle and accordingly is strongly attenuated by the yearly averaging. On the other hand, planetary scale patterns are

not completely stationary and fluctuate over longer time scales. These low-frequency processes introduce internal variability

in the yearly means, as can be seen in figure 3a. Maximum temperature spread occurs near the surface at high latitudes around

±70◦. These yearly internal variability maxima can be related to leading modes of variability of the global circulation, such as5

the “annular modes” (e.g., ENSO) (Thompson and Wallace, 2000), migrations of the Inter Tropical Convergence Zone (ITCZ)

(Schneider et al., 2014), as well as displacements of the jet stream (Woollings et al., 2011).

An important consequence of the spatially heterogeneous yearly internal variability of SPEEDY is that the nature (true) run

variables at geographical areas with low internal variability can be well predicted by the ensemble mean of the free ensemble

run, as it can be seen in figure 3b for the tropical surface temperature. On the other hand, RMSE extremes take place in areas10

of maximal internal variability (compare figures 3a and 3b). Generally, the error of the free ensemble run, used as a predictor

of the nature (true) run, is essentially the projection of the nature (true) run trajectory on the internal variability component (see

schematic in Fig. 1). Figure 3 exhibits the results for the SLAB experiment. The PRESCRIBED experiment presents
:
a very

similar behavior.

3.2 Assimilating Pseudo-TRW Observations15

3.2.1 Temperature-based Representation ()
:::::
SLAB

::::
and

:::::::::::::
PRESCRIBED

::::::
ocean

As described in Sec. ??
::::
Here, we investigate two different experiments using SLAB and PRESCRIBED ocean conditions (see

Table 1). For the sake of simplicity, we set up the sensitivity experiments
:::::::::
Sensitivity

::::::::::
experiments

::::
are

:::::::::
conducted using the

simple observation operator VSL-T to investigate the effect of the SLAB oceanmodel. The use of SLAB ocean
:::::
using

:
a
::::::
SLAB

:::::
ocean.

::::
This

:
is motivated by the fact that the coupled ocean may lend predictability to the atmosphere as a slow component of20

the climate system. On the other hand, the climate of the PRESCRIBED experiment may follow the trends of the forced ocean

conditions instead of the terrestrial proxy records. Therefore, the PRESCRIBED experiment’s spread and error are expected

to be smaller than the SLAB experiment. Figure 4 supports this hypothesis, showing a reduction in globally averaged free

ensemble error in PRESCRIBED compared with the SLAB.

Figure 4a illustrates that no error reduction is obtained for the forecasted temperatures
::::::
forecast

:::::
state. The expected value25

of the RMSE is slightly larger than the free ensemble simulation for both SLAB and PRESCRIBED. However, the analysis

state has skill (Fig. 4b), especially prior to 1950s. The existence of the trend in the RMSE time-series may arise from cycling

(reinitialization) of the ensemble or the choice of observation operator(more details in Sec. ??). The distribution density of the

proxy record locations are biased to the Northern hemisphere; therefore, the error reduction of the analysis is more evident in

the RMSE maps (Fig. 5).30

An important aspect of our results concerning the skill when yearly averaged linear observations are assimilated, is that the

error reduction regarding
::::
The

::::
error

::::::::
reduction

::
of

:
the free ensemble run appears

:
is
:
modulated by the magnitude of the yearly in-

ternal variability of the particular variable at a specific site (compare figures 4
:
3
:
and 5). As a consequence, stations located in ar-
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eas of strong yearly internal variability
::::
(i.e.,

::::::
Alaska)

:
are more efficient than the others at reducing the error of the time-averaged

state estimate.An example of this are the stations located in Alaska which constrain temperature with considerably larger skill

than sites in South Africa. This finding may prove useful for the design of optimal chronology networks, in particular, and

proxy networks in general
:::::::::::
Additionally,

::::
more

::::::::
terrestrial

:::::::
records

::::
from

:::
the

::::::::
Southern

::::::::::
Hemisphere

::::
may

:::::::
improve

:::
the

::::
state

:::::::
estimate

(see Comboul et al. (2015) and the discussion at the end of this paper).5

This situation, where a method presents time averaged analysis skill for averaging periods where the time averaged forecast

skill is completely lost, has been previously observed in studies applying techniques on time averaged quantities (Huntley and Hakim, 2010; Bhend et al., 2012; Pendergrass et al., 2012; Steiger et al., 2014).

performed under these circumstances is generally termed “offline Data Assimilation”. This term is used to indicate that, under

the randomizing action of chaotic model dynamics, the prior is completely decorrelated from the previous analysis state.

As a consequence, the observational information cannot accumulate over time, as opposed to the typical application of for10

short-range prediction. This complete absence of observational constraint on the forecast implies that our experiments are

performed in an “off-line” regime.

3.2.2 Minimum and Product Growth Rate Functions(and )

Here
:::::
Here, the performance of the two different growth functions within the VSL’s formulation, the product growth response

(GProd) and the minimum growth response (GMin), are investigated. These formulations are tested for both “online” (with15

cycling) and “offline” (no-cycling) data assimilation set-ups. In a simple DA experiment, AC15 have shown that the GProd

performs slightly better than GMin.

with cycling

Considering the SLAB experiment, we compare the two nonlinear representations in our setting (and ). As illustrated in

figure 6a, the DA forecast presents no skill in the globally averaged temperature for both of the representations
:
(VSL with20

Minimum t-norm (VSL-Min)
:::
and

:
VSL-Prod

:
). However, the use of VSL-Prod , instead of VSL-Min appears beneficial to the

filter performance for the analysis, as demonstrated in Figure 6b. The expected value of the RMSE shifts significantly toward

lower values for VSL-Prod compared to the free ensemble run. Similar to the case of , the
:::
The

:
RMSE time-series shows an

increasing trend for both VSL-Min and VSL-Prod.

The RMSEs of DA forecasts using different VSL representations (figures 5a, 7a and 8a) do not indicate any improvement25

over the free ensemble run (Fig. 3b). The analysis of VSL-Prod performs with slightly better skill than VSL-Min over Europe,

the United States and Central Asia. Due to the strong nonlinear features of VSL-Min and VSL-Prod, the performance of these

filters is expected to be degraded with respect to the ensemble runs constrained with VSL-T linear observation (see AC15).

This behavior can be readily seen by comparing the figures 5b, 7b and 8b.
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with no-cycling

Our experiments show that the DA forecast has no skill over the model climatology. Several recent studies have applied a

similar methodology (Steiger et al., 2014; Dee et al., 2016; Hakim et al., 2016). Dee et al. (2016) have performed paleoclimate

reconstructions by using a physically based for three kinds of proxies (tree ring, coral δ18O and ice core δ18O) and two

isotope-enabled atmospheric general circulation models. Matsikaris et al. (2015) compared an off-line and an on-line ensemble-based5

and showed that the both methods outperform the model without . They concluded that the on-line method performs a more

realistic temporal variability
:::
free

::::::::
ensemble

::::
run. Therefore, we investigate the idea of purely “

:::::
using

:::
the

:::::::
forecast

::::
state

:::
of

:::
the

:::
free

::::::::
ensemble

::::::::::
simulations

:::
we

:::::::
conduct

::
an

:
off-line ” DA . The

:
to

:::::::::
reconstruct

:::
the

:::::::
analysis

:::::
state.

::::
The

:::::::
forecast

::
of

:::
the free ensem-

ble simulation at any individual year is used as the prior
::::::
forecast

:
state vector for that yearinstead of the forecast. Following

this methodology, the cycling step (reinitialization) of the ensemble is neglectedand the time averaged technique is applied10

in parallel. A very interesting feature of figure 9 is that the increasing trends in the RMSE time-series of the analysis have

vanished. This indicates that the previously existing trends in the forecast and consequently in the analysis originated from the

reinitialization step of the system but not the proxy records. Figure 10 also confirms that the performance of no-cycling
::::::
off-line

DA can compete with the performance of the online DA.

3.2.3 Signal to Noise Ratio15

The Signal to Noise Ratio (SNR) is expressed as the ratio of the standard deviation of the nature (true) run to that of the

additive white noise. We examined the performance of the off-line DA with different SNRs(Fig. 11). Figure 11 exhibits that the

time-averaged global RMSE shows an elbow
:::::::
inflection

:::::
point

:
at values around SNR= 1 and reaches the error levels of Free

run
:
a

::::::::
simulation

:::::::
without

:
DA

::::
(free

::::::::
ensemble

::::
run) at SNR= 0.03, where all the pseudo-observations are ignored in the DA.

3.2.4 Time Variable
::::::::::::
Time-Varying Soil Moisture20

To investigate the effect of using the time-varying soil moisture fields instead of climatological average in DA approach, we

implemented the Climate Prediction Center (CPC) Leaky Bucket Model (LBM) (Huang et al., 1996) in our DA code. The LBM

code was extracted from VSL v2_3 (ftp://ftp.ncdc.noaa.gov/pub/data/paleo/softlib/vs-lite/). Instead of using climatological soil

moisture for , the
:::
The precipitation and temperature output from SPEEDY is used as input for LBM to produce the new set

of soil moisture with interannual
:::::::::::
time-varying

:::
soil

::::::::
moisture

:::::
fields

::::
with

::::::::::
inter-annual

:
variations. In the next step we repeated25

the off-line data assimilation runs for two VSL presentations (VSL-Prod and VSL-Min) .
:::::
using

:::
the

::::
new

::::
soil

:::::::
moisture

:::::
data.

The results show that using the new set of soil moisture
::::::::::
time-varying

::::
soil

:::::::
moisture

:::::
fields

:
has improved the error reduction

of VSL-Min with minor improvement for VSL-Prod in both time evolution and maps of (Figures 12 and 13). The RMSE of

VSL-Min reaches the one of VSL-Prod when using the soil moisture calculated from LBM. Figure 14 shows the histograms

:::::::
boxplots of the RMSE time-series. The results show that the is more sensitive to the choice of soil moisture and

:::::
while using30

the soil moisture calculated by the LBM improves the performance of the model . However
:::
for VSL-Min, the improvement in

error reduction for VSL-Prod is not significantwhen using the calculated soil moisture with the .
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4 Discussionand Conclusions

4.1 Error Reduction Efficacy of Chronologies

For the s studied here, it was found that the ability of a particular pseudo-chronology to reduce the error of the
:::::
Using

:::
the

:::::::::::
time-averaged

:
EnKF -based estimate of the time averaged state appears modulated by the strength of the yearly internal

variability of the model at the chronology site. This methodology is termed and can in principle be employed to help the5

dendrochronology community to increase the effectivity of their sampling efforts by focusing on the sites with more potential to

decrease reconstruction uncertainty (Ancell and Hakim, 2007; Hakim and Torn, 2008; Mauger et al., 2013). Furthermore, this

approach can be directly applied to any proxy type with sufficiently stable time resolution (e.g., annual resolution)(Comboul et al., 2015).

However, the application of this method for lower frequency climate data like sediment cores or speleothems has to be

investigated. These results are likely to depend on the climate model, the proxy system model, the proxy network and their10

resolution (Comboul et al., 2015).

An evident caveat of the above mentioned rationale is that every model-based estimate of the climate internal variability

strength for a particular time scale will necessarily exhibit the biases of the particular climate model used. We consider that

this modeling subjectivity/imperfection issue can be ameliorated by means of multi-model
:::::::::::
methodology and multi-physics

approaches, which in principle should increase the robustness of the results and provide uncertainty estimates. In any case,15

we believe that provided results are analyzed cautiously taking into account the weaknesses of current climate models. The

climate dynamics knowledge condensed into an Earth system model can certainly be used profitably to reduce the cost of a

indiscriminated proxy sampling strategy.

4.1 Off-line Regime

Within our simplified perfect model, the observed situation of simultaneously having significant
:
a
::::::

proxy
:::::::
forward

::::::
model20

:
(VSL

::
),

::
we

::::::::::
assimilated

:::
the

:::::::::::::::::
pseudo-observations

::
in

::
an

:::::::
AGCM

:::::::::
(SPEEDY).

::::::
Using

:
a
:::
set

::
of

::::::
perfect

:::::
model

:::::::::::
experiments

::
we

:::::::
studied

:::
two

::::::::
different

::::::
aspects

:::
of DAskill for analysis quantities and none for forecast quantities, currently referred to as ,

:::::::
namely

:::::::
“on-line/off-line regime ,

::::::
regime”

::::
and

::::::::::::::
“on-line/off-line DA

:::::::
scheme”.

::::
We

::::::::
concluded

::::
that

:::
the

:
DA

:::::::::
conducted

::::
here

:::::::
appears

::
to

::
be

::
in

:::
the

::::::::
“off-line

:::::::
regime”:

:::::
while

:::
the

::::::::
analysis

::::::::
quantities

::::
have

::
a
:::::::::
significant

::::
skill,

:::::
there

::
is

:::
no

::::
skill

:::
for

:::
the

:::::::
forecast

:::::
state.

::::
This

::::
result

::::::::
supports

:::
the

::::::
studies

::
of

:::::::::::::::::::::::::
Huntley and Hakim (2010) and

::::::::::::::::::::::::
Pendergrass et al. (2012) who

:::::::
applied

:::
the

:::::::::::
time-averaged

:
EnKF

::
to25

:
a
:::::::::::::::
quasi-geostrophic

::::::::::
atmospheric

:::
jet

::::::
model.

:::
The

::::::::::
appearance

::
of

:::
the

:::::::
off-line

::::::
regime can arise either from the dynamical model

or from the DA scheme(answers to the questions 1 and 2 raised in Introduction).

:
. Regarding the dynamical model, the most obvious reason to enter into the off-line regime

::::
main

::::::
reason

:::
for

::::::
losing

::::
skill

::
in

:::
the

:::::::
forecast is that the period between consecutive observations exceeds the predictability horizon of the model. Under

these conditions, as already discussed in AC15, the DA ensemble spread reaches climatological levels (
:::
the spread of the Free30

ensemble run )
:::
free

::::::::
ensemble

:::
run

:
before new observations are assimilatedand the accumulation of observational information

is essentially lost. For SPEEDY, due to its purely atmospheric nature, it is likely to enter the off-line regime
:::
have

:::
no

:::::::
forecast
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:::
skill

:
for a 1-year inter-observation period. This might be also the case for current operational (coupled) climate prediction

systems, given their lack of useful lead times longer than one year. Thus, it seems unlikely to achieve effective observational

constraints on the forecast
:::::::
improve

:::
the

:::::::
forecast

:::
skill

:
using proxy records with yearly time resolution. However, there is already

evidence for the existence of potential sources of climate internal variability with time scales longer than 1
:::
one year (Smith

et al., 2012). The so called “annular modes” (Thompson and Wallace, 2000) may present internal variability in the high latitude5

areas. The latitudinal oscillation of the cell structure imposes variability at the fringes of the jet streams and oscillations of the

ITCZ impacts the humidity (Holton and Hakim, 2013). ENSO affects a large portion of tropical and subtropical climate in

time-scales larger than one year. Accordingly, we expect that it should be possible to obtain actual inter-annual predictability

skill in the foreseeable future.

Regarding the DA scheme, a possible culprit for the onset of the
:::::
reason

:::
for

:::
the

::::::::::
appearance

::
of

:
off-line regime is the time-10

averaged update strategy (Dirren and Hakim, 2005). It is not clear if whether we can employ this technique with SPEEDY to

properly estimate instantaneous quantities out of time averaged observations. In particular, complete decorrelation between
:
it

:
is
:::
not

::::::::::
guaranteed

:::
that

:::
the

:
time averaged and instantaneous variables is not guaranteed

:::
are

:::::::::::
de-correlated.

In any case, despite
:::::
Given

:::
that

:::
our

:
DA

::::::::
simulation

::
is
::
in

:::
the

:::::::
off-line

::::::
regime

:::
(no

::::::
forecast

:::::
skill),

:::
we

::::
have

:::::::::
conducted

::
an

::::::::
“off-line

DA
:
”
::::::::::
(no-cycling)

:::
for

::::
two

:::::::
different

:::::::::::::
representations

::
of

:
VSL

::::::
forward

::::::
model.

:::::::
Despite

:
its lack of accumulation of observational15

information over time, off-line DA has already been shown to be more robust than traditional Climate Field Reconstruction

(CFR) techniques based on orthogonal empirical functions and stationarity assumptions (Steiger et al., 2014; Hakim et al.,

2016). Moreover, the implementation and running of
:::
Our off-line DA schemes is remarkably cheaper than on-line approaches.

Following the idea of (Steiger et al., 2014; Matsikaris et al., 2015; Hakim et al., 2016) for purely “offline” (no-cycling), our20

perfect model experiments indicate that the “online” scheme may not outperform the “offline” one in either the temporal or

the spatial error reduction (answer to the question 3 raised in Introduction). It should also be emphasized that our model

set-up (with slab ocean) can not capture the full atmosphere-ocean interactions. Therefore, using a more realistic coupled

atmosphere-ocean model may improve the skill of the “online” .

4.1 Filter Operation Sensitivity to the Growth Rate Function25

The results of the experiments conducted with SPEEDY support results obtained
:::::::::
experiments

:::::::
support

:::
the

::::::
results

::::::::
obtained

::
by

:
the two-scale Lorenz (1996) model (AC15) regarding the influence of the PLF representation on the filter performance.

The efficacy of the EnKF-based time averaged state estimation strategy appeared to be significantly sensitive to the selection

of the t-norm used to calculate the growth rate, with
:
.
:::
For

:::
the

:::::::
off-line

:
DA

::::::::
presented

::::
here,

:
the product t-norm (VSL-Prod)

outperforming
::::::::::
outperforms the minimum t-norm (VSL-Min)

:::::
which

::
is used in the original formulation of VSL forward model.30

Tolwinski-Ward et al. (2014) described trees as fundamentally lossy1 recorders of climate, due to the integrated nature of the

information contained in them and the standardization process used to minimize the non-climatic effects on growth. Growth

1This adjective is currently used in the information technology area to designate data encoding methods that lead to information loss from the original

version for the sake of reducing the amount of data needed to store the content.
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is influenced by temperature and/or moisture and the transitions between limitation regimes may happen suddenly (“abrupt

shifting”) Acevedo et al. (2015)
::::::::::::::::::
(Acevedo et al., 2015). In the same vein, we argue that the “abrupt shifting” of recorded vari-

able (temperature or moisture)–implied by the minimum function used in VSL’s original formulation– might constitute an

additional source of lossyness(at least within a EnKF-based setting used), which .
:::
We

::::::::
conclude

::::
that

:::
this

:
can be substantially

reduced by resorting to alternative Fuzzy Logic-based representations of the PLF. Our experiment indicates a higher skill5

performance with the for both “offline” and “online” regimes compared to the (answer to the question 4 raised in Introduction).

4.1 Challenges to be Addressed

As a cautionary remark, we want to highlight the several important limitations of the experiments described in this paper.

The generated pseudo-TRW observations lack a threshold for temperature or moisture after which the growth response does10

not change and their contamination with noise was performed assuming optimistically high SNR levels. Furthermore, the

response thresholds were set in a completely homogeneous fashion for all the observational stations, whereas actual TRW

networks are strongly heterogeneous in that sense, comprising chronologies generated under highly dissimilar growth limitation

regimes. Additionally, the efficiency of EnKF technique used relies on the Gaussianity of all the variables of the model.

Nevertheless, in a climate model some variables can present strongly non-Gaussian properties –specially definite positive15

quantities such as humidity– and their estimation should in principle be performed with more sophisticated strategies such a

Gaussian anamorphosis (Bocquet et al., 2010; Lien et al., 2013). It is worth mentioning the necessity of explicitly addressing

model errors by conducting imperfect model OSSE. Finally, we note that our findings are based on a slab coupled ocean model

and we encourage using a proper coupled atmosphere-ocean model in future studies.

4.1 Outlook20

Our results appear useful for chronologies in the sense that techniques are robust in the face of two strong nonlinearities, i.e.,

“switching recording” (Acevedo et al., 2015). Thus, it
:
It is important to emphasize that the OSSE presented in this manuscript

represents the first step of the long hierarchy of DA experiments to achieve an effective assimilation of proxy records into

climate models using forward proxy models. We encourage further experiments using comprehensive earth system models

with longer time scale processes to bring the proxy DA into an online regime. However, assimilation of proxies in an earth25

system model with different components may lead to inter-component DA pollutions
:::
and

::
is
::::::::::::::
computationally

::::
very

::::::::
expensive.
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Figure 1. Schematic of a typical Observation System Simulation Experiment (OSSE) with ensemble “online” (with cycling) and “offline”

(no-cycling) DA methods. t designates the time axis and X(Y ) denotes the model state (observation) space. Sharp (rounded) cornered

boxes represent data (processes). Red (green) vertical shadings indicate the Forecast (Analysis) spread. Vertical dotted lines represent the

assimilation steps.
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Figure 2. Station set resembling real TRW network from Breitenmoser et al. (2014)
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a) Free ensemble Spread
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b) Free ensemble Error
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Figure 3. Free ensemble simulations for the SLAB experiment: a) Ensemble Spread [K] of near surface temperatures, b) Free ensemble

RMSE [K].
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Figure 4. Global ensemble mean for a) Forecast constrained by VSL-T pseudo-TRW observations (bold lines) and Free run (thin lines);

b) Analysis (solid lines) and Free run (thin lines). Horizontal lines exhibit the mean values. Right panels exhibit the histograms of the

time-series.

28



a) DA forecast for VSL-T
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b) DA analysis for VSL-T
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Figure 5. Time-averaged RMSEs of SLAB experiment for a) DA forecast and b) DA analysis using the VSL-T observation operator.

29



a)

1900 1950 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Year

R
M

S
E

1900 1950 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Year
1900 1950 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Year

VSL−Min       VSL−Prod             Free           

0 5 10 150 5 10 150 5 10 15

b)

1900 1950 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Year

R
M

S
E

1900 1950 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Year
1900 1950 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Year

VSL−Min       VSL−Prod             Free           

0 5 10 150 5 10 150 5 10 15

Figure 6. Global ensemble mean for a) forecast and b) analysis constrained by VSL-Min (red) and VSL-Prod (green) pseudo-TRW observa-

tions and free run (black). Horizontal lines exhibit the mean values. Right panels exhibit the histograms of the time-series.
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a) DA forecast for VSL-Min
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b) DA analysis for VSL-Min
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Figure 7. Time-averaged RMSEs of SLAB experiment for a) DA forecast and b) DA analysis using the VSL-Min observation operator.
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a) DA forecast for VSL-Prod

150 90 30 30 90 150
Longitude

60

0

60

La
ti

tu
d
e

0.0

0.3

0.6

0.9

1.2

1.5

R
M

S
E
 [

K
]

b) DA analysis for VSL-Prod
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Figure 8. Time-averaged RMSEs of SLAB experiment for a) DA forecast and b) DA analysis using the VSL-Prod observation operator.
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Figure 9. Global ensemble mean for analysis constrained by VSL-Min (red) and VSL-Prod (green) pseudo-TRW observations and free run

(black). Horizontal lines exhibit the mean values. Right panel exhibits the histograms of the time-series.
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a) DA analysis for VSL-Min with nocycling
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b) DA analysis for VSL-Prod with nocycling
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Figure 10. Time-averaged RMSEs of SLAB experiment for a) nocycling DA analysis using the VSL-Min and b) the VSL-Prod observation

operator.
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Figure 11. Time-averaged global RMSEs of SLAB experiment for nocycling DA using the VSL-Min and different signal to noise ratios. The

Green star shows the Free run RMSE.
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Figure 12. Global ensemble mean for analysis constrained by pseudo-TRW observations for a) VSL-Min with the climatological soil mois-

ture (red), with the soil moisture computed by Leaky Bucket Model (blue) and free run (black); b) VSL-Prod with the climatological soil

moisture (green), with the soil moisture computed by Leaky Bucket Model (blue) and free run (black). Horizontal lines exhibit the mean

values. Right panels exhibit the histograms of the time-series.
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a) DA analysis for VSL-Min with Leaky Bucket Model and nocycling
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b) DA analysis for VSL-Prod with Leaky Bucket Model and nocycling
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Figure 13. Time-averaged RMSEs of SLAB experiment for a) nocycling DA analysis using the VSL-Min with Leaky Bucket Model and b)

the VSL-Prod with Leaky Bucket Model observation operator.
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Figure 14. Histograms of global ensemble mean for analysis constrained by pseudo-TRW observations for Free run, DA run with VSL-Min,

VSL-Prod using the climatological soil moisture and VSL-Min, VSL-Prod using the Leaky Bucket Model (LBM).
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