Atmospheric methane control mechanisms during the early Holocene
Ji-Woong Yang¹, Jinho Ahn¹, Edward J. Brook², and Yeongjun Ryu¹

¹School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
²College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA

Correspondence to: Jinho Ahn (jinhoahn@snu.ac.kr)

Abstract. Understanding the atmospheric methane (CH₄) change is crucial to predict and mitigate the future climate change. In spite of recent studies using various approaches for the last ~1000 to 2000 years, control mechanisms of CH₄ still remain unclear, partly because the late Holocene CH₄ budget is comprised of natural and anthropogenic emissions. In contrast, the early Holocene was a period when human influence should have been substantially smaller, so that it allows us to elucidate the natural controls under interglacial conditions. Here we present new high resolution CH₄ records of millennial scale CH₄ variability from Siple Dome, Antarctica, covering from 11.6 to 7.7 thousands of years before 1950 AD (ka). We observe several local CH₄ minima on a roughly 1000-year spacing. Each CH₄ minimum corresponds to cool periods in Greenland. We hypothesize that the cooling in Greenland forced the Intertropical Convergence Zone (ITCZ) to migrate southward, reducing rainfall in northern tropical wetlands although there is no obvious change was observed in low latitude hydrology corresponding to abrupt CH₄ reduction at ~10.3 ka. A high resolution inter-polar difference (IPD) during the early Holocene increased from ~10.7 to 9.9 ka, and remained high until ~9.3 ka. With a simple three-box model results, our new IPD records suggest that the ratio of northern high latitude to tropical sources increased due to a boreal source expansion following the deglaciation.

1 Introduction

Methane (CH₄) is a potent greenhouse gas whose atmospheric mixing ratio has been increased more than 2.5 times since the Industrial Revolution (Dlugokencky et al., 2009). Although lower in abundance compared to carbon dioxide (CO₂), CH₄ has ~28 times higher global warming potential (GWP) on centennial timescales, and even higher GWP on shorter time scales due to the shorter lifetime in the atmosphere (Stocker et al., 2013). Hence the knowledge of control mechanisms of CH₄ is important to foresee and mitigate the future climatic and environmental changes.

Naturally, CH₄ is mainly produced by microbial decomposition by methanogens in anaerobic environments, such as waterlogged soil, wetlands, or sediments of lakes and rivers. Even though CH₄ can be oxidized and emitted as CO₂, a considerable amount of CH₄ is still released into the atmosphere through vascular plants, diffusion and ebullition processes (e.g., Joabsson and Christensen, 2001). Geological CH₄ released from mud volcanoes and gas seepages through faults is the second most important natural sources (e.g., Etiöpe et al., 2008 and references therein). Additionally, a portion of CH₄ is...
produced by termites and wild animals via microbial digestive process (e.g., Sanderson, 1996), and by pyrogenic sources such as wildfire and biomass burning (e.g., Daniau et al., 2012). The oceanic CH\textsubscript{4} flux is considered as too small to create a significant change in global budget compared to the other sources (Rhee et al., 2009). The major sink of atmospheric CH\textsubscript{4} is photochemical reactions (oxidation) with the hydroxyl radical (OH), which is mainly controlled by atmospheric temperature, humidity, and concentration of non-methane volatile organic compound (NMVOC) (e.g., Levine et al., 2011 and references therein). The air temperature affects air humidity, limiting the production of OH. Both NMVOCs and CH\textsubscript{4} are competing for OH to be oxidized, that is, increase in NMVOC emission reduces the available OH, so it increases the lifetime of CH\textsubscript{4} in the atmosphere (Valdes et al., 2005). However, recent model studies suggested the dominant role of source changes rather than sink in controlling atmospheric CH\textsubscript{4} for the past climate changes (Weber et al., 2010; Levine et al., 2011). Therefore, the sink changes are not considered here.

Since the direct CH\textsubscript{4} monitoring of modern air samples only covers the late 20th and early 21st centuries (Dlugokencky et al., 1994, 2011), investigation further back in time requires the unique archive of polar ice that preserves the ancient atmospheric air. Paleoatmospheric CH\textsubscript{4} levels have been reconstructed for the last 800 thousand of years (kyr) from Antarctic- and Greenland ice cores (e.g., Spahni et al., 2005; Loulergue et al., 2008). A time series of the past CH\textsubscript{4} changes found that CH\textsubscript{4} mixing ratio was low during glacial periods and high in interglacials, generally following the glacial-interglacial cycles and related global ice volume changes (Lisiecki and Raymo, 2005; Loulergue et al., 2008). For shorter time scale variability, the tropical monsoon activity and solar insolation changes were proposed as primary controls (e.g., Guo et al., 2012). However, no direct correlation between CH\textsubscript{4} and tropical monsoon signals has been reported in shorter time scales, although demonstrated were the positive relationships between Greenland climate and tropical monsoons (e.g., Chiang et al., 2008), and between Greenland climate and CH\textsubscript{4} (e.g., Spahni et al., 2005; Wang et al., 2005; Mitchell et al., 2011) have been discussed. Given that waterlogged wetlands are the largest natural CH\textsubscript{4} source, this complex relationship may imply that tropical monsoons are not the sole, primary controls; wetlands in northern high latitude and southern hemisphere might act as a secondary role.

Detailed studies of CH\textsubscript{4} variability during the early Holocene period are limited, except for the prominent 8.2 ka event (Blunier et al., 1995; Brook et al., 1996; Spahni et al., 2003; Kobashi et al., 2007; Ahn et al., 2012), which is thought to be caused by abrupt fresh water input from Lakes Agassiz and Ojibway into the North Atlantic, and consequently changes in North Atlantic Deep Water (NADW) formation and meridional heat transfer (e.g., Alley and Agustsdottir, 2005). Otherwise, earlier studies mainly focused on the multi-millennial variability, attributing the major control for the Holocene CH\textsubscript{4} to low latitude hydrology based on regional climate records that showed wet condition in tropical regions during the early Holocene (e.g., Blunier et al., 1995; Chappellaz et al., 1993, 1997; Brook et al., 2000). Climate simulation studies using the atmospheric chemistry and vegetation coupled models also confirm the previously suggested ‘low-latitude control’ hypothesis (Harder et al., 2007; Singarayer et al., 2011).

Humans may also be another important factor in the Holocene CH\textsubscript{4} budget. Ruddiman et al. (2008) proposed that an increase of agricultural activity (i.e. rice cultivation) was a major driver of the anomalous CH\textsubscript{4} rise after ~5 ka, based on
radiocarbon dating of evidence for rice agriculture. This hypothesis was argued against later by Singarayer et al. (2011) who suggested that the insolation-induced monsoon intensification in southern hemisphere could explain the late Holocene CH_4 increase. On the other hand, Sowers (2010) attempted to disentangle the Holocene CH_4 change by taking advantage of stable isotope ratios of CH_4 ($^{13}\text{C}/^{12}\text{C}$ and D/H) recovered from polar ice cores and suggested some possible control factors: northern emission from thermokarst lakes and wetlands, changing in C3/C4 plant ratio of the CH_4-emitting ecosystem, and composition of methanogenic communities. The temporal resolution of the data was not sufficient to understand the underlying mechanisms of sub-millennial scale CH_4 variability.

Recently, emergence of high-resolution measurements permits us to study the CH_4 variability on multi-decadal to sub-millennial time scales, especially for the last 2000 years (Ferretti et al., 2005; MacFarling-Meure et al., 2006; Mitchell et al., 2011, 2013; Sapart et al., 2012; Rhodes et al., 2013). Mitchell et al. (2011) reported a new, decadally resolved CH_4 records for the last millennia from WAIS Divide, Antarctica. They tested the previous hypothesis by comparing proxies of temperature and precipitation of various regions, and found no strong correlation with CH_4. Their approach was optimal for validating the hypothesis, but the limitation was that the late Holocene CH_4 budget may have been comprised of both natural and anthropogenic terms, making it difficult to distinguish between them. Considering together with Antarctic- and Greenlandic CH_4 concentrations, deriving the inter-polar difference (IPD) of CH_4, Mitchell et al. (2013) demonstrated that the late Holocene CH_4 evolution can be explained by a combined emission of natural and anthropogenic sources. Sapart et al. (2012) analysed CH_4 concentration simultaneously with $^{13}\text{C}/^{12}\text{C}$ isotope ratio of CH_4 ($^{13}\text{C}-\text{CH}_4$) using the ice core samples of North Greenland Eemian Ice Drilling (NEEM) and calculated isotopic mass balance to separate biogenic, pyrogenic and geologic emissions. Furthermore, Ruddiman et al. (2011) and Sapart et al. (2012) estimated CH_4 emission change due to anthropogenic land use changes, which shows a good agreement with long-term CH_4 increasing trend. However, there is no high-resolution reconstruction of past population and land use area, and consequently large uncertainties of CH_4 emission from land use change impede identification of any shorter scale changes.

In this paper, we present a new high-resolution CH_4 record during the early Holocene to study the natural control mechanisms under interglacial conditions. Since there was only negligible human population and relevant CH_4-emitting anthropogenic activities (e.g., Goldewijk et al., 2010; Kaplan et al., 2011) during this time, the early Holocene CH_4 changes must have occurred mostly due to the natural causes. We note that environmental conditions were not identical to those of the late Holocene, given that the global sea level rise continued throughout the early Holocene as the last sections of the northern hemisphere glacial ice sheets melted.

2 Materials and Methods

We measured a total of 295 samples on 143 depth intervals from 518.87 to 623.38 m of Siple Dome ice core, West Antarctica. Siple Dome ice samples were cut and packed in insulated boxes and with eutectic gel packs at National Ice Core Laboratory (NICL), and shipped to Seoul National University (SNU) via expedited air freight. Automated temperature loggers were
enclosed in the boxes to check the temperature during the shipping. The temperatures within the boxes were kept below -20 °C and the ice samples were preserved in SNU cold storage maintained below -20 °C. The basic principles of gas extraction and CH₄ analysis are described in Yang et al. (in preparation). Briefly, the ice samples were cut by a clean band-saw and trimmed outermost 2 mm to remove possible dissolution of modern ambient atmosphere. In case of cracks, the sample was trimmed along the fractures. The typical sample size is ~2.5 × 2.5 × 10 cm and the weight varies from 35 to 55 g depending on sample availability. Each day we normally analysed 3 samples in duplicate and four blank samples (bubble-free ice made in the laboratory, with standard air added to the sample flask prior to air extraction). Air was extracted by a traditional melt-refreeze technique, and the extracted air was expanded to gas chromatograph (GC), where CH₄ was separated and measured by a flame ionization detector (FID). The GC was calibrated daily with a standard air of 721.31 ppb CH₄ on the NOAA04 scale (Dlugokencky et al., 2005). The blank measurements of four bubble-free blank ice samples show a daily offset of 5-15 ppb, which is subtracted from all measurements. Preferential dissolution of CH₄ into meltwater (gas solubility effect) was corrected by Henry’s law, assuming that the equilibrium state was accomplished within the sample container being a closed-system.

Our data were corrected for mass dependent (gravitational) fractionation by diffusion within the firn layer (Craig et al., 1988; Schwander, 1989). The gravitational fractionation effect was corrected using the nitrogen isotope ratio (δ¹⁵N) of atmospheric nitrogen (N₂) occluded in bubbles. Siple Dome δ¹⁵N records show a mean enrichment of 0.23 ± 0.01 ‰ during the early Holocene (Severinghaus et al., 2009) and result in a slight decrease of CH₄ by 1.97 ± 0.15 ppb, which we added to all our measurements to correct the gravitational fractionation.

The gas age scale, which was previously constrained (Brook et al., 2005), was converted to the Greenland Ice Core Chronology 2005 (GICC05) age scale by setting the age tie-points with stable water isotope (δ¹⁸O) record from the North Greenland Ice Core Project (NGRIP) ice cores during the abrupt climate change events of the Preboreal Oscillation (PBO) and the 8.2 ka event, given that both events have been proved to be synchronous with CH₄ change (Kobashi et al., 2007, 2008). The synchronization between the tie points was done by linear interpolation of age differences between the synchronized- and the previous scale, which range from -114 to 28 years.

3. Result and Discussion

Our new Siple Dome CH₄ record is the one of the high-resolution data set covering from 11.6 to 8.5 ka, apart from the WAIS Divide records (Rhodes et al., 2015; WAIS Divide members, 2015). Duplicate measurements for 8 depths show ±1.0 ppb precision (1 sigma; pooled standard deviation). To check reliability of the record we compared our data set with previous measurement carried out at Oregon State University (OSU) using the same ice core. The OSU CH₄ record was measured with a temporal resolution of 8 years with precision of ±2.8 ppb (Mitchell et al., 2011; Ahn et al., 2014). Both records agree well with each other for overlapping interval of the mean difference between two data sets (OSU – SNU) of 3 ppb. We subtracted 3 ppb from the OSU data to combine with our new data. Fig. 1 shows the resulting CH₄ composite extending from 11.6 to 7.7 ka with a mean temporal resolution of 26 years.
3.1 Millennial scale variability

We applied a 250-year running average and high-pass filter (cut-off period of 1800 years) to Siple Dome CH$_4$ composite to study millennial scale variability throughout the early Holocene. For comparison, the same signal processing scheme was applied to WAIS Divide time series and we observed that Siple Dome and WAIS Divide CH$_4$ anomalies share similar millennial scale variability, confirming reliability of both our data and observed millennial scale changes (Fig. 2).

3.1.1 Low latitude hydrology

The CH$_4$ anomalies demonstrate the millennial scale minima at ~8.2, 9.3, 10.2 and 11.0 ka, which occurred in nearly 1000-year spacing. Each minimum was accompanied by depletion of water stable isotope ratio (δ^{18}O$_{w}$) from NGRIP ice core, which implies climate cooling in Greenland. A close relationship between CH$_4$ and Greenland δ^{18}O$_{ice}$ has been previously reported in glacial-interglacial cycles and Dansgaard-Oeschger (DO) events during the last glacial period (e.g., Brook et al., 1996, 2000; Blunier and Brook, 2001; Chappellaz et al., 1993, 2013; EPICA community members, 2006). However, it has not been confirmed for the Holocene interglacial condition. Mitchell et al. (2011) found no significant correlation with Greenland climate in multi-decadal scale during the late pre-industrial Holocene (LPIH), possibly because LPIH CH$_4$ budget is also affected substantially by anthropogenic emissions. In contrast, we observe a moderate positive correlation ($r = 0.66$, $p = 0.0013$) between the Siple Dome CH$_4$ and NGRIP δ^{18}O$_{ice}$ during the early Holocene, which implies that natural CH$_4$ budget is closely connected with Greenland climate in millennial timescales, even though there is no age tie-points between the 8.2 ka episode and the Preboreal oscillation (Fig. S1).

According to atmospheric modelling studies, abrupt cooling in the North Atlantic regions can alter atmospheric circulation and to cause southward migration of the mean latitudinal position of the Intertropical Convergence Zone (ITCZ) (e.g., Chiang and Bitz, 2005; Broccoli et al., 2006; Cvijanovic and Chiang, 2012). The climatic teleconnection between northern Atlantic and low latitude regions is shown by climate proxies. The southward displacement of ITCZ leads further weakening of Asian and Indian summer monsoons and probably reduces CH$_4$ emission from northern tropical wetlands. Sediment reflectance record from Cariaco Basin shows increased rainfall and humidity – which is due to southward displacement of ITCZ – corresponding to each abrupt cooling event, as revealed in previous studies for different time periods (Peterson et al., 2000; Haug et al., 2001; Fleitmann et al., 2007; Deplazes et al., 2013). Moreover, 18O enrichments of Asian (Dongge) and Indian (Hoti and Qunf) cave stalagnites occurred at similar timing with abrupt cooling in Greenland, which indicate the reduction of monsoonal rainfall at northern tropical wetlands. The speleothem records from Chinese and Oman caves seem to lag by ~100-200 years after the CH$_4$ change at ~9.3 ka, but this lies within chronological uncertainties of ~200-400 years at around 9.0 ka (Dykoski et al., 2005; Fleitmann et al., 2007).

Previously, Björck et al. (2001) found the climate cooling in the northern Atlantic and Santa Barbara Basin occurred with solar-forcing change at ~10.3 ka. However, in the proxy data, there is no clear indication of southward migration of ITCZ position and reduction of Asian summer monsoon intensity corresponding to ~10.2 ka cooling (Fig. 2). Instead, there are two
small decrease at ~9.9 and ~10.6 ka, but these episodes are likely beyond the chronological uncertainty, considering that the age uncertainty of Dongge Cave deposits is ±77 years (2 sigma error; Dykoski et al., 2005), and that the Siple Dome age uncertainty is likely less than ~100 years (see above and Fig. S1). This could be because the climate teleconnection between North Atlantic and tropical hydrology was not sufficiently strong enough to change the low latitude climate. Weak cooling around the North Atlantic region can be a candidate, given that NGRIP δ18O ice records demonstrate smaller amplitude negative anomaly during ~10.2 ka event than those of 8.2 and 9.3 ka, but this is not supported by other Greenland ice core records such as Greenland Ice Core Project (GRIP) and Greenland Ice Sheet Project 2 (GISP2) (Fig. S2).

Although there appears to have been no strong change in low latitude hydrology at 10.2 ka, the amplitude of CH4 decrease at 10.2 ka is similar order to the other millennial events. This may imply CH4 reduction was controlled by other processes than the Asian monsoon intensity change. If the climate proxy from Dongge cave reflects rather regional climate changes, monsoonal rainfalls and surface hydrology of other regions could be responsible for CH4 decrease. The speleothem δ18O records from Mawmluh Cave show no weakening of the Indian monsoon (Berkelhammer et al., 2012), moreover, there was no distinct change in ∆ELAND, a proxy of global terrestrial respiratory fractionation of atmospheric oxygen, which is affected by low latitude surface hydrology (Severinghaus et al., 2009). This evidence suggests that changes in precipitation and surface hydrology in the northern tropics may have not changed significantly during around the 10.2 ka.

Increased boreal source contribution is a probable compensating mechanism for smaller reduction in tropical CH4 emission. Terrestrial proxies in boreal regions showed the formation of peatlands and thermokarst lakes, which occurred first in Alaska and northern Canada from ~11.0 ka, followed by Siberia and Asia (MacDonald et al., 2006; Brosius et al., 2012; Yu et al., 2013). Exposing a new land by deglaciation (Dyke, 2004) and temperature increase over northern high latitude (Marcott et al., 2013) established a favourable climate condition for thawing permafrost, thus releasing CH4 from there. We will discuss it further below.

3.1.2 External forcing

Figure 2(a) shows a possible cause of the observed millennial scale climatic changes and abrupt cooling recorded in Greenland ice cores. Four large ice-rafted debris (IRD) drift deposits occurred during the early Holocene at ~8.5, 9.3, 10.3 and 11.3 ka (Bond et al., 2001). This record lacks a large IRD deposit that corresponds to 8.2 ka cooling (Bond et al., 2001). Later study found that increase of hematite stained glass (HSG) at the timing of 8.5 ka should be revised to 8.2 ka based on quartz-to-plagioclase ratio analysis (Moros et al., 2004). Additionally, Bond et al. (2001) found that 1500-year cycle of IRD in the North Atlantic are concurrent with the global climate cooling and the negative solar activity inferred by ice core 10Be and Δ14C records. From this evidence the authors speculated that the solar influence should be amplified by changes of sea-ice and/or in deep water formation in the North Atlantic. However, the forcing mechanism of solar activity on the North Atlantic and global climate is not well understood during the early Holocene. Renssen et al. (2006) suggested that low solar activity (in terms of total solar irradiance) can induce sea-ice expansion around the Nordic Seas and weakening of deep water formation and cooling
in North Atlantic region. Nevertheless, the anti-correlation between solar forcing and sea-ice expansion (and hence deep water formation weakening) is not strong during the early Holocene due to relatively warm climate conditions. Jiang et al. (2015) also found a negative correlation between North Atlantic SST and solar forcing proxies (14C and 10Be), which is statistically significant for the last 4000 years, while the correlation disappeared during the mid- and early Holocene. They hypothesized that climate sensitivity to solar forcing is high for cooler climate.

Marchitto et al. (2010) suggested that negative solar forcing induces so called “El Niño-like” conditions; warming in East Tropical Pacific and weakened Asian and Indian summer monsoons. A close interplay between solar activity and monsoon intensity is confirmed by previous studies in Chinese and Oman speleothem records (Neff et al., 2001; Wang et al., 2005; Gupta et al., 2005), even on multi-decadal time scales (Agnihotri et al., 2002). Marchitto et al. (2010) also suggested a connection between “El Niño-like” climate and IRD events (except for 8.2 ka event), through reorganization of ocean currents around the North Atlantic due to intensified El Niño Southern Oscillation (ENSO) driven by the solar forcing so that it may have driven more IRD episodes (Emile-Geay et al., 2007). According to modern climate conditions it has been found that the El Niño state generally induces wetter conditions in tropical land area and vice versa (e.g., Dai and Wigley, 2000; Lyon and Barnston, 2005; Hodson et al., 2011). Mitchell et al. (2011) reported a moderate positive correlation between LPIH CH$_4$ and reconstructed Pacific Decadal Oscillation (PDO), which has been known as a long-period ENSO pattern in Pacific Ocean (Mantua and Hare, 2002). However, since there is no ENSO- and PDO-index reconstructions back to the early Holocene at present, with different climate boundary conditions, we cannot test this hypothesis.

3.2 Latitudinal source distribution

3.2.1 Inter-polar difference of CH$_4$ and source distribution model

We calculated inter-polar difference (IPD) of CH$_4$ to trace the latitudinal source distribution change during the early Holocene. In this study, the IPD was calculated by using our Siple Dome CH$_4$ record and a NEEM high resolution discrete CH$_4$ record (Chappellaz et al., 2013). Precise synchronization is crucial for direct comparison between data sets which have high frequency variations. The NEEM CH$_4$ record is chosen as a reference because the mean time resolution is higher than our data set. Synchronization was done by two steps: First, we made initial synchronization between the Siple Dome and NEEM data by setting 7 match points, and then we linearly interpolated the age offset of each match point for the rest of data points. Then we applied a Monte Carlo simulation to find a maximum correlation. Both data sets were resampled every 30 years, and each point was randomly disturbed (assuming a normal distribution with 1 sigma of 30 years). By doing so 1000 different time series were created, and one set having a maximum correlation with NEEM data was chosen. Criteria for “best fit” is correlation coefficient of 0.8 with NEEM original age scale, so that a maximum correlation less than 0.8 was discarded. This procedure was repeated to make 20 sets of maximum correlation time series, and the mean ages of 20 replicate simulations were set to synchronized age scale. Temporal uncertainty (synchronizing error) was determined for each point as 1 standard deviation of 20 replicates and CH$_4$ uncertainty includes analytical error of the both records (4.3 ppb for NEEM and 1.0 ppb for SDMA).
Fig. 3 shows our IPD results with 95 % significance envelope. Our IPD agrees with the previous low-resolution estimates for the earlier part of the Holocene (9.5–11.5 ka) (Chappellaz et al., 1997; Brook et al., 2000). Our results show an increase from ~10.7 ka to ~9.9 ka, which was not previously reported. Considering the long-term decreasing trend of CH$_4$ mixing ratio in both poles during the early Holocene, the increasing IPD implies that the amount of boreal emission reduction should have been less than that of low latitude emissions.

Given the new high resolution CH$_4$ records from both poles and IPD, we ran a simple 3-box CH$_4$ source distribution model to quantify how much the boreal and tropical source strengths were changed. Here we used the same box model employed in Chappellaz et al. (1997) and Brook et al. (2000). Briefly, the model contains 3 boxes; northern high latitude (30-90°N, N-box), tropical (30°S-30°N, T-box), and southern high latitude boxes (30-90°S, S-box). CH$_4$ concentrations in 3 boxes (in Tg box$^{-1}$) were determined from CH$_4$ mixing ratio of Antarctica and Greenland. To calculate the N-box CH$_4$, we subtracted the 7 % of IPD from Greenland CH$_4$ concentration, assuming the difference between Greenland and the mean latitude of N-box is ~7 % of IPD (Chappellaz et al., 1997). T-box concentration is inferred by assuming that the S-box emission is constant of 15 Tg yr$^{-1}$ (Fung et al., 1991). Emission from each box (Tg yr$^{-1}$) is then estimated by using the concentration of the boxes, lifetime of each box, and transport times among the boxes.

The results of our model are consistent with previous estimates by Chappellaz et al. (1997) and Brook et al. (2000). Although the early studies reported average value for the 11.5-9.5 ka interval, our IPD records show similar value before the IPD starts to rise at ~ 10.7 ka (Fig. 4 and Table 1). After that, our results show an increase of boreal emission by 9 Tg yr$^{-1}$ and a decrease in tropical emission. Boreal source fraction, a ratio of boreal emission to total emission, reveals an increase by 5 %. This result supports our interpretation that the boreal sources were less reduced than those in low latitudes.

This conclusion is supported by proxy-based temperature reconstructions that indicate a gradual warming in northern high latitude region (30N-90N) until ~9.6 ka, while tropical temperature remains stable (Marcott et al., 2013). The climate warming in northern high latitudes caused ice sheet retreat (e.g., Dyke, 2004) and enhanced CH$_4$ emission from boreal permafrost by forming new wetlands in mid- to high latitudes (e.g., Gorham et al., 2007; Yu et al., 2013) and accelerating microbial decomposition of organic materials (e.g., Christensen et al., 2004; Schuur et al., 2015). Thermokarst lakes created by thawing ice wedges and ground ices in Alaskan- and Siberian permafrost are suggested as a source of CH$_4$ (e.g., Walter et al., 2006, 2007; Brosius et al., 2012). Indeed, the increased boreal CH$_4$ emission of 9 Tg yr$^{-1}$ is in similar order of the CH$_4$ release of 8.2 Tg yr$^{-1}$ from thermokarst lake reported by Walter Anthony et al. (2014). However, it should be noted that the CH$_4$ release estimates from the thermokarst lakes are based on present-day CH$_4$ flux measurements in Siberian- and Alaskan lakes and that 9 Tg yr$^{-1}$ is a small change in the budget that could be driven by conventional northern CH$_4$ emission. A recent study also argued a possibility of underestimation of such CH$_4$ emission measurements (Wik et al., 2016).

We could not estimate the IPD for the later part of the record (7.7 ~ 8.8 ka) due to a lack of high resolution CH$_4$ from Greenland ice cores. However, since the first-generation lakes produce CH$_4$ more actively than later-generation lakes formed after drainage (Brosius et al., 2012), it is unlikely that thermokarst lake CH$_4$ emission would remain higher after 9.0 ka. Future
study should include extending high resolution CH$_4$ record from Greenland, as well as CH$_4$ isotope ratio data for the younger time period.

3.2.2 IPD during the Pre-Boreal Oscillation (PBO)

We also observed a high IPD at the earliest part of the Holocene, where CH$_4$ records from both poles show a large variability. This could be due to mismatching of synchronized time scales and different surface conditions of drilling site and hence signal attenuation process within firn. A sensitivity test on synchronizing error has been carried out by shifting the reference age scale (in this study, NEEM chronology) 15 years back and forth given that the initial age match points were resampled every 30 years. The IPDs calculated with shifted age scales (plus 15 years, control, and minus 15 years) are plotted in Fig. S3, showing a consistent high IPD values during ~11.0 to 11.2 ka interval, while for the earlier part IPD seems to be highly sensitive to synchronization. Nevertheless, this might be a result of different gas enclosing processes within firn layers in both ice cores. As the width at half-height of the gas age distribution at NEEM site was reported as ~32 years (Buizert et al., 2012), which is ~23% narrower than that of Siple Dome (Ahn et al. 2014). It means that the NEEM signal has been less attenuated than Siple Dome one, which could result in higher (lower) IPD at the period where rapid CH$_4$ increase (decrease) is observed. Indeed, the discrete and continuous CH$_4$ record from WAIS Divide, which has a mean accumulation rate similar to NEEM (Buizert et al., 2013), shows ~10 to 20 ppb higher amplitude variability.

Previous studies that, using the stable isotopic composition of C and H in CH$_4$ that aimed to disentangle the cause of abrupt CH$_4$ increase during the earliest period of the Holocene have shown contradictory results. Schaefer et al. (2006) calculated isotopic (δ^{13}C-CH$_4$) mass balance model to discern major source term that caused a slight enrichment in 13C during the Younger-Dryas termination, suggesting tropical wetland emission as a dominant source. The authors also proposed biomass burning, geologic CH$_4$ and enhanced sink process at marine boundary layer as alternatives, but less probable scenarios. On the other hand, Fischer et al. (2008) argued nearly constant biomass burning emission of ~45 Tg yr$^{-1}$ throughout the last glacial termination with a slight increase in PB, and also showed that the boreal sources were expanded during the YD-PB transition. The triple isotopic mass balance model using δ^{13}C-CH$_4$, δD-CH$_4$ and Δ^{14}C-CH$_4$, Melton et al. (2012) suggested the biomass burning and thermokarst lakes are the most important additional sources. The enhanced biomass burning agrees with global charcoal influx, an independent proxy for wildfire, which shows intensified wildfire in northern tropical regions (Daniau et al., 2012). However, it is unlikely that the increased pyrogenic emission in tropics leads to higher IPD. Brosius et al. (2012), using an isotopic mass balance model including thermokarst lake sources, suggested another scenario that the enhanced boreal wetland emission contributed largely for the CH$_4$ overshoot. In the meanwhile, the boreal emission hypothesis was refuted by a recent study of 14C-CH$_4$ change during the YD termination that revealed the major carbon source for abrupt CH$_4$ doubling was not the permafrost-origin old carbon (e.g., Petrenko et al., 2009, 2015). Therefore, the cause of the high IPD at the start of the Holocene still remains elusive.
4. Conclusion and summary

In this study we reconstructed the early Holocene CH\textsubscript{4} time series in high resolution to discuss natural processes that control the millennial scale CH\textsubscript{4} variations in the past atmosphere. Our results show a series of the millennial scale CH\textsubscript{4} minima accompanied with Greenland cooling, changes in ITCZ position and reduced Asian and Indian monsoon intensities, and the evidence suggests that the low latitude source changes were the major causes of the early Holocene CH\textsubscript{4} minima. However, the North Atlantic-induced changes in low latitude hydrology cannot fully explain the CH\textsubscript{4} minimum at ~10.2 ka. High resolution IPD and 3-box source distribution model results indicate that fraction of boreal sources increased by 5% during the early Holocene, which indicates that fraction of boreal sources increased from ~10.7 ka and remained high until ~9.3 ka. To summarize, the millennial scale variability of CH\textsubscript{4} during the early Holocene was primarily controlled by low latitude climatic and surface hydrological conditions, while relative boreal source contribution increased during 10.7-9.3 ka by newly developed high latitude sources following terrestrial deglaciation. Further, our observations imply that ~20-40 ppb of CH\textsubscript{4} change could be induced naturally by low latitude hydroclimate changes.

Acknowledgements. Financial support was provided by the Basic Science Research Program through the National Research Foundation of Korea (NRF) (NRF-2015R1A2A2A01003888) and Korea Polar Research Institution (KOPRI) research grant (PD12010 and PE15010). This work was also supported by the US National Science Foundation Grant PLR 1043518. We appreciate all the efforts of sample cutting and shipping of the Siple Dome ice core by Brian Bencivengo, Richard Nunn, and Geoffrey Hargreaves of National Ice Core Laboratory, Denver, Colorado. We sincerely thank to Yoo-Hyeon Jin, Jinhwa Shin, and Hun-Gyu Lee for their laboratory assistance and helpful discussions. Thanks should go to Heejo Lee for her help in preparing English manuscript. We are grateful to Mark Twickler and the NICL Science Management Office for providing the Siple Dome ice core samples, the collection of which was supported by the US National Science Foundation.

References

Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A reconstruction of regional and global temperature for the past 11300 years, Science, 339, 1198-1201, 2013.

Figure 1. Siple Dome CH$_4$ time series measured by Seoul National University (red, this study) and Oregon State University (blue, Ahn et al., 2014). The Siple Dome composite data is shown in black line. For comparison, WAIS Divide CH$_4$ records reconstructed by discrete (yellow, Brook and Sowers, 2016) and continuous measurements (green, Rhodes et al., 2015) are plotted together. The WAIS Divide data set are synchronized to GICC05 age scale by CH$_4$ correlation. The yellow triangles and horizontal error bars indicate the age tie-points and age displacements, respectively.
Figure 2. Millennial scale variability of CH$_4$ and other climate proxies. All climate proxies are smoothed with 250-year window after filtered in 1/1800 year high-pass window. (a) Millennial scale Siple Dome CH$_4$ anomaly (red) is plotted with North Atlantic IRD stack (grey, Bond et al., 2001) and Greenland composite 10Be concentration from GRIP and GISP2 (olive yellow, Finkel and Nishizumii, 1997; Yiou et al., 1997). GRIP and GISP2 ice core chronologies are synchronized to GICC05 scale by visual matching between δ18O ice time series. WAIS Divide CH$_4$ anomalies are shown in green (Rhodes et al., 2015) and cyan (WAIS Divide Project Members, 2015). (b) NGRIP δ18O$_{ice}$ on GICC05 time scale (dark blue, Rasmussen et al., 2006) and Cariaco basin sediment reflectance (orange, Deplazes et al., 2013). Black error bars indicate maximum age uncertainty of GICC05 scale as stated in Rasmussen et al. (2006). (c) Oman speleothem records from Qunf (purple, Fleitmann et al., 2007) and Hoti cave (grey, Neff et al., 2001) on their own chronology. (d) Siple Dome Δe$_{LAND}$ (red), Severinghaus et al., 2009) and Dongge Cave speleothem δ18O composite (green) from Dykoski et al. (2005) and Wang et al. (2005).
Figure 3. (from top to bottom) High resolution CH₄ discrete measurements from NEEM (blue, Chappellaz et al., 2013) and Siple Dome (red, this study). IPD (light grey) and 500-year low-pass filtered IPD (black) with 95 % significance interval (grey shaded). Previous estimates are marked in green and orange (Brook et al., 2000; Chappellaz et al., 2013). Proxy-based temperature reconstruction for 30°N-90°N and 30°S-30°N latitude (blue, Marcott et al., 2013). CH₄ flux estimate from Siberian- and Alaskan thermokarst lakes (red, Walter-Anthony et al., 2014).
Figure 4. 3-box source distribution model results of tropical (green) and boreal (red) boxes. Black line shows the boreal source fraction (see text).
<table>
<thead>
<tr>
<th>Ref.</th>
<th>N box</th>
<th>T box</th>
<th>N/(N+T) ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ka)</td>
<td>(Tg yr(^{-1}))</td>
<td>(%)</td>
<td></td>
</tr>
<tr>
<td>Brook et al., 2000</td>
<td>64 ± 5</td>
<td>123 ± 8</td>
<td>32 ± 3</td>
</tr>
<tr>
<td>(9.5-11.5 ka)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chappellaz et al., 1997</td>
<td>66 ± 8</td>
<td>120 ± 9</td>
<td>33 ± 3</td>
</tr>
<tr>
<td>(9.5-11.5 ka)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study</td>
<td>65 ± 2</td>
<td>122 ± 4</td>
<td>32 ± 1</td>
</tr>
<tr>
<td>(10.8 ka)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study</td>
<td>74 ± 2</td>
<td>110 ± 3</td>
<td>37 ± 1</td>
</tr>
<tr>
<td>(9.8 ka)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. 3-box source distribution model results of tropical (green, T) and boreal (red, N) boxes and boreal emission fraction (N/(N+T)) compared with previous results. Errors denote 95% confidence interval.